Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2019, Vol. 46 ›› Issue (6A): 502-506.

• 大数据与数据挖掘 • 上一篇    下一篇

基于情景感知的用户兴趣推荐模型

李建军, 侯跃, 杨玉   

  1. 哈尔滨商业大学计算机与信息工程学院 哈尔滨150028
  • 出版日期:2019-06-14 发布日期:2019-07-02
  • 通讯作者: 李建军(1973-),男,博士,副教授,主要研究方向为电子商务与商务智能,E-mail:517718768@qq.com
  • 作者简介:侯 跃(1994-),女,硕士,主要研究方向为商务智能,E-mail:675224600@qq.com;杨 玉(1974-),女,硕士,副教授,主要研究方向为电子商务与商务智能。
  • 基金资助:
    本文受国家社科基金项目 (16BJY125),黑龙江省新型智库研究项目(18ZK015),黑龙江省哲学社会科学研究规划项目(17GLE298,16EDE16),哈尔滨商业大学校级课题(18XN065)资助。

User Interest Recommendation Model Based on Context Awareness

LI Jian-jun, HOU Yue, YANG Yu   

  1. School of Computer and Information Engineering,Harbin University of Commerce,Harbin 150028,China
  • Online:2019-06-14 Published:2019-07-02

摘要: 随着电子商务和互联网的发展与普及,面向用户的个性化推荐越来越被重视,传统的用户兴趣模型只考虑到用户本身对项目的行为,忽略了用户当时所处情景。因此文中提出了基于情景感知的用户兴趣模型,将用户的浏览行为与情景因素相结合,从两个方面深度挖掘了用户对项目的兴趣,明确了用户对项目的关注度,从而准确地为用户进行聚类,并根据用户聚类的结果对目标用户进行推荐。实验结果表明,该推荐模型的准确率高于其他传统推荐算法的准确率,本模型能更好地挖掘用户兴趣,适应用户的兴趣变化,并且能够更好地解决用户面临的众多信息无从挑选的问题,提高了用户的满意度。因此,需要从多个角度挖掘用户隐藏的信息,能够更好地为用户提供个性化的推荐。

关键词: 个性化推荐, 情景感知, 用户聚类, 用户兴趣

Abstract: With the development and popularization of electronic commerce and Internet,the user-oriented personalized recommendation is getting more and more attention,the traditional user interest models only consider theuser’s own behavior towards the project,while ignoring the user’s scene at that time.Aiming at this problem,this paper proposed a user interest model based on scene perception,combined the user’s browsing behavior with the situational factors,deeply mined user interest in the project from two aspects,cleared user awareness of the project,thus accurate clustered for users,and target users based on user clustering results were recommended.Experimental results show that the accuracy of this model recommendation is higher than that of other traditional recommendation algorithms.It can better mine users’ interests,adapt to the changes of users’ interests,better solve the problem that users have no way to choose a lot of information,and improve users’ satisfaction.Therefore,it is necessary to excavate the hidden information of users from multiple perspectives so as to better provide personalized recommendations for users.

Key words: Context awareness, Personalized recommendation, User clustering, User interest

中图分类号: 

