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Abstract

We present a class of algorithms for independent component analysis (ICA) which use
contrast functions based on canonical correlations in a reproducing kernel Hilbert space.
On the one hand, we show that our contrast functions are related to mutual information
and have desirable mathematical properties as measures of statistical dependence. On the
other hand, building on recent developments in kernel methods, we show that these criteria
and their derivatives can be computed efficiently. Minimizing these criteria leads to flexible
and robust algorithms for ICA. We illustrate with simulations involving a wide variety of
source distributions, showing that our algorithms outperform many of the presently known
algorithms.
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1. Introduction

Independent component analysis (ICA) is the problem of recovering a latent random vector
x = (x1, . . . , xm)> from observations of m unknown linear functions of that vector. The
components of x are assumed to be mutually independent. Thus, an observation y =
(y1, . . . , ym)> is modeled as:

y = Ax, (1)

where x is a latent random vector with independent components, and where A is an m×m
matrix of parameters. Given N independently, identically distributed observations of y,
we hope to estimate A and thereby to recover the latent vector x corresponding to any
particular y by solving a linear system.

By specifying distributions for the components xi, one obtains a parametric model
that can be estimated via maximum likelihood (Bell and Sejnowski, 1995, Cardoso, 1999).
Working with W = A−1 as the parameterization, one readily obtains a gradient or fixed-
point algorithm that yields an estimate Ŵ and provides estimates of the latent components
via x̂ = Ŵy (Hyvärinen et al., 2001).
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In practical applications, however, one does not generally know the distributions of the
components xi, and it is preferable to view the ICA model in Eq. (1) as a semiparamet-
ric model in which the distributions of the components of x are left unspecified (Bickel
et al., 1998). Maximizing the likelihood in the semiparametric ICA model is essentially
equivalent to minimizing the mutual information between the components of the estimate
x̂ = Ŵy (Cardoso, 1999). Thus it is natural to view mutual information as a contrast
function to be minimized in estimating the ICA model. Moreover, given that the mutual
information of a random vector is nonnegative, and zero if and only if the components of
the vector are independent, the use of mutual information as a function to be minimized is
well motivated, quite apart from the link to maximum likelihood (Comon, 1994).

Unfortunately, the mutual information is difficult to approximate and optimize on the
basis of a finite sample, and much research on ICA has focused on alternative contrast
functions (Amari et al., 1996, Comon, 1994, Hyvärinen and Oja, 1997). These have either
been derived as expansion-based approximations to the mutual information, or have had
a looser relationship to the mutual information, essentially borrowing its key property of
being equal to zero if and only if the arguments to the function are independent.

The earliest ICA algorithms were (in retrospect) based on contrast functions defined in
terms of expectations of a single fixed nonlinear function, chosen in an ad-hoc manner (Jut-
ten and Herault, 1991). More sophisticated algorithms have been obtained by careful choice
of a single fixed nonlinear function, such that the expectations of this function yield a ro-
bust approximation to the mutual information (Hyvärinen and Oja, 1997). An interesting
feature of this approach is that links can be made to the parametric maximum likelihood
formulation, in which the nonlinearities in the contrast function are related to the assumed
densities of the independent components. All of these developments have helped to focus
attention on the choice of particular nonlinearities as the key to the ICA problem.

In the current paper, we provide a new approach to the ICA problem based not on a
single nonlinear function, but on an entire function space of candidate nonlinearities. In
particular, we work with the functions in a reproducing kernel Hilbert space, and make use
of the “kernel trick” to search over this space efficiently. The use of a function space makes
it possible to adapt to a variety of sources and thus makes our algorithms more robust to
varying source distributions, as illustrated in Section 7.

We define a contrast function in terms of a rather direct measure of the dependence
of a set of random variables. Considering the case of two univariate random variables x1

and x2, for simplicity, and letting F be a vector space of functions from R to R, define
the F-correlation ρF as the maximal correlation between the random variables f1(x1) and
f2(x2), where f1 and f2 range over F :

ρF = max
f1,f2∈F

corr(f1(x1), f2(x2)) = max
f1,f2∈F

cov(f1(x1), f2(x2))

(var f1(x1))1/2(var f2(x2))1/2
.

Clearly, if the variables x1 and x2 are independent, then the F-correlation is equal to zero.
Moreover, if the set F is large enough, the converse is also true. For example, it is well
known that if F contains the Fourier basis (all functions of the form x 7→ eiωx where ω ∈ R),
then ρF = 0 implies that x1 and x2 are independent.

To obtain a computationally tractable implementation of the F-correlation, we make use
of reproducing kernel Hilbert space (RKHS) ideas. Let F be an RKHS on R, let K(x, y) be
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the associated kernel, and let Φ(x) = K(·, x) be the feature map, where K(·, x) is a function
in F for each x. We then have the well-known reproducing property (Saitoh, 1988):

f(x) = 〈Φ(x), f〉, ∀f ∈ F , ∀x ∈ R.

This implies:

corr(f1(x1), f2(x2)) = corr (〈Φ(x1), f1〉, 〈Φ(x2), f2〉) .

Consequently, the F-correlation is the maximal possible correlation between one-dimensional
linear projections of Φ(x1) and Φ(x2). This is exactly the definition of the first canonical
correlation between Φ(x1) and Φ(x2) (Hotelling, 1936). This suggests that we can base an
ICA contrast function on the computation of a canonical correlation in function space.

Canonical correlation analysis (CCA) is a multivariate statistical technique similar in
spirit to principal component analysis (PCA). While PCA works with a single random
vector and maximizes the variance of projections of the data, CCA works with a pair of
random vectors (or in general with a set of m random vectors) and maximizes correlation
between sets of projections. While PCA leads to an eigenvector problem, CCA leads to a
generalized eigenvector problem. Finally, just as PCA can be carried out efficiently in an
RKHS by making use of the “kernel trick” (Schölkopf et al., 1998), so too can CCA (as
we show in Section 3.2). Thus we can employ a “kernelized” version of CCA to compute a
flexible contrast function for ICA.

There are several issues that must be faced in order to turn this line of reasoning into
an ICA algorithm. First, we must show that the F-correlation in fact has the properties
that are required of a contrast function; we do this in Section 3.1. Second, we must show
how to formulate the canonical correlation problem with m random variables, and show
how to solve the problem efficiently using kernel functions. This is easily done, as we show
in Section 3.2. Third, our method turns out to require the computation of generalized
eigenvectors of matrices of size mN×mN . A naive implementation of our algorithm would
therefore require O(m3N3) operations. As we show in Section 4, however, by making use
of incomplete Cholesky decomposition we are able to solve the kernelized CCA problem in
time O(N(h(N/η))2), where η is a precision parameter and h(t) is a slowly growing function
of t. Moreover, in computing the contrast function, the precision η need only be linear in
N ; consequently, we have a linear time algorithm. Finally, our goal is not simply that of
computing the contrast function, but of optimizing it, and for this we require derivatives of
the contrast function. Although incomplete Cholesky factorization cannot be used directly
for computing these derivatives, we are able to derive an algorithm for computing derivatives
with similar linear complexity in N (see Section 4.6).

There are a number of other interesting relationships between CCA and ICA that we
explore in this paper. In particular, for Gaussian variables the CCA spectrum (i.e., all
of the eigenvalues of the generalized eigenvector problem) can be used to compute the
mutual information (essentially as a product of these eigenvalues). This suggests a general
connection between our contrast function and the mutual information, and it also suggests
an alternative contrast function for ICA, one based on all of the eigenvalues and not simply
the maximal eigenvalue. We discuss this connection in Section 3.4.

The remainder of the paper is organized as follows. In Section 2, we present background
material on CCA, RKHS methods, and ICA. Section 3 provides a discussion of the contrast
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functions underlying our new approach to ICA, as well as a high-level description of our
ICA algorithms. We discuss the numerical linear algebra underlying our algorithms in
Section 4, the optimization methods in Section 5, and the computational complexity in
Section 6. Finally, comparative empirical results are presented in Section 7, and we conclude
in Section 8.

2. Background

In this section we provide enough basic background on canonical correlation, kernel methods
and ICA so as to make the paper self-contained. For additional discussion of CCA see Borga
et al. (1997), for kernel methods see Schölkopf and Smola (2001), and for ICA see Hyvärinen
et al. (2001).

2.1 Canonical correlation

Given a random vector x, principal component analysis (PCA) is concerned with finding a
linear transformation such that the components of the transformed vector are uncorrelated.
Thus PCA diagonalizes the covariance matrix of x. Similarly, given two random vectors,
x1 and x2, of dimension p1 and p2, canonical correlation analysis (CCA) is concerned
with finding a pair of linear transformations such that one component within each set of
transformed variables is correlated with a single component in the other set. Thus, the
correlation matrix between x1 and x2 is reduced to a block diagonal matrix with blocks of

size two, where each block is of the form

(
1 ρi
ρi 1

)
. The ρi, at most p = min{p1, p2} of

which are nonzero, are called the canonical correlations.

As in the case of PCA, CCA can be defined recursively, component by component.
Indeed, the first canonical correlation can be defined as the maximum possible correlation
between the two projections ξ>1 x1 and ξ>2 x2 of x1 and x2:

ρ(x1, x2) = max
ξ1,ξ2

corr(ξ>1 x1, ξ
>
2 x2)

= max
ξ1,ξ2

cov(ξ>1 x1, ξ
>
2 x2)(

var ξ>1 x1

)1/2 (
var ξ>2 x2

)1/2

= max
ξ1,ξ2

ξ>1 C12ξ2(
ξ>1 C11ξ1

)1/2 (
ξ>2 C22ξ2

)1/2 ,

where C =

(
C11 C12

C21 C22

)
denotes the covariance matrix of (x1, x2). Taking derivatives

with respect to ξ1 and ξ2, we obtain:

C12ξ2 =
ξ>1 C12ξ2

ξ>1 C11ξ1
C11ξ1

and

C21ξ1 =
ξ>1 C12ξ2

ξ>2 C22ξ2
C22ξ2.
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Normalizing the vectors ξ1 and ξ2 by letting ξ>1 C11ξ1 = 1 and ξ>2 C22ξ2 = 1, we see that
CCA reduces to the following generalized eigenvalue problem:

(
0 C12

C21 0

)(
ξ1
ξ2

)
= ρ

(
C11 0
0 C22

)(
ξ1
ξ2

)
. (2)

This problem has p1 + p2 eigenvalues: {ρ1,−ρ1, . . . , ρp,−ρp, 0, . . . , 0}.
Note that the generalized eigenvector problem in Eq. (2) can also be written in following

form: (
C11 C12

C21 C22

)(
ξ1
ξ2

)
= (1 + ρ)

(
C11 0
0 C22

)(
ξ1
ξ2

)
,

with eigenvalues {1 + ρ1, 1 − ρ1, . . . , 1 + ρp, 1 − ρp, 1, . . . , 1}. Note, moreover, that the
problem of finding the maximal generalized eigenvalue, λmax = 1 + ρmax, where ρmax is
the first canonical correlation, is equivalent to finding the minimal generalized eigenvalue,
λmin = 1 − ρmax. In fact, this latter quantity is bounded between zero and one, and
turns out to provide a more natural upgrade path when we consider the generalization to
more than two variables. Thus henceforth our computational task will be that of finding
minimum generalized eigenvalues.

2.1.1 Generalizing to more than two variables

There are several ways to generalize CCA to more than two sets of variables (Kettenring,
1971). The generalization that we consider in this paper, justified in Appendix A, is the fol-
lowing. Givenm multivariate random variables, x1, . . . , xm, we find the smallest generalized
eigenvalue λ(x1, . . . , xm) of the following problem:




C11 C12 · · · C1m

C21 C22 · · · C2m
...

...
...

Cm1 Cm2 · · · Cmm







ξ1
ξ2
...
ξm


 = λ




C11 0 · · · 0
0 C22 · · · 0
...

...
...

0 0 · · · Cmm







ξ1
ξ2
...
ξm


 , (3)

or, in short, Cξ = λDξ, where C is the covariance matrix of (x1, x2, . . . , xm) and D is the
block-diagonal matrix of covariances of the individual vectors xi.

As we discuss in Appendix A, the minimal generalized eigenvalue has the fixed range
[0, 1], whereas the maximal generalized eigenvalue has a range dependent on the dimen-
sions of the variables. Thus the minimal generalized eigenvalue is more convenient for our
purposes.

2.2 Reproducing kernel Hilbert spaces

Let K(x, y) be a Mercer kernel (Saitoh, 1988) on X = Rp, that is, a function for which the
Gram matrix Kij = K(xi, xj) is positive semidefinite for any collection {xi}i=1,...,N in X .
Corresponding to any such kernel K there is a map Φ from X to a feature space F , such
that:

K(x, y) = 〈Φ(x),Φ(y)〉.
That is, the kernel can be used to evaluate an inner product in the feature space. This is
often referred to as the “kernel trick.”
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One particularly attractive instantiation of such a feature space is the reproducing kernel
Hilbert space (RKHS) associated with K. Consider the set of functions {K(·, x) : x ∈ X},
where the dot represents the argument to a given function and x indexes the set of functions.
Define a linear function space as the span of such functions. Such a function space is unique
and can always be completed into a Hilbert space (Saitoh, 1988). The crucial property of
these Hilbert spaces is the “reproducing property” of the kernel:

f(x) = 〈K(·, x), f〉 ∀f ∈ F . (4)

Note in particular that if we define Φ(x) = K(·, x) as a map from the input space into the
RKHS, then we have:

〈Φ(x),Φ(y)〉 = 〈K(·, x),K(·, y)〉 = K(x, y),

and thus Φ(x) = K(·, x) is indeed an instantiation of the “kernel trick.”
For concreteness we restrict ourselves mostly to translation-invariant kernels in this

paper; that is, to kernel functions of the form K(x, y) = k(x − y), where k is a function
from Rp to R. In this case, the feature space F has infinite dimension and the RKHS can be
described succinctly using Fourier theory (Girosi et al., 1995). Indeed, for a given function
k, F is composed of functions f ∈ L2(Rp) such that:

∫

Rp
|f̂(ω)|2
ν(ω)

dω <∞, (5)

where f̂(ω) is the Fourier transform of f and ν(ω) is the Fourier transform of k (which must
be real and positive to yield a Mercer kernel). This interpretation shows that functions in
the RKHS F have a Fourier transform that decays rapidly, implying that F is a space of
smooth functions.

