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Conditional compilation with preprocessors like cpp is a simple but effective means to
implement variability. By annotating code fragments with #ifdef and #endif direc-
tives, different program variants with or without these fragments can be created, which
can be used (among others) to implement software product lines. Although, prepro-
cessors are frequently used in practice, they are often criticized for their negative effect
on code quality and maintainability. In contrast to modularized implementations, for
example using components or aspects, preprocessors neglect separation of concerns,
are prone to introduce subtle errors, can entirely obfuscate the source code, and limit
reuse. Our aim is to rehabilitate the preprocessor by showing how simple tool support
can address these problems and emulate some benefits of modularized implementa-
tions. At the same time we emphasize unique benefits of preprocessors, like simplicity
and language independence. Although we do not have a definitive answer on how to
implement variability, we want highlight opportunities to improve preprocessors and
encourage research toward novel preprocessor-based approaches.

1 INTRODUCTION

The C preprocessor cpp [14] and similar tools1 are broadly used in practice to imple-
ment variability. By annotating code fragments with #ifdef and #endif directives,
these can later be excluded from compilation. With different compiler options, dif-
ferent program variants with or without these fragments can be created.

The usage of #ifdef and similar preprocessor directives has evolved into a com-
mon way to implement software product lines (SPLs). A software product line is
a set of related software systems (variants) in a single domain, generated from a

1Historically, cpp has been designed for meta-programming. Of its three capabilities, file in-
clusion (#include), macros (#define), and conditional compilation (#ifdef), we focus only on
conditional compilation, which is routinely used to implement variability. There are many pre-
processors that provide similar facilities. For example, for Java ME, the preprocessors Antenna
(http://antenna.sf.net) is often used; the developers of Java’s Swing library developed their
own preprocessor Munge (http://weblogs.java.net/blog/tball/archive/munge/doc/Munge.
html); the languages Fortran and Erlang have their own preprocessors; some browsers support
conditional compilation in JavaScript; and conditional compilation is a language feature in C#,
Visual Basic, D, PL/SQL, Adobe Flex, and others.
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common managed code base [3, 27]. For example, in the domain of embedded data
management systems, different variants are needed depending on the application
scenario: with or without transactions, with or without replication, with or without
support for flash drives, with different power-saving algorithms, and so on [29, 30].
Variants of an SPL are distinguished in terms of features [2, 17], which are domain
abstractions characterizing commonalities and differences between variants – in our
example, transactions, replication, or flash support are features. A variant is speci-
fied by a feature selection, e.g., the data-management system with transactions but
without flash support, and so on.

Preprocessors can be used to implement an SPL: Code that should only be
included in certain variants, is annotated with #ifdef X and #endif preprocessor
directives, in which X references a feature. Feature selections for different variants
can be specified by using different configuration files or command line parameters as
input for the compiler. Commercial product line tools like those from pure::systems
or BigLever explicitly support preprocessors.

By this point, many readers may already object to preprocessor usage – and in
fact, preprocessors are heavily criticized in literature as summarized in the claim
“#ifdef Considered Harmful” [33]. Numerous studies discuss the negative effect of
preprocessor usage on code quality and maintainability [1,11,12,24,27,33]. The use
of #ifdef and similar directives breaks with the fundamentally accepted concept
of separation of concerns and is prone to introduce subtle errors. Many academics
recommend to limit or entirely abandon the use of preprocessors and instead imple-
ment SPLs with ‘modern’ implementation techniques that encapsulate features in
some form of modules like components [27], framework/plug-in architectures [16],
feature modules [6, 28], aspects [23], and others.

Here, we take sides with preprocessors. We show how simple extensions of con-
cepts and tools can avoid many pitfalls of preprocessor usage and we highlight some
unique advantages over contemporary modularization techniques in the context of
SPL development. Since we aim for separation of concerns without dividing feature-
related code into physically separated modules, we name this approach virtual sepa-
ration of concerns. We do not give a definitive answer on how to implement an SPL
(actually, we are not sure ourselves and explore different paths in parallel), but we
want to bring preprocessors back into the race and encourage research toward novel
preprocessor-based approaches.

