计算机科学 ›› 2019, Vol. 46 ›› Issue (6A): 502-506.
李建军, 侯跃, 杨玉
LI Jian-jun, HOU Yue, YANG Yu
摘要: 随着电子商务和互联网的发展与普及,面向用户的个性化推荐越来越被重视,传统的用户兴趣模型只考虑到用户本身对项目的行为,忽略了用户当时所处情景。因此文中提出了基于情景感知的用户兴趣模型,将用户的浏览行为与情景因素相结合,从两个方面深度挖掘了用户对项目的兴趣,明确了用户对项目的关注度,从而准确地为用户进行聚类,并根据用户聚类的结果对目标用户进行推荐。实验结果表明,该推荐模型的准确率高于其他传统推荐算法的准确率,本模型能更好地挖掘用户兴趣,适应用户的兴趣变化,并且能够更好地解决用户面临的众多信息无从挑选的问题,提高了用户的满意度。因此,需要从多个角度挖掘用户隐藏的信息,能够更好地为用户提供个性化的推荐。
中图分类号:
[1]陈续阳.基于情境感知的用户个性化推荐方法研究[D].成都:成都理工大学,2016. [2]周朴雄,薛玮炜,赵龙文.基于个性化情境的Multi-Agent信息推荐研究[J].情报杂志,2015,34(5):180-184. [3]曾子明,陈贝贝.移动环境下基于情境感知的个性化阅读推荐研究[J].情报理论与实践,2015,38(12):31-36. [4]DEY A K .Providing architectural support for building contex-taware applications[D].Atlanta Batanical:Georgia Institute of Technology,2000. [5]刘红霞.基于协同过滤技术的推荐系统综述[J].信息安全与技术,2016,7(3):24-26. [6]ADOMAVICIUS G,SANKARANARAYANAN R,SEN S,et al.Incorporating contextual information in recommender systems using a multidimensional approach[J].ACM Transactions on Information Systems,2005,23(1):103-145. [7]EBESU T,FANG Y .Neural Citation Network for Context-Aware Citation Recommendation[C]∥40th International ACM SIGIR Conference.ACM,2017. [8]MAO M,LU J,ZHANG G,et al.Multirelational Social Recommendations via Multigraph Ranking[J].IEEE Transactions on Cybernetics,2017,47(12):4049-4061. [9]BRAUNHOFER M,RICCI F,BÉATRICE L,et al.A Context-Aware Model for Proactive Recommender Systems in the Tou-rism Domain[C]∥International Conference on Human-compu-ter Interaction with Mobile Devices & Services Adjunct.ACM,2015. [10]OLIVEIRA T,THOMAS M A,ESPADANAL M .Assessing the determinants of cloud computing adoption:An analysis of the manufacturing and services sectors[J].Information & Management,2014,51(5):497-510. [11]ABDRABBAH S B,AYACHI R,AMOR N B .Social Activities Recommendation System for Students in Smart Campus[J].Smart Innaration,Systems and Technologies,2017,76(5):461-470. [12]YAO C B .Constructing a User-Friendly and Smart Ubiquitous Personalized Learning Environment by Using a Context-Aware Mechanism[J].IEEE Transactions on Learning Technologies,2017,10(1):104-114. [13]ZHU H,XIONG H,GE Y,et al.Mobile app recommendations with security and privacy awareness[C]∥Proceedings of the 20th International Conference on Knowledge Discovery and Data Mining.2014:951-960. [14]TANG L,LIU E Y .Joint User-Entity Representation Learning for Event Recommendation in Social Network[C]∥2017 IEEE 33rd International Conference on Data Engineering (ICDE).IEEE,2017. [15]XIA P,ZHAI S,LIU B,et al.Design of reciprocal recommendation systems for online dating[J].Social Network Analysis & Mining,2016,6(1):32-33. [16]TATAR A,AMORIM M D D,FDIDA S,et al.A survey on predicting the popularity of web content[J].Journal of Internet Services and Applications,2014,5(1):8-9. [17]GUILLE A,FAVRE C.Event Detection,Tracking and Visualization in Twitter:A Mention-anomaly-based Approach[J].Social Network Analysis & Mining,2015,5(1):18-19. [18]XU J,ZHONG Y,ZHU W,et al.Trust-based context-aware mobile social network service recommendation[J].Wuhan University Journal of Natural Sciences,2017,22(2):149-156. [19]GARG S,GENTRY C,HALEVI S,et al.Functional encryption without obfuscation[M]∥Theory of Cryptography.Springer Berlin Heidelberg,2016. [20]任星怡,宋美娜,宋俊德.基于用户签到行为的兴趣点推荐[J].