Finally, consider the case of an isotropic Gaussian kernel in p dimensions:

K(x, y) = Gσ(x− y) = exp

(
− 1

2σ2
||x− y||2

)
.

In this case the Fourier transform is ν(ω) = (2πσ2)p/2 exp
(
−σ2

2 ||ω||2
)
, and the feature

space Fσ contains functions whose Fourier transform decays very rapidly. Alternatively,
functions in Fσ can be seen as convolutions of functions of L2(Rp) with a Gaussian kernel
Gσ/

√
2(x) = exp

(
− 1

σ2 ||x||2
)
. Note that, as σ increases from 0 to ∞, the functions Gσ/

√
2

range from an impulse to a constant function, and the function spaces Fσ decrease from
L2(Rp) to ∅.

2.3 Independent component analysis

The independent component analysis (ICA) problem that we consider in this paper is based
on the following statistical model:

y = Ax, (6)

where x is a latent random vector with m independent components, A is an m×m matrix
of parameters, assumed invertible, and y is an observed vector with m components. Based
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on a set of N independent, identically distributed observations of the vector y, we wish to
estimate the parameter matrix A.1 From the estimate of A we can estimate the values of x
corresponding to any observed y by solving a linear system of equations. The distribution of
x is assumed unknown, and we do not care to estimate this distribution. Thus we formulate
ICA as a semiparametric model (Bickel et al., 1998).

Our goal is to find a maximum likelihood estimate of A. Let us first consider the
population version of ICA, in which p∗(y) denotes the true distribution of y, and p(y)
denotes the model. We wish to minimize the Kullback-Leibler (KL) divergence between the
distributions p∗ and p: D(p∗(y) || p(y)). Define W = A−1, so that x = Wy. Since the KL
divergence is invariant with respect to an invertible transformation, we can apply W to y
in both arguments of the KL divergence, which implies our problem is equivalent to that of
minimizing D(p∗(x) || p(x)).

Let p̃(x) denote the joint probability distribution obtained by taking the product of the
marginals of p∗(x). We have the following decomposition of the KL divergence (see Cover
and Thomas, 1991):

D(p∗(x) || p(x)) = D(p∗(x) || p̃(x)) +D(p̃(x) || p(x)),

for any distribution p(x) with independent components. Consequently, for a given A, the
minimum over all possible p(x) is attained precisely at p(x) = p̃(x), and the minimal value
is D(p∗(x) || p̃(x)), which is exactly the mutual information between the components of
x = Wy. Thus, the problem of maximizing the likelihood with respect to W is equivalent
to the problem of minimizing the mutual information between the components of x = Wy.

ICA can be viewed as a generalization of principal components analysis (PCA). While
PCA yields uncorrelated components, and is based solely on second moments, ICA yields
independent components, and is based on the mutual information, which is in general a
function of higher-order moments. Clearly an ICA solution is also a PCA solution, but the
converse is not true. In practice, ICA algorithms often take advantage of this relationship,
treating PCA as a preprocessing phase. Thus one whitens the random variable y, multiply-
ing y by a matrix P such that ỹ = Py has an identity covariance matrix (P can be chosen
as the inverse of the square root of the covariance matrix of y). There is a computational
advantage to this approach: once the data are whitened, the matrix W is necessarily or-
thogonal (Hyvärinen et al., 2001). This reduces the number of parameters to be estimated,
and, as we discuss in Section 5, enables the use of efficient optimization techniques based
on the Stiefel manifold of orthogonal matrices.

In practice we do not know p∗(y) and thus the estimation criteria—mutual informa-
tion or KL divergence—must be replaced with empirical estimates. While in principle one
could form an empirical mutual information or empirical likelihood, which is subsequently
optimized with respect to W , the more common approach to ICA is to work with approx-
imations to the mutual information (Amari et al., 1996, Comon, 1994, Hyvärinen, 1999),
or to use alternative contrast functions (Jutten and Herault, 1991). For example, by using
Edgeworth or Gram-Charlier expansions one can develop an approximation of the mutual

1. The identifiability of the ICA model has been discussed by Comon (1994). Briefly, the matrix A is
identifiable, up to permutation and scaling of its columns, if and only if at most one of the component
distributions p(xi) is Gaussian.
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information in terms of skew and kurtosis. Forming an empirical estimate of the skew and
kurtosis via the method of moments, one obtains a function of W that can be optimized.

We propose two new ICA contrast functions in this paper. The first is based on the
F-correlation, which, as we briefly discussed in Section 1, can be obtained by computing
the first canonical correlation in a reproducing kernel Hilbert space. The second is based on
computing not only the first canonical correlation, but the entire CCA spectrum, a quantity
known as the “generalized variance.” We describe both of these contrast functions, and their
relationship to the mutual information, in the following section.

3. Kernel independent component analysis

We refer to our general approach to ICA, based on the optimization of canonical correla-
tions in a reproducing kernel Hilbert space, as KernelICA. In this section we describe
two contrast functions that exemplify our general approach, and we present the resulting
KernelICA algorithms.

3.1 The F-correlation
We begin by studying the F-correlation in more detail. We restrict ourselves to two random
variables in this section and present the generalization to m variables in Section 3.2.3.

Theorem 1 Let x1 and x2 be random variables in X = Rp. Let K1 and K2 be Mercer
kernels with feature maps Φ1, Φ2 and feature spaces F1, F2 ⊂ RX . Then the canonical
correlation ρF between Φ1(x1) and Φ2(x2), which is defined as

ρF = max
(f1,f2)∈F1×F2

corr(〈Φ1(x1), f1〉, 〈Φ2(x2), f2〉),

is equal to

ρF = max
(f1,f2)∈F1×F2

corr(f1(x1), f2(x2)). (7)

Proof This is immediate from the reproducing property (4).

The choice of kernels K1 and K2 specifies the sets F1 and F2 of functions that we use to
characterize independence, via the correlation between f1(x1) and f2(x2). While in general
we can use different kernels for x1 and x2, for notational simplicity we restrict ourselves in
the remainder of the paper to cases in which the two kernels and the two feature spaces are
equal, denoting them as K and F , respectively.

Note that the larger F is, the larger the value of the F-correlation. In particular, for
translation-invariant kernels, the F-correlation increases as σ decreases. But for any value
of σ, the F-correlation turns out to provide a sound basis for assessing independence, as
the following theorem makes precise in the case of the univariate Gaussian kernel:

Theorem 2 (Independence and F-correlation) If F is the RKHS corresponding to a
Gaussian kernel on X = R, ρF = 0 if and only if the variables y1 and y2 are independent.
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Proof We mentioned earlier that the first implication is trivial. Let us now assume that
ρF = 0. Since F is a vector space, we have:

ρF = max
(f1,f2)∈F×F

|corr(f1(x1), f2(x2))|,

which implies cov(f1(x1), f2(x2)) = 0, or, equivalently, E(f1(x1)f2(x2)) = E(f1(x1))E(f2(x2)),
for all f1, f2 ∈ F . For any given ω0 ∈ R and τ > 0, the function x 7→ e−x

2/2τ2
eiω0x has a

Fourier transform equal to
√
2πτe−τ

2(ω−ω0)2/2, and thus satisfies the condition in Eq. (5)
as long as τ > σ/

√
2. Consequently, if τ > σ/

√
2, the function belongs to F and we have,

for all real ω1 and ω2:

E
(
eiω1x1+iω2x2e−(x2

1+x2
2)/2τ

2
)
= E

(
eiω1x1e−x

2
1/2τ

2
)
E
(
eiω2x2e−x

2
2/2τ

2
)
.

Letting τ tend to infinity, we find that for all ω1 and ω2:

E
(
eiω1x1+iω2x2

)
= E

(
eiω1x1

)
E
(
eiω2x2

)

which implies that x1 and x2 are independent (Durrett, 1996).

Note that when the function space has finite dimension, Theorem 2 does not hold.
In particular, for polynomial kernels (e.g., Schölkopf and Smola, 2001), F is a finite-
dimensional space of polynomials, and thus the F-correlation does not characterize in-
dependence. Nonetheless, as we show in Section 5.3, polynomial kernels can still be usefully
employed in the ICA setting to provide heuristic initialization procedures for optimizing a
contrast function.

3.2 Estimation of the F-correlation
To employ the F-correlation as a contrast function for ICA, we need to be able to compute
canonical correlations in feature space. We also need to be able to optimize the canonical
correlation, but for now our focus is simply that of computing the canonical correlations in
an RKHS. (We discuss the optimization problem in Section 5).

In fact our goal is not solely computational, it is also statistical. While thus far we have
defined F-correlation in terms of a population expectation, we generally do not have access
to the population but rather to a finite sample. Thus we need to develop an empirical
estimate of the F-correlation. Indeed, the problem of working in an RKHS and the issue
of developing a statistical estimate of a functional defined in an RKHS are closely tied—
by considering the empirical version of the F-correlation we work in a finite-dimensional
subspace of the RKHS, and can exploit its useful geometric properties while avoiding issues
having to do with its (possible) infinite dimensionality.

Thus we will develop a “kernelized” version of canonical correlation, which involves two
aspects: working with an empirical sample, and working in a feature space. We proceed
by first presenting a naive “kernelization” of the population F-correlation. For reasons
that we will discuss, this naive kernelization does not provide a generally useful estimator,
but it does serve as a guide for developing a regularized kernelization that does provide a
useful estimator. It is this regularized, kernelized canonical correlation that provides the
foundation for the algorithms that we present in the remainder of the paper.
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3.2.1 Kernelization of CCA

In the case of two variables the goal is to maximize the correlation between projections of
the data in the feature space. A direct implementation would simply map each data point
to feature space and use CCA in the feature space. This is likely to be very inefficient
computationally, however, if not impossible, and we would prefer to perform all of our
calculations in the input space.2

Let {x1
1, . . . , x

N
1 } and {x1

2, . . . , x
N
2 } denote sets of N empirical observations of x1 and x2,

respectively, and let {Φ(x1
1), . . . ,Φ(x

N
1 )} and {Φ(x1

2), . . . ,Φ(x
N
2 )} denote the corresponding

images in feature space. Suppose (momentarily) that the data are centered in feature space
(i.e.,

∑N
k=1 Φ(x

k
1) =

∑N
k=1 Φ(x

k
2) = 0). We let ρ̂F (x1, x2) denote the empirical canonical

correlation; that is, the canonical correlation based not on population covariances but on
empirical covariances. Since, as we shall see, ρ̂F (x1, x2) depends only on the Gram matri-
ces K1 and K2 of these observations, we also use the notation ρ̂F (K1,K2) to denote this
canonical correlation.

As in kernel PCA (Schölkopf et al., 1998), the key point to notice is that we only need
to consider the subspace of F that contains the span of the data. For fixed f1 and f2, the
empirical covariance of the projections in feature space can be written:

ĉov(〈Φ(x1), f1〉, 〈Φ(x2), f2〉) =
1

N

N∑

k=1

〈
Φ(xk1), f1

〉〈
Φ(xk2), f2

〉
. (8)

Let S1 and S2 represent the linear spaces spanned by the Φ-images of the data points. Thus
we can write f1 =

∑N
k=1 α

k
1Φ(x

k
1)+ f⊥1 and f2 =

∑N
k=1 α

k
2Φ(x

k
2)+ f⊥2 , where f⊥1 and f⊥2 are

orthogonal to S1 and S2, respectively. We have:

ĉov(〈Φ(x1), f1〉, 〈Φ(x2), f2〉) =
1

N

N∑

k=1

〈
Φ(xk1),

N∑

i=1

αi
1Φ(x

i
1)

〉〈
Φ(xk2),

N∑

j=1

αj
2Φ(x

j
2)

〉

=
1

N

N∑

k=1

N∑

i=1

N∑

j=1

αi
1K1(x

i
1, x

k
1)K2(x

j
2, x

k
2)α

j
2

=
1

N
α>1 K1K2α2,

where K1 and K2 are the Gram matrices associated with the data sets {xi
1} and {xi2},

respectively. We also obtain:

v̂ar (〈Φ(x1), f1〉) =
1

N
α>1 K1K1α1

and

v̂ar (〈Φ(x2), f2〉) =
1

N
α>2 K2K2α2.

2. Melzer et al. (2001) and Akaho (2001) have independently derived the kernelized CCA algorithm for
two variables that we present in this section. A similar but not identical algorithm, also restricted to
two variables, has been described by Fyfe and Lai (2000).

10
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Putting these results together, our kernelized CCA problem becomes that of performing
the following maximization:

ρ̂F (K1,K2) = max
α1, α2∈RN

α>1 K1K2α2

(α>1 K
2
1α1)1/2(α>2 K

2
2α2)1/2

. (9)

But this is equivalent to performing CCA on two vectors of dimension N , with covariance

matrix equal to

(
K2

1 K1K2

K2K1 K2
2

)
. Thus we see that we can perform a kernelized version

of CCA by solving the following generalized eigenvalue problem:

(
0 K1K2

K2K1 0

)(
α1

α2

)
= ρ

(
K2

1 0
0 K2

2

)(
α1

α2

)
(10)

based on the Gram matrices K1 and K2.

If the points Φ(xki ) are not centered, then although it is impossible to actually cen-
ter them in feature space, it is possible to find the Gram matrix of the centered data
points (Schölkopf et al., 1998). That is, if K is the N×N Gram matrix of the non-centered
data points, then the Gram matrix K̃ of the centered data points is K̃ = N0KN0 where
N0 = I − 1

N 1 is a constant singular matrix.3 Whenever we use a Gram matrix, we assume
that it has been centered in this way.

3.2.2 Regularization

Unfortunately, the kernelized CCA problem in Eq. (9) does not provide a useful estimate
of the population canonical correlation in general. This can easily be seen by considering a
geometric interpretation of Eq. (9). In particular, if we let V1 and V2 denote the subspaces
of RN generated by the columns of K1 and K2, respectively, then we can rewrite Eq. (9)
as:

ρ̂F (K1,K2) = max
v1∈V1,v2∈V2

v>1 v2

(v>1 v1)1/2(v>2 v2)1/2
= max

v1∈V1,v2∈V2

cos(v1, v2),

which is exactly the cosine of the angle between the two subspaces V1 and V2 (Golub and
Loan, 1996). From this interpretation, it is obvious that if the matrices K1 and K2 were
invertible, then the subspaces V1 and V2 would be equal to RN and thus the angle would
always be equal to zero, whatever K1 and K2 are. The matrices K1 and K2 do not have
full rank, because they are centered Gram matrices. However, centering is equivalent to
projecting the column spaces V1 and V2 onto the subspace orthogonal to the vector composed
of all ones; therefore, if the non-centered Gram matrices are invertible (which occurs, for
example, if a Gaussian kernel is used, and the data points are distinct), the two column
spaces are identical and the angle between them is still equal to zero, resulting in a canonical
correlation estimate that is always equal to one.