2 CRITICISM

Let us start with an overview of the four most common arguments against prepro-
cessors: lack of separation of concerns, sensitivity to subtle errors, obfuscated source
code, and lack of reuse.
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Separation of concerns. Separation of concerns and related issues of modular-
ity and traceability are usually regarded as the biggest problems of preprocessors.
Instead of separating all code that implements a feature into a separate module (or
file, class, package, etc.), a preprocessor-based implementation scatters feature code
across the entire code base where it is entangled closely with the base code (which
is always included) and the code of other features. Consider our data management
example from the introduction: Code to implement transactions (acquire and re-
lease locks, commit and rollback changes) is scattered throughout the entire code
base and tangled with code responsible for recovery and other features.

Lack of separation of concerns is held responsible for a lot of problems: To
understand the behavior of a feature such as transactions or to remove a feature
from the SPL, we need to search the entire code base instead of just looking into
a single module. There is no direct traceability from a feature as domain concept
to its implementation. Tangled code of other features distracts the programmer in
the search. Tangled code is also a challenge for distributed development because
developers working on different concerns have to edit the same files. Scattered code
furthermore affects program comprehension negatively and, consequently, reduces
maintainability of the source code. Scattering and tangling feature code is contrary
to decades of software engineering education.

Sensitivity to subtle errors. Using preprocessors to implement optional features
can easily introduce errors on different levels that can be very difficult to detect.
This already begins with simple syntax errors. Preprocessors such as cpp operate
at the level of characters or tokens, without interpreting the underlying code. Thus,
developers are prone to simple errors like annotating a closing bracket but not the
opening one as illustrated in the code excerpt from Oracle’s Berkeley DB2 in Figure 1
(the opening bracket in Line 4 is closed in Line 17 only when feature HAVE QUEUE
is selected). We introduced this error deliberately, but such errors can easily occur
in practice and are difficult to detect. The scattered nature of feature implementa-
tions intensifies this problem. The worst part is that compilers cannot detect such
syntax errors, unless the developer (or customer) eventually builds a variant with a
problematic feature combination (without HAVE QUEUE in our case). However,
since there are so many potential variants (2n variants for n independent optional
features), we might not compile variants with a problematic feature combination
during initial development. Simply compiling all variants is also not feasible due
to their high number, so, even simple syntax errors might go undetected for a long
time. The bottom line is that errors are found only late in the development cycle,
when they are more expensive to fix.

Beyond syntax errors, also type and behavioral errors can occur. When a devel-
oper annotates a method as belonging to a feature, she must ensure that the method
is not called in a variant without the feature. For example, in Figure 2, method set
should not be included in a read-only database, however in such variant a type error

2http://www.oracle.com/technology/products/berkeley-db/
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1 stat ic int __rep_queue_filedone(dbenv , rep , rfp)

2 DB_ENV *dbenv;

3 REP *rep;

4 __rep_fileinfo_args *rfp; {

5 #ifndef HAVE_QUEUE

6 COMPQUIET(rep , NULL);

7 COMPQUIET(rfp , NULL);

8 return (__db_no_queue_am(dbenv));

9 #else
10 db_pgno_t first , last;

11 u_int32_t flags;

12 int empty , ret , t_ret;

13 #ifdef DIAGNOSTIC

14 DB_MSGBUF mb;

15 #endif
16 // over 100 further lines of C code

17 }

18 #endif

Figure 1: Code excerpt of Oracle’s Berkeley DB with a deliberately introduced
syntax error in variants without HAVE QUEUE.

1 class Database {

2 Storage storage;

3 void insert(Object key , Object data , Transaction txn) {

4 storage.set(key , data , txn.getLock ());

5 }

6 }

7 class Storage {

8 #ifdef WRITE

9 boolean set(Object key , Object data , Lock lock) { ... }

10 #endif
11 }

Figure 2: Code excerpt with type error when feature WRITE is not selected.

will occur in Line 3 since the removed method set is still referenced. Even though
compilers for statically typed languages can detect such problems, again this is only
noticed when the problematic feature combination is eventually compiled. Worse of
all are behavioral errors, for example annotating only to release lock call but for-
getting the acquire lock call in some method, which is only noticed in some variants
as a deadlock at runtime. Tests or common formal specification and verification
approaches can be used to detect behavioral errors, but again this requires to check
every variant for every feature combination.

