ThensManual
(formerly nsNotes and Documentatioh)

The VINT Project

A Collaboration between researchers at
UC Berkeley, LBL, USC/ISI, and Xerox PARC.

Kevin Fall (kfall@ee.lbl.goy, Editor
Kannan Varadhafkannan@catarina.usc.ed&ditor

November 4, 2011

ns © is LBNL's Network Smulator [24]. The simulator is written in C++; it uses OTd a command and configuration
interface.nsv2 has three substantial changes fresvl: (1) the more complex objects msv1 have been decomposed into
simpler components for greater flexibility and compos#ahili2) the configuration interface is now OTcl, an objeceated
version of Tcl; and (3) the interface code to the OTcl inteter is separate from the main simulator.

Ns documentation is available in html, Postscript, and Ribfats. Sebttp://www.isi.edu/nsnam/ns/ns-documentation.
html for pointers to these.

1The VINT project is a joint effort by people from UC BerkeldySC/ISI, LBL, and Xerox PARC. The project is supported by Brefense Advanced
Research Projects Agency (DARPA) at LBL under DARPA granB3&3-96-C-0105, at USC/ISI under DARPA grant ABT63-96-058, at Xerox PARC
under DARPA grant DABT63-96-C-0105. Any opinions, findingad conclusions or recommendations expressed in thigialase those of the author(s)
and do not necessarily reflect the views of the DARPA.

Contents

1

2

I
3

Introduction

Undocumented Facilities

Interface to the Interpreter

OTcl Linkage
3.1 ConceptOVEIVIEW e e
3.2 Code OVEIVIEW e e
3.3 ClassTCl . . . o e
3.3.1 Obtain a Reference tothe class Tclinstance
3.3.2 Invoking OTcl Procedures e e
3.3.3 Passing Results to/fromthe Interpreter o
3.3.4 ErrorReportingand EXit e
3.3.5 Hash Functions within the Interpretero
3.3.6 Other Operations on the Interpreter i ot
3.4 ClassTclObject e
3.4.1 Creatingand Destroying TclObjects
3.4.2 VariableBindings
3.4.3 Variable Tracing e
3.4.4 commandMethods: Definition and Invocation L oL
3.5 ClassTCICIass o o e e
3.5.1 Howto Bind Static C++ Class Member Variables
3.6 ClassTclCommand e e
3.7 Class EmbeddedTcl e e e
3.8 ClassInstVar e e e

Simulator Basics

The Class Simulator

4.1 Simulator Initialization e e e e e

4.2 Schedulersand EVENtS e e e e e e
421 ThelistScheduler e e e e
4.2.2 theheapscheduler e
4.2.3 The Calendar Queue Scheduler e
4.2.4 TheReal-Time Scheduler e e e
4.2.5 Precisionofthe schedulerclockusedinns

4.3 OtherMethods e e e e e

4.4 Commandsataglance e e e

12

16

18

19
19
20
20

21
21
21
22
22
23
23
24
25
27
28
30
31
33
34
35

10

Nodes and Packet Forwarding
5.1 NodeBasiCs o
5.2 Node Methods: Configuringthe Node
5.3 Node Configuration Interface e
5.4 TheClassifier e e e
5.4.1 AddressClassifiers e
5.4.2 Multicast Classifiers e e
5.4.3 MultiPath Classifier
5.4.4 HashClassifier e
545 Replicator
5.5 Routing Module and Classifier Organizationo o0 000 oo
5.5.1 RoutingModule e
5.5.2 Nodelnterface e
56 Commandsataglance e e

Links: Simple Links

6.1 Instance Procedures for Links and SimpleLinks o oo o
6.2 CONNECIOIS e e
6.3 Objecthierarchy. e
6.4 Commandsataglance e

Queue Management and Packet Scheduling

7.1 TheC++Queue Class i i e e e e e e
7.1.1 Queueblocking e e e
7.1.2 PacketQueue Class o e e e

7.2 Example:DropTail e e

7.3 Differenttypes of Queue Objects L e

7.4 Commandsataglance e e

7.5 QUEUEBIJOBS e e e e
7.5.1 TheJdoBSalgorithm e e
7.5.2 Configuration e
753 Tracing o e
7.5.4 Variables e
755 Commandsataglance e

Delays and Links
8.1 ThelLinkDelay Class e
8.2 Commandsataglance e e

Differentiated Services Module inns

9.1 OVEIVIEW . . . o o e e e

9.2 Implementation
9.2.1 REDgqueueinDiffServmodule e
9.2.2 Edgeand Ccorerouters. e e
9.2.3 Policy e e e

9.3 Configuration L e e

9.4 Commandsataglance e e

Agents

10.1 Agentstate e e e e e

10.2 Agentmethods e

10.3 Protocol AgeNntsS e e e

10.4 OTclLinkage o e
10.4.1 Creating and Manipulating Agents i e
10.4.2 DefaultValues e e

11

12

13

14

10.4.3 OTclMethods e e 99

10.5 Examples: Tcp, TCP SINKAQENES o e e e e 99
10.5.1 Creatingthe Agent e e 99
10.5.2 Startingthe Agent e e e 100
10.5.3 ProcessingInputat Receiver L e e 101
10.5.4 Processing Responsesatthe Sender i 102
10.5.5 Implementing TIMErS i e e e 103

10.6 Creatinga New Agent. e e 103
10.6.1 Example: A “ping” requestor (Inheritance Strucjure. L. 103
10.6.2 Theecv () andtimeout ()Methods. 104
10.6.3 Linkingthe “ping” Agentwith OTcl 104
10.6.4 Usingthe agentthrough OTcl e 106

10.7 The Agent APl . . . o L o e 106

10.8 Differentagentobjects L e e 106

10.9 Commandsataglance e e 109

Timers 111

11.1 C++abstractbase class TimerHandler 111
11.1.1 Definitionofanewtimer e 112
11.1.2 Example: Tcp retransmissiontimer il e e e 112

11.2 OTclTimerclass e 115

11.3 Commandsataglance e e 115

Packet Headers and Formats 116

12.1 A Protocol-Specific PacketHeader 116
12.1.1 Addinga New Packet Header Type e e e e e e 118
12.1.2 Selectively Including Packet Headers in Your Sitlotha. 118

12.2 Packet Classes o o e e 119
12.2.1 ThePacketClass e e 119
12.2.2 p_infoClass e e 122
12.2.3 Thehdr_cmnClass e e 122
12.2.4 The PacketHeaderManagerClass i i wu i i it e 123

12.3 Commandsataglance e e e e 124

Error Model 126

13.1 Implementation e e 126

13.2 Configuration e e e 127

13.3 Multi-state errormodel 128

13.4 Commandsataglance L e 129

Local Area Networks 131

14.1 Tcleonfiguration L e e e 131

14.2 Componentsof a LAN e e 132

14.3 Channel Class o e 133
14.3.1 ChannelState e e 133
14.3.2 Example: Channel and classifier of the physicallayer 133
14.3.3 ChannelClassin C++ e e 133

14.4 MacClassifier Class e e 134

145 MACCIAsS . . . o o o o e e 135
1451 MacState e e e 135
1452 MacMethods e e 135
1453 MacClassin C++ e 135
14.5.4 CSMA-based MAC 136

14.6 LL(link-layer) Class e 137
14.6.1 LLCIassSiNCH+ o e 137

14.6.2 Example: Link Layer configuration 137

14.7 LanRouter Class e e e 138
14.8 Other Components o e e e e 138
14.9 LANS anchsrouting o o e 138
14.10Commands ataglance L e e e 140
15 The (Revised) Addressing Structure in NS 141
15.1 The Default Address Format e e 141
15.2 The Hierarchical Address Format i e 142
15.2.1 Default Hierarchical Setting e 142
15.2.2 Specific Hierarchical Setting e e 142
15.3 Errorsin setting addressformat L e 142
15.4 Commandsataglance e e e 142
16 Mobile Networking in ns 144
16.1 The basicwirelessmodelinnNs L e 144
16.1.1 Mobilenode: creating wirelesstopology L 144
16.1.2 Creating Node movements L e e e e 148
16.1.3 Network Componentsinamobilenode. e 149
16.1.4 Different MAC layer protocols for mobile networking 152
16.1.5 Different types of Routing Agentsin mobilenetweoidi, 153
16.1.6 Trace SUPPOrt o . o e e e e 155
16.1.7 Revised formatforwirelesstraces i e 159
16.1.8 Generation of node-movement and traffic-connefbiowireless scenarios 161
16.2 Extensions made to CMU’s wireless model 162
16.2.1 wired-cum-wireleSS SCeNarios i e e e 162
16.2.2 MobhilelP e 163
16.3 802.11 MAC protocol e e e e 166
16.4 Lists of changes for merging code developed in oldesiorrof ns (2.1b5 or later) into the current version
(2.108) . . e 168
16.5 Commandsataglance L e e 170
17 Satellite Networking inns 172
17.1 Overview of satellite models e 172
17.1.1 Geostationarysatellites e 172
17.1.2 Low-earth-orbitingsatellites 173
17.2 Using the satellite extensions L e 175
17.2.1 Nodesand node poSitions e e e e 175
17.2.2 Satellite links e 176
17.2.3 Handoffs e 178
17.2.4 ROULING o o e 179
17.2.5 Trace Support o e e e e 180
17.2.6 Errormodels L e e 181
17.2.7 Other configuration options e 182
17.2.8 NnamM SUPPOIT o o e 182
17.2.9 Integration with wired andwirelesscode L oo 182
17.2. 00 Example SCrptS o o o e e e 183
17.3 Implementation L e 183
17.3.1 Useoflinkedlists. e 184
17.3.2 NodesStructure e e e 184
17.3.3 Detailed look at satellite links 185
17.4 Commandsataglance e e 187

18 Radio Propagation Models 189

18.1 Freespacemodel e e 189
18.2 Two-ray ground reflection model e 190
18.3 Shadowing model e e 190
18.3.1 Backgroud e e 190
18.3.2 Using shadowingmodel e e 192
18.4 CommunicatioN range o o e e e e e 192
18.5 Commandsataglance L e e 193
19 Energy Model in ns 194
19.1 The C++ EnergyModelClass e 194
19.2 The OTclinterface e e e 195
20 Directed Diffusion 196
20.1 Whatis Directed Diffusion? e 196
20.2 Thediffusionmodel iNNS L e e e 196
20.3 Some macissues for diffusioninns 197
20.4 APIsforusingfiltersindiffusion L 198
20.5 Ping: an example diffusion application implementatio. 198
20.5.1 Ping Applicationas implemented inC++ L. 198
20.5.2 TclAPIsforthe pingapplication L 199
20.6 Changes required to add yr diffusion applicationtons... L. 199
20.7 Test-suites for diffusion L 201
20.8 Commandsataglance e e 201
21 XCP: eXplicit Congestion control Protocol 203
21.1 Whatis XCP? o e e 203
21.2 Implementation of XCPIN NS 204
21.2.1 Endpointsin XCP e e e e 204
21.2.2 XCPROULEN o e e 205
21.2.3 XCPqueue e e e 205
21.3 XCPexample script e e e 206
21.4 Test-suites for XCP e e 209
215 Commandsataglance e e 209
22 DelayBox: Per-Flow Delay and Loss 210
22.1 ImplementationDetails e 210
22.2 Example e 211
22.3 CommandsataGlance e 212
23 Changes made to the IEEE 802.15.4 Implementation in NS21L 214
23.1 Radioshutdown e e 214
23.2 Otherchanges e e e 215
Il Support 216
24 Debugging ns 217
24.1 Tcl-level Debugging o e 217
24.2 C++-LevelDebugging e e 217
24.3 Mixing Tcland Cdebugging e 218
24.4 Memory Debugging e 219
24.4.1 Usingdmalloc e 219
24.4.2 Memory Consernvation TIPS o o o i e e 220
24.4.3 Some statistics collectedbydmalloc o 220