Thus the naive kernelization in Eq. (9) does not provide a useful estimator for general
kernels. It does, however, provide a guide to the design of a useful regularized estimator, as
we now discuss. Our regularization will penalize the RKHS norms of f1 and f2, and thus

3. The matrix 1 is an N×N matrix composed of ones. Note that 12 = N1.

11
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provide control over the statistical properties of KernelICA.4 In particular, we define the
regularized F-correlation ρ κ

F as:

ρ κ
F = max

f1,f2∈F
cov(f1(x1), f2(x2))

(var f1(x1) + κ||f1||2F )1/2(var f2(x2) + κ||f2||2F )1/2
, (11)

where κ is a small positive constant. Note that the regularized F-correlation inherits the
independence characterization property of the F-correlation. In order to estimate it from
a finite sample, we expand var f1(x1) + κ||f1||2F up to second order in κ, to obtain:

var f1(x1) + κ||f1||2F =
1

N
α>1 K

2
1α1 + κα>1 K1α1 ≈

1

N
α>1 (K1 +

Nκ

2
I)2α1.

Thus the regularized kernel CCA problem becomes:

ρ̂ κ
F (K1,K2) = max

α1, α2∈RN
α>1 K1K2α2

(α>1 (K1 +
Nκ
2 I)2α1)1/2(α>2 (K2 +

Nκ
2 I)2α2)1/2

, (12)

with its equivalent formulation as a generalized eigenvalue problem as follows:

(
0 K1K2

K2K1 0

)(
α1

α2

)
= ρ

(
(K1 +

Nκ
2 I)2 0

0 (K2 +
Nκ
2 I)2

)(
α1

α2

)
. (13)

As we shall see in Section 4.3, the formulation of the regularized KCCA problem in Eq. (13)
can be reduced to a (simple) eigenvalue problem that is well-behaved computationally. In
addition, the regularized first canonical correlation has an important statistical property
that the unregularized canonical correlation does not have—it turns out to be a consistent
estimator of the regularized F-correlation. (That is, when the number of samples N tends
to infinity, the estimate converges in probability to the population quantity. The proof of
this result is beyond the scope of the paper).

3.2.3 Generalizing to more than two variables

The generalization of regularized kernelized canonical correlation to more than two sets
of variables is straightforward, given our generalization of CCA to more than two sets of
variables. We simply denote by Kκ the mN×mN matrix whose blocks are (Kκ)ij = KiKj ,
for i 6= j, and (Kκ)ii = (Ki +

Nκ
2 I)2, and we let Dκ denote the mN×mN block-diagonal

4. Intuitively, without any restriction on ||f1||F and ||f2||F , it is possible to separate one data point x
k0
1

from the other points {xk1} with a function f1, while separating x
k0
2 from the other {xk2} with a function

f2. For those f1 and f2, we get a correlation equal to one and thus obtain no information about the
dependence of x1 and x2.

12
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matrix with blocks (Ki +
Nκ
2 I)2. We obtain the following generalized eigenvalue problem:




(K1 +
Nκ
2 I)2 K1K2 · · · K1Km

K2K1 (K2 +
Nκ
2 I)2 · · · K2Km

...
...

...

KmK1 KmK2 · · · (Km + Nκ
2 I)2







α1

α2
...
αm




= λ




(K1 +
Nκ
2 I)2 0 · · · 0

0 (K2 +
Nκ
2 I)2 · · · 0

...
...

...

0 0 · · · (Km + Nκ
2 I)2







α1

α2
...
αm


 , (14)

or Kκα = λDκα for short. The minimal eigenvalue of this problem will be denoted
λ̂ κ
F (K1, . . . ,Km) and referred to as the first kernel canonical correlation. We also extend

our earlier terminology and refer to this eigenvalue as an (empirical) F-correlation.
Note that in the two-variable case we defined a function ρF (x1, x2) that depends on the

covariances of the random variables Φ(x1) and Φ(x2), and we obtained an empirical contrast
function ρ̂ κ

F (x1, x2) from ρF (x1, x2) by substituting empirical covariances for population co-
variances and introducing regularization.5 In them-variable case, we have (thus far) defined
only the empirical function λ̂ κ

F (K1, . . . ,Km). In Appendix A.3, we study the properties of
the population version of this quantity, λF (x1, . . . , xm), by relating λF (x1, . . . , xm) to a
generalized notion of “correlation” among m variables. By using this definition, we show
that λF (x1, . . . , xm) is always between zero and one, and is equal to one if and only if the
variables x1, . . . , xm are pairwise independent. Thus we obtain an analog of Theorem 2 for
the m-variable case.

For reasons that will become clear in Section 3.4, where we discuss a relationship be-
tween canonical correlations and mutual information, it is convenient to define our contrast
functions in terms of the negative logarithm of canonical correlations. Thus we define a con-
trast function IλF (x1, . . . , xm) = −1

2 log λF (x1, . . . , xm) and ask to minimize this function.
The result alluded to in the preceding paragraph shows that this quantity is nonnegative,
and equal to zero if and only if the variables x1, . . . , xm are pairwise independent.

For the empirical contrast function, we will use the notation ÎλF (K1, . . . ,Km) =

−1
2 log λ̂

κ
F (K1, . . . ,Km), emphasizing the fact that this contrast function depends on the

data only through the Gram matrices.

3.2.4 Relationship to ACE

Given a response variable y and predictor variables x1, . . . , xp, the alternating conditional
expectation (ACE) algorithm (Breiman and Friedman, 1985) minimizes

e =
E[θ(y)−∑p

j=1 φj(xj)]
2

var θ(y)

5. In fact the word “contrast function” is generally reserved for a quantity that depends only on data
and parameters, and is to be extremized in order to obtain parameter estimates. Thus ρ̂ κ

F (x1, x2) is a
contrast function. By also refering to the population version ρF (x1, x2) as a “contrast function,” we are
abusing terminology. But this is a standard abuse in the ICA literature, where, for example, the mutual
information is viewed as a “contrast function.”

13
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Algorithm KernelICA-KCCA

Input: Data vectors y1, y2, . . . , yN

Kernel K(x, y)

1. Whiten the data
2. Minimize (with respect to W ) the contrast function C(W ) defined as:

a. Compute the centered Gram matrices K1,K2, . . . ,Km of the estimated
sources {x1, x2, . . . , xN}, where xi = Wyi

b. Define λ̂ κ
F (K1, . . . ,Km) as the minimal eigenvalue of the generalized eigen-

vector equation Kκα = λDκα
c. Define C(W ) = ÎλF (K1, . . . ,Km) = −1

2 log λ̂
κ
F (K1, . . . ,Km)

Output: W

Figure 1: A high-level description of the KernelICA-KCCA algorithm for estimating the
parameter matrix W in the ICA model.

with respect to the real-valued functions θ, φ1, . . . , φp. The transformations obtained pro-
duce the best-fitting additive models. For the bivariate case, p = 1, minimization of e can
be shown to be equivalent to maximization of the correlation corr(θ(y), φ(x)). It is thus
equivalent to the F-correlation problem. In the population case, the optimization can be
done in L2(R), while in presence of a finite sample, the function spaces that are considered
by Breiman and Friedman (1985) are smooth function spaces similar to the RKHS we use
in this paper. A strong link exists between kernel CCA and ACE in this case: one step of
the ACE algorithm is equivalent to one step of a power method algorithm for computing
the largest generalized eigenvalue in Eq. (10) (Buja, 1990, Hastie and Tibshirani, 1990).6

3.3 The KernelICA-KCCA algorithm

Let us now apply the machinery that we have developed to the ICA problem. Given a set
of data vectors y1, y2, . . . , yN , and given a parameter matrix W , we set xi = Wyi, for each
i, and thereby form a set of estimated source vectors {x1, x2, . . . , xN}. The m components
of these vectors yield a set of m Gram matrices, K1,K2, . . . ,Km, and these Gram matrices
(which depend on W ) define the contrast function C(W ) = ÎλF (K1, . . . ,Km). We obtain
an ICA algorithm by minimizing this function with respect to W .

A high-level description of the resulting algorithm, which we refer to as KernelICA-

KCCA, is provided in Figure 1.

6. We note in passing that the implementation of kernel CCA using low-rank approximations of Gram
matrices that we present in Section 4.4 transfers readily to the general setting of generalized additive

models based on kernel smoothers (Hastie and Tibshirani, 1990), thus enabling a fast implementation of
the fitting procedure for such models.
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Note that KernelICA-KCCA is not simply a “kernelization” of an extant ICA algo-
rithm. Instead, we use kernel ideas to characterize independence and thus to define a new
contrast function for ICA. As with alternative approaches to ICA, we minimize this contrast
function with respect to the demixing matrix W .

We still have a significant amount of work to do to turn the high-level description
in Figure 1 into a practical algorithm. The numerical linear algebra and optimization
procedures that complete our description of the algorithm are presented in Sections 4 and 5.
Before turning to those details, however, we turn to the presentation of an alternative
contrast function based on generalized variance.

3.4 Kernel generalized variance

As we have discussed, the mutual information provides a natural contrast function for ICA,
because of its property of being equal to zero if and only if the components are independent,
and because of the link to the semiparametric likelihood. As we show in this section, there
is a natural generalization of the F-correlation that has a close relationship to the mutual
information. We develop this generalization in this section, and use it to define a second
ICA contrast function.

Our generalization is inspired by an interesting link that exists between canonical corre-
lations and mutual information in the case of Gaussian variables. As we show in Appendix A,
for jointly-Gaussian variables x1 and x2, the mutual information, I(x1, x2), can be written
as follows:

I(x1, x2) = −
1

2

p∑

i=1

log(1− ρ2
i ),

where ρi are the canonical correlations. Thus CCA can be used to compute the mutual
information between a pair of Gaussian variables. Moreover, Appendix A also shows that
this link can be extended to the mutual information between m variables. Thus, the m-
way mutual information between m Gaussian random variables, I(x1, x2, . . . , xm), can be
obtained from the set of eigenvalues obtained from the generalized eigenvector problem
Cξ = λDξ that we defined in Section 2.1.1. In particular, Appendix A shows the following:

I(x1, x2, . . . , xm) = −1

2
log

detC

detD
= −1

2

P∑

i=1

log λi, (15)

where λi are the generalized eigenvalues of Cξ = λDξ.

This result suggests that it may be worth considering a contrast function based on more
than the first canonical correlation, and holds open the possibility that such a contrast func-
tion, if based on the nonlinearities provided by an RKHS, might provide an approximation
to the mutual information between non-Gaussian variables.

Let us define the generalized variance associated with the generalized eigenvector prob-
lem Cξ = λDξ as the ratio (detC)/(detD). The result in Eq. (15) shows that for Gaussian
variables the mutual information is equal to minus one-half the logarithm of the generalized
variance.

We make an analogous definition in the kernelized CCA problem, defining the kernel
generalized variance to be the product of the eigenvalues of the generalized eigenvector
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Figure 2: The mutual information I(x1, x2) (dashed), the approximation IδF (x1, x2) for
σ = .25, .5, 1, 2, 4 (dotted), and the limit J(x1, x2) as σ tends to zero (solid).
The abscissa is the angle of the first independent component in a two-source ICA
problem. As σ decreases, IδF increases towards J . See the text for details.

problem in Eq. (14), or equivalently the ratio of determinants of the matrices in this problem.
That is, given the generalized eigenvector problem Kκα = λDκα of Eq. (14), we define:

δ̂ κ
F (K1, . . . ,Km) =

detKκ

detDκ

as the kernel generalized variance. We also define a contrast function ÎδF (K1, . . . ,Km):

ÎδF (K1, . . . ,Km) = −1

2
log δ̂ κ

F (K1, . . . ,Km),

by analogy with the mutual information for the Gaussian case.

Although we have proceeded by analogy with the Gaussian case, which is of little interest
in the ICA setting, it turns out that ÎδF (K1, . . . ,Km) has as its population counterpart a
function IδF (x1, . . . , xm) that is actually closely related to the mutual information between
the original non-Gaussian variables in the input space. The proof of this result is sketched in
Appendix B for the Gaussian kernel. In particular, in the case of two variables (m = 2), we
show that, as σ tends to zero, IδF (x1, . . . , xm) tends to a limit J(x1, . . . , xm) that is equal
to the mutual information up to second order, when we expand the mutual information
around distributions that factorize.

Our result is illustrated in Figure 2. We compute the mutual information for a whitened
ICA problem with two known sources and two components, as the angle θ of the estimated
first component ranges from 0 to 90 degrees, with the independent component occurring
at 30 degrees. The graph plots the true mutual information I(x1, x2), the approximation
IδF (x1, x2), for various values of σ, and the limit J(x1, x2). The close match of the shape
of J(x1, x2) and the mutual information is noteworthy.
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Algorithm KernelICA-KGV

Input: Data vectors y1, y2, . . . , yN

Kernel K(x, y)

1. Whiten the data
2. Minimize (with respect to W ) the contrast function C(W ) defined as:

a. Compute the centered Gram matrices K1,K2, . . . ,Km of the estimated
sources {x1, x2, . . . , xN}, where xi = Wyi

b. Define δ̂ κ
F (K1, . . . ,Km) = detKκ/ detDκ

c. Define C(W ) = ÎδF (K1, . . . ,Km) = −1
2 log δ̂

κ
F (K1, . . . ,Km)

Output: W

Figure 3: A high-level description of the KernelICA-KGV algorithm for estimating the
parameter matrix W in the ICA model.

3.5 The KernelICA-KGV algorithm

In the previous section, we defined an alternative contrast function, ÎδF (x1, . . . , xm), in
terms of the generalized variance associated with the generalized eigenvector problem Kκα =
λDκα. Essentially, instead of computing only the first eigenvalue of this problem, as in
the case of the F-correlation contrast function, we compute the entire spectrum. As we
show in Section 6, this does not increase the practical running time complexity of the
algorithm. Based on this contrast function, we define a second KernelICA algorithm, the
KernelICA-KGV algorithm outlined in Figure 3.