Obfuscated source code. When implementing features with cpp or similar tools,
preprocessor directives and statements of the host language are intermixed in the
same file. When reading source code, many #ifdef and #endif directives distract
from the actual code and can destroy the code layout (with cpp, every directive must
be placed in its own line). There are cases where preprocessor directives entirely
obfuscate the source code as illustrated in Figure 3, leading to code that is hard to
read and hard to maintain.
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1 class Stack {

2 void push(Object o

3 #ifdef TXN

4 , Transaction txn

5 #endif
6 ) {

7 i f (o==null

8 #ifdef TXN

9 || txn==null

10 #endif
11 ) return;

12 #ifdef TXN

13 Lock l=txn.lock(o);

14 #endif
15 elementData[size ++] = o;

16 #ifdef TXN

17 l.unlock ();

18 #endif
19 fireStackChanged ();

20 }

21 }

Figure 3: Java code obfuscated by fine-grained annotations with cpp.

In Figure 3, preprocessor directives are used at a fine granularity [19], annotat-
ing not only statements but also parameters and part of expressions. We need to
add eight additional lines just for preprocessor directives. Together with additional
necessary line breaks, we need 21 instead of 9 lines for this code fragment. Further-
more, nested preprocessor directives and multiple directives belonging do different
features as in Figure 1 are other typical causes of obfuscated code.

Although our example in Figure 3 appears extreme at first, similar code frag-
ments can be found in practice. For example, in Figure 4, we illustrate the amount
of preprocessor directives in Femto OS 3, a small real-time operating system.

Lack of reuse. Finally, preprocessor usage restricts reuse. In contrast to compo-
nents, which encapsulate code that can be reused in other projects (even outside the
SPL), scattered feature code is usually aligned exactly for the current SPL. There
is typically no abstraction or encapsulation.

For example, in our data management example, code to access flash memory
may be scattered across the entire implementation. When flash memory access is
also needed in another system, say an embedded operating system, we cannot simply
reuse the scattered implementation by including a file or library. We need to extract
and copy the code in our new project and thus maintain scattered and replicated
code. Of course, also with preprocessors it is possible to modularize all code for
flash memory access in a module or library, but (unless reuse is planned ahead)
there is no incentive when developers grow accustom to the easier form of scattered
implementations.

3http://www.femtoos.org/
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Figure 4: Preprocessor directives in the code of Femto OS: Black lines represent
preprocessor directives such as #ifdef, white lines represent the remaining C code,
comment lines are not shown.
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3 PHYSICAL SEPARATION OF CONCERNS

Before we discuss how we can improve preprocessors, let us have a look at the
competitors. Specifically, we survey three implementation strategies that (from our
perception) attract most research: components, frameworks, and modern module
systems. They all have in common that they decompose the source code and imple-
ment each feature in a distinct module, thus they physically separate concerns.

Components. Apart from preprocessors, one of the most common approaches
to implement SPLs is to build components. When designing an SPL, developers
first identify common and variable parts and introduce a component architecture.
Parts of the system that correspond to features are modularized and implemented
as reusable components. The advantage of components is that all parts are im-
plemented modularly: Implementations are hidden behind interfaces and ideally
features can be developed, understood, and maintained in isolation.

To build a variant for a given feature selection, a developer reuses the SPL’s
components and integrates them into the final product. To this end, the developer
typically implements some glue code to fit the components together. There is no
full automation such that we could automatically generate a program for a feature
selection. While this approach has proved to be practical in industry, there are
issues. The smaller the components are, the more glue code and thus development
effort is required for deriving a variant. Generally, components are useful for coarse
grained features like receivers and decoders in the home entertainment market, but
are challenged for SPLs with a high number of fine-grained features. Finally, also
crosscutting features challenge the modularization of components. If a feature like
transactions affects multiple parts of the system (and would lead to a high degree
of scattering in a preprocessor-based implementation), it is difficult to modularize,
and much glue code is needed to connect such module to the remaining system.