245 Memory Leaks e e e 220

24.5.1 OTcl e 221
2452 CICH+ . . . 221
25 Mathematical Support 222
25.1 Random Number Generation e 222
25.1.1 Seeding The RNG e e 223
25.1.2 OTClSUPPOrt o e e 225
25.1.3 CHESUPPOIt . . . o e e e e 226
25.2 Random Variables e e 227
253 Integrals e 228
254 NsS-random e 229
25.5 Some mathematical-supportrelated objects L L 230
25.6 Commandsataglance e e e 230
26 Trace and Monitoring Support 232
26.1 Trace SUPPOIt o e e e e e e 232
26.1.1 OTclHelper FUNCtions e e e e 233
26.2 Library supportand examples e e 234
26.3 The CH+Trace Class o v i it e e e e e e e e e e e e e e e 236
26.4 Trace File Format e e 237
26.5 Packet TYPES o e e e 239
26.6 Queue MoNItoring o L e e 240
26.7 Per-Flow MoNitoring e 242
26.7.1 TheFlow Monitor e 242
26.7.2 Flow Monitor Trace Format 243
26.7.3 TheFlow Class e e e 243
26.8 Commandsataglance e e 244
27 Test Suite Support 246
27.1 Test Suite COMPONENTS o e e e e e e 246
27.2 WriteaTeStSUIte e e e 246
28 Dynamic Libraries 249
28.1 Motivation e e 249
28.2 SUPPOIt . . . o e e e e e e e e e 250
28.3 USAgEe e e 250
29 ns Code Styles 251
29.1 Indentationstyle L e e 251
29.2 Variable Naming Conventions e e 251
29.3 Miscellaneous e 251
IV Routing 253
30 Unicast Routing 254
30.1 The Interface to the Simulation Operator (The API) 254
30.2 Other Configuration Mechanisms for Specialised Rgutin 255
30.3 Protocol Specific Configuration Parameterso o o e 256
30.4 Internals and Architecture of Routing a 257
30.4.1 Theclasses e e 257
30.4.2 Interface to Network Dynamics and Multicast 261
30.5 ProtocolInternals e e 262
30.6 Unicastrouting objects e e 263

30.7 Commandsataglance e e 263

31 Multicast Routing 265
31.1 Multicast APL o e e 265
31.1.1 Multicast Behavior Monitor Configuration 266
31.1.2 Protocol Specific configuration e 267
31.2 Internals of Multicast Routing e 268
31.2.1 Theclasses e e 268
31.2.2 ExtensionstootherclassesiB. 270
31.2.3 ProtocolInternals e e 273
31.2.4 Theinternalvariables e 275
31.3 Commandsataglance e e e 275
32 Network Dynamics 278
32.1 Theuserlevel APl e e e 278
32.2 Thelnternal Architecture 280
32.2.1 TheclassrtModel. e e e 280
32.2.2 class rQUEUE e 281
32.3 Interactionwith Unicast Routing 282
32.3.1 Extensionsto Other Classes e e 282
32.4 Deficencies in the Current Network Dynamics APl o o 283
32,5 Commandsataglance e e 283
33 Hierarchical Routing 285
33.1 Overview of Hierarchical Routing 285
33.2 Usage of Hierarchicalrouting e e 285
33.3 Creating large Hierarchical topologies o o 287
33.4 Hierarchical Routing with SessionSim 288
33.5 Commandsataglance e e 288
V Transport 289
34 UDP Agents 290
34.1 UDP AQENTS o e e e e e e e 290
34.2 Commandsataglance e 291
35 TCP Agents 292
35.1 One-Way TCP SeNders o o e e e e e e e e 293
35.1.1 TheBase TCP Sender (Tahoe TCP) e e e e 293
35.1.2 Configuration e 293
35.1.3 Simple Configuration e e e 293
35.1.4 Other Configuration Parameters 0 m e 294
35.1.5 OtherOne-Way TCP Senders i i e e e e e 295
35.2 TCP Receivers (SINKS) o o o e e 296
35.2.1 TheBase TCP SINK o s e e e 296
35.2.2 Delayed-ACKTCP Sink e 296
35.2.3 Sack TCP SINK o e 296
35.3 Two-Way TCP Agents (FUlTCp) o o o e e e e e e e 297
35.3.1 Simple Configuration e e 297
35.3.2 BayFullTep o o e 298
35.4 Architectureand Internals. L e e e 298
35.5 Tracing TCP DYyNamicCS v 0 i it e e e e e e e e e e 300
35.6 One-Way TCP Trace DynamiCS. i i i i et i e e e e e e e e e 300
35.7 Two-Way TCP Trace DynamiCsS i i i e e e e e e e e e 300

35.8 Commandsataglance e e 301
36 SCTP Agents 302
36.1 TheBase SCTP AQENt o i o e e e e e 302
36.1.1 Configuration Parameters. e e e e 303
36.1.2 Commands e e 305
36.2 EXteNSIONS e e e 306
36.2.1 HbAfterRtO SCTP 306
36.2.2 MultipleFastRtx SCTP e e 306
36.2.3 Timestamp SCTP e e 307
36.2.4 MfrHDAfterRto SCTP e e 307
36.2.5 MfrHDAfterRto SCTP e e 307
36.3 Tracing SCTP DyNamicCS o v v i ot e e e e e e e e e e e 307
36.4 SCTP Applications e e 308
36.5 Example SCripts e e 309
36.5.1 SingledHomed Example L e 309
36.5.2 Multihomed Example e 310
37 Agent/SRM 312
37.1 Configuration 312
37.1.1 Trivial Configuration L e 312
37.1.2 Other Configuration Parameters 314
37.1.3 Statistics e e e 315
37.1.4 TraCing o e e 316
37.2 Architectureand Internals. L e e 318
37.3 Packet Handling: Processing received MeSSages . . .o.vvver v v v v v e i e e e e e 318
37.4 Loss Detection—The Class SRMinfo o 320
37.5 Loss Recovery Objects e e e 320
37.6 Session ObJECES L e 322
37.7 Extendingthe Base Class Agent o e 323
37.7.1 Fixed TIMErS 323
37.7.2 Adaptive TIMEIS e e e 323
37.8 SRMODbJeCtS e e 324
37.9 Commandsataglance e e 325
38 PLM 327
38.1 Configuration L e e 327
38.2 The Packet Pair Source Generator i i e e 329
38.3 Architecture of the PLM Protocol e 330
38.3.1 Instantiationof a PLM Source e e e e 330
38.3.2 Instantiationof a PLM Receiver e 330
38.3.3 ReceptionofaPacket. L e 331
38.3.4 Detection of aL0SS L e e 332
38.3.5 JoiningorLeavingalayer e e 332
38.4 CommandsataGlance e 332
39 DCCP Agents 334
39.1 DCCP AGENTS . . . o o o e e e e e e 334
39.2 Commandsataglance e e 335

Vi

40

41

42

43

Application 336
Applications and transport agent API 337
40.1 Theclass Application e e e 337
40.2 Thetransportagent APl e e e 338

40.2.1 Attachingtransportagentstonodes e i e e 338
40.2.2 Attaching applicationsto agents e 339
40.2.3 Using transportagentsviasystemcalls oo oL oL o 339
40.2.4 Agentupcallsto applications e e 339
40.2.5 Anexample e e 340
40.3 Theclass TrafficGenerator 0 e e e e e e 341
40.3.1 Anexample L e e 343
40.4 Simulated applications: Telnetand FTP i o o 344
40.5 Applications objects e e 344
40.6 Commandsataglance e e e e 346
Web cache as an application 347
41.1 Using application-leveldataims. e 347
41.1.1 ADU . . o e 347
41.1.2 Passing data between applicationso 348
41.1.3 TransmittinguserdataoverUDP 349
41.1.4 Transmittinguserdataover TCP 350
41.1.5 Class hierarchyrelatedto userdatahandling 351
41.2 Overviewof web cacheclasses e 351
41.2.1 Managing HTTP connections i i e e e e e 351
41.2.2 Managingweb pages e e 352
41.2.3 Debugging e 353
41.3 Representingweb pages e e e 353
41.4 Page poolS . . . o o o e e 354
41.4.1 PagePool/Math e e 354
41.4.2 PagePool/lCompMath e e 355
41.4.3 PagePool/ProxXyTraCe o o o i e e e e e e e 355
41.4.4 PagePool/Client. e e e 356
41.4.5 PagePool/WebTraf e e 356
415 Webclient L 358
41.6 Web server e 359
41.7 Web cache 360
41.7.1 Http/Cache e 360
41.8 Putting together: asimple example L 361
41.9 Httptrace format e e e e 363
41.10Commandsataglance e e e e e 364
Worm Model 366
42,1 OVEIVIEW .« o v v o e e e e e e e e e e e 366
42.2 Configuration 367
42.3 Commandsataglance e 367
PackMime-HTTP: Web Traffic Generation 369
43.1 Implementation Details e e 369
43.1.1 PackMimeHTTP Client Application o 370
43.1.2 PackMimeHTTP Server Application o 371
43.2 PackMimeHTTP Random Variables 371
43.3 Use of DelayBox with PackMime-HTTP e e e e e 372
43.4 Example e e 372
43,5 CommandsataGlance e 374

44 Tmix: Internet Traffic Generation

44.1 Network Setup e
44.2 Connection VeCtOrs o e e
44.2.1 Original Connection Vector Format
44.2.2 Alternate Connection Vector Format
44.3 ImplementationDetails e
44.3.1 TmixApplication
44.3.2 Sequential Connections oo
44.3.3 ConcurrentConnections
44.3.4 Acceptor-Sending-First Connections L
4435 SendingFINS
44.4 Tmix_DelayBoxX o
445 Example
44.6 CommandsataGlance

VIl Scale

45 Session-level Packet Distribution

45.1 Configuration
45.1.1 Basic Configuration
45.1.2 InsertingalossModule

45.2 Architecture

453 Internals
45.3.1 ObjectLinkage
45.3.2 PacketForwarding

45.4 Commandsataglance e

46 Asim: approximate analytical simulation

VIl Emulation

47 Emulation

47.1 Introduction L e
47.2 Real-Time Scheduler
47.3 Tap AgeNtS e
47.4 Network Objects
47.4.1 Pcap/BPF Network Objects
47.4.2 IP Network Objects
47.4.3 IP/UDP Network Objects
475 AnExample
47.6 Commandsataglance

IX Visualization with Nam - The Network Animator

48 Nam

48.1 Introduction L
48.2 Nam Command LineOptions
48.3 Userlinterface
48.4 Keyboard Commands
48.5 Generating External Animations fromNam
48.6 NetworkLayout
48.7 AnimationObjects

49 Nam Trace 411

49.1 NamTrace Format e e 411
49.1.1 Initialization EVents e e e 412
49.1.2 NOAES o e e 413
49.1.3 LINKS . . . o o e 413
49.1.4 QUEUES o o i e e e e e e e e e e 414
49.1.5 Packets e 414
49.1.6 Node Marking 415
49.1.7 AQentTracing o o e e e e 416
49.1.8 Variable Tracing e e 416
49.1.9 Executing Tcl Procedures and External Code fromimwtam 416
49.1.10 Using Streams for Realtime Applications o o 418
49.1.11 Nam Trace File Format Lookup Tableo o 421

49.2 Ns commands for creating and controlling nam animation 427
49.2.1 NOde e 427
49.2.2 LINK/IQUEUE e 427
49.2.3 Agentand Features e e 428
49.2.4 Some GenericCommands e e e e e e 428

X Other 429
50 Educational use of NS and NAM 430

50.1 Using NS for educational purposes o e e 430
50.1.1 Installing/building/runnings 430
50.1.2 The educational scripts’ inventory page: cooove v o e e 430

50.2 Using NAM for educational purposSes i e e e e 431

11

Chapter 1

Introduction

Let’s start at the very beginning,

a very nice place to start,

when you sing, you begin with A, B, C,

when you simulate, you begin with the topology,

This documentrf{s Notes and Documentatipprovides reference documentation for ns. Although we begdih a simple
simulation script, resources like Marc Greis’s tutorialoagages (originally at his web site, now latp://www.isi.
edu/nsnam/ns/tutorial/) or the slides from one of the ns tutorials are problablydygilaces to begin for the ns
novice.