In summary, we have defined two KernelICA algorithms, both based on contrast
functions defined in terms of the eigenvalues of the generalized eigenvector problem Kκα =
λDκα. We now turn to a discussion of the computational methods by which we evaluate
and optimize these contrast functions.

4. Computational issues

The algorithms that we have presented involve finding generalized eigenvalues of matrices
of dimension mN ×mN , where N is the number of data points and m the number of
sources. A naive implementation of these algorithms would therefore scale as O(m3N3),
a computational complexity whose cubic growth in the number of data points would be a
serious liability in applications to large data sets. As noted by several researchers, however,
the spectrum of Gram matrices tends to show rapid decay, and low-rank approximations of
Gram matrices can therefore often provide sufficient fidelity for the needs of kernel-based
algorithms (Smola and Schölkopf, 2000, Williams and Seeger, 2001). Indeed, building on
these observations, we describe an implementation of KernelICA whose computational
complexity is linear in the number of data points.
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We have two goals in this section. The first is to overview theoretical results that
support the use of low-rank approximations to Gram matrices. Our presentation of these
results will be concise, with a detailed discussion deferred to Appendix C. Second, we
present a KernelICA implementation based on low-rank approximations obtained from
incomplete Cholesky decomposition. We show both how to compute the KernelICA

contrast functions, and how to compute derivatives of the contrast functions.

4.1 Theory

In Appendix C, we present theoretical results that show that in order to achieve a given
required precision η, the rank M of an approximation to a Gram matrix K can be chosen
as M = h(N/η), where h(t) is a function that depends on the underlying distribution p(x)
of the data. Moreover, the growth of h(t) as t tends to infinity depends only on the decay
of p(x) as |x| tends to infinity. In particular, in the univariate case with a Gaussian kernel,
when this decay is exponential (Gaussian-like), we have h(t) = O(log t). When the decay is
polynomial, as x−d, then h(t) = O(t1/d+ε), for arbitrary ε > 0.

These results imply that if we require a constant precision η, it suffices to find an
approximation of rank M = O(logN), for exponentially-decaying input distributions, and
rank M = O(N1/d+ε) for polynomially-decaying input distributions. These results are
applicable to any method based on Gram matrices over input spaces of small dimension, and
thus we can expect that kernel algorithms should generally be able to achieve a substantial
reduction in complexity via approximations whose rank grows slowly with respect to N .

We will show separately in Section 4.3, however, that in the context of F-correlation and
the KGV, the precision η can be taken to be linear in N . This implies that the rank of the
approximation can be taken to be bounded by a constant in the ICA setting, and provides
an even stronger motivation for basing an implementation of KernelICA on low-rank
approximations.

4.2 Incomplete Cholesky decomposition

We aim to find low-rank approximations of Gram matrices of rank M ¿ N . Note that
even calculating a full Gram matrix is to be avoided because it is already an O(N 2) opera-
tion. Fortunately, the fact that Gram matrices are positive semidefinite is a rather strong
constraint, allowing approximations to Gram matrices to be found in O(M 2N) operations.
Following Fine and Scheinberg (2001) and Cristianini et al. (2002), the particular tool that
we employ here is the incomplete Cholesky decomposition, commonly used in implemen-
tations of interior point methods for linear programming (Wright, 1999). Alternatives to
incomplete Cholesky decomposition are provided by methods based on the Nyström ap-
proximation (Smola and Schölkopf, 2000, Williams and Seeger, 2001).

A positive semidefinite matrix K can always be factored as GG>, where G is an N×N
matrix. This factorization can be found via Cholesky decomposition (which is essentially a
variant of Gaussian elimination). Our goal, however, is to find a matrix G̃ of size N×M ,
for small M , such that the difference K − G̃G̃> has norm less than a given value η. This
can be achieved via incomplete Cholesky decomposition.

Incomplete Cholesky decomposition differs from standard Cholesky decomposition in
that all pivots that are below a certain threshold are simply skipped. If M is the number
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of non-skipped pivots, then we obtain a lower triangular matrix G̃ with only M nonzero
columns. Symmetric permutations of rows and columns are necessary during the factoriza-
tion if we require the rank to be as small as possible (Golub and Loan, 1996). In that case,
the stopping criterion involves the sum of remaining pivots.

An algorithm for incomplete Cholesky decomposition is presented in Figure 4. The
algorithm involves picking one column of K at a time, choosing the column to be added
by greedily maximizing a lower bound on the reduction in the error of the approximation.
After l steps, we have an approximation of the form K̃l = G̃lG̃

>
l , where Gl is N×l. The

ranking of the N− l vectors that might be added in the following step is done by comparing
the diagonal elements of the remainder matrix K − G̃lG̃

>
l . Each of these elements requires

O(l) operations to compute. Moreover, the update of G̃l has a cost of O(lN), so that the
overall complexity is O(M 2N).

The incomplete Cholesky method has many attractive features. Not only is its time
complexity O(M2N), but also the only elements of K that are needed in memory are
the diagonal elements (which are equal to one for Gaussian kernels7). Most of the other
elements are never used and those that are needed can be computed on demand. The
storage requirement is thus O(MN). Also, the number M can be chosen online such that
the approximation is as tight as desired.8

4.3 Solving Kernel CCA

Before turning to a discussion of how to use incomplete Cholesky decomposition to com-
pute the eigenstructure needed for our ICA contrast functions, we discuss the generalized
eigenvector problem of Eq. (14), Kκα = λDκα, in more detail.

Owing to the regularization, we can apply a classical method for solving such a problem
by finding a matrix C such that Dκ = C>C, defining β = Cα, and thereby transforming
the problem into a standard eigenvector problem C−>KκC−1β = λβ. Our kernelized CCA
problem thus reduces to finding the smallest eigenvalue of the matrix:

K̃κ = D−1/2
κ KκD−1/2

κ =




I rκ(K1)rκ(K2) · · · rκ(K1)rκ(Km)
rκ(K2)rκ(K1) I · · · rκ(K2)rκ(Km)

...
...

...
rκ(Km)rκ(K1) rκ(Km)rκ(K2) · · · I


 (16)

where rκ(Ki) = Ki(Ki +
Nκ
2 I)−1 = (Ki +

Nκ
2 I)−1Ki. If we have an eigenvector α̃ of K̃κ,

then we have a generalized eigenvector defined by αi = (Ki +
Nκ
2 I)−1α̃i, with the same

eigenvalue. In the case of the KGV problem, we need to compute det K̃κ.
Our regularization scheme has the effect of shrinking each eigenvalue of Ki towards zero

or one, via the function λ 7→ λ/(λ + Nκ
2 ). Consequently, all eigenvalues less than a small

7. Centering, which would make the diagonal elements different from one and make the other elements
harder to compute, can be done easily after the Cholesky decomposition.

8. Note that no theoretical bound is available concerning the relation between M and the optimal rank
M for a given precision. In our empirical work, however, we always obtained a rank very close to the
optimal one. We believe this is due to the fact that our Gram matrices have a spectrum that decays
very rapidly. Indeed, as pointed out by Wright (1999), a significant eigengap ensures that incomplete
Cholesky has small numerical error and yields a good approximation.
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Algorithm IncompleteCholesky

Input: N×N semidefinite positive matrix K
precision parameter η

1. Initialization: i = 1, K ′ = K, P = I, for j ∈ [1, N ], Gjj = Kjj

2. While
∑N

j=iGjj > η

• Find best new element: j∗ = argmaxj∈[i,N ] Gjj

• Update permutation P :

set Pii = 0, Pj∗j∗ = 0 and Pij∗ = 1, Pj∗i = 1

• Permute elements i and j∗ in K ′:

column K ′1:N,i ↔ K ′1:N,j∗

row K ′i,1:N ↔ K ′j∗,1:N
• Update (due to new permutation) the already calculated elements

of G: Gi,1:i ↔ Gj∗,1:i

• Set Gii =
√
K ′ii

• Calculate ith column of G:

Gi+1:n,i =
1

Gii

(
K ′i+1:N,i −

∑i−1
j=1Gi+1:N,jGij

)

• Update only diagonal elements:

for j ∈ [i+ 1, N ], Gjj = Kjj −
∑i

k=1G
2
jk

• i← i+ 1

3. Output P , G and M = i− 1

Output: an N×M lower triangular matrix G and a permutation matrix P such that
||PKP> −GG>|| 6 η

Figure 4: An algorithm for incomplete Cholesky decomposition. The notation Ga:b,c:d refers
to the matrix extracted from G by taking the rows a to b and columns c to d.
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fraction of Nκ
2 (we use the fraction 10−3 in our simulations) will numerically be discarded.

This implies that in our search for low-rank approximations, we need only keep eigenvalues
greater than η = 10−3 Nκ

2 . As detailed in Appendix C, this has the numerical effect of
making our Gram matrices of constant numerical rank as N increases.

4.4 Algorithms for KCCA and KGV

We now show how to use incomplete Cholesky decomposition to solve the KCCA and KGV
problems. As we have seen, these problems reduce to eigenvalue computations involving
the regularized matrix K̃κ in Eq. (16).

Using the incomplete Cholesky decomposition, for each matrix Ki we obtain the fac-
torization Ki ≈ GiG

>
i , where Gi is an N×Mi matrix with rank Mi, where Mi ¿ N . We

perform a singular value decomposition of Gi, in time O(M2
i N), to obtain an N×Mi matrix

Ui with orthogonal columns (i.e., such that U>i Ui = I), and an Mi×Mi diagonal matrix Λi

such that:
Ki ≈ GiG

>
i = UiΛiU

>
i .

Let M = 1
m

∑m
i=1 Mi denote the average value of the ranks Mi.

In order to study how to use these matrices to perform our calculations, let Vi denote
the orthogonal complement of Ui, such that (Ui Vi) is an N×N orthogonal matrix. We
have:

Ki ≈ UiΛiU
>
i = (Ui Vi)

(
Λi 0
0 0

)
(Ui Vi)

>

If we now consider the regularized matrices rκ(Ki), we have:

rκ(Ki) = (Ki +
Nκ

2
I)−1Ki = (Ui Vi)

(
Ri 0
0 0

)
(Ui Vi)

> = UiRiU
>
i ,

where Ri is the diagonal matrix obtained from the diagonal matrix Λi by applying the
function λ 7→ λ

λ+Nκ/2 to its elements. As seen before, this function softly thresholds the

eigenvalues less than Nκ
2 . We now have the following decomposition:

K̃κ = URκ U> + VV> = (U V)
(
Rκ 0
0 I

)
(U V)>,

where U is mN×mM , V is mN×(mN −mM), Rκ is mM×mM , and (U V) is orthogonal:

U =




U1 0 · · · 0

0
. . .

. . .
...

...
. . . 0

0 · · · 0 Um




V =




V1 0 · · · 0

0
. . .

. . .
...

...
. . . 0

0 · · · 0 Vm




Rκ =




I R1U
>
1 U2R2 · · · R1U

>
1 UmRm

R2U
>
2 U1R1 I · · · R2U

>
2 UmRm

...
...

...
RmU

>
mU1R1 RmU

>
mU2R2 · · · I


 .
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The mN (nonnegative) eigenvalues of K̃κ sum to tr(K̃κ) = mN . If K̃κ 6= I then at least one

of these eigenvalues must be less than 1. Consequently, since K̃κ is similar to

(
Rκ 0
0 I

)
,

the smallest eigenvalue of K̃κ (with eigenvector α ∈ RmN ) is equal to the smallest eigenvalue
of Rκ (with eigenvector β ∈ RmM ), and the two eigenvectors are related through:

α = Uβ ⇒ β = U>α.

This allows us to compute the KCCA criterion. For the KGV criterion, we trivially have

det K̃κ = det

(
Rκ 0
0 I

)
= detRκ.

We thus have reduced the size of our matrices from mN×mN to mM×mM . Once
we have borne the cost of such a low-rank decomposition, the further complexity is greatly
reduced. In the case of the first canonical correlation (the smallest eigenvalue of K̃κ) we
simply need to find the smallest eigenvalue of Rκ, which has a cost of O(m2M2). In the case
of the generalized variance, we need to compute det K̃κ = detRκ, which costs O(ξ(mM)),
where ξ(s) is the complexity of multiplying two s×s matrices, which is less than O(s3) when
using Strassen’s algorithm (Cormen et al., 1990). Since in our situation we have M = O(1),
the complexities are reduced to O(m2) and O(ξ(m)).

4.5 Free parameters

The KernelICA algorithms have two free parameters: the regularization parameter κ and
the width σ of the kernel (assuming identical Gaussian kernels for each source). In our
experimental work we found that the KernelICA algorithms were reasonably robust to
the settings of these parameters. Our choices were to set κ = 2 × 10−3, σ = 1/2 for large
samples (N > 1000) and κ = 2× 10−2, σ = 1 for smaller samples (N 6 1000).

For finite N , a value of σ that is overly small leads to diagonal Gram matrices and
our criteria become trivial. On the other hand, for large N the KGV approaches the
mutual information as σ tends to zero, and this suggests choosing σ as small as possible.
Still another consideration, however, is computational—for small σ the spectra of the Gram
matrices decay less rapidly and the computational complexity grows. This can be mitigated
by an appropriate choice of κ; in particular, the algorithm could choose κ so that the number
of retained eigenvalues for each Gram matrix is held constant. It is also possible to use cross-
validation to set κ (Leurgans et al., 1993). Clearly, there are several tradeoffs at play here,
and the development of theoretical guidelines for the choice of the parameters is deferred
to future work.

4.6 Derivatives

Our approach to ICA involves optimizing a contrast function defined in terms of a set of
m Gram matrices, where m is the number of components. These matrices are functions
of the weight matrix W , and thus our contrast functions are defined on a manifold of di-
mension m(m − 1)/2 (see Section 5). For small m (less than m = 8 in our simulations),
the optimization can be based on simple techniques such as naive first-difference approx-
imations of derivatives, or optimization methods that require only function evaluations.
Such techniques are not viable for large problems, however, and in general we must turn to
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derivative-based optimization techniques, where it is required that derivatives are computed
efficiently.

The derivatives of Gram matrices are not semidefinite matrices in general, and thus we
cannot directly invoke the low-rank decomposition algorithms that we have discussed in
previous sections. Fortunately, however, in the case of Gaussian kernels, it is possible to
express these matrix derivatives as a difference between two low-rank positive semidefinite
matrices, and we can apply the incomplete Cholesky decomposition to each of these matrices
separately. The details of this computation are provided in Appendix D.