Frameworks. Framework and plug-in architectures are similar to components,
but aim for automation. The main difference is that components are not assembled
with glue code as needed, but that already a common framework exists in which
features are plugged in. That is, a framework exhibits an extension point, which is
extended by one or more plug-ins (features). A framework can be executed with or
without plug-ins. We can automatically generate a variant for a feature selection
by assembling the corresponding plug-ins without further development effort. Like
components, plug-ins are ideally self-contained modules, thus achieving physical
separation of concerns.

Still, regarding granularity and crosscutting features, frameworks exhibit prob-
lems similar to those of components. If an SPL has many fine-grained features
(which would lead to a high degree of scattering in a preprocessor-based implemen-
tation), the framework becomes very complex and difficult to understand. Cross-

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 65



VIRTUAL SEPARATION OF CONCERNS – A SECOND CHANCE FOR PREPROCESSORS

cutting features are challenging, because the framework must provide many small
extension points (e.g., all points at which locks for the transaction mechanism are
potentially acquired or released). Thus, part of a feature’s implementation can be-
come a mandatory part of the framework which contradicts the desired separation
of concerns to some degree.

Modern module systems. In the last decade, researchers have invested immense
efforts into developing new programming language concepts to modularize crosscut-
ting implementations. Concepts like aspect-oriented programming [23], feature-
oriented programming [28], multi-dimensional separation of concerns [35], virtual
classes [26], mixin layers [32], classboxes [8], and many more, have been proposed to
separate crosscutting concerns. For example, the entire (otherwise scattered) imple-
mentation of a feature can be encapsulated in an aspect, which describes where and
how the behavior of the base program must be changed (e.g., acquire and release
locks). That is, in contrast to preprocessors, all code of this feature is modularized.
In these approaches, modules are typically composed with a specialized compiler;
variants are generated by deciding which modules to compile into the program.

Applicability of such language extensions to SPL development has been shown
in a number of academic case studies, however, so far, they had little influence
on industrial practice. One of the reasons is that all these approaches introduce
new language concepts. Developers need to learn new languages and to think in
new ways. Their effect on program comprehension has still to be evaluated. Fur-
thermore, in contrast to preprocessors, which are usually language-independent, an
extended language must be provided for every language that is used in an SPL (e.g.,
AspectJ for Java, AspectC for C, Aspect-UML for UML, AspectXML for XML).
Most languages are experimental and do not provide the tool support to which
developers have grown accustomed with modern IDEs as Visual Studio or Eclipse.

Special Challenge: Optional Feature Problem. There is a special problem
with which all approaches that modularize features struggle: Features are not always
independent from each other and there is often code that belongs not only to a single
feature, but that connects multiple features [21, 25].

Consider the standard expression problem [38]: We have an evaluator of math-
ematical expressions and want to be able to add new operations to our expressions
(evaluate, print, simplify, . . . ). At the same time, we want to be able to add new
kinds of expressions (plus, power, ln, . . . ). The implementation of evaluate a plus
expression (e.g., 3 + 1 = 4) concerns both feature plus and feature evaluate. If
evaluate is not selected, this code is not needed; if plus is not selected, this code is
not needed either. But how can we modularize code such that we can freely select
features from both operations and expressions?

In Figure 5 (a) and (b) you see the two standard forms of modularization, we
either modularize expressions or operations. Thus, in Figure 5 (a), we can easily
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lnplus power

eval

print

simplify

eval

print

simplify

plus power

eval

print

plus power

eval

print

lnplus power

(a) (b)

(c) (d)

Figure 5: Modularization of interacting features: (a) modularized by expressions;
(b) modularized by operations; (c) modularized by expressions, then extended twice;
(d) small modules grouped by data types and operations.

remove or add expressions but not operations, and in Figure 5 (b), we can remove
and add operations but not expressions. Researchers have found advanced solutions
of the expression problem (e.g., using generics or aspects) to extend the code with
a new optional feature, independent of what modularization has been used initially.
As visualized in Figure 5 (c), we can add a new module simplify without changing
existing modules, and then add a new module ln, without changing existing modules.
But still, we cannot mix and match features freely but create very specific constraints
instead.