计算机学报,2017,40(1):28-51. [21]LIAN D,ZHENG K,GE Y,et al.GeoMF++:Scalable Location Recommendation via Joint Geographical Modeling and Matrix Factorization[J].ACM Transactions on Information Systems,2018,36(3):1-29. [22]LIN H T.A traveling memory based upon location-based services and social network sites[J].Journal of the Chinese Institute of Engineers,2015,38(2):181-190. [23]MEMON I,LING C,MAJID A,et al.Travel Recommendation Using Geo-tagged Photos in Social Media for Tourist [J].Wireless Personal Communications,2015,80(4):1347-1362. [24]SUN Y,FAN H C,BAKILLAH M,et al.Road-based travel recommendation using geo-tagged images [J].Computers,Environment and Urban Systems,2015,53(9):110-122. |
[1] | 朴勇, 朱锶源, 李阳. 融合用户和区位资源特征的混合房源推荐方法 Hybrid Housing Resource Recommendation Based on Combined User and Location Characteristics 计算机科学, 2022, 49(6A): 733-737. https://doi.org/10.11896/jsjkx.210800062 |
[2] | 熊中敏, 舒贵文, 郭怀宇. 融合用户偏好的图神经网络推荐模型 Graph Neural Network Recommendation Model Integrating User Preferences 计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276 |
[3] | 陈晋鹏, 胡哈蕾, 张帆, 曹源, 孙鹏飞. 融合时间特性和用户偏好的卷积序列化推荐 Convolutional Sequential Recommendation with Temporal Feature and User Preference 计算机科学, 2022, 49(1): 115-120. https://doi.org/10.11896/jsjkx.201200192 |
[4] | 孙振强, 罗永龙, 郑孝遥, 章海燕. 一种融合用户情感与相似度的智能旅游路径推荐方法 Intelligent Travel Route Recommendation Method Integrating User Emotion and Similarity 计算机科学, 2021, 48(6A): 226-230. https://doi.org/10.11896/jsjkx.200900119 |
[5] | 梁浩宏, 古天龙, 宾辰忠, 常亮. 联合学习用户端和项目端知识图谱的个性化推荐 Combining User-end and Item-end Knowledge Graph Learning for Personalized Recommendation 计算机科学, 2021, 48(5): 109-116. https://doi.org/10.11896/jsjkx.200600115 |
[6] | 王友卫, 朱晨, 朱建明, 李洋, 凤丽洲, 刘江淳. 基于用户兴趣词典和LSTM的个性化情感分类方法 User Interest Dictionary and LSTM Based Method for Personalized Emotion Classification 计算机科学, 2021, 48(11A): 251-257. https://doi.org/10.11896/jsjkx.201200202 |
[7] | 王瑞平, 贾真, 刘畅, 陈泽威, 李天瑞. 基于DeepFM的深度兴趣因子分解机网络 Deep Interest Factorization Machine Network Based on DeepFM 计算机科学, 2021, 48(1): 226-232. https://doi.org/10.11896/jsjkx.191200098 |
[8] | 刘晓飞, 朱斐, 伏玉琛, 刘全. 基于用户偏好特征挖掘的个性化推荐算法 Personalized Recommendation Algorithm Based on User Preference Feature Mining 计算机科学, 2020, 47(4): 50-53. https://doi.org/10.11896/jsjkx.190700175 |
[9] | 罗鹏宇, 吴乐, 吕扬, 袁堃平, 洪日昌. 基于时序推理的分层会话感知推荐模型 Temporal Reasoning Based Hierarchical Session Perception Recommendation Model 计算机科学, 2020, 47(11): 73-79. https://doi.org/10.11896/jsjkx.200700088 |
[10] | 刘小捷, 吕晓强, 王晓玲, 张伟, 赵安. 基于维基百科类别图的推特用户兴趣挖掘 Mining User Interests on Twitter Using Wikipedia Category Graph 计算机科学, 2019, 46(9): 79-84. https://doi.org/10.11896/j.issn.1002-137X.2019.09.010 |
[11] | 万家山, 陈蕾, 吴锦华, 高超. 基于KD-Tree聚类的社交用户画像建模 Persona Based Social User Modeling Using KD-Tree 计算机科学, 2019, 46(6A): 442-445. |
[12] | 张宏丽, 白翔宇, 李改梅. 利用最近邻域推荐且结合情境感知的个性化推荐算法 Personalized Recommendation Algorithm Based on Recent Neighborhood Recommendation and Combined with Context Awareness 计算机科学, 2019, 46(4): 235-240. https://doi.org/10.11896/j.issn.1002-137X.2019.04.037 |
[13] | 温雯, 林泽钿, 蔡瑞初, 郝志峰, 王丽娟. 基于嵌入学习的用户动态偏好预测 Predicting User’s Dynamic Preference Based on Embedding Learning 计算机科学, 2019, 46(10): 32-38. https://doi.org/10.11896/jsjkx.180901801 |
[14] | 王刚,王含茹,胡可,贺曦冉. 任务推荐中考虑任务关联度与时间因素的改进OCCF方法 Improved OCCF Method Considering Task Relevance and Time for Task Recommendation 计算机科学, 2018, 45(7): 172-177. https://doi.org/10.11896/j.issn.1002-137X.2018.07.030 |
[15] | 石进平,李劲,和凤珍. 基于社交关系和用户偏好的多样性图推荐方法 Diversity Recommendation Approach Based on Social Relationship and User Preference 计算机科学, 2018, 45(6A): 423-427. |
|