Another possibility to compute derivatives efficiently is to use first-difference approxi-
mations of derivatives, as mentioned earlier, but with the help of the particular structure of
the problem. Indeed, a naive computation would require m(m− 1)/2 computations of the
objective function, and yield a complexity of O(m3N). As shown in Appendix D, we man-
age to reduce the complexity to O(m2N) by reducing the number of incomplete Cholesky
decompositions to be performed.

5. Optimization

An ICA contrast function is ultimately a function of the parameter matrix W . Estimating
ICA parameters and independent components means minimizing the contrast function with
respect to W . As noted by Amari (1998), the fact that W is an orthogonal matrix in the
ICA problem (once the data are whitened) endows the parameter space with additional
structure, and this structure can be exploited by optimization algorithms. The particular
formalism that we pursue here is that of a Stiefel manifold. In this section, we first review
the properties of this manifold. We then discuss convergence properties of our algorithm.
Finally, we present two efficient techniques to tame local minima problems.

5.1 The Stiefel manifold

The set of all m × m matrices W such that W>W = I is an instance of a Stiefel mani-
fold (Edelman et al., 1999). Our optimization problem is thus the minimization of a function
C(W ) on the Stiefel manifold. The familiar optimization algorithms of Euclidean spaces—
gradient descent, steepest descent and conjugate gradient—can all be performed on a Stiefel
manifold. The basic underlying quantities needed for optimization are the following:

• The gradient of a function C(W ) is defined as

∇C =
∂C

∂W
−W

(
∂C

∂W

)>
W,

where ∂C
∂W is the derivative of C with respect to W ; that is, an m×m matrix whose

element (i, j) is ∂C
∂wij

.

• The tangent space is equal to the space of all matrices H such that W>H is skew-
symmetric. It is of dimension m(m − 1)/2 and equipped with the canonical metric
||H||c = 1

2 tr(H
>H).
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• The geodesic starting from W in the direction H (in the tangent space at W ) is deter-
mined as GW,H(t) = W exp(tW>H), where the matrix exponential can be calculated
efficiently after having diagonalized (in the complex field) the skew-symmetric matrix
W>H.

In the simulations that we report in Section 7, we used steepest descent, with line search
along the geodesic. Note that in our case, the calculation of the gradient is more costly (from
5 to 10 times) than the evaluation of the function C. Consequently, conjugate gradient
techniques are particularly appropriate, because they save on the number of computed
derivatives by computing more values of the functions.

5.2 Convergence issues

Since our algorithm is simply steepest descent (with line search) on an almost-everywhere
differentiable function C(W ), the algorithm converges to a local minimum of C(W ), for
any starting point. However, the ICA contrast functions have multiple local minima, and
restarts are generally necessary if we are to find the global optimum. Empirically, the
number of restarts that were needed was found to be small when the number of samples is
sufficiently large so as to make the problem well-defined.

We have also developed two initialization heuristics that have been found to be par-
ticularly useful in practice for large-scale problems. These heuristics find a matrix W0

sufficiently close to the global optimum so that the direct optimization of C(W ) gives the
desired optimum without the need for restarts. We describe these heuristics in the following
two sections.

5.3 Polynomial kernels

In the case of the KernelICA-KCCA algorithm, the contrast function C(W ) that is
minimized is itself obtained through a minimization of a functional over the feature space
of functions F , as seen in the case of two variables in Eq. (7). This space of function is
defined through the kernel K(x, y). Intuitively, the larger the space of functions F is, the
less smooth the function C(W ) should be with respect to variations of W , since a larger F
can more closely adapt to any W .

Thus, by using a finite-dimensional feature space, we might hope that the optimization
function will be smoother and thus local minima will disappear. As we noted in Section 3.1,
objective functions based on kernels with finite-dimensional feature spaces do not charac-
terize independence as well as kernels with infinite-dimensional feature spaces, so we should
expect inaccurate solutions. Nevertheless, we have found empirically that such solutions
are often found in the basin of attraction of the global minima for the full KernelICA-

KCCA or KernelICA-KGV algorithm. Thus we can use polynomial kernels to initialize
the algorithm.

The classical polynomial kernel is of the form K(x, y) = (r+ sxy)d. Its RKHS Fd is the
space of polynomials of degree less or equal to d and the RKHS norm ||f ||2 is a weighted
sum of squares of the coefficients of the polynomials: ||∑d

k=0 akx
k||2Fd =

∑d
k=0 αk|ak|2.

When a polynomial is considered as function in L2(R), the k-th coefficient is equal to
1
k!d

kf/dxk(0), so we can write for f ∈ Fd, ||f ||2Fd =
∑d

k=0
αk

(k!)2

∣∣dkf/dxk(0)
∣∣2. Although
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attractive computationally, we see that the traditional polynomial kernel does not lead to
a natural norm for its RKHS. Instead, in our simulations, we use the Hermite polynomial
kernels (Vapnik, 1998), which correspond to a more natural norm in a space of polynomials:
If we let hk(x) denote the k-th Hermite polynomials (Szegö, 1975), we define the following

Hermite polynomial kernel of order d, K(x, y) =
∑d

k=0 e
−x2/2σ2

e−y
2/2σ2 hk(x/σ)hk(y/σ)

2kk!
. Using

classical properties of orthogonal polynomials, this kernel can be computed as efficiently as
the traditional polynomial kernel. The RKHS associated with this kernel is the space of
functions that can be written as e−x

2/2σ2
P (x) where P (x) is a polynomial of degree less or

equal to d, and the norm in that space is the L2 norm. In the simulations that we report in
Section 7, when we use finite dimensional kernels as a first step in the global optimization,
we use Hermite polynomial kernels with σ = 1.5 and d = 3.

5.4 One-unit contrast functions

One-unit contrast functions—objective functions similar to projection pursuit criteria that
are designed to discover single components—have been usefully employed in the ICA set-
ting (Hyvärinen et al., 2001). These functions involve optimization on the sphere (of di-
mension m − 1) rather than the orthogonal group (of dimension m(m − 1)/2); this helps
tame problems of local minima. In the KernelICA setting, the KCCA or KGV contrast
between one univariate component and its orthogonal subspace provides a natural one-unit
contrast function. Two issues still have to be resolved to implement such an approach:
the choice of the kernel on the component of dimension m − 1, and the combination of
components obtained from one-unit contrasts into a full ICA solution.

In this paper, we assume that we are given the same kernel K(x, y) for all desired
univariate components. To define a kernel on vectors of dimension m − 1, two natural
choices arise. The first is to take the product of the m − 1 univariate kernels. This is
equivalent to choosing the feature space of functions on Rm−1 to be the tensor product
of the m − 1 (identical) feature spaces of functions on R (Vapnik, 1998). In the case of a
Gaussian kernel, this amounts to using an isotropic Gaussian kernel K(x, y) = e−||x−y||

2/2σ2
.

This choice has the advantage that the kernel is invariant to (m−1)-dimensional orthogonal
transformations, so that the contrast function is invariant with respect to the choice of the
basis of the orthogonal subspace. However, the spectrum of the Gram matrix decays more
slowly than for the one-dimensional Gaussian, making this method impractical for large m.

The other natural choice is to take the sum of the kernels; this is equivalent to letting
each component of the m− 1 vector have its own Gram matrix. Here, the decay of each of
the m−1 Gram matrices is fast, so that the computation of the contrast function scales well
with m. However, care must be taken in the choice of the representative of the orthogonal
subspace: to obtain a valid function it is necessary to define a unique representative of
the orthogonal subspace which depends continuously on the univariate component w. This
is easily done by considering the image of the canonical basis (e1, . . . , em) of Rm by the
rotation that transforms the first vector e1 of this basis into w, and reduces to identity on
the orthogonal complement of the span of {w, e1}.

To combine one-dimensional component into a full ICA solution we use a “deflation”
technique similar to the one used by Hyvärinen and Oja (1997). We first find a m-
dimensional component w1, then project the data into the subspace (of dimension m − 1)
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orthogonal to w1 and search for a component w2 in this subspace. This process is iterated
until m − 1 components are found (which implies that the m-th is also found by orthog-
onality). A full ICA solution W is then obtained by combining the m one-dimensional
components.

6. Computational complexity

Let N denote the number of samples, and let m denote the number of sources. M is the
maximal rank considered by our low-rank decomposition algorithms for the kernels. We
assume that m 6 N .

• Performing PCA on the input variables is O(m2N)—calculating the covariance matrix
is O(m2N), diagonalizing the m × m matrix is O(m3) = O(m2N), and scaling is
O(m2N).

• KCCA using incomplete Cholesky decomposition is O(m2M2N)—calculating the de-

composition m times is m × O(NM 2), then forming the matrix Rκ is m(m−1)
2 ×

O(M2N) = O(m2M2N), and finding its smallest eigenvalue is O((mM)2). How-
ever, in practice, the incomplete Cholesky decompositions are the bottleneck of these
computations, so that the empirical complexity is in fact O(mM 2N).

• KGV using incomplete Cholesky decomposition is O(m2M2N+m3M3), which is usu-
ally O(m2M2N) because N is generally greater than mM—calculating the decompo-

sition m times is m×O(M 2N), then forming the matrix Rκ is m(m−1)
2 ×O(M2N) =

O(m2M2N), and computing its determinant is O((mM)3). As for KCCA, the empir-
ical complexity is O(mM2N).

• Computation of the derivatives is O(m2M2N)—at most 3m2 incomplete Cholesky
decompositions to perform, and then matrix multiplications with lower complexity, for
the direct approach, while O(m2) computations of the contrast functions are needed
for the first-order difference approach.

7. Simulation results

We have conducted an extensive set of simulation experiments using data obtained from a
variety of source distributions. The sources that we used (see Figure 5) included subgaussian
and supergaussian distributions, as well as distributions that are nearly Gaussian. We stud-
ied unimodal, multimodal, symmetric, and nonsymmetric distributions. All distributions
are scaled to have zero mean and unit variance.

We also varied the number of components, from 2 to 16, the number of training samples,
from 250 to 4000, and studied the robustness of the algorithms to varying numbers of
outliers.

Comparisons were made with three existing ICA algorithms: the FastICA algorithm
(Hyvärinen and Oja, 1997), the JADE algorithm (Cardoso, 1999), and the extended Infomax
algorithm (Lee et al., 1999).
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(m)   k= −0.82 (n)   k= −0.62 (o)   k= −0.80

(p)   k= −0.77 (q)   k= −0.29 (r)   k= −0.67

(a)   k= Inf (b)   k= 3.00 (c)   k= −1.20

(g)   k= −1.68 (h)   k= −0.74 (i)   k= −0.50

(j)   k= −0.53 (k)   k= −0.67 (l)   k= −0.47

(d)   k= 6.00 (e)   k= 6.00 (f)   k= 1.11

Figure 5: Probability density functions of sources with their kurtoses: (a) Student with
3 degrees of freedom; (b) double exponential; (c) uniform; (d) Student with
5 degrees of freedom; (e) exponential; (f) mixture of two double exponentials;
(g)-(h)-(i) symmetric mixtures of two Gaussians: multimodal, transitional and
unimodal; (j)-(k)-(l) nonsymmetric mixtures of two Gaussians, multimodal, tran-
sitional and unimodal; (m)-(n)-(o) symmetric mixtures of four Gaussians: mul-
timodal, transitional and unimodal; (p)-(q)-(r) nonsymmetric mixtures of four
Gaussians: multimodal, transitional and unimodal.
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7.1 Experimental setup

All of our experiments made use of the same basic procedure for generating data: (1) N
samples of each of the m sources were generated according to their probability density
functions (pdfs) and placed into an m ×N matrix X, (2) a random mixing matrix A was
chosen, with random but bounded condition number (between 1 and 2), (3) a matrix Ỹ
of dimension m × N was formed as the mixture Ỹ = AX, (4) the data were whitened by
multiplying Ỹ by the inverse P of the square root of the sample covariance matrix, yielding
an m×N matrix of whitened data Y . This matrix was the input to the ICA algorithms.

Each of the ICA algorithms outputs a demixing matrix W which can be applied to the
matrix Y to recover estimates of the independent components. To evaluate the performance
of an algorithm, we compared W to the known truth, W0 = A−1P−1, using the following
metric:

d(V,W ) =
1

2m

m∑

i=1

(∑m
j=1 |aij |

maxj |aij |
− 1

)
+

1

2m

m∑

j=1

(∑m
i=1 |aij |

maxi |aij |
− 1

)
, (17)

where aij = (VW−1)ij . This metric, introduced by (Amari et al., 1996), is invariant to
permutation and scaling of the columns of V and W , is always between 0 and (m− 1), and
is equal to zero if and only if V and W represent the same components. We thus measure
the performance of an algorithm by the value d(W,W0), which we refer to in the following
sections as the “Amari error.”

7.2 ICA algorithms

We briefly overview the other ICA algorithms that we used in our simulations. The FastICA
algorithm (Hyvärinen and Oja, 1997) uses a deflation scheme to compute components se-
quentially. For each component an one-unit contrast function, based on an approximation
to the negentropy of a component, is maximized. This function can be viewed as a mea-
sure of nongaussianity. The JADE algorithm (Cardoso, 1999) is a cumulant-based method
that uses joint diagonalization of a set of fourth-order cumulant matrices. It uses algebraic
properties of fourth-order cumulants to define a contrast function that is minimized using
Jacobi rotations. The extended Infomax algorithm (Lee et al., 1999) is a variation on the
Infomax algorithm (Bell and Sejnowski, 1995) that can deal with either subgaussian or
supergaussian components, by adaptively switching between two nonlinearities.

The last three algorithms were used with their default settings. Thus, no fine tuning was
performed to increase their performance according to the various sources that we tested.
We did the same for the KernelICA algorithms9, fixing the Gaussian kernel width to
σ = 1 and the regularization parameter to κ = 2× 10−2 for samples N less than 1000 and
using σ = 1/2, κ = 2 × 10−3 for larger samples. We used the two initialization techniques
presented in Section 5 in a first stage (optimization of an one-unit contrast with a deflation
scheme, with a Hermite polynomial kernel of degree d = 3 and width σ = 1.5) and initialized
the second stage (optimization of the full m-way contrast functions based on the Gaussian
kernel) with the result of the first stage. For numbers of components m smaller than 16, the
desired solution is reached with a limited number of restarts for the first stage (≈ m/2 on
average). For m = 16, however, the global minimum is not found consistently after a few

9. A MATLAB implementation can be downloaded at http://www.cs.berkeley.edu/~fbach/.

28



Kernel Independent Component Analysis

restarts. We obtained better results (results that are reported in the last line of Table 2)
by using the three other algorithms to initialize our optimization procedure.