  • TP301
[1]陈续阳.基于情境感知的用户个性化推荐方法研究[D].成都:成都理工大学,2016.
[2]周朴雄,薛玮炜,赵龙文.基于个性化情境的Multi-Agent信息推荐研究[J].情报杂志,2015,34(5):180-184.
[3]曾子明,陈贝贝.移动环境下基于情境感知的个性化阅读推荐研究[J].情报理论与实践,2015,38(12):31-36.
[4]DEY A K .Providing architectural support for building contex-taware applications[D].Atlanta Batanical:Georgia Institute of Technology,2000.
[5]刘红霞.基于协同过滤技术的推荐系统综述[J].信息安全与技术,2016,7(3):24-26.
[6]ADOMAVICIUS G,SANKARANARAYANAN R,SEN S,et al.Incorporating contextual information in recommender systems using a multidimensional approach[J].ACM Transactions on Information Systems,2005,23(1):103-145.
[7]EBESU T,FANG Y .Neural Citation Network for Context-Aware Citation Recommendation[C]∥40th International ACM SIGIR Conference.ACM,2017.
[8]MAO M,LU J,ZHANG G,et al.Multirelational Social Recommendations via Multigraph Ranking[J].IEEE Transactions on Cybernetics,2017,47(12):4049-4061.
[9]BRAUNHOFER M,RICCI F,BÉATRICE L,et al.A Context-Aware Model for Proactive Recommender Systems in the Tou-rism Domain[C]∥International Conference on Human-compu-ter Interaction with Mobile Devices & Services Adjunct.ACM,2015.
[10]OLIVEIRA T,THOMAS M A,ESPADANAL M .Assessing the determinants of cloud computing adoption:An analysis of the manufacturing and services sectors[J].Information & Management,2014,51(5):497-510.
[11]ABDRABBAH S B,AYACHI R,AMOR N B .Social Activities Recommendation System for Students in Smart Campus[J].Smart Innaration,Systems and Technologies,2017,76(5):461-470.
[12]YAO C B .Constructing a User-Friendly and Smart Ubiquitous Personalized Learning Environment by Using a Context-Aware Mechanism[J].IEEE Transactions on Learning Technologies,2017,10(1):104-114.
[13]ZHU H,XIONG H,GE Y,et al.Mobile app recommendations with security and privacy awareness[C]∥Proceedings of the 20th International Conference on Knowledge Discovery and Data Mining.2014:951-960.
[14]TANG L,LIU E Y .Joint User-Entity Representation Learning for Event Recommendation in Social Network[C]∥2017 IEEE 33rd International Conference on Data Engineering (ICDE).IEEE,2017.
[15]XIA P,ZHAI S,LIU B,et al.Design of reciprocal recommendation systems for online dating[J].Social Network Analysis & Mining,2016,6(1):32-33.
[16]TATAR A,AMORIM M D D,FDIDA S,et al.A survey on predicting the popularity of web content[J].Journal of Internet Services and Applications,2014,5(1):8-9.
[17]GUILLE A,FAVRE C.Event Detection,Tracking and Visualization in Twitter:A Mention-anomaly-based Approach[J].Social Network Analysis & Mining,2015,5(1):18-19.
[18]XU J,ZHONG Y,ZHU W,et al.Trust-based context-aware mobile social network service recommendation[J].Wuhan University Journal of Natural Sciences,2017,22(2):149-156.
[19]GARG S,GENTRY C,HALEVI S,et al.Functional encryption without obfuscation[M]∥Theory of Cryptography.Springer Berlin Heidelberg,2016.
[20]任星怡,宋美娜,宋俊德.基于用户签到行为的兴趣点推荐[J].计算机学报,2017,40(1):28-51.
[21]LIAN D,ZHENG K,GE Y,et al.GeoMF++:Scalable Location Recommendation via Joint Geographical Modeling and Matrix Factorization[J].ACM Transactions on Information Systems,2018,36(3):1-29.
[22]LIN H T.A traveling memory based upon location-based services and social network sites[J].Journal of the Chinese Institute of Engineers,2015,38(2):181-190.