We first begin by showing a simple simulation script. Thidggds also available in the sources ingtcl/ex/simple.tcl.

This script defines a simple topology of four nodes, and twenégy a UDP agent with a CBR traffic generator, and a TCP
agent. The simulation runs f8s. The output is two trace filegut.tr ~ andout.nam . When the simulation completes at
the end of3s, it will attempt to run a nam visualisation of the simulatiom your screen.

The preamble
set ns [new Simulator] # initialise the simulation

Predefine tracing

set f [open out.tr w]
$ns trace-all $f

set nf [open out.nam w]
$ns namtrace-all $nf

lwith apologies to Rodgers and Hammerstein

12

so0, we lied. now, we define the topology

#

n0

\

5Mb \

2ms \

\
#

/
5Mb /

2ms /

/

nl

#

set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]

$ns duplex-link $n0 $n2 5Mb 2ms DropTail
$ns duplex-link $n1 $n2 5Mb 2ms DropTail
$ns duplex-link $n2 $n3 1.5Mb 10ms DropTail

Some agents.
set udpO [new Agent/UDP]

$ns attach-agent $n0 $udpO

set cbrO0 [new Application/Traffic/CBR]
$cbr0 attach-agent $udpO

$udpO set class_ 0

set null0 [new Agent/Null]
$ns attach-agent $n3 $null0

$ns connect $udpO0 $nullo
$ns at 1.0 "$cbr0 start"

puts [$cbr0 set packetSize]
puts [$cbr0 set interval]

A FTP over TCP/Tahoe from $n1 to $n3, flowid 2
set tcp [new Agent/TCP]

$tcp set class_ 1
$ns attach-agent $nl $tcp

set sink [new Agent/TCPSink]
$ns attach-agent $n3 $sink

set ftp [new Application/FTP]

$ftp attach-agent $tcp
$ns at 1.2 "$ftp start"

$ns connect $tcp $sink

$ns at 1.35 "$ns detach-agent $n0 $tcp ; $ns detach-agent

13

$n3

A UDP agent
;# on node $n0
A CBR traffic generator agent
;# attached to the UDP agent
;# actually, the default, but. . .

#Its sink
onnode $n3

TCP does not generate its own traffic

$sink"

14

The simulation runs foss.
The simulation comes to an end when the scheduler invo&édintbh{} procedure below.
This procedure closes all trace files, and invokes nam limatin on one of the trace files.

$ns at 3.0 "finish"

proc finish {} {
global ns f nf
$ns flush-trace
close $f
close $nf

puts "running nam..."
exec nam out.nam &
exit 0

}

Finally, start the simulation.
$ns run

15

Chapter 2

Undocumented Facilities

Ns is often growing to include new protocols. Unfortunatily documention doesn’t grow quite as often. This secti&ts li
what remains to be documented, or what needs to be improved.

(The documentation is in the doc subdirectory of the ns socode if you want to add to it. :-)

Interface to the Interpreter e nothing currently

Simulator Basics e LANs need to be updated for new wired/wireless support (Mpdated this?)
e wireless support needs to be added (done)
e should explicitly list queueing options in the queue mgtpthsa?

Support e should pick a single list mgt package and document it
e should document the trace-post-processing utilitiesrin bi
Routing e The usage and design of link state and MPLS routing moduéesardocumented at all. (Note: link state and
MPLS appeared only in daily snapshots and releases afte42800.)
e need to document hierarchical routing/addressing (Padmabne)
e need a chapter on supported ad-hoc routing protocols
Queueing e CBQ needs documentation (can maybe build offtpf/ftp.ee.lbl.gov/papers/cbgsims.
ps.Z ?)
Transport e need to document MFTP
e need to document RTP (session-rtp.cc, etc.)
¢ need to document multicast building blocks
¢ should repair and document snoop and tcp-int

Traffic and scenarios (new section)

e should add a description of how to drive the simulator froatés
¢ should add discussion of the scenario generator
e should add discussion of http traffic sources

Application e is the non-Haobo http stuff documented? no.

16

Scale e should add disucssion of mixed mode (pending)
Emulation e nothing currently

Other e should document admission control policies?
e should add a validation chapter and snarf up the contents-tésts.html
¢ should snarf up Marc Greis’ tutorial rather than just refegto it?

17

Part |

Interface to the Interpreter

18

Chapter 3

OTcl Linkage

nsis an object oriented simulator, written in C++, with an OTrdkerpreter as a frontend. The simulator supports a class
hierarchy in C++ (also called the compiled hierarchy in tiogument), and a similar class hierarchy within the OTa@rint
preter (also called the interpreted hierarchy in this doenitn The two hierarchies are closely related to each offmn the
user’s perspective, there is a one-to-one correspondeteedn a class in the interpreted hierarchy and one in th@itean
hierarchy. The root of this hierarchy is the class TclObjélgers create new simulator objects through the intempriiese
objects are instantiated within the interpreter, and aveaty mirrored by a corresponding object in the compileddarizhy.

The interpreted class hierarchy is automatically esthbtishrough methods defined in the class TclClass. usentiettsd
objects are mirrored through methods defined in the clagaijett. There are other hierarchies in the C++ code and OTcl
scripts; these other hierarchies are not mirrored in thenmiaof TclObject.

3.1 Concept Overview

Why two languages? nsses two languages because simulator has two differens kifithings it needs to do. On one hand,
detailed simulations of protocols requires a systems iragring language which can efficiently manipulate byteskeiac
headers, and implement algorithms that run over large @d$a Bor these tasks run-time speed is important and taoumdr
time (run simulation, find bug, fix bug, recompile, re-runjgss important.

On the other hand, a large part of network research involigtgtly varying parameters or configurations, or quicklypkxing

a number of scenarios. In these cases, iteration time (ehaegmodel and re-run) is more important. Since configumatio
runs once (at the beginning of the simulation), run-timehig part of the task is less important.

nsmeets both of these needs with two languages, C++ and OTel.i<fast to run but slower to change, making it suitable
for detailed protocol implementation. OTcl runs much slotmet can be changed very quickly (and interactively), mgkin
ideal for simulation configuratioms(viatclcl) provides glue to make objects and variables appear on aontfaliges.

For more information about the idea of scripting languagebssplit-language programming, see Ousterhout’s articlEEE
Computer [26]. For more information about split level praxgaming for network simulation, see the ns paper [2].

Which language for whatPlaving two languages raises the question of which languiageld be used for what purpose.

Our basic advice is to use OTcl:
o for configuration, setup, and “one-time” stuff

19

¢ if you can do what you want by manipulating existing C++ obgec

and use C++:

o if you are doinganythingthat requires processing each packet of a flow

¢ if you have to change the behavior of an existing C++ classapsithat weren't anticipated

For example, links are OTcl objects that assemble delayjejng, and possibly loss modules. If your experiment can be
done with those pieces, great. If instead you want do somgfancier (a special queueing dicipline or model of lodsnt
you'll need a new C++ object.

There are certainly grey areas in this spectrum: most rgigidone in OTcl (although the core Dijkstra algorithm is ir+J.
We've had HTTP simulations where each flow was started in @mdlper-packet processing was all in C++. This approache
worked OK until we had 100s of flows starting per second of &ed time. In general, if you're ever having to invoke Tcl
many times per second, you problably should move that co@s-to

3.2 Code Overview

In this document, we use the term “interpreter” to be synooyswith the OTcl interpreter. The code to interface with the
interpreter resides in a separate directarlgl . The rest of the simulator code resides in the directosy? . We will use
the notation tclcl/(file) to refer to a particulatfile) in the Tcl directory. Similarly, we will use the notationng/(file) to
refer to a particulatfile) in thens-2 directory.

There are a number of classes definedtiicl/. We only focus on the six that are usedna The Class Tcl (Section 3.3)
contains the methods that C++ code will use to access themeter. The class TclObject (Section 3.4) is the base étass
all simulator objects that are also mirrored in the compiieatarchy. The class TclClass (Section 3.5) defines thegreted
class hierarchy, and the methods to permit the user to itistai clObjects. The class TclCommand (Section 3.6) isl tise
define simple global interpreter commands. The class Endafitd (Section 3.7) contains the methods to load highet leve
builtin commands that make configuring simulations easierally, the class InstVar (Section 3.8) contains methodstess
C++ member variables as OTcl instance variables.

The procedures and functions described in this chapteredéound in +clcl/Tcl.{cc, h}, ~tclcl/Tcl2.cc, ~clcl/tcl-object.tcl,
and, +clcl/tracedvar.{cc, h}. The file telcl/tcl2c++.c is used in buildings and is mentioned briefly in this chapter.

3.3 Class Tcl

Theclass Tcl encapsulates the actual instance of the OTcl interpretdmpeovides the methods to access and communi-
cate with that interpreter. The methods described in thii@eare relevant to thesprogrammer who is writing C++ code.
The class provides methods for the following operations:

obtain a reference to the Tcl instance;

invoke OTcl procedures through the interpreter;

retrieve, or pass back results to the interpreter;

report error situations and exit in an uniform manner; and

20

e store and lookup “TclObjects”.
e acquire direct access to the interpreter.

We describe each of the methods in the following subsections

3.3.1 Obtain a Reference to the class Tcl instance

A single instance of the class is declared folel/Tcl.cc as a static member variable; the programmer musimbtreference
to this instance to access other methods described in titisseThe statement required to access this instance is:

Tcl& tcl = Tcl::instance();

3.3.2 Invoking OTcl Procedures

There are four different methods to invoke an OTcl commamduth the instancecl . They differ essentially in their
calling arguments. Each function passes a string to thepirgter, that then evaluates the string in a global confExese
methods will return to the caller if the interpreter retumi@d._ OK. On the other hand, if the interpreter returns TCL REIR,
the methods will caltkerror ~ {}. The user can overload this procedure to selectivelyatisird certain types of errors. Such
intricacies of OTcl programming are outside the scope &fdloicument. The next section (Section 3.3.3) describesadgth
to access the result returned by the interpreter.

e tcl.eval (char*s) invokesTcl_GlobalEval () to executes through the interpreter.

e tcl.evalc (constchar%) preserves the argument stringlt copies the string into its internal buffer; it then invokes
the previousval (char*s) on the internal buffer.

e tcl.eval () assumesthatthe commandis already stored in the clasmaibp_; it directly invokedcl.eval ~ (char*
bp_). A handle to the buffer itself is available through thetihodtcl.buffer (void).

e tcl.evalf (const char?*s, ...) is aPrintf (3) like equivalent. It usessprintf (3) internally to create the input
string.