7.3 Influence of source distributions

In a first series of experiments we tested the various algorithms on a two-component ICA
problem, with 250 and 1000 samples, and with all 18 possible source distributions. We
studied two kinds of ICA problem. In the first ICA problem, the two source distributions
were identical. For each of the 18 sources (a to r), we replicated the experiment 100 times
and calculated the average Amari error. The results are reported in Table 1. The table
also shows the average across these 18 × 100 simulations (the line denoted mean). In the
second ICA problem, we chose two sources uniformly at random among the 18 possibilities.
A total of 1000 replicates were performed, with the average over replications presented in
the line denoted rand in Table 1.

The results for the KernelICA algorithms show a consistent improvement, up to
50%, over the other algorithms. Comparing just between the two KernelICA algo-
rithms, KernelICA-KGV shows small but consistent performance improvements over
KernelICA-KCCA.

In addition, the performance of KernelICA is robust with respect to the source dis-
tributions. Performance is similar across multimodal (f, g, j, m, p), unimodal (a, b, d, e,
i, l, o, r) and transitional (c, h, k, n, q) distributions. The KernelICA algorithms are
particularly insensitive to asymmetry of the pdf when compared to the other algorithms
(see, e.g., case q).

7.4 Increasing number of components

In a second series of experiments, we tested the algorithms in simulations with 2, 4, 8 and
16 components. Source distributions were chosen at random from the 18 possible sources
in Figure 5. The results are presented in Table 2, where we see that KernelICA yields a
smaller Amari error than the other ICA algorithms in all cases.

7.5 Robustness to Gaussianity

ICA algorithms are known to have difficulties when the sources are nearly Gaussian. To
address this issue, we studied two-component ICA problems with identical source distribu-
tions. These distributions were chosen at random among a set of mixtures of Gaussians
which are at various distances from Gaussianity. This set includes both supergaussian (pos-
itive kurtosis) and subgaussian distributions (negative kurtosis). Figure 6 shows the average
performance of the algorithms as the kurtosis approaches zero, from above and from be-
low.10 We see that the performance of all algorithms degrades as the kurtosis approaches
zero, and that the KernelICA algorithms are more robust to near-Gaussianity than the
other algorithms.

10. Although zero kurtosis does not characterize Gaussianity, kurtosis is often used to score the non-
Gaussianity of distributions (e.g., Hyvärinen et al., 2001)
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pdfs F-ica Jade Imax KCCA KGV

a 7.2 6.4 50.0 7.7 6.5
b 13.1 11.0 58.4 7.9 7.1
c 4.7 3.6 15.2 5.5 4.4

d 12.8 10.9 54.3 13.8 11.8
e 8.8 8.0 70.3 3.7 3.3
f 7.1 5.2 9.5 3.4 3.2

g 3.4 2.7 19.2 2.7 2.5
h 13.4 9.1 29.7 9.8 8.3
i 24.9 18.4 36.2 23.5 21.6

j 20.6 16.5 52.1 3.2 3.1
k 13.4 8.1 28.4 6.0 5.0
l 27.7 20.0 35.0 12.6 10.2

m 8.6 6.2 25.6 13.6 10.6
n 12.9 9.1 34.3 15.1 9.2
o 9.6 6.9 24.6 11.9 9.6

p 9.2 6.0 27.4 8.1 6.2
q 41.2 34.4 40.6 11.8 8.2
r 14.3 9.2 33.9 9.0 8.0

mean 14.1 10.6 35.8 9.4 7.7

rand 10.8 8.6 30.4 6.9 5.4

pdfs F-ica Jade Imax KCCA KGV

a 4.4 3.7 1.8 3.7 3.0
b 5.8 4.1 3.4 3.7 2.9
c 2.3 1.9 2.0 2.7 2.4

d 6.4 6.1 6.9 7.1 5.7
e 4.9 3.9 3.2 1.7 1.5
f 3.6 2.7 1.0 1.7 1.5

g 1.7 1.4 0.5 1.4 1.3
h 5.5 3.9 3.2 4.3 3.6
i 8.7 7.2 6.8 7.8 6.5

j 6.7 4.6 57.6 1.4 1.3
k 5.7 4.0 3.5 3.2 2.6
l 12.1 7.2 10.4 4.8 4.2

m 3.6 2.9 4.2 6.3 4.6
n 5.4 3.5 30.6 7.6 3.0
o 4.7 3.3 4.4 5.1 4.3

p 4.1 3.1 7.4 3.8 3.0
q 22.9 15.8 40.9 5.1 3.9
r 6.6 4.4 4.9 4.3 3.6

mean 6.4 4.6 10.7 4.2 3.3

rand 5.3 4.3 6.9 3.0 2.4

Table 1: The Amari errors (multiplied by 100) for two-component ICA with 250 samples
(left) and 1000 samples (right). For each pdf (from a to r), averages over 100
replicates are presented. The overall mean is calculated in the row labeled mean.
The rand row presents the average over 1000 replications when two (generally
different) pdfs were chosen uniformly at random among the 18 possible pdfs.

m N # repl F-ica Jade Imax KCCA KGV

2 250 1000 11 9 30 7 5
1000 1000 5 4 7 3 2

4 1000 100 18 13 25 12 11
4000 100 8 7 11 6 4

8 2000 50 26 22 123 30 20
4000 50 18 16 41 16 8

16 4000 25 42 38 130 31 19

Table 2: The Amari errors (multiplied by 100) for m components with N samples: m
(generally different) pdfs were chosen uniformly at random among the 18 possible
pdfs. The results are averaged over the stated number of replications.
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Figure 6: Robustness to near-Gaussianity. The solid lines plot the Amari error of the Ker-

nelICA algorithms as the kurtosis approaches zero. The dotted lines plot the
performance of the other three algorithms.
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Figure 7: Robustness to outliers. The abscissa displays the number of outliers and the
ordinate shows the Amari error.
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7.6 Robustness to outliers

Outliers are also an important concern for ICA algorithms, given that ICA algorithms are
based in one way or another on high-order statistics. Direct estimation of third and fourth
degree polynomials can be particularly problematic in this regard, and many ICA algorithms
are based on nonlinearities that are more robust to outliers. In particular, in the case of the
FastICA algorithm, the hyperbolic tangent and Gaussian nonlinearities are recommended
in place of the default polynomial when robustness is a concern (Hyvärinen and Oja, 1997).

We simulated outliers by randomly choosing up to 25 data points to corrupt. This was
done by adding the value +5 or −5 (chosen with probability 1/2) to a single component in
each of the selected data points. We performed 100 replications using source distributions
chosen uniformly at random from the 18 possible sources.

The results are shown in Figure 7. We see that the KernelICA methods are signifi-
cantly more robust to outliers than the other ICA algorithms, including FastICA with the
hyperbolic tangent and Gaussian nonlinearities.

7.7 Running time

The performance improvements that we have demonstrated in this section come at a com-
putational cost—KernelICA is slower than the other algorithms we studied. The running
time is, however, still quite reasonable in the examples that we studied. For example, for
N = 1000 samples, and m = 2 components, it takes 0.05 seconds to evaluate our contrast
functions, and 0.25 second to evaluate their derivatives (using Matlab with a Pentium 700
MHz processor). Moreover, the expected scaling of O(mN) for the computations of KCCA
and KGV was observed empirically in our experiments.

8. Conclusions

We have presented a new approach to ICA based on kernel methods. While most current
ICA algorithms are based on using a single nonlinear function—or a small parameterized
set of functions—to measure departures from independence, our approach is a more flexible
one in which candidate nonlinear functions are chosen adaptively from a reproducing kernel
Hilbert space. Our approach thus involves a search in this space, a problem which boils
down to finding solutions to a generalized eigenvector problem. Such a search is not present
in other ICA algorithms, and our approach to ICA is thus more demanding computationally
than the alternative approaches. But the problem of measuring (and minimizing) departure
from independence over all possible non-Gaussian source distributions is a difficult one, and
we feel that the flexibility provided by our approach is appropriately targeted. Moreover,
our experimental results show that the approach is more robust than other ICA algorithms
with regards to variations in source densities, degree of non-Gaussianity, and presence of
outliers. Our algorithms are thus particularly appropriate in situations where little is known
about the underlying sources. It is also worth noting that current algorithms can provide
fast approximate solutions that can be improved by KernelICA.

A number of ideas that are closely related to our own have been presented in recent
work by other authors. Related work has been presented by Fyfe and Lai (2000), who
propose the use of a kernelized version of canonical correlation analysis as an ICA algorithm
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(for two-component problems). Canonical correlation analysis in and of itself, however, is
simply a feature extraction technique—it can be viewed as an extension of PCA to two
variables. CCA does not define an ICA contrast function and it should not be expected
to find independent components in general. Indeed, in the experiments presented by Fyfe
and Lai (2000), independent components were not always present among the first canonical
variates. It is important to emphasize that in our approach, canonical correlation is used to
define an ICA contrast function, and this contrast function is subsequently optimized with
respect to the parameters of the model to derive an ICA algorithm.

Harmeling et al. (2002) have recently described work on kernel-based ICA methods
whose focus is complementary to ours. They show how linear ICA methods in feature space
can be used to solve nonlinear ICA problems (problems of the general form y = f(x), for
nonlinear f). Their method finds a certain number of candidate nonlinear functions of the
data as purported independent components. These candidates, however, do not have any
optimizing property in terms of an ICA contrast function that allows them to be ranked
and evaluated, and in Harmeling et al. (2002) the authors simply pick those components
that are closest to the known sources (in simulations in which these sources are known).
A possible solution to this problem may lie in combining their approach with ours, using
KernelICA in the subspace of feature space identified by their method, and identifying
components sequentially.

There are a number of other recent lines of work that are similar to KernelICA in
being based on a flexible treatment of the underlying source densities. These include meth-
ods that represent estimated source densities via kernel density estimation (Vlassis and
Motomura, 2001, Boscolo et al., 2001) and Gaussian mixtures (Attias, 1999, Welling and
Weber, 2001), and methods that minimize asymptotic variances of estimators (Pham and
Garat, 1997). These methods differ from KernelICA along various dimensions, including
statistical foundations (frequentist vs. Bayesian, semiparametric vs. parametric), computa-
tional requirements and extensibility, and further work will be needed to disentangle their
relative advantages and disadvantages. All of these approaches, however, have in common
with KernelICA the emphasis on source adaptivity as a key to the most challenging ICA
problems.

The current paper provides a general, flexible foundation for algorithms that measure
and minimize departure from independence, and can serve as a basis for exploring various
extensions of the basic ICA methodology. There are several directions which we are currently
exploring.

First, our approach generalizes in a straightforward manner to multidimensional ICA (Car-
doso, 1998), which is a variant of ICA with multivariate components. Indeed, the Gram
matrices in our methods can be based on kernel functions computed on vector variables, and
the rest of our approach goes through as before. A possible difficulty is that the spectrum
of such Gram matrices may not decay as fast as the univariate case, and this may impact
the running time complexity.

Second, we can take advantage of the versality of kernels to extend the current ICA
model. Although the model we have presented here is based on an assumption of exchange-
ability (that is, the samples can be randomly permuted without affecting the KernelICA

contrast function), in applications where the data are clearly not exchangeable, such as
speech processing, it is possible to define kernels on “frames”—short overlapping sequences.
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By using frames, the local temporal structure of speech or music is taken into account, and
contrast functions that are much more discriminative can be designed. Also, kernels can
be defined on data that are not necessarily numerical (e.g., the “string kernels” of Lodhi
et al., 2002), and it is interesting to explore the possibility that our kernel-based approach
may allow generalizations of ICA to problems involving more general notions of “sources”
and “mixtures.”

Third, a more thoroughgoing study of the statistical properties of KernelICA is
needed. In particular, while we have justified our contrast functions in terms of their math-
ematical properties in the limiting case of an infinite number of samples, we have not yet
fully studied the finite-sample properties of these contrast functions, including the bias and
variance of the resulting estimators of the parameters. Nor have we studied the statistical
adaptivity of our method as a semiparametric estimation method, comparing its theoretical
rate of convergence to that of a method which knows the exact source distributions. Such
analyses are needed not only to provide deeper insight into the ICA problem and our pro-
posed solution, but also to give guidance for choosing the values of the free parameters σ
and κ in our algorithm.

Finally, in this paper, we establish a connection between kernel-based quantities and
information-theoretic concepts, a connection that may extend beyond its utility for defining
contrast functions for ICA. In particular, in recent work we have used the kernel generalized
variance to provide a contrast function for a model in which the sources are no longer
independent, but factorize according to a tree-structured graphical model (Bach and Jordan,
2002).

Appendix A. Canonical correlation and its generalizations

In the following appendices, we expand on several of the topics discussed in the paper. This
material should be viewed as optional, complementing and amplifying the ideas presented
in the paper, but not necessary for a basic understanding of the KernelICA algorithms.

This first section provides additional background on canonical correlation, complement-
ing the material in Section 2.1. In particular, we review the relationship between CCA and
mutual information for Gaussian variables, and we motivate the generalization of CCA to
more than two variables.

A.1 CCA and mutual information

For Gaussian random variables there is a simple relationship between canonical correla-
tion analysis and the mutual information. Consider two multivariate Gaussian random

variables x1 and x2, of dimension p1 and p2, with covariance matrix C =

(
C11 C12

C21 C22

)
.

The mutual information, M(x1, x2) =
∫
p(x1, x2) log[p(x1, x2)/p(x1)p(x2)]dx1dx2, is readily

computed (Kullback, 1959):

M(x1, x2) = −
1

2
log

(
detC

detC11 detC22

)
. (18)

The determinant ratio appearing in this expression, detC/(detC11 detC22), is known as the
“generalized variance.”
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As we discussed in Section 2.1, CCA reduces to the computation of eigenvalues of the
following generalized eigenvector problem:

(
C11 C12

C21 C22

)(
ξ1
ξ2

)
= (1 + ρ)

(
C11 0
0 C22

)(
ξ1
ξ2

)
. (19)

The eigenvalues appear in pairs: {1 − ρ1, 1 + ρ1, . . . , 1 − ρp, 1 + ρp, 1, . . . , 1}, where p =
min{p1, p2} and where (ρ1, . . . , ρp) are the canonical correlations.