The solution to this problem (described in different contexts as lifters [28],
origami [5], or derivatives [25]) is to break down these modules into smaller modules
and group them back again. The small modules may belong to multiple features.
This is illustrated in Figure 5 (d), in which the code that implements evaluating
a plus expression is encapsulated in its own module (top-left) and belongs to both
features simplify and plus (indicated by dotted lines).

Splitting a program into too many small modules can be problematic. As de-
scribed above, some implementation approaches do not perform well with fine-
grained modules (e.g., high amount of glue code or high number of extension points).
Furthermore, although concerns have been separated, the developer who wants to
understand a feature in its entirety (e.g., the entire simplify mechanism or the entire
transaction subsystem) has to look into many modules and reconstruct the behavior
in her mind. That is, we lose the benefits of traceability and modular reasoning for
which we physically separated concerns in the first place.
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4 VIRTUAL SEPARATION OF CONCERNS

Now, let us come back to preprocessors and how they can be improved. We address
the four main problems listed in Section 2 and show how simple mechanisms and/or
tool support can alleviate or solve them. Although we cannot claim to eliminate
all disadvantages, we conclude this section by pointing out some new opportunities
and unique advantages that preprocessors offer.

Separation of Concerns

One of the key motivations of modularizing features is that developers can find all
code of a feature in one spot and reason about it without being distracted by other
concerns. Clearly, a scattered, preprocessor-based implementation does not support
this kind of lookup and reasoning, but the core question “what code belongs to this
feature” can still be answered by tool support in the form of views [15, 22,31].

With relatively simple tool support, it is possible to create an (editable) view on
the source code by hiding all irrelevant code of other features (technically this can be
implemented like code folding in modern IDEs).4 In Figure 6, we show an example
of a code fragment and a view on its feature Transaction. Note, we cannot simply
remove everything that is not annotated by #ifdef directives, because we could
end up with completely unrelated statements. Instead, we need to provide some
context, e.g., in which class and method is this statement located; in Figure 6 we
print the context information in gray and italic font. Interestingly, similar context
information is also present in modularized implementations in the form of extension
points and interfaces.

So, with simple tool support for providing views, we can emulate some advantages
of physically separated features. Note, these views naturally emulate the ‘modular-
ization’ of the expression problem [15], the ‘evaluate plus’ code simply occurs in
both the views on feature evaluate and feature plus.

Beyond views on individual features, (editable) views on variants are possible [13,
22]. That is, a tool can show the source code that would be generated for a given
feature selection and hide all remaining code of unselected features. With such
a view, a developer can explore the behavior of a variant when multiple features
interact, without distracting code of unrelated features. This goes beyond the power
of physical separation, with which the developer has to reconstruct the behavior of
multiple components/plug-ins/aspects in her mind. Especially, when many fine-
grained features interact, from our experience, views can be a tremendous help.

4Although editable views are harder to implement than read-only views, they are more useful
since users do not have to go back to the original code to make a modification. Implementation of
editable views have been discussed intensively in work on database or model roundtrip engineering.
Furthermore, a simple but effective solution, which we apply in our tools is to leave a marker
indicating hidden code [19]. Thus, modifications occur before or after the marker and can be
unambiguously propagated to the original location.
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1 class Stack implements IStack {

2 void push(Object o) {

3 #ifdef TXN

4 Lock l = lock(o);

5 #endif
6 #ifdef UNDO

7 last = elementData[size];

8 #endif
9 elementData[size ++] = o;

10 #ifdef TXN

11 l.unlock ();

12 #endif
13 fireStackChanged ();

14 }

15 #ifdef TXN

16 Lock lock(Object o) {

17 return
LockMgr.lockObject(o);

18 }

19 #endif
20 ...

21 }

(a) original

1 cl ass Stack [] {

2 void push([]) {

3 Lock l = lock(o);

4 []
5 l.unlock ();

6 []
7 }

8 Lock lock(Object o) {

9 return
LockMgr.lockObject(o);

10 }

11 []
12 }

(b) view on TXN (hidden code is in-
dicated by ‘[]’, necessary context in-
formation is printed italic and gray)

Figure 6: View emulates separation of concerns.