As an example, here are some of the ways of using the abovedssth

Tcl& tcl = Tcl ::instance();

char wrk[128];

strepy(wrk, "Simulator set Numberinterfaces_ 1");
tcl . eval (wrk);

sprintf(tcl. buffer(), "Agent/SRM set requestFunction_ %s", "Fixed");
tcl.eval ();

tcl.eval c("puts stdout hello world");
tcl.eval f ("%s request %d %d", name_, sender, msgid);

3.3.3 Passing Results to/from the Interpreter

When the interpreter invokes a C++ method, it expects thdtreack in the private member variabtel_->result . Two
methods are available to set this variable.

21

e tcl.result (const char*s)
Pass the result stringback to the interpreter.

o tcl.resultf (constchar*fmt, ...)
varargs (3) variant of above to format the result usivgprintf (3), pass the result string back to the interpreter.

if (strcmp(argv[l], "now") == 0) {
tcl.resultf("%.17g", clock();
return TCL_OK;

}

tcl.result ("Invalid operation specified");
return TCL_ERROR;

Likewise, when a C++ method invokes an OTcl command, thepnéter returns the result tol_->result

e tcl.result (void) must be used to retrieve the result. Note that theltresa string, that must be converted into an
internal format appropriate to the type of result.

tcl.evalc("Simulator set Numberinterfaces ");
char * ni = tcl.result();
if (atoi(ni) != 1)
tcl.evalc("Simulator set Numberinterfaces_ 1");

3.3.4 Error Reporting and Exit
This method provides a uniform way to report errors in the pibeal code.

e tcl.error (const char*s) performs the following functions: writeto stdout; writetcl_->result to stdout; exit
with error code 1.

tcl.resultf("emd = %s", cmd);
tcl.error("invalid command specified");
/ * NOTREACHEB/

Note that there are minor differences between returning TERROR as we did in the previous subsection (Section 3.3.3),
and callingTcl::error (). The former generates an exception within the interpréte user can trap the exception and
possibly recover from the error. If the user has not specifigdraps, the interpreter will print a stack trace and éxdwever,

if the code invokegrror (), then the simulation user cannot trap the error; in addjtiswill not print any stack trace.

3.3.5 Hash Functions within the Interpreter

nsstores a reference to every TclObject in the compiled hibgain a hash table; this permits quick access to the objects.
The hash table is internal to the interpretes.uses the name of theclObject as the key to enter, lookup, or delete the
TclObject in the hash table.

22

e tcl.enter (TclObject* o) will insert a pointer to the TclObjeetinto the hash table.
Itis used byTclClass::create_shadow () to insert an object into the table, when that object isterea

e tcllookup (char*s) will retrieve the TclObject with the name
It is used byTclObject::lookup 0.

e tcl.remove (TclObject*o) will delete references to the TclObjecfrom the hash table.

It is used byTclClass::delete_shadow () to remove an existing entry from the hash table, when thgab is
deleted.

These functions are used internally by the class TclObjedtcdass TclClass.

3.3.6 Other Operations on the Interpreter
If the above methods are not sufficient, then we must acquér@dandle to the interpreter, and write our own functions.

e tclinterp (void) returns the handle to the interpreter that is storgdimthe class Tcl.

3.4 Class TclObject

class TclObject is the base class for most of the other classes in the intetbamd compiled hierarchies. Every object
in the class TclObject is created by the user from within therpreter. An equivalent shadow object is created in thepiied
hierarchy. The two objects are closely associated with etfeér. The class TclClass, described in the next sectiontaots
the mechanisms that perform this shadowing.

In the rest of this document, we often refer to an object asl@@ject. By this, we refer to a particular object that is either
in the class TclObject, or in a class that is derived from tlass TclObject. If it is necessary, we will explicitly qugli
whether that object is an object within the interpreter,ohbject within the compiled code. In such cases, we will hsge t
abbreviations “interpreted object”, and “compiled objeotdistinguish the two. and within the compiled code respety.

Differences fromnsvl Unlike nsvl, the class TclObject subsumes the earlier functionseoN$ODbject class. It therefore
stores the interface variable bindings (Section 3.4.2)tte@®Tcl instance variables in the interpreted object twesponding
C++ member variables in the compiled object. The bindingringier than imsv1 in that any changes to the OTcl variables
are trapped, and the current C++ and OTcl values are madestansafter each access through the interpreter. The onsi
tency is done through the class InstVar (Section 3.8). Aldike nsvl, objects in the class TclObject are no longer stored as
a global link list. Instead, they are stored in a hash tabtbéclass Tcl (Section 3.3.5).

Example configuration of a TclObject The following example illustrates the configuration of anNERgent €lass
Agent/SRM/Adaptive).

set srm [new Agent/SRM/Adaptive]
$srm set packetSize_ 1024
$srm traffic-source $s0

1in the latest release aandns/tclcl this object has been renamed3plitObjefct , which more accurately reflects its nature of existence. ¢law
for the moment, we will continue to use the term TclObjectafer to these objects and this class.

23

By convention inns the class Agent/SRM/Adaptive is a subclass of Agent/SRM subclass of Agent, is a subclass of
TclObject. The corresponding compiled class hierarchiiésASRMAgent, derived from SRMAgent, derived from Agent,
derived from TclObject respectively. The first line of theoab example shows how a TclObject is created (or destroyed)
(Section 3.4.1); the next line configures a bound variabéeijSn 3.4.2); and finally, the last line illustrates theeipreted
object invoking a C++ method as if they were an instance ghoee(Section 3.4.4).

3.4.1 Creating and Destroying TclObjects

When the user creates a new TclObject, using the procecew§ and delete {}; these procedures are defined in
~tclcl/tcl-object.tcl. They can be used to create and destroyctibja all classes, including TclObjects.In this section,
we describe the internal actions executed when a TclOljexeated.

Creating TclObjects By usingnew({}, the user creates an interpreted TclObject. the inteigreill execute the constructor
for that object,init {}, passing it any arguments provided by the usess is responsible for automatically creating the
compiled object. The shadow object gets created by the Hase TclObject's constructor. Therefore, the construfdor
the new TclObject must call the parent class constructdr fiesn{} returns a handle to the object, that can then be used for
further operations upon that object.

The following example illustrates the Agent/SRM/Adapteanstructor:

Agent/SRM/Adaptive instproc init args {
eval $self next $args
$self array set closest "requestor O repairor 0"
$self set eps_ [$class set eps]

The following sequence of actions are performed by the m&ter as part of instantiating a new TclObject. For ease of
exposition, we describe the steps that are executed teeaaaigent/SRM/Adaptive object. The steps are:

1. Obtain an unique handle for the new object from the Tcl€thjame space. The handle is returned to the user. Most
handles inns have the form o (NNN, where(NNN) is an integer. This handle is created @gtid {}. It can be
retrieved from C++ with th@ame() {} method.

2. Execute the constructor for the new object. Any userifipdarguments are passed as arguments to the constructor.
This constructor must invoke the constructor associatéil ite parent class.
In our example above, the Agent/SRM/Adaptive calls its pactass in the very first line.

Note that each constructor, in turn invokes its parent tlamsstructorad nauseumThe last constructor insis the
TclObject constructor. This constructor is responsiblesktting up the shadow object, and performing other initial
izations and bindings, as we explain beldwis preferable to call the parent constructors first befperforming the
initializations required in this classThis allows the shadow objects to be set up, and the variatdirys established.

3. The TclObject constructor invokes the instance procedigate-shadow {} for the class Agent/SRM/Adaptive.

4. When the shadow object is creatadg¢alls all of the constructors for the compiled object, eaiclvtich may establish
variable bindings for objects in that class, and perfornepttecessary initializations. Hence our earlier injunctloat
it is preferable to invoke the parent constructors prioréd@ming the class initializations.

5. After the shadow object is successfully createdate _shadow (void)

2As an example, the classes Simulator, Node, Link, or rtQbige classes that anet derived from the class TclObject. Objects in these classesat,
therefore, TclObjects. However, a Simulator, Node, Link;aute Object is also instantiated using tiev procedure ims

24

(a) adds the new object to hash table of TclObjects descebdibr (Section 3.3.5).

(b) makemd{} an instance procedure of the newly created interpretgdabThis instance procedure invokes the
command)) method of the compiled object. In a later subsection (Br@&.4.4), we describe how tlktemmand
method is defined, and invoked.

Note that all of the above shadowing mechanisms only worknwhe user creates a new TclObject through the interpreter.
It will not work if the programmer creates a compiled TclQtijenilaterally. Therefore, the programmer is enjoinedtoot
use the C++ new method to create compiled objects directly.

Deletion of TclObjects Thedelete operation destroys the interpreted object, and the carvreipg shadow object. For
exampleuse-scheduler {(scheduler} uses thedelete procedure to remove the default list scheduler, and instnt

an alternate scheduler in its place.

Simulator instproc use-scheduler type {
$self instvar scheduler_

delete scheduler_ # first delete the existing list scheduler
set scheduler_ [new Scheduler/$type]

As with the constructor, the object destructor must calldéstructor for the parent class explicitly as the very legesment
of the destructor. The TclObject destructor will invoke thetance procedurgelete-shadow , that in turn invokes the
equivalent compiled method to destroy the shadow objeat.ifterpreter itself will destroy the interpreted object.

3.4.2 Variable Bindings

In most cases, access to compiled member variables istesdtto compiled code, and access to interpreted membablesi

is likewise confined to access via interpreted code; howévisrpossible to establish bi-directional bindings sucattboth

the interpreted member variable and the compiled membé@blaraccess the same data, and changing the value of either
variable changes the value of the corresponding pairedharto same value.

The binding is established by the compiled constructor whahobject is instantiated; it is automatically accessih} the
interpreted object as an instance variabesupports five different data types: reals, bandwidth valizthbles, time valued
variables, integers, and booleans. The syntax of how thelses can be specified in OTcl is different for each variajghe t

e Real and Integer valued variables are specified in the “nBifioran. For example,

$object set realvar 1.2e3
$object set intvar 12

e Bandwidth is specified as a real value, optionally suffixead By or ‘K’ to mean kilo-quantities, or ‘m’ or ‘M’ to mean
mega-quantities. A final optional suffix of ‘B’ indicates thhe quantity expressed is in Bytes per second. The default
is bandwidth expressed in bits per second. For examplef #idedollowing are equivalent:

$object set bwvar 1.5m

$object set bwvar 1.5mb
$object set bwvar 1500k

25

$object set bwvar 1500kb

$object set bwvar .1875MB
$object set bwvar 187.5kB
$object set bwvar 1.5e6

e Time is specified as a real value, optionally suffixed by a ‘cmékpress time in milli-seconds, ‘n’ to express time in
nano-seconds, or ‘p’ to express time in pico-seconds. Tfauttés time expressed in seconds. For example, all of the
following are equivalent:

$object set timevar 1500m
$object set timevar 1.5
$object set timevar 1.5e9n
$object set timevar 1500e9p

Note that we can also safely add #o reflect the time unit of secondsswill ignore anything other than a valid real

number specification, or a trailing ‘m’, ‘n’, or ‘p’.

e Booleans can be expressed either as an integer, or as ‘T'for ttue. Subsequent characters after the first letter are
ignored. If the value is neither an integer, nor a true vatuen it is assumed to be false. For example,

$object set boolvar t # setto true
$object set boolvar true

$object set boolvar 1 ;# or any non-zero value
$object set boolvar false # setto false

$object set boolvar junk
$object set boolvar 0

The following example shows the constructor for the ASRMAe

ASRMAgent::ASRMAgent() {

bind("pdistance_", &pdistance); / * real variablex/
bind("requestor_", &requestor_); / * integer variablex/
bind_time("lastSent_", &lastSessSent_); / * time variablex /
bind_bw("ctrlLimit_", &ctrIBWLimit_); / * bandwidth variable- /
bind_bool("running_", &running_); / * poolean variable: /

Note that all of the functions above take two arguments, Hraenof an OTcl variable, and the address of the corresponding
compiled member variable that is linked. While it is ofter ttase that these bindings are established by the constaicto
the object, it need not always be done in this manner. We vgtiubs such alternate methods when we describe the class
InstVar (Section 3.8) in detail later.