For invertible B, the eigenvalues of a generalized eigenvector problem Ax = λBx are
the same as the eigenvalues of the eigenvector problem B−1Ax = λx. Thus the ratio of
determinants in Eq. (18) is equal to the product of the generalized eigenvalues of Eq. (19).
This yields:

M(x1, x2) = −
1

2
log

p∏

i=1

(1− ρi)(1 + ρi) = −
1

2

p∑

i=1

log(1− ρ2
i ). (20)

Thus we see that for Gaussian variables, the canonical correlations ρi obtained from CCA
can be used to compute the mutual information.

While Eq. (20) is an exact result (for Gaussian variables), it also motivates us to consider
approximations to the mutual information. Noting that all of the terms in Eq. (20) are
positive, suppose that we retain only the largest term in that sum, corresponding to the
first canonical correlation. The following theorem, which is easily proved, shows that this
yields an approximation to the mutual information.

Theorem 3 Let x1 and x2 be Gaussian random variables of dimension p1 and p2, respec-
tively. Letting ρ(x1, x2) denote the maximal canonical correlation between x1 and x2, and
defining Mρ(x1, x2) = −1

2 log(1− ρ2(x1, x2)), we have:

Mρ(x1, x2) 6 M(x1, x2) 6 min{p1, p2}Mρ(x1, x2). (21)

Moreover, Mρ(x1, x2) is the maximal mutual information between one-dimensional linear
projections of x1 and x2. Also, these bounds are tight—for each of the inequalities, one can
find x1 and x2 such that the inequality is an equality.

A.2 Generalizing to more than two variables

We generalize CCA to more than two variables by preserving the relationship that we
have just discussed between mutual information and CCA for Gaussian variables. (For
alternative generalizations of CCA, see Kettenring, 1971).

Considerm multivariate Gaussian random variables, x1, . . . , xm, where xi has dimension
pi. Let Cij denote the pi× pj covariance matrix between xi and xj , and C the overall
covariance matrix whose (i, j)th block is Cij . The mutual information, M(x1, . . . , xm), is
readily computed in terms of C (Kullback, 1959):

M(x1, . . . , xm) = −1

2
log

(
detC

detC11 · · ·detCmm

)
. (22)

We again refer to the ratio appearing in this expression, detC/(detC11 · · ·detCmm), as the
“generalized variance.”
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As in the two-variable case, the generalized variance can be obtained as the product of
the eigenvalues of a certain generalized eigenvector problem. In particular, we define the
following problem:



C11 C12 · · · C1m

C21 C22 · · · C2m
...

...
...

Cm1 Cm2 · · · Cmm







ξ1
ξ2
...
ξm


 = λ




C11 0 · · · 0
0 C22 · · · 0
...

...
...

0 0 · · · Cmm







ξ1
ξ2
...
ξm


 , (23)

which we also write as Cξ = λDξ, where D is the block-diagonal matrix whose diagonal
blocks are the Cii. Given the definition of C and D, the ratio of determinants of C and D
is clearly equal to the generalized variance. Thus we have:

M(x1, . . . , xm) = −1

2

P∑

i=1

log λi, (24)

where λi are the generalized eigenvalues of Cξ = λDξ. Defining CCA as the solution of
the generalized eigenvector problem Cξ = λDξ, we again obtain the mutual information in
terms of a sum of functions of generalized eigenvalues.11

If we wish to obtain a single “maximal canonical correlation,” we can proceed by analogy
to the two-variable case and take the largest (positive) term in the sum in Eq. (24). Thus,
we define the first canonical correlation λ(x1, . . . , xm) as the smallest generalized eigenvalue
of Cξ = λDξ. We define Mλ(x1, . . . , xm) = −1

2 log λ(x1, . . . , xm) as an approximation to
the mutual information based on this eigenvalue. The following theorem, proved by making
use of Jensen’s inequality, shows that this approximation yields upper and lower bounds on
the mutual information, in the case of Gaussian variables:

Theorem 4 Let (x1, . . . , xm) be multivariate Gaussian random variables, where xi has di-
mension pi. We have the following lower and upper bounds on the mutual information
M = M(x1, . . . , xm):

Mλ +
λ− 1

2
6 Mλ −

P − 1

2
log

P − λ

P − 1
6 M 6 PMλ, (25)

where Mλ = Mλ(x1, . . . , xm), λ = λ(x1, . . . , xm), and P =
∑

i pi.

Which of the properties of the classical definition of the first canonical correlation gen-
eralize to the m-variable definition? As we have already noted, the eigenvalues occur in
pairs in the two-variable case, while they do not in the m-variable case. This implies that
the specialization of the m-variable definition to m = 2, λ(x1, x2), does not reduce exactly
to the classical definition, ρ(x1, x2). But the difference is unimportant; indeed, we have
ρ(x1, x2) = 1− λ(x1, x2). A more important aspect of the two-variable case is the fact (cf.
Theorem 3) that there is a relationship between ρ(x1, x2) and one-dimensional projections
of x1 and x2. This relationship is an important one, lying at the heart of the properties of
F-correlation. In the following section, we prove that such a relation exists in the m-way
case as well.

11. Note that the λi are all nonnegative and sum to P =
∑

i pi. Note also that the λi do not occur in pairs
as they do in the two-variable case. Moreover, the terms in the sum in Eq. (24) are not all positive.
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A.3 F-correlation and independence

Let y1, . . . , ym be univariate random variables, with correlation matrix C̃, a matrix whose
(i, j)th element is corr(yi, yj). We define ν(y1, . . . , ym) to be the minimal eigenvalue of C̃.
Note that a correlation matrix is symmetric positive semidefinite with trace equal to m,
and thus the eigenvalues are nonnegative and sum to m. This implies that ν(y1, . . . , ym)
must always be between zero and one, and is equal to one if and only if C̃ = I. That is,
ν(y1, . . . , ym) = 1 if and only if the variables y1, . . . , ym are uncorrelated. The function ν, a
function of m univariate random variables, plays a similar role as the correlation between
two random variables, as shown in the following theorem:

Theorem 5 Let x1, . . . , xm be m multivariate random variables. Let λ(x1, . . . , xm) be
the first canonical correlation, defined as the smallest generalized eigenvalue of Eq. (23).
Then λ(x1, . . . , xm) is the minimal possible value of ν(y1, . . . , ym), where y1, . . . , ym are
one-dimensional projections of x1, . . . , xm:

λ(x1, . . . , xm) = min
ξ1,...,ξm

ν(ξ>1 x1, . . . , ξ
>
mxm). (26)

In addition, λ(x1, . . . , xm) = 1 if and only if the variables x1, . . . , xm are uncorrelated.

Proof Let C̃(ξ>1 x1, . . . , ξ
>
mxm) denote the correlation matrix between (ξ>1 x1, . . . , ξ

>
mxm). If

the vectors ξi have unit norm then the (i, j)th element of C̃(ξ>1 x1, . . . , ξ
>
mxm) is just ξ>i C̃ijξj ,

where C̃ij is the correlation matrix between xi and xj . We then have:

min
ξ1,...,ξm

ν(ξ>1 x1, . . . , ξ
>
mxm) = min

||ξ1||=···=||ξm||=1
ν(ξ>1 x1, . . . , ξ

>
mxm)

= min
||ξ1||=···=||ξm||=1

min
β∈Rm, ||β||=1

β>C̃(ξ>1 x1, . . . , ξ
>
mxm)β

= min
||ξ1||=···=||ξm||=||β||=1

m∑

i,j=1

(βiξi)
>C̃ij(βjξj)

Minimizing over all possible ξ1, . . . , ξm and β of unit norm is the same as minimizing over
all possible ζi such that

∑m
i=1 ||ζi||2 = 1, by simply mapping ((ξi), β) to (ζi) by ζi = βiξi

and mapping (ζi) to ((ξi), β), by βi = ||ζi|| and ξi = ζi/||ζi||. Consequently, we have:

min
ξ1,...,ξm

ν(ξ>1 x1, . . . , ξ
>
mxm) = min

||ζ||=1

m∑

i,j=1

ζ>i C̃ijζj = min
||ζ||=1

ζ>C̃ζ = λ(x1, . . . , xm),

which proves the first part of Theorem 5. Let us now prove the second part.
If the variables x1, . . . , xm are uncorrelated, then any linear projections will also be un-

correlated, so ν(ξ>1 x1, . . . , ξ
>
mxm) is constant equal to one, which implies by Eq. (26) that

λ(x1, . . . , xm) = 1. Conversely, if λ(x1, . . . , xm) = 1, then since ν is always between zero and
one, using Eq. (26), for all ξi, ν(ξ

>
1 x1, . . . , ξ

>
mxm) must be equal to one, and consequently,

the univariate random variables ξ>1 x1, . . . , ξ
>
mxm are uncorrelated. Since this is true for all

one-dimensional linear projections, x1, . . . , xm must be uncorrelated.
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Applying this theorem to a reproducing kernel Hilbert space F , we see that the F-
correlation between m variables is equal to zero if and only if for all functions f1, . . . , fm in
F , the variables f1(x1), . . . , fm(xm) are uncorrelated. Consequently, assuming a Gaussian
kernel, we can use the same line of reasoning as in Theorem 2 to prove that the F-correlation
is zero if and only if the variables x1, . . . , xm are pairwise independent.

Concerning our second contrast function, the KGV, Theorem 4 shows that the KGV
is always an upper bound of a constant function ϕ(λ) of the first canonical correlation λ.
Since ϕ is nonnegative and equal to zero if and only if λ = 1, this shows that if the KGV is
equal to zero, then the first canonical correlation is also zero, and the variables x1, . . . , xm
are pairwise independent. As in the KCCA case, the converse is trivially true. Thus, the
KGV also defines a valid contrast function.

Appendix B. Kernel generalized variance and mutual information

In Section 3.4 we noted that there is a relationship between the kernel generalized variance
(KGV) and the mutual information in the bivariate case. In particular, we claim that in
the population case (where no regularization is needed), the KGV approaches a limit as the
kernel width approaches zero, and that in the bivariate case, this limit is equal to the mutual
information, up to second order, expanding around independence. A full proof of this result
is beyond the scope of this paper, but in this section we provide a sketch of the proof. We
first introduce a new information criterion for discrete multinomial random variables, show
its link to the mutual information and then extend it to continuous variables.

B.1 Multinomial and Gaussian variables

We begin by establishing a relationship between a pair of multinomial random variables
and a pair of Gaussian random variables with the same covariance structure. Let x and y
be multinomial random variables of dimension p and q, respectively, and let P denote the
p×q joint probability matrix whose (i, j)th element, Pij , is equal to P (x = i, y = j). As
usual, we also represent these variables as unit basis vectors, X ∈ Rp and Y ∈ Rq, such
that P (Xi = 1, Yj = 1) = Pij .

Let px denote a p-dimensional vector representing the marginal probability distribution
of x, and let py denote a q-dimensional vector representing the marginal probability distri-
bution of y. In the following, if r is a R × 1 vector, diag(r) denotes the diagonal R × R
matrix with diagonal r. The covariance structure of (X,Y ) can be written as follows, where
Dpx = diag(px) and Dpy = diag(py):

E(XY >) = P, E(X) = px, E(Y ) = py, E(XX>) = Dpx , E(Y Y >) = Dpy ,

which implies CXY = P − pxp
>
y , CXX = Dpx − pxp

>
x , and CY Y = Dpy − pyp

>
y . Let XG

and Y G denote Gaussian random variables that have the same covariance structure as
X and Y . It is easy to show that the mutual information between XG and Y G, which
we denote as IG, is equal to IG = −1

2 log det(I − C>C) = −1
2 log det(I − CC>), where

C = D
−1/2
px (P − pxp

>
y )D

−1/2
py .

We now expand IG near independence, that is, when we assume Pij = pxipyj(1 + εij)

where ε is a matrix with small norm. In this case, the matrix C defined as C = D
−1/2
px (P −
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pxp
>
y )D

−1/2
py = D

1/2
px εD

1/2
py , has also a small norm and we can expand IG as follows:

IG = −1

2
log det(I − CC>) ≈ 1

2
tr(CC>),

Indeed, if we let si denote the singular values of C (which are close to zero because the
matrix C has small norm), we have:

−1

2
log det(I − CC>) = −1

2

∑

i

log(1− s2
i ) ≈

1

2

∑

i

s2i =
1

2
tr(CC>).

Thus, we obtain:

IG ≈ 1

2
tr(DpxεDpyε

>) =
1

2

∑

ij

ε2ijpxipyj . (27)

Let us now expand the mutual information I = I(x, y), using the Taylor expansion (1 +
ε) log(1 + ε) ≈ ε+ ε2/2:

I =
∑

ij

pxipyj(1 + εij) log(1 + εij) ≈
∑

ij

pxipyj(εij +
1

2
ε2ij) =

1

2

∑

ij

ε2ijpxipyj , (28)

using
∑

ij εijpxipyj =
∑

ij(1 + εij)pxipyj −
∑

ij pxipyj =
∑

ij Pij −
∑

ij pxipyj = 1− 1 = 0.
In summary, for multinomial random variables x and y, we have defined the quantity

IG(x, y) in terms of the mutual information between Gaussian variables with the same
covariance. We have shown that this quantity is equal up to second order to the actual
mutual information, I(x, y), when we expand “near independence.” We now extend these
results, defining the quantity IG, which we will refer to as the Gaussian mutual information
(GMI), for continuous univariate variables.

B.2 A new information measure for continuous random variables

Let x and y be two continuous random variables. Their mutual information, I(x, y) =∫
p(x, y) log[p(x, y)/p(x)p(y)]dxdy, can be defined as the upper bound of the mutual infor-

mation between all discretizations of x and y (Kolmogorov, 1956). Behind this definition
lies the crucial fact that when refining the partitions of the sample space used to discretize
x and y, the discrete mutual information must increase.

By analogy, we generalize the GMI to continuous variables: the GMI IG(x, y) is defined
to be the supremum of IG(xd, yd) for discretizations (xd, yd) of x and y. In order to have a
proper definition, we need to check that when we refine the partitions, then the discrete GMI
can only increase. It is easy to check that the associated Gaussian random variables before
the refinement are linear combinations of the associated Gaussian random variables after
the refinement, which implies that the refinement can only increase the mutual information
between the associated Gaussian random variables. But this implies that IG can only
increase during a refinement.