Nevertheless, some desirable such as separate compilation or modular type checking
cannot be achieved with views.

Sensitivity to subtle errors

Also various kinds of errors that can easily occur with #ifdef annotations can be de-
tected by adding tool support. In this section, we show how disciplined annotations
can help [19, 20] regarding syntax errors, such as the bracket mismatch in Figure 1
and how new product-line–aware type systems can help regarding type errors, such
as calling an annotated method [10, 18]. We do not focus on semantic errors like
deadlocks, because they are not a specific problem of annotations but can occur
equally in physically separated code.

Disciplined annotations are an approach to limit the expressive power of an-
notations in order to prevent syntax errors, without restricting the preprocessor’s
applicability to practical problems. Syntax errors arise from preprocessor usage that
considers a source file as plain text, in which every character or token (including
individual brackets) can be annotated. A safer way to annotate code is to con-
sider the underlying structure of the code and allow programmers to annotate (and
thus remove) only program elements like classes, methods, or statements. This way,
syntax errors as in Figure 1 cannot occur.

Disciplined annotations may require more effort from developers, since only an-
notations based on the underlying structure are allowed. For some annotations that
only worked on plain text with cpp, workarounds are required to implement the
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same behavior with disciplined annotations. However, several authors have argued
that disciplined annotations do not impose significant problems; even with cpp most
authors strive for disciplined annotations anyway and consider anything else a ‘hack’
(see for example [7, 37]). We found that how to change undisciplined annotations
to disciplined ones is typically obvious and follows simple patterns. Despite some
necessary workarounds, disciplined annotations are still easier to use and more ex-
pressive for fine-grained extensions than components/plug-ins/aspects for physical
separation, which require to restructure source code entirely [19].

Technically, disciplined annotations require more elaborate tools, which have a
basic understanding of the underlying artifacts. Such tools check whether anno-
tations with a traditional preprocessor are in a disciplined form (this is equivalent
to physical separation approaches in which each module can be checked for syntax
errors in isolation). Alternatively, there are tools like CIDE [19] that manage anno-
tations and ensure that only structural elements can be annotated in the first place.
It has been shown that tools for disciplined annotations can be rapidly extended to
different languages by generating parsers from existing grammar specifications [20].

Product-line–aware type systems can check that all variants in the product line
are well-typed (i.e., can be compiled). The most important problems that can be
detected this way are methods or types that are removed in some variants but still
referenced, like in Figure 2 (problems that are less common in physical separation
approaches since often common interfaces and separate compilation are used).

The basic idea of a product-line–aware type system is not only to check all
method invocations during compilation, but to check whether each method invoca-
tion can be resolved in every variant. If both, reference and target are annotated
with the same feature, the reference can be resolved in every variant, otherwise we
have to check the relationship between both annotations. If there is any variant in
which the target but not the reference is removed (as in Figure 2), the type system
issues an error.5 That is, the entire SPL is checked in a single step by comparing
annotations of all invocations and their respective targets, instead of checking every
variant in isolation.

Type checking annotations again emulates some form of modules and dependen-
cies between them. So instead of specifying that component Transaction imports
component Recovery, we check these dependencies in scattered code using relation-
ships between features in an SPL like ‘selecting feature Transaction always implies
selecting feature Recovery’.

With disciplined annotations and product-line–aware type systems, we can bring
preprocessors at least to the same level as physical separation approaches regard-
ing error detection. Specifically product-line–aware type systems have been shown
useful, so they have been adapted for several physical separation approaches as well

5There are many ways to describe and reason about relationships between features in an SPL,
but their description is beyond the scope of this paper. Feature models and propositional formulas
are common [4].
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(e.g. [36]). Regarding the hardest part, semantic errors (i.e., incorrect behavior in
some variants), both virtual and physical separation are on the same level. There are
several approaches for SPL testing and applying formal methods, but they have sim-
ilar problems (especially regarding scalability) independent of the implementation
approach.