Each of the variables that is bound is automatically inged with default values when the object is created. Theultefa
values are specified as interpreted class variables. Titiaisation is done by the routinigit-instvar {}, invoked by
methods in the class Instvar, described later (Section Bu8)nstvar {} checks the class of the interpreted object, and
all of the parent class of that object, to find the first classliich the variable is defined. It uses the value of the vagiabl
that class to initialise the object. Most of the bind inigation values are defined imstcl/lib/ns-default.tcl.

For example, if the following class variables are definedtierASRMAgent:

SNote that this constructor is embellished to illustrateftatures of the variable binding mechanism.

26

Agent/SRM/Adaptive set pdistance_ 15.0
Agent/SRM set pdistance_ 10.0
Agent/SRM set lastSent_ 8.345m

Agent set ctrlLimit_ 1.44M
Agent/SRM/Adaptive set running_ f

Therefore, every new Agent/SRM/Adaptive object will hadistance set to 15.0JastSent_ is set to 8.345m from
the setting of the class variable of the parent clagd;imit_ is set to 1.44M using the class variable of the parent class
twice removedrunning is set to false; the instance variapldistance_ is notinitialised, because no class variable exists
in any of the class hierarchy of the interpreted object. kkhdnstanceinit-instvar {} will invoke warn-instvar {},

to print out a warning about such a variable. The user carctheddy override this procedure in their simulation scsipto
elide this warning.

Note that the actual binding is done by instantiating olgjéttthe class InstVar. Each object in the class InstVar bords
compiled member variable to one interpreted member vagiabITclObject stores a list of InstVar objects correspogdm
each of its member variable that is bound in this fashion. figwed of this list is stored in its member variabistvar_ of

the TclObject.

One last point to consider is thaswill guarantee that the actual values of the variable, bothé interpreted object and the
compiled object, will be identical at all times. Howevertliere are methods and other variables of the compiled othjatt
track the value of this variable, they must be explicitlyaked or changed whenever the value of this variable is clthnge
This usually requires additional primitives that the ugeridd invoke. One way of providing such primitivesriais through
thecommand) method described in the next section.

3.4.3 Variable Tracing

In addition to variable bindings, TclObject also supporéeing of both C++ and Tcl instance variables. A traced \dgia
can be created and configured either in C++ or Tcl. To estabéisiable tracing at the Tcl level, the variable must beblési

in Tcl, which means that it must be a bounded C++/Tcl or a pueinstance variable. In addition, the object that owns
the traced variable is also required to establish tracimggube Tcltrace method of TclObject. The first argument to the
trace method must be the name of the variable. The optional seaguareent specifies the trace object that is responsible
for tracing that variable. If the trace object is not spedifine object that own the variable is responsible for trgudin

For a TclObject to trace variables, it must extend the @ate method that is virtually defined in TclObject. The Trace
class implements a simpteace method, thereby, it can act as a generic tracer for variables

class Trace : public Connector {

virtual void trace(TracedVar *);

Below is a simple example for setting up variable tracingah T
S$tcp tracing its own variable cwnd_
$tcp trace cwnd_
the variable ssthresh_ of $tcp is traced by a generic $trace r

set tracer [new Trace/Var]
$tcp trace ssthresh_ $tracer

27

For a C++ variable to be traceable, it must belong to a cleetsdibrives from TracedVar. The virtual base class TracedVar
keeps track of the variable’s name, owner, and tracer. €&absit derives from TracedVar must implement the virtuaghoe
value , that takes a character buffer as an argument and writesttie uf the variable into that buffer.

class TracedVar {

virtual char * value(char =+ buf) = 0O;

protected:
TracedVar(const char * name);
const char * name_; /I name of the variable
TclObject * owner_; /I the object that owns this variable
TclObject =+ tracer_; /I callback when the variable is changed
h

The TcICL library exports two classes of TracedVdiracedint and TracedDouble . These classes can be used in
place of the basic type int and double respectively. Botltd@dint and TracedDouble overload all the operators that can
change the value of the variable such as assignment, inatearel decrement. These overloaded operators usesgign
method to assign the new value to the variable and call ticeitiithe new value is different from the old one. Tracedhd a
TracedDouble also implement the&lue methods that output the value of the variable into stringe Width and precision

of the output can be pre-specified.

3.4.4 command Methods: Definition and Invocation

For every TclObject that is createtsestablishes the instance procederag({}, as a hook to executing methods through the
compiled shadow object. The procedarsd{} invokes the methodcommand)) of the shadow object automatically, passing
the arguments tomd{} as an argument vector to theommand) method.

The user can invoke themd{} method in one of two ways: by explicitly invoking the prodere, specifying the desired
operation as the first argument, or implicitly, as if thergevan instance procedure of the same name as the desiretiapera
Most simulation scripts will use the latter form, hence, wilt eescribe that mode of invocation first.

Consider the that the distance computation in SRM is donb&dgdmpiled object; however, it is often used by the intdgate
object. It is usually invoked as:

$srmObject distance? (agentAddress)

If there is no instance procedure calldidtance? |, the interpreter will invoke the instance procedun&nown {}, defined
in the base class TclObject. The unknown procedure therk@s/o

$srmObject cmd distance? (agentAddress)

to execute the operation through the compiled objextremand)) procedure.

Ofcourse, the user could explicitly invoke the operatiorectly. One reason for this might be to overload the openabip
using an instance procedure of the same name. For example,

Agent/SRM/Adaptive instproc distance? addr {

28

$self instvar distanceCache_
if I[info exists distanceCache_($addr)] {
set distanceCache_($addr) [$sel f cmd di stance? $addr]

}
set distanceCache_($addr)

We now illustrate how theommand)) method usinlRSRMAgent::command () as an example.

int ASRMAgent::command(int argc, const char *const *argv) {
Tcl& tcl = Tcl::instance();
if (argc == 3) {

if (strcmp(argv[l], "distance?") == 0) {
int sender = atoi(argv[2]);
SRMinfo * sp = get_state(sender);
tcl.tesultf("%f", sp->distance_);
return TCL_OK;

}
}

return (SRMAgent::command(argc, argv));

We can make the following observations from this piece ofcod

e The function is called with two arguments:
The first argumentafrgc) indicates the number of arguments specified in the comniaadd the interpreter.
The command line arguments vectargv) consists of
—argv[0] contains the name of the methodmid".
—argv[l] specifies the desired operation.
— If the user specified any arguments, then they are placajwi2...(argc - 1)]
The arguments are passed as strings; they must be conwetteddppropriate data type.

o If the operation is successfully matched, the match shartlatm the result of the operation using methods described
earlier (Section 3.3.3).

e command) itself must return eitheFCL_OKor TCL_ERRORo indicate success or failure as its return code.
o Ifthe operationis not matched in this method, it must invitkparent’s command method, and return the corresponding
result.

This permits the user to concieve of operations as havingdhnge inheritance properties as instance procedures or
compiled methods.

In the event that thisommandmethod is defined for a class with multiple inheritance, ttegpammer has the liberty
to choose one of two implementations:

1) Either they can invoke one of the paremtsnmandmethod, and return the result of that invocation, or

2) They can each of the parentemmandmethods in some sequence, and return the result of the fistation that
is successful. If none of them are successful, then theyldeturn an error.

In our document, we call operations executed througlctmmand) instproc-likes. This reflects the usage of these opera-
tions as if they were OTcl instance procedures of an objetizén be very subtly different in their realisation and @sag

29

3.5 Class TclClass

This compiled classcfass TclClass) is a pure virtual class. Classes derived from this base glasvide two functions:
construct the interpreted class hierarchy to mirror the gited class hierarchy; and provide methods to instantiate n
TclObjects. Each such derived class is associated withtacplar compiled class in the compiled class hierarchy, eend
instantiate new objects in the associated class.

As an example, consider a class such as the Bas®TcpClass . It is derived from clas§cIClass , and is associated
with the clasdRenoTcpAgent . It will instantiate new objects in the claBenoTcpAgent . The compiled class hierarchy
for RenoTcpAgent is that it derives fronTcpAgent , that in turn derives fromhgent , that in turn derives (roughly) from
TclObject . RenoTcpClass is defined as

static class RenoTcpClass: public TclClass {

public:
RenoTcpClass() : TclClass("Agent/TCP/Reno") {}
TclObject = create(int argc, const char *const * argv) {
return (new RenoTcpAgent());
}
} class_reno;

We can make the following observations from this definition:

1. The class defines only the constructor, and one additioa#diod, tocreate instances of the associated TclObject.

2. nswill execute theRenoTcpClass constructor for the static variabbdass_reno , when it is first started. This sets
up the appropriate methods and the interpreted class bigrar

3. The constructor specifies the interpreted class expliag Agent/TCP/Reno . This also specifies the interpreted
class hierarchy implicitly.
Recall that the convention insis to use the character slash (/) is a separator. For angngdlassA/B/C/D , the
classA/B/C/D is a sub-class oA/B/C , that is itself a sub-class @f/B , that, in turn, is a sub-class 8f Aitself is a
sub-class off clObject
In our case above, the TclClass constructor creates thaesagAgent/TCP/Reno sub-class oAgent/TCP sub-
class ofAgent sub-class off clObject

4. This class is associated with the cl&snoTcpAgent ; it creats new objects in this associated class.
5. TheRenoTcpClass::create method returns TclObjects in the cld®@snoTcpAgent .

6. When the user specifiagw Agent/TCP/Reno ,the routineRenoTcpClass::create is invoked.
7

. The arguments vectoaigv) consists of
—argv[0] contains the name of the object.

— argv[1...3] contain$self , $class , and$proc .Sincecreate is called through the instance procedure
create-shadow ,argv[3] containscreate-shadow

—argv[4] contain any additional arguments (passed as a string)ged\y the user.
Theclass Trace illustrates argument handling by TclClass methods.

class TraceClass : public TclClass {
public:

30

TraceClass() : TclClass("Trace") {}
TclObject = create(int args, const char *const * argv) {
if (args >= 5)
return (new Trace(+argv[4]));
else
return NULL;
}

} trace class;

A new Trace object is created as

new Trace "X"

Finally, the nitty-gritty details of how the interpretedhsk hierarchy is constructed:

g A W N P

»

. The object constructor is executed whnefirst starts.

. This constructor calls the TclClass constructor withrtame of the interpreted class as its argument.

. The TclClass constructor stores the name of the classnaeds this object into a linked list of the TclClass obgect
. During initialization of the simulatofcl_Applnit (void) invokesTclClass::bind (void)

. For each object in the list of TclClass objedig)d () invokesregister {}, specifying the name of the interpreted

class as its argument.

. register {} establishes the class hierarchy, creating the classeaite required, and not yet created.

. Finally,bind () defines instance procedurmeate-shadow anddelete-shadow for this new class.