Another property of the Gaussian mutual information that we will need in the following
section, one that is also shared by the classical mutual information, is that it is equal to the
limit of the discrete mutual information, when the discretization is based on a uniform mesh
whose spacing tends to zero. From this, it can be shown that the equality of I and IG up to
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second order around independence still holds for continuous variables. Using the singular
value decomposition for bivariate distributions (Buja, 1990), an alternate justification of
this expansion could be derived.

B.3 Relation with kernel generalized variance

Let us consider the feature space Fσ associated with a Gaussian kernelK(x, y) = 1√
2πσ

G
(x−y

σ

)

where G(x) = e−x
2/2. Let us denote Gσ(x) = 1√

2πσ
G
(
x
σ

)
, such that

∫
Gσ(x)dx = 1. As

we saw in Section 2, the space Fσ can be viewed as the completion of the space of finite
linear combinations of functions of the form Gσ(x− xi) where xi ∈ R. Let {xi} be a mesh
of uniformly distributed points in R with spacing h. Using these fixed points, we define
Fσ{xi} to be the (finite-dimensional) linear span of the functions fi = Gσ(x−xi). Similarly
we define a mesh {yj} for the second random variable, and let Fσ{yj} denote the linear
span of the functions gj = Gσ(x− yj).

The contrast function IδF (σ) based on the KGV is defined as the mutual information
between Gaussian random variables that have the same covariance structure as Φ(x) and
Φ(y). Let IδF (h, σ) be the mutual information between finite-dimensional Gaussian random
variables that have the same covariance structure as the projections of Φ(x) and Φ(y) onto
Fσ{xi} and Fσ{yj}.

As the spacing h tends to zero and as the number of points tends to infinity, the spaces
Fσ{xi} and Fσ{yj} tend to the feature space Fσ, so that IδF (h, σ) tends to IδF (σ). We
now relate the quantity IδF (h, σ) to the Gaussian mutual information IG(x, y). We have:

E〈fi,Φ(x)〉〈gj ,Φ(y)〉 =

∫
Gσ(x− xi)Gσ(y − yj)p(x, y)dx dy

= [Gσ(x)Gσ(y) ∗ p(x, y)](xi, yj)
= pGσ(x

i, yj),

where pGσ , a smoothed version of p, is well defined as a probability density function because
Gσ is normalized. Similar formulas can be obtained for the other expectations:

E〈fi,Φ(x)〉 = (pGσ)x(x
i), E〈gj ,Φ(x)〉 = (pGσ)y(y

j)

and covariances:

E〈fi,Φ(x)〉〈fj ,Φ(x)〉 ∝ δij × (pGσ)x(x
i) if σ ¿ h¿ 1.

These identities ensure that, as h and σ tends to zero, the covariance structure of the pro-
jections of Φ(x) and Φ(y) onto Fσ{xi} and Fσ{yj} is equivalent to the covariance obtained
through the discretization on the mesh {xi, yj} of random variables having joint distribution
pGσ . This implies that, as h and σ tends to zero, IδF (h, σ) is equivalent to the Gaussian
mutual information of the variables x and y, smoothed by Gσ. Moreover, as the smoothing
parameter σ tends to zero, pGσ tends to p, and we see that IδF (σ) tends to I

G. Thus as σ
tends to zero, the KGV tends to the Gaussian mutual information.
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Appendix C. Spectrum of Gram matrices

The computational efficiency of our algorithms relies on the approximation of Gram matrices
by matrices of very low rank.12 In this section we present theoretical results from functional
analysis that justify the use of such approximations. For simplicity, we restrict ourselves to
Gaussian kernels, but many of these results can be generalized to other translation-invariant
kernels.

The rank of approximations to Gram matrices depends on the decay of the distribution
of the eigenspectrum of these matrices. As pointed out by Williams and Seeger (2000),
for one-dimensional input spaces the eigenvalues decay geometrically if the input density is
Gaussian. We discuss a generalization of this result in this section, showing that the decay
of the spectrum depends in general on the decay of the tails of the underlying distribution
p(x) of the data.

The study of the spectrum of Gram matrices calculated from a kernel K(x, y) is usually
carried out by studying the spectrum of an associated integral operator, and using the
Nyström method to relate these spectra (Baker, 1977). We briefly review the relevant
machinery.

C.1 Integral Operators and Nyström method

LetK ∈ L2(Rd×Rd) denote a symmetric kernel and p(x) the probability density of a random
variable on Rd. We assume that p is bounded and that the integral

∫
Rd×Rd |K(x, y)|p(x)dxdy

is finite. We define the integral operator T , from L2(Rd) to L2(Rd), as follows:

T : φ(y) 7→
∫

Rd
K(x, y)p(x)φ(x)dx. (29)

T is called a Hilbert-Schmidt operator (Brezis, 1980). It is known that the spectrum of such
an operator is a sequence of real numbers tending to zero, where the spectrum is defined as
the set of λi for which there exists φi ∈ L2(Rd) such that Tφi = λiφi:∫

Rd
K(x, y)p(x)φi(x)dx = λiφi(y). (30)

The eigenvalues λi and eigenvectors φi are often approximated using the “Nyström method,”
which relates them to the spectra of Gram matrices of points sampled from p. That is, the
expectation in Eq. (29) is approximated by the sample mean Tφ(y) ≈ 1

N

∑N
k=1K(xk, y)φ(xk),

where xk are N data points sampled from p. Substituting this into the definition of an eigen-
vector in Eq. (30) and evaluating at y = xj , we get:

1

N

N∑

k=1

K(xk, xj)φi(xk) ≈ λiφi(xj), (31)

and thus Φi = (φi(x1), . . . , φi(xN ))> is an eigenvector of the Gram matrix K = (K(xi, xj))
with eigenvalue Nλi:

1

N
KΦi = λiΦi.

12. Note that a (non-centered) Gram matrix is always invertible (e.g., Schölkopf and Smola, 2001), given dis-
tinct sample points and a Gaussian kernel, so any low-rank representation of such a matrix is necessarily
an approximation.
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Decay of p(x) Bound of h(t) Decay of λn

compact support o(log t) e−An logn

e−x
2/2 log t e−An

|x|−d, d > 2 t1/d+ε n−d+ε

Table 3: Bounds for the number of eigenvalues greater than η, as a function h(t) of t = 1/η,
and the n-th eigenvalue λn of the integral operator T . The number of eigenvalues
greater than η, for an N×N Gram matrix, is bounded by h(t), where t = N/η
(see text for details).

Consequently, the eigenvalues of the Gram matrix K are approximately equal to Nλ, where
λ ranges over eigenvalues of the integral operator. It is also possible to approximate the
eigenfunctions φi using this approach (see Baker, 1977).

Two problems arise: How fast does the spectrum of the integral operator decay for
various kernels K and densities p? How close are the eigenvalues of the Gram matrices
to N times the eigenvalues of the integral operator? In the following section, we overview
some theoretical results that give asymptotic bounds for the decay of the spectra of integral
operators, and we provide empirical results that relate the eigenvalues of Gram matrices to
the eigenvalues of the integral operator.

C.2 Spectra of integral operators

Widom (1963, 1964) provides some useful results regarding the spectra of the operator T
defined in Eq. (29) for translation-invariant kernels of the form k(x− y). He shows that the
rate of decay of the spectrum depends only on the rate of decay of the Fourier tranform ν(ω)
of k, and of the rate of decay of the probability density function of the underlying input
variable x. Moreover, he provides asymptotic equivalents for many cases of interest. Most
of the results can be generalized to multivariate kernels. For the case of Gaussian kernels,
we summarize some of the pertinent results in Table 3. Note that except for heavy-tailed
distributions (those with polynomial decay), the spectrum vanishes at least geometrically.

C.3 Nyström approximation

We now provide empirical results about how the spectra of Gram matrices relate to the
spectrum of the associated integral operator. We study the Gaussian distribution, where an
exact result can be calculated, and the Student distribution with three degrees of freedom,
where a function of the form λn = a

(b+n)4
can be fit tightly to the spectrum.13 In both cases,

we used distributions with unit variance.

We sampled N data points from these distributions, for N ranging from 23 to 213, and
computed the spectra of the resulting Gram matrices. The results are plotted in Figure 8.
We see that the spectrum of an N×N Gram matrix, which we denote as λk,N , is composed

13. Note that this is consistent with the bounds in Table 3, since the Student distribution with three degrees
of freedom has a density that decays as |x|−4.
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of two regimes. For eigenvalues λk,N up to a given rank k0(N), the eigenvalues are very
close to their limiting value λk/N , where λk is the k-th eigenvalue of the associated integral
operator. After k0(N), the spectrum decays very rapidly.

The important point is that the spectra of the Gram matrices decay at least as rapidly
as N times the eigenvalues of the integral operators. Consequently, we need only consider
low-rank approximations of order M = h(N/η), where, as t = N/η tends to infinity, h(t)
grows as described in Table 3. Given that we choose the precision to be proportional to N ,
i.e. η = η0N , the number of eigenvalues we need to consider is bounded by a constant that
depends solely on the input distribution.
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Figure 8: Spectra for two different input densities (top: Gaussian, bottom: Student dis-
tribution with three degrees of freedom). The dashed lines are the exact or
fitted (see text for details) logarithm of the spectra log λk, plotted as a func-
tion of the eigenvalue number k. (Left) The solid lines represent log 1

N λk,N , for
N = 23, 25, 27, 29, 211, 213. (Right) For N = 211 = 2048, the solid line repre-
sents log 1

N λk,N , plotted as a function of k, while the lower and upper ends of
the error bars represent the minimum and the maximum of log 1

N λk,N across 20
replications.

Appendix D. Derivatives

In this section we provide a discussion of the computation of the derivatives of our contrast
functions. The computation of these derivatives is a straightforward application of the chain
rule, where the core subroutine is the computation of the derivatives of the Gram matrices.
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This latter computation is not entirely straightforward, however, and it is our focus in this
section. Note that the computation of the derivatives of a Gram matrix arises outside of the
ICA setting, and this material may therefore have utility for other kernel-based methods.

The key problem is that although the Gram matrixK is symmetric and positive semidef-
inite, its derivative with respect to some underlying variable is symmetric but not in general
positive or negative semidefinite. Consequently, incomplete Cholesky decomposition cannot
be used directly to find low-rank approximations of derivatives.

Fortunately, for Gaussian kernels, it is possible to express the derivatives as sum and/or
difference of positive semidefinite matrices that themselves are Gram matrices, and to which
incomplete Cholesky decomposition can be applied. More precisely, if w ∈ Rm is a row of
our parameter matrixW , then the Gram matrix that we have to differentiate has its (a, b)th
element equal to exp

{
− 1

2σ2 (w
>xa − w>xb)2

}
. Without loss of generality, let us differentiate

this expression around w = (1, 0, . . . , 0)>. We obtain:

(
∂wjK

)
ab

= − 1

σ2
(xa1 − xb1)(xaj − xbj)e

− 1

2σ2 (xa1−xb1)2 . (32)

This is not a Gram matrix, because the Fourier transform of x 7→ x1xje
−x2

1/2σ
2
is not real-

valued and nonnegative. We instead proceed by decomposing the derivative as a difference
of Gram matrices. Two cases arise:

• If j = 1, from Eq. (32), we have a matrix whose elements are of the form f(xa1−xb1)
where f(x) = x2e−x

2/2σ2
. Let f̂ be the Fourier transform of f . The Fourier transform

of g(x) = e−x
2/2σ2

is ν(ω) =
√
2πσe−ω

2σ2/2, and we have:

f̂(ω) = − d2

dω2
(ν(ω)) = − d2

dω2
(
√
2πσe−ω

2σ2/2)

= σ2(1− σ2ω2)
√
2πσe−ω

2σ2/2

= σ2ν(ω)− σ4ω2
√
2πσe−ω

2σ2/2

= σ2ν(ω)− ĥ(ω) (33)

The function h = σ2g−f has a nonnegative Fourier transform, which implies that the
matrix whose elements are σ2g(xa1−xb1)−f(xa1−xb1) is positive semidefinite. Since
g(x) also induces a positive semidefinite matrix, we have managed to decompose our
derivative.

• If j 6= 1, from Eq. (32), we have a matrix induced by a function of the form f(xa1 −
xb1, xaj − xbj), where f(x, y) = xye−x

2/2σ2
. We use the following trick to reduce the

problem to the previous case. For a positive real number γ, we write:

xy =
1

2
(σ2 − x2) +

1

2
(γ2 − y2)− 1

2
(σ2 + γ2 − (x+ y)2). (34)

Thus we can decompose the function fγ(x, y) = xye−x
2/2σ2

e−y
2/2γ2

as before, letting

fγ(x, y) = hσ(x, y)+hγ(x, y)−hσ,γ(x, y) where hσ(x, y) =
1
2(σ

2−x2)e−x
2/2σ2

e−y
2/2γ2

,

hγ(x, y) =
1
2(γ

2−y2)e−x
2/2σ2

e−y
2/2γ2

and hσ,γ(x, y) =
1
2(σ

2+γ2−(x+y)2)e−x2/2σ2
e−y

2/2γ2

all have real positive Fourier transforms. To approximate f based on fγ , we note that:

|f(x, y)− fγ(x, y)| 6 |xy|e−x
2/2σ2

y2/2γ2. (35)
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Given that our goal is to obtain a descent direction and not an exact value for the
derivative, we can chose a large value of γ (we used γ = 50 in our simulations) and
obtain satisfactory results.14

In summary, we have managed to decompose the derivatives of Gram matrices in terms of
the difference of two matrices to which we can apply our low-rank decomposition algorithm.
The final time complexity is O(m2M2N) for the derivatives of the contrast functions we
use.

A similar reduced complexity can be achieved through first-difference approximations of
the derivatives, when the particular structure of the optimization is used. Indeed, since the
derivatives havem(m−1)/2 components, we would need as many evaluations of the contrast
functions, which would take O(m3M2N). Nonetheless, each new evaluation requires to
compute incomplete Cholesky decompositions only for two components (all others are held
fixed to compute a partial derivative), so the complexity can be reduced to the one of m
evaluations of the constrast functions, that is O(m2M2N).
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