Obfuscated source code

When many annotations are used in the same file, it may be difficult to read the
code, as illustrated in Figures 3 and 4. Preprocessors like cpp require two extra
lines for each annotated code fragment (#ifdef and #endif both defined in their
own line).

There are several ways how the representation can be improved. First, textual
annotations with a less verbose syntax that can be used within a single line could
help, and can be used with many tools. Second, views can help to focus on the
relevant code, as discussed above. Third, visual means can be used to differentiate
annotations from source code: Like some IDEs for PHP use different font styles
or background colors to emphasize the difference between HTML and PHP in a
single file, different graphical means can be used to highlight preprocessor direc-
tives. Finally, it is possible to eliminate textual annotations altogether and use the
representation layer to convey annotations, as we show next.

In CIDE, textual annotations are abandoned; the tool uses background colors to
represent annotations [19]. For example, all code belonging to the feature Transac-
tion is highlighted with red background color. Using the representation layer, also
our example from Figure 3 is much shorter as shown in Figure 7. Using background
colors mimics our initial steps to mark features on printouts with colored text mark-
ers and can easily be implemented since the background color is not yet used in most
IDEs. Instead of background colors the tool Spotlight uses colored lines next to the
source code [9]. Background colors and lines are especially helpful for long and
nested annotations, which may otherwise be hard to track. We are aware of some
potential problems of using colors (e.g., humans are only able to distinguish a certain
number of colors), but still, there are many interesting possibilities to explore.

Despite all visual enhancements, there is one important lesson: Using preproces-
sors does not require modularity to be dropped at all, but rather frees programmers
from the burden of forcing them to physically modularize everything. Typically,
most of a feature’s code will be still implemented by a number of modules or classes,
but calls may be scattered in the remaining implementation as necessary. In our
experience from using CIDE, on a single page of code there are rarely annotations
from more than two or three features.
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1 class Stack {

2 void push(Object o , Transaction txn ) {

3 i f (o==null || txn==null ) return;

4 Lock l=txn.lock(o);

5 elementData[size ++] = o;

6 l.unlock();

7 fireStackChanged ();

8 }

9 }

Figure 7: Annotated code represented by background color instead of textual anno-
tation.

Lack of reuse

A scattered, annotated implementation cannot simply be reused in a different project.
However, the core code of the feature’s implementation (e.g., the core locking mech-
anisms and rollback facility of the transaction feature) can often be easily reused,
while only the invocations (the integration into the behavior of the system, e.g., call-
ing lock and unlock) remain scattered. However, these scattered invocations would
be difficult to reuse for another system outside the SPL anyway, also in a physical
separated implementation.

Nevertheless, there are two more complicated cases. Inherently crosscutting im-
plementations often resist modularization. Although they can be modularized with
modern approaches like aspect-oriented programming, aspect reuse in a different
context is still difficult except for some simple homogeneous crosscutting concerns
like tracing or profiling [34]. We conjecture that the effort necessary to reuse more
complex aspects (e.g., implement numerous abstract pointcuts) is similar to the
effort for adding scattered calls.

We recommend to follow the simple guideline “modularize feature code as far
as possible, scatter remaining invocations”. This guideline is best practice anyhow,
but easily ignored when developers grow accustom to preprocessors. We argue that
reuse of annotated code in different projects is not more difficult than reusing a
physically separated implementation.

Unique advantages of preprocessors

In the previous section, we have shown how simple tool support can address most
of problems commonly attributed to preprocessors. Although preprocessors can
only emulate certain benefits of physically separated implementations, we argue
that they are worth at least further consideration and evaluation. For those still
not convinced, we present some distinct advantages of preprocessors over physically
separated implementations in this section.

Preprocessors have a very simple programming model : Code can be annotated
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and removed. Preprocessors are very easy to use and understand. In contrast to
physical separation, no new languages, tools, or processes have to be learned. In
many languages, preprocessors are already included, otherwise they can be added
with lightweight tools. This is the main advantage of preprocessors which drives
professionals to still use them despite all disadvantages.