3.5.1 How to Bind Static C++ Class Member Variables

In Section 3.4, we have seen how to expose member variabde€6F object into OTcl space. This, however, does not apply
to static member variables of a C++ class. Of course, one meayecan OTcl variable for the static member variable ofyever
C++ object; obviously this defeats the whole meaning ofstaembers.

We cannot solve this binding problem using a similar soluég binding in TclObject, which is based on InstVar, because
InstVars in TcICL require the presence of a TclObject. Hogrewe can create a method of the corresponding TclClass and
access static members of a C++ class through the methodsamfriesponding TclClass. The procedure is as follows:

1.
2.
3.

Create your own derived TclClass as described above;
Declare methodsind () andmethod () in your derived class;

Create your binding methods in the implementation of ywod () with add_method("your_method") , then
implement the handler imethod () in a similar way as you would do ificlObject::command (). Notice that the
number of arguments passedidClass::method () are different from those passedltolObject::command ().
The former has two more arguments in the front.

As an example, we show a simplified versiorRafcketHeaderClass in ~ngpacket.cc. Suppose we have the following
classPacket which has a static variabledrlen_ that we want to access from OTcl:

31

class Packet {

static int hdrlen_;

Then we do the following to construct an accessor for thigade:

class PacketHeaderClass : public TcIClass {
protected:
PacketHeaderClass(const char * classname, int hdrsize);
TclObject =+ create(int argc, const char *CONst * argv);
/ * These two implements OTcl class access methbds
virtual void bind();
virtual int method(int argc, const char *const * argv);

k

void PacketHeaderClass::bind()

{
/ = Call to base class bind() must precede add_method()
TclClass::bind();
add_method("hdrlen");

}

int PacketHeaderClass::method(int ac, const char xconst * av)
{
Tcl& tcl = Tcl::instance();
/ = Notice this argument translation; we can then handle thenif iasT clObject::command(3 /
int argc = ac - 2;
const char =*const * argv = av + 2;
if (argc == 2) {
if (strcmp(argv[l], "hdrlen") == 0) {
tcl.resultf("%d", Packet::hdrlen_);
return (TCL_OK);
}
} else if (argc == 3) {
if (strcmp(argv[l], "hdrlen") == 0) {
Packet::hdrlen_ = atoi(argv[2]);
return (TCL_OK);
}
}

return TclClass::method(ac, av);
After this, we can then use the following OTcl command to as@nd change valuesBéacket::hdrlen_

PacketHeader hdrlen 120
set i [PacketHeader hdrlen]

32

3.6 Class TclCommand

This class¢lass TclCommand) provides just the mechanism fosto export simple commands to the interpreter, that can
then be executed within a global context by the interprdtieere are two functions defined imgmisc.cc:ns-random and
ns-version . These two functions are initialized by the functiait_misc (void), defined in agmisc.cc;init_misc

is invoked byTcl_Applnit (void) during startup.

e class VersionCommand defines the commanaks-version . It takes no argument, and returns the curment
version string.

% ns-version ;# getthe current version
2.0a12

e class RandomCommand defines the commanus-random . With no argumentns-random returns an integer,
uniformly distributed in the intervdD, 23! — 1].

When specified an argument, it takes that argument as the Hebis seed value is 0, the command uses a heuristic
seed value; otherwise, it sets the seed for the random nuyeberator to the specified value.

% ns-random ;# return a random number

2078917053

% ns-random O ;# set the seed heuristically
858190129

% ns-random 23786 ;# set seed to specified value
23786

Note that, it is generally not advisable to construct topelecommands that are available to the us&ke now describe how
to define a new command using the exanmgbéess say _hello . The example defines the command to print the string
“hello world”, followed by any command line arguments siiieci by the user. For example,

% hi this is ns [ns-version]
hello world, this is ns 2.0al2

1. The command must be defined within a class derived fromldss TclCommand . The class definition is:
class say _hello : public TclCommand {
public:

say_hello();
int command(int argc, const char *CoNnst * argv);

2. The constructor for the class must invoke the TclCommamdttuctor with the command as argumea;

say_hello() : TclCommand(*hi*) {}

TheTclCommand constructor sets up "hi" as a global procedure that invaldSommand::dispatch_cmd ().

3. The methodtommand)) must perform the desired action.

The method is passed two arguments. The first arguraegt, , contains the number of actual arguments passed by
the user.

33

The actual arguments passed by the user are passed as aemargaotor &rgv) and contains the following:
—argv[0] contains the name of the commaihnd §.

—argv[l...(argc - 1)] contains additional arguments specified on the commandbiiribe user.
command) is invoked bydispatch_cmd ().

#include <streams.h> / * because we are using stream KO
int say_hello::command(int argc, const char xconst * argv) {
cout << "hello world:";
for (int i = 1; i < argc; i++)
cout << ' ' << argVli];

cout << '\ n}
return TCL_OK;
}

4. Finally, we require an instance of this classlCommand instances are created in the routing_misc (void).

new say_hello;

Note that there used to be more functions suchsaat andns-now that were accessible in this manner. Most of these
functions have been subsumed into existing classes. licplarnt ns-at andns-now are accessible through the scheduler
TclObject. These functions are defined imsftcl/lib/ns-lib.tcl.

% set ns [new Simulator] # get new instance of simulator
_ol

% $ns now ;# query simulator for current time
0

% $ns at ... # specify at operations for simulator

3.7 Class EmbeddedTcl

nspermits the development of functionality in either comgit®de, or through interpreter code, that is evaluated @ liza-
tion. For example, the scriptdeicl/tcl-object.tcl or the scripts inrdtcl/lib. Such loading and evaluation of scripts is done
through objects in thelass EmbeddedTcl

The easiest way to extemis to add OTcl code to eitherteicl/tcl-object.tcl or through scripts in theng'tcl/lib directory.
Note that, in the latter casessources ngtcl/lib/ns-lib.tcl automatically, and hence the prograer must add a couple of lines

to this file so that their script will also get automaticalbusced bynsat startup. As an example, the filagtcl/mcast/srm.tcl
defines some of the instance procedures to run SRMnéfictlib/ns-lib.tcl, we have the lines:

source tcl/mcast/srm.tcl

to automatically get srm.tcl sourced hgat startup.

Three points to note with EmbeddedTcl code are that fir§ttliei code has an error that is caught during the eval, tisevill
not run. Secondly, the user can explicitly override any ef¢bde in the scripts. In particular, they can re-source titieee

34

script after making their own changes. Finally, after addime scripts to ndtcl/lib/ns-lib.tcl, and every time thereafter that
they change their script, the user must recompsdiéor their changes to take effect. Of course, in most caghs user can
source their script to override the embedded code.

The rest of this subsection illustrate how to integrateviatlial scripts directly intis The first step is convert the script into
an EmbeddedTcl object. The lines below expand ns-lib.tdl@eate the EmbeddedTcl object instance calleds_lib

tclsh bin/tcl-expand.tcl tcl/lib/ns-lib.tcl | \
.ITclltcl2c++ et_ns_lib > gen/ns_tcl.cc

The script, Agbin/tcl-expand.tcl expandss-lib.tcl by replacing alsource lines with the corresponding source files.
The program, telcl/tcl2cc.c, converts the OTcl code into an equivalent Emeddd! objectet_ns_lib

During initialization, invoking the methoBEmbeddedTcl::load explicitly evaluates the array.

— ~tclcl/tcl-object.tcl is evaluated by the methdal::init (void); Tcl_Applnit () invokesTcl::Init (). The
exact command syntax for the load is:

et_tclobject.load();

— Similarly, ~nditcl/lib/ns-lib.tcl is evaluated directly bycl_Applnit in ~ngns_tclsh.cc.

et_ns_lib.load();

3.8 Class InstVar

This section describes the internals of tt@ss InstVar . This class defines the methods and mechanisms to bind a C++
member variable in the compiled shadow object to a specified iBstance variable in the equivalent interpreted objébe
binding is set up such that the value of the variable can bersatcessed either from within the interpreter, or from imith

the compiled code at all times.

There are five instance variable classgass InstVarReal ,class InstvVarTime ,class InstvVarBandwidth ,
class InstVarint , andclass InstVarBool , corresponding to bindings for real, time, bandwidth, gete and
boolean valued variables respectively.

We now describe the mechanism by which instance variabéesaup. We use thdass InstVarReal to illustrate the
concept. However, this mechanism is applicable to all fiye$yof instance variables.

When setting up an interpreted variable to access a membable the member functions of the class InstVar assumte tha
they are executing in the appropriate method executioregtirtherefore, they do not query the interpreter to deteenthe
context in which this variable must exist.

In order to guarantee the correct method execution cordexdriable must only be bound if its class is already estabdls
within the interpreter, and the interpreter is currentlgigiing on an object in that class. Note that the former reguhat
when a method in a given class is going to make its variablessaible via the interpreter, there must be an associated

4The few places where this might not work are when certairatses might have to be defined or undefined, or otherwise tipgt sontains code other
than procedure and variable definitions and executes aadtivectly that might not be reversible.

35

class TclIClass (Section 3.5) defined that identifies theapipate class hierarchy to the interpreter. The approprathod
execution context can therefore be created in one of two ways

An implicit solution occurs whenever a new TclObject is ¢egbwithin the interpreter. This sets up the method exenutio
context within the interpreter. When the compiled shadoyeditof the interpreted TclObject is created, the constnuicir
that compiled object can bind its member variables of thiailto interpreted instance variables in the context ofthsly
created interpreted object.

An explicit solution is to define &ind-variables operation within acommand function, that can then be invoked
via thecmd method. The correct method execution context is estaldigherder to execute themd method. Likewise,

the compiled code is now operating on the appropriate shadject, and can therefore safely bind the required member
variables.

An instance variable is created by specifying the name oirttezpreted variable, and the address of the member variabl
the compiled object. The constructor for the base clas¥anstreates an instance of the variable in the interpreter tlaen
sets up a trap routine to catch all accesses to the variailegh the interpreter.

Whenever the variable is read through the interpreterréperoutine is invoked just prior to the occurrence of thelréhe
routine invokes the appropriaget function that returns the current value of the variable.sMalue is then used to set the
value of the interpreted variable that is then read by therpreter.

Likewise, whenever the variable is set through the integoy¢he trap routine is invoked just after to the write is qdeted.

The routine gets the current value set by the interpreterjrarokes the appropriatet function that sets the value of the
compiled member to the current value set within the intagore

36

Part |l

Simulator Basics

37

Chapter 4

The Class Simulator

The overall simulator is described by a Tthss Simulator . It provides a set of interfaces for configuring a simulation
and for choosing the type of event scheduler used to drivsithelation. A simulation script generally begins by cregtan
instance of this class and calling various methods to cmeades, topologies, and configure other aspects of the diionila
A subclass of Simulator calle@ldSim is used to supporisvl backward compatibility.

The procedures and functions described in this chapter eafound in ngtcl/lib/ns-lib.tcl, ~ngscheduler.{cc,h}, and,
~ngheap.h.