[23]MEMON I,LING C,MAJID A,et al.Travel Recommendation Using Geo-tagged Photos in Social Media for Tourist [J].Wireless Personal Communications,2015,80(4):1347-1362.
[24]SUN Y,FAN H C,BAKILLAH M,et al.Road-based travel recommendation using geo-tagged images [J].Computers,Environment and Urban Systems,2015,53(9):110-122.
[1] 朴勇, 朱锶源, 李阳.
融合用户和区位资源特征的混合房源推荐方法
Hybrid Housing Resource Recommendation Based on Combined User and Location Characteristics
计算机科学, 2022, 49(6A): 733-737. https://doi.org/10.11896/jsjkx.210800062
[2] 熊中敏, 舒贵文, 郭怀宇.
融合用户偏好的图神经网络推荐模型
Graph Neural Network Recommendation Model Integrating User Preferences
计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276
[3] 陈晋鹏, 胡哈蕾, 张帆, 曹源, 孙鹏飞.
融合时间特性和用户偏好的卷积序列化推荐
Convolutional Sequential Recommendation with Temporal Feature and User Preference
计算机科学, 2022, 49(1): 115-120. https://doi.org/10.11896/jsjkx.201200192
[4] 孙振强, 罗永龙, 郑孝遥, 章海燕.
一种融合用户情感与相似度的智能旅游路径推荐方法
Intelligent Travel Route Recommendation Method Integrating User Emotion and Similarity
计算机科学, 2021, 48(6A): 226-230. https://doi.org/10.11896/jsjkx.200900119
[5] 梁浩宏, 古天龙, 宾辰忠, 常亮.
联合学习用户端和项目端知识图谱的个性化推荐
Combining User-end and Item-end Knowledge Graph Learning for Personalized Recommendation
计算机科学, 2021, 48(5): 109-116. https://doi.org/10.11896/jsjkx.200600115
[6] 王友卫, 朱晨, 朱建明, 李洋, 凤丽洲, 刘江淳.
基于用户兴趣词典和LSTM的个性化情感分类方法
User Interest Dictionary and LSTM Based Method for Personalized Emotion Classification
计算机科学, 2021, 48(11A): 251-257. https://doi.org/10.11896/jsjkx.201200202
[7] 王瑞平, 贾真, 刘畅, 陈泽威, 李天瑞.
基于DeepFM的深度兴趣因子分解机网络
Deep Interest Factorization Machine Network Based on DeepFM
计算机科学, 2021, 48(1): 226-232. https://doi.org/10.11896/jsjkx.191200098
[8] 刘晓飞, 朱斐, 伏玉琛, 刘全.
基于用户偏好特征挖掘的个性化推荐算法
Personalized Recommendation Algorithm Based on User Preference Feature Mining
计算机科学, 2020, 47(4): 50-53. https://doi.org/10.11896/jsjkx.190700175
[9] 罗鹏宇, 吴乐, 吕扬, 袁堃平, 洪日昌.
基于时序推理的分层会话感知推荐模型
Temporal Reasoning Based Hierarchical Session Perception Recommendation Model
计算机科学, 2020, 47(11): 73-79. https://doi.org/10.11896/jsjkx.200700088
[10] 刘小捷, 吕晓强, 王晓玲, 张伟, 赵安.
基于维基百科类别图的推特用户兴趣挖掘
Mining User Interests on Twitter Using Wikipedia Category Graph
计算机科学, 2019, 46(9): 79-84. https://doi.org/10.11896/j.issn.1002-137X.2019.09.010
[11] 万家山, 陈蕾, 吴锦华, 高超.
基于KD-Tree聚类的社交用户画像建模
Persona Based Social User Modeling Using KD-Tree
计算机科学, 2019, 46(6A): 442-445.
[12] 张宏丽, 白翔宇, 李改梅.
利用最近邻域推荐且结合情境感知的个性化推荐算法
Personalized Recommendation Algorithm Based on Recent Neighborhood Recommendation and Combined with Context Awareness
计算机科学, 2019, 46(4): 235-240. https://doi.org/10.11896/j.issn.1002-137X.2019.04.037
[13] 温雯, 林泽钿, 蔡瑞初, 郝志峰, 王丽娟.
基于嵌入学习的用户动态偏好预测
Predicting User’s Dynamic Preference Based on Embedding Learning
计算机科学, 2019, 46(10): 32-38. https://doi.org/10.11896/jsjkx.180901801
[14] 王刚,王含茹,胡可,贺曦冉.
任务推荐中考虑任务关联度与时间因素的改进OCCF方法
Improved OCCF Method Considering Task Relevance and Time for Task Recommendation
计算机科学, 2018, 45(7): 172-177. https://doi.org/10.11896/j.issn.1002-137X.2018.07.030
[15] 石进平,李劲,和凤珍.
基于社交关系和用户偏好的多样性图推荐方法
Diversity Recommendation Approach Based on Social Relationship and User Preference
计算机科学, 2018, 45(6A): 423-427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!