Most preprocessors are language independent and provide a uniform experience
when annotating different artifact types. For example, cpp can not only be used on
C code but also also on Java code or HTML files. Instead of providing a tool or
model for every language, each with different mechanisms (e.g., AspectJ for Java,
AspectC for C, Aspect-UML for UML)6, preprocessors add the same simple model to
all languages. Even with disciplined annotations (see above), a uniform experience
can be achieved for multiple languages.

A (dominant) decomposition is still possible. Annotating code does not pro-
hibit traditional means of separation of concerns. In fact, as discussed above, it is
reasonable to still decompose the system into modules and classes and use preproces-
sors only where necessary. Preprocessors only add additional expressiveness, where
traditional modularization techniques come to their limits regarding crosscutting
concerns or multi-dimensional separation of concerns.

Finally, preprocessors can handle multiple interacting optional features and shared
code naturally. Instead of being forced to created many additional modules, nested
annotations provide an intuitive mechanism to include code only when two or more
features are selected. In Figure 8, we show the annotation-based implementation of
the expression problem (cf. Sec. 3). From this example, we can select every feature
combination and can create all variants, without splitting the features into many
small modules. In this scenario views on the source code, as described above, play
to their strength.

5 CONCLUSION

We have argued that preprocessors are not beyond hope in addressing key prob-
lems of software product line development. With little tool support, we can address
many problems on which preprocessors are often criticized. Views on the source
code emulate modularity and separation of concerns; disciplined annotations and
product-line–aware type systems detect implementation errors; editors can distin-
guish the difference between source code and annotations or even lift annotations
to the representation layer; and with a little discipline from developers, also reuse
can be achieved similar to approaches that modularize feature code. Together, we
name these efforts virtual separation of concerns because, even though features are

6Also for physical separation, there is research that aims at simple and/or language-independent
models and tools, e.g. [6]. These approaches often trade simplicity or generality for expressive-
ness, therefore they sometimes sacrifice benefits like separate compilation or type checking. A
comprehensive discussion is outside the scope of this paper.
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1 #ifdef ADD

2 class Add extends Expr {

3 Expr left , right;

4 Add(Expr l, Expr r)

5 { left=l; right=r; }

6 #ifdef EVAL

7 double eval() {

8 return left.eval() +

9 right.eval();

10 }

11 #endif
12 #ifdef PRINT

13 void print() {

14 left.print();

15 System.out.print("+");

16 right.print ();

17 }

18 #endif
19 }

20 #endif

21 #ifdef POWER

22 class Pow extends Expr {

23 Expr base , exp;

24 Pow(Expr b, Expr e)

25 { base=b; exp=e; }

26 #ifdef EVAL

27 double eval() {

28 return
Math.pow(base.eval(),

29 right.eval());

30 }

31 #endif
32 #ifdef PRINT

33 void print() {

34 left.print();

35 System.out.print("^");

36 right.print ();

37 }

38 #endif
39 }

40 #endif

Figure 8: Preprocessor-based implementation of the expression problem (excerpt).

not physically separated into modules, this separation is emulated by tools.

We argue that tool support is the key to SPL development. For virtual separation
it is essential to counter the problem of naive preprocessors. But also for physical
separation, tool support for navigating between modules or showing how modules
relate is important, especially when many small modules are required as for the
optional feature problem (see Fig. 5).

While we do not eliminate all problems of preprocessors (for example, separate
compilation is still not possible), preprocessors also have some distinct advantages
like ease of use and language independence. Additionally, they provide a new per-
spective on the problem of multi-dimensional separation of concerns and optional
interacting features.

We do not have a definitive answer whether physical or virtual separation of
concerns is better (and this depends very much on what you measure). We are still
investigating both approaches in parallel, and have a look at a possible integration.
With this paper, we want to encourage researchers to overcome their prejudices (usu-
ally from experience with cpp) and to consider annotation-based implementations.
At the same time, we want to encourage current practitioners that are currently
using preprocessors to look for improvements. Since tool support is necessary for
SPL implementation anyway, it is well worth investing also into tool support for
new preprocessors and virtual separation of concerns. Give preprocessors a second
chance!
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