4.1 Simulator Initialization

When a new simulation object is created in tcl, the initi@iian procedure performs the following operations:

e initialize the packet format (callsreate_packetformat)
e create a scheduler (defaults to a calendar scheduler)

e create a “null agent” (a discard sink used in various places)

The packet format initialization sets up field offsets witpackets used by the entire simulation. Itis described irerdetail

in the following chapter on packets (Chapter 12). The scleduns the simulation in an event-driven manner and may be
replaced by alternative schedulers which provide somediffarent semantics (see the following section for moreaiet
The null agent is created with the following call:

set nullAgent_ [new Agent/Null]

This agent is generally useful as a sink for dropped packeds a destination for packets that are not counted or redorde

4.2 Schedulers and Events

The simulator is an event-driven simulator. There are prtséour schedulers available in the simulator, each ofalhs
implemented using a different data structure: a simpleelihlist, heap, calendar queue (default), and a specialdgibed

38

“real-time”. Each of these are described below. The scleeduins by selecting the next earliest event, executing it to
completion, and returning to execute the next event.Unitoé used by scheduler is seconds. Presently, the simusator
single-threaded, and only one event in execution at anyndivee. If more than one event are scheduled to execute at the
same time, their execution is performed on the first schedulérst dispatched manner. Simultaneous events are not re-
ordered anymore by schedulers (as it was in earlier versamd all schedulers should yeild the same order of dispagchi
given the same input.

No partial execution of events or pre-emption is supported.

An evenigenerally comprises a “firing time” and a handler functioheBctual definition of an event is found ingscheduler.h:

class Event {

public:
Event * next_; / * event listx /
Handler * handler_; /= handler to call when event ready
double time_; / = time at which event is ready/
int uid_; [* unique ID*/
Event() : time_(0), uid_(0) {}

¥

/

*
* The base class for all event handlers. When an event'’s stgtbdu
* time arrives, it is passed to handle which must consume it.

* |.e., if it needs to be freed it, it must be freed by the handler.

* |
class Handler {
public:
virtual void handle(Event * event);
¥

Two types of objects are derived from the bakess Event : packets and “at-events”. Packets are described in datail i
the next chapter (Chapter 12.2.1). An at-event is a tcl mhoeexecution scheduled to occur at a particular time. iBhis
frequently used in simulation scripts. A simple example @it is used is as follows:

set ns_ [new Simulator]
$ns_ use-scheduler Heap
$ns_ at 300.5 "$self complete_sim"

This tcl code fragment first creates a simulation object ttieanges the default scheduler implementation to be hasgdb
(see below), and finally schedules the funci&self complete_sim to be executed at time 300.5 (seconds)(Note that
this particular code fragment expects to be encapsulatad object instance procedure, where the appropriate refeite
$self is correctly defined.). At-events are implemented as eweghtse the handler is effectively an execution of the tcl
interpreter.

4.2.1 The List Scheduler

The list schedulerdlass Scheduler/List) implements the scheduler using a simple linked-list $tmgc The list is
kept in time-order (earliest to latest), so event inseriod deletion require scanning the list to find the appropsitry.
Choosing the next event for execution requires trimminditiseentry off the head of the list. This implementation mrees
event execution in a FIFO manner for simultaneous events.

39

4.2.2 the heap scheduler

The heap schedulecléss Scheduler/Heap) implements the scheduler using a heap structure. Thistatelis su-
perior to the list structure for a large number of events nasiition and deletion times are @(log n) for n events. This
implementation imsv2 is borrowed from the MaRS-2.0 simulator [1]; it is belidwbat MaRS itself borrowed the code from
NetSim [14], although this lineage has not been completetified.

4.2.3 The Calendar Queue Scheduler

The calendar queue schedulelags Scheduler/Calendar) uses a data structure analogous to a one-year desk cal-
endar, in which events on the same month/day of multiplesyean be recorded in one day. It is formally described in [6],
and informally described in Jain (p. 410) [15]. The impletation of Calendar queues imsv2 was contributed by David
Wetherall (presently at MIT/LCS).

The calendar queue scheduler sine@2.33 is improved by the following three algorithms:

e A heuristic improvement that changes the linear searcltiiine in enqueue operations. The original implementation
searches the events in a bucketimonological orderto find the in-order spot for the event that is being inserfeue
new implementation searches the buckeeiwerse chronological orddsecause the event being inserted is usually later
than most of the events that are already in the bucket.

e A new bucket width estimation that uses the average intefldéqueued evenés the estimation of bucket width. It is
stated in [6] that the optimal bucket width should be #werage inverval of all events in the futur&he original
implementation uses the average intervalfutfire events currently in the most crowded bucketthe estimation.
This estimation is unstable because it is very likely thahynture events will be inserted into the bucket after this
estimation, significantly changing the averaged eventvatén the bucket. The new implementation uses the observed
event interval in the past, which will not change, to estirthe event interval in future.

¢ SNOOPy Calendar Queue: a Calendar queue variant that dgalyrtunes the bucket width according to the cost
trade-off between enqueue operation and dequeue operdi@nSNOOPY queue improvement is described in [30].
In this implementation, there is one tcl parametdjust_new_width_interval_ specifying the interval with
which the SNOOPy queue should re-calculate the bucket wiB#tting this parameter to 0 turns off the SNOOPy
queue algorithm and degrades the scheduler back to thealrigalendar Queue. In general, normal simulation users
are not expected to change this parameter.

The details of these improvements are described in [33].

The implementation of these three improvements was canétibby Xiaoliang (David) Wei at Caltech/NetLab.

4.2.4 The Real-Time Scheduler

The real-time scheduleclass Scheduler/RealTime) attempts to synchronize the execution of events with tiead-

It is currently implemented as a subclass of the list schexdurhe real-time capability in ns is still under developiten
but is used to introduce ams simulated network into a real-world topology to experimetith easily-configured network
topologies, cross-traffic, etc. This only works for relativslow network traffic data rates, as the simulator musttibe &
keep pace with the real-world packet arrival rate, and §glsronization is not presently enforced.

40

4.2.5 Precision of the scheduler clock used in ns

Precision of the scheduler clock can be defined as the smtiltessscale of the simulator that can be correctly repregsen
The clock variable for ns is represented by a double. As pelERE std for floating numbers, a double, consisting of 6g bit
must allocate the following bits between its sign, exporernt mantissa fields.

sign exponent mantissa
1 bit 11 bits 52 bits

Any floating number can be represented in the fod ") where X is the mantissa and n is the exponent. Thus the pyacis
of timeclock in ns can be defined as/@(52)). As simulation runs for longer times the number of remairbits to represent
the time educes thus reducing the accuracy. Given 52 bitewsafely say time upto arour(40)) can be represented with
considerable accuracy. Anything greater than that mighbawery accurate as you have remaining 12 bits to represent t
time change. Howeve(40)) is a very large number and we donot anticipate any problemarding precision of time in ns.

4.3 Other Methods

TheSimulator class provides a number of methods used to set up the sionuldtiney generally fall into three categories:
methods to create and manage the topology (which in turnigtsref managing the nodes (Chapter 5) and managing the links
(Chapter 6)), methods to perform tracing (Chapter 26), ahpdr functions to deal with the scheduler. The following igst

of the non-topology related simulator methods:

Simulator instproc now ;# return scheduler’s notion of current time
Simulator instproc at args # schedule execution of code at specified time
Simulator instproc cancel args # cancel event
Simulator instproc run args # start scheduler
Simulator instproc halt # stop (pause) the scheduler
Simulator instproc flush-trace ;# flush all trace object write buffers
Simulator instproc create-trace type files src dst H create trace object
Simulator instproc create_packetformat # set up the simulator’s packet format

41

4.4 Commands at a glance

Synopsis:

ns <otclfile> <arg> <arg>..

Description:

Basic command to run a simulation script in ns.

The simulator (ns) is invoked via the ns interpreter, an exte
vanilla otclsh command shell. A simulation is defined by a OT

(file). Several examples of OTcl scripts can be found under
directory.

The following is a list of simulator commands commonly used i
scripts:
set ns_ [new Simulator]

This command creates an instance of the simulator object.

set now [$ns_ now]

The scheduler keeps track of time in a simulation. This retur
notion of current time.

$ns_ halt

This stops or pauses the scheduler.

$ns_ run

This starts the scheduler.

$ns_ at <time> <event>

This schedules an <event> (which is normally a piece of code)
at the specified <time>.

e.g $ns_ at $opt(stop) "puts NS EXITING..” ; $ns_ halt"
or, $ns_ at 10.0 "$ftp start"

42

nsion of the
cl script
ns/tcl/ex

n simulation

ns scheduler’'s

to be executed

$ns_ cancel <event>

Cancels the event. In effect, event is removed from schedule
ready to run events.

$ns_ create-trace <type> <file> <src> <dst> <optional arg:
This creates a trace-object of type <type> between <src> and
and attaches trace-object to <file> for writing trace-outp

as "nam", this creates nam tracefiles; otherwise if op is not
tracefiles are created on default.

$ns_ flush-trace

Flushes all trace object write buffers.

$ns_ gen-map

This dumps information like nodes, node components, links e
given simulation. This may be broken for some scenarios (lik
$ns_ at-now <args>

This is in effect like command "$ns_ at $now $args". Note that
may not work because of tcl's string number resolution.

These are additional simulator (internal) helper function

for developing/changing the ns core code) :

$ns_ use-scheduler <type>

Used to specify the type of scheduler to be used for simulatio
types of scheduler available are List, Calendar, Heap and Re
Calendar is used as default.

$ns_ after <delay> <event>

Scheduling an <event> to be executed after the lapse of time <

$ns_ clearMemTrace

Used for memory debugging purposes.

$ns_ is-started

This returns true if simulator has started to run and false if

43

r's list of

op>

<dst> objects
uts. If op is defined
defined, ns

tc created for a
e wireless).

this function

s (normally used

n. The different

alTime. Currently

delay>.

not.

$ns_ dumpqg

Command for dumping events queued in scheduler while schedu ler is halted.

$ns_ create_packetformat

This sets up simulator's packet format.

44

Chapter 5

Nodes and Packet Forwarding

This chapter describes one aspect of creating a topology iine., creating the nodes. In the next chapter (Chapter 6), we
will describe second aspect of creating the topolagy,connecting the nodes to form links.

Recall that each simulation requires a single instance etlidss Simulator to control and operate that simulation.
The class provides instance procedures to create and mereaggpology, and internally stores references to eachexiém
of the topology. We begin by describing the procedures inctags Simulator (Section 5.1). We then describe the instanc
procedures in the class Node (Section 5.2) to access andteerindividual nodes. We conclude with detailed desorist

of the Classifier (Section 5.4) from which the more compledaobjects are formed.

The procedures and functions described in this chapteredound in -ngtcl/lib/ns-lib.tcl, ~ngtcl/lib/ns-node.tcl,
~ngtcl/lib/ns-rtmodule.tcl, ngrtmodule.{cc,h}, nclassifier.{cc, h}, nJclassifier-addr.cc,rgclassifier-mcast.cc,ndclassifier-
mpath.cc, and, rgreplicator.cc.

5.1 Node Basics

The basic primitive for creating a node is

set ns [new Simulator]
$ns node

The instance procedurede constructs a node out of more simple classifier objects (@eét4). The Node itself is a
standalone class in OTcl. However, most of the componenteeofhiode are themselves TclObjects. The typical struc-
ture of a (unicast) node is as shown in Figure 5.1. This simplécture consists of two TclObjects: an address classifer
(classifer_) and a port classifierdfnux_). The function of these classifiers is to distribute incognpackets to the
correct agent or outgoing link.

All nodes contain at least the following components:
e an address dd_ , monotonically increasing by 1 (from initial value 0) acsdbe simulation namespace as nodes are
created,

e alist of neighborsrfeighbor_),

45

Port
Classifier

|
!
!
! dmux_ @
!
!
!

agents
Addr g -
Classifier
Node entry O
entry
classifier_

Figure 5.1: Structure of a Unicast Node. Notice that ents/simply a label variable instead of a real object, e.g., the
classifier_.

e alist of agentsdgent_),
e anode type identifiempdetype_), and

e arouting module (described in Section 5.5 below)

By default, nodes imsare constructed for unicast simulations. In order to enathliticast simulation, the simulation should
be created with an option “-multicast on”, e.g.:

set ns [new Simulator -multicast on]

The internal structure of a typical multicast node is showRigure 5.2.
When a simulation uses multicast routing, the highest hihefaddress indicates whether the particular address istaast

address or an unicast address. If the bit is 0, the addressseyis a unicast address, else the address representicashul
address.

46

IMULTICAST dmux @
classifier
agents_.
<S1,G1>

Replicators

!
!
!
!
!
I
Node entry
(-
entry
switch

Multicast
Classifier

<§2,G2>

multiclassifier

Figure 5.2: Internal Structure of a Multicast Node.

5.2 Node Methods: Configuring the Node

Procedures to configure an individual node can be classifted i
— Control functions
— Address and Port number management, unicast routingifunsct
— Agent management

— Adding neighbors

We describe each of the functions in the following paragsaph

Control functions

1. $node entry returns the entry point for a node. This is the first elemerittwivill handle packets arriving at that
node.

47

The Node instance variablentry _ , stores the reference this element. For unicast nodesstiie address classifier
that looks at the higher bits of the destination address. ifi$tance variable;lassifier_ contains the reference
to this classifier. However, for multicast nodes, the entiinpis theswitch_ which looks at the first bit to decide
whether it should forward the packet to the unicast clagssiethe multicast classifier as appropriate.

2. $node reset will reset all agents at the node.

Address and Port number management The procedur&node id returns the node number of the node. This number
is automatically incremented and assigned to each nodesati@n by the class Simulator methd@hs node .The class
Simulator also stores an instance variable airBipde_, indexed by the node id, and contains a reference to the nitle w
that id.

The procedur&node agent (port) returns the handle of the agent at the specified port. If nateagehe specified port
number is available, the procedure returns the null string.

The procedurealloc-port returns the next available port number. It uses an instaadable,np_, to track the next
unallocated port number.

The proceduresadd-route andadd-routes , are used by unicast routing (Chapter 30) to add routes talptgpthe
classifier_ The usage syntax i$node add-route (destination id } (TclObject). TclObject is the
entry ofdmux_, the port demultiplexer at the node, if the destination ithessame as this node’s id, it is often the head of a
link to send packets for that destination to, but could alsdhe the entry for other classifiers or types of classifiers.

$node add-routes (destination id) (TclObjects) is used to add multiple routes to the same destination that
must be used simultaneously in round robin manner to spreatdandwidth used to reach that destination across all links
equally. Itis used only if the instance varialheiltiPath_ is setto 1, and detailed dynamic routing strategies ardétef
and requires the use of a multiPath classifier. We describarthlementation of the multiPath classifier later in thiajter
(Section 5.4); however, we defer the discussion of multipatiting (Chapter 30) to the chapter on unicast routing.

The dual ofadd-routes {}is delete-routes {}. It takes the id, a list ofTclObjects , and a reference to the simula-
tor'snullagent . It removes the TclObjects in the list from the installedtesin the multipath classifier. If the route entry
in the classifier does not point to a multipath classifierrtheéine simply clears the entry frootassifier_ , and installs
thenullagent in its place.

Detailed dynamic routing also uses two additional methdbs:instance proceduisit-routing {} sets the instance
variablemultiPath_ to be equal to the class variable of the same name. It alsoadeference to the route controller
object at that node in the instance variabt€@bject . The proceduretObject? {} returns the handle for the route
object at the node.

Finally, the procedurentf-changed {} is invoked by the network dynamics code if a link incident the node changes
state. Additional details on how this procedure is used mrudsed later in the chapter on network dynamics (Chagjer 3

Agent management Given an(agen}, the procedurattach {} will add the agent to its list ofagents_ , assign a port
number the agent and set its source address, set the tatbetagent to be its.e., the node’sentry {}, and add a pointer
to the port demultiplexer at the noddnfux_) to the agent at the corresponding slot in timeux__ classifier.

Converselydetach {}will remove the agent fromagents_ , and point the agent’s target, and the entry in the rbdax_
to nullagent

li.e, an instance variable of a class that is also an array variabl

48

Tracking Neighbors Each node keeps a list of its adjacent neighbors in its iestaariableneighbor_ . The procedure
add-neighbor {} adds a neighbor to the list. The procedureighbors {} returns this list.

5.3 Node Configuration Interface

NOTE: This API, especially its internal implementation whichngssy at this point, is still a moving target. It may undergo
significant changes in the near future. However, we will dotmst to maintain the same interface as described in thgteha
In addition, this API currently does not cover all existingdes in the old format, namely, nodes built using inherigaand
parts of mobile IP. It is principally oriented towards wiges and satellite simulation. [Sep 15, 2000; updated JubE] 20

Simulator::node-config {} accommodates flexible and modular construction of diigrnode definitions within the
same base Node class. For instance, to create a mobile npdbleaf wireless communication, one no longer needs a
specialized node creation command, edsgv-create-mobile-node {}; instead, one changes default configuration

parameters, such as

$ns node-config -adhocRouting dsdv

before actually creating the node with the comma®igs node . Together with routing modules, this allows one to com-
bine “arbitrary” routing functionalities within a singleode without resorting to multiple inheritance and othercfaabject
gimmicks. We will describe this in more detail in Section.5The functions and procedures relevant to the new node APIs
may be found in adtcl/lib/ns-node.tcl.

The node configuration interface consists of two parts. Tis¢ fiart deals with node configuration, while the second part
actually creates nodes of the specified type. We have alsgsstythe latter in Section 5.1, in this section we will déscthe
configuration part.

Node configuration essentially consists of defining theedéfht node characteristics before creating them. They masist

of the type of addressing structure used in the simulatiefipohg the network components for mobilenodes, turningion o
off the trace options at Agent/Router/MAC levels, selegtine type of adhoc routing protocol for wireless nodes omitegi
their energy model.

As an example, node-configuration for a wireless, mobileertbdt runs AODV as its adhoc routing protocol in a hierarahic
topology would be as shown below. We decide to turn tracingtdhe agent and router level only. Also we assume a topology
has been instantiated with "set topo [new Topography]". fidwe-config command would look like the following:

$ns_ node-config -addressType hierarchical \
-adhocRouting AODV \
-llType LL \
-macType Mac/802_11 \
-ifgType Queue/DropTail/PriQueue \
-ifgLen 50 \
-antType Antenna/OmniAntenna \
-propType Propagation/TwoRayGround \
-phyType Phy/WirelessPhy \
-topologylnstance $topo \
-channel Channel/WirelessChannel \

-agentTrace ON \
-routerTrace ON \
-macTrace OFF \

-movementTrace OFF

49

The default values for all the above options are NULL excagtressingType whose default value is flat. The option
-reset can be used to reset all node-config parameters to theirltedue.

Note that the config command can be broken down into sepanatelike

$ns_ node-config -addressingType hier
$ns_ node-config -macTrace ON

The options that need to be changed may only be called. Fonmeaafter configuring for AODV mobilenodes as shown
above (and after creating AODV mobilenodes), we may condidar AODV base-station nodes in the following way:

$ns_ node-config -wiredRouting ON

While all other features for base-station nodes and mobies are same, the base-station nodes are capable of witéd)ro
while mobilenodes are not. In this way we can change nodégrgation only when it is required.

All node instances created after a given node-configurattommand will have the same property unless a part or all of the

node-config command is executed with different parametieiega And all parameter values remain unchanged unless they
are expicitly changed. So after creation of the AODV basdiest and mobilenodes, if we want to create simple nodes, we

will use the following node-configuration command:

$ns_ node-config -reset

This will set all parameter values to their default settirfgjah basically defines configuration of a simple node.

Currently, this type of node configuration is oriented tastgawireless and satellite nodes. Table 5.1 lists the aveila-
tions for these kinds of nodes. The example scripigtel/ex/simple-wireless.tcl andngitcl/ex/sat-mixed.tcl provide usage
examples.

5.4 The Classifier

The function of a node when it receives a packet is to exantiagacket’s fields, usually its destination address, and on
occasion, its source address. It should then map the vatuas butgoing interface object that is the next downstream
recipient of this packet.

In ns, this task is performed by a simpitassifierobject. Multiple classifier objects, each looking at a sfiegiortion of the
packet forward the packet through the node. A nodesinses many different types of classifiers for different psgso This
section describes some of the more common, or simpler jfiassbjects inns

We begin with a description of the base class in this sectibhe next subsections describe the address classifier (Sec-
tion 5.4.1), the multicast classifier (Section 5.4.2), thdtipath classifier (Section 5.4.3), the hash classifiec(ie 5.4.4),
and finally, the replicator (Section 5.4.5).

A classifier provides a way to match a packet against somedbgriteria and retrieve a reference to another simulation
object based on the match results. Each classifier contaaisdeaof simulation objects indexed Blot number The job of

a classifier is to determine the slot number associated witceived packet and forward that packet to the object reéec

by that particular slot. The C+elass Classifier (defined in ndclassifier.h) provides a base class from which other
classifiers are derived.

50

option available values default
general
addressType flat, hierarchical flat
MPLS ON, OFF OFF
both satellite- and wireless-oriented

wiredRouting ON, OFF OFF
IIType LL, LL/Sat
macType Mac/802_11, Mac/Csma/Ca, Mac/Sat,

Mac/Sat/UnslottedAloha, Mac/Tdma
ifgType Queue/DropTail, Queue/DropTail/PriQueue
phyType Phy/WirelessPhy, Phy/Sat

wireless-oriented

adhocRouting DIFFUSION/RATE, DIFFUSION/PROB, DSDV,

DSR, FLOODING, OMNIMCAST, AODV, TORA, M-DART

PUMA
propType Propagation/TwoRayGround, Propagation/Shadowing
proplnstance Propagation/TwoRayGround, Propagation/Shadowing
antType Antenna/OmniAntenna
channel Channel/WirelessChannel, Channel/Sat
topolnstance <topology file>
mobilelP ON, OFF OFF
energyModel EnergyModel
initialEnergy <value in Joules>
rxPower <value in W>
txPower <value in W>
idlePower <value in W>
agentTrace ON, OFF OFF
routerTrace ON, OFF OFF
macTrace ON, OFF OFF
movementTrace | ON, OFF OFF
errProc UniformErrorProc
FECProc ? ?
toraDebug ON, OFF OFF

satellite-oriented

satNodeType polar, geo, terminal, geo-repeater
downlinkBW <bandwidth value, e.g. "2Mb">

class Classifier :

Table 5.1: Available options for node configuration (se8ib¢hs-lib.tcl).

protected:

public NsObject {

~Classifier();
void recv(Packet * Handler = h = 0);
Classifier();
void install(int slot, NsObject *);

void clear(int slot);

virtual int command(int argc, const char
virtual int classify(Packet
void alloc(int);

NsObject **
int nslot_;
int maxslot_;

xconst) = O;

slot_; /

51

*Cconst * argv);

* table that maps slot number to a NsObje¢t

Theclassify () method is pure virtual, indicating the claStassifier is to be used only as a base class. @hec ()
method dynamically allocates enough space in the tableltbthe specified number of slots. Thestall () andclear ()
methods add or remove objects from the table. dw () method and the OTcl interface are implemented as follows i
~ngclassifier.cc:

| *
* objects only ever see "packet" events, which come either
* from an incoming link or a local agent (i.e., packet source).

* |
void Classifier::recv(Packet * p, Handler =)
{
NsObject * node;
int cl = classify(p);
if (c] < 0 || cl >= nslot_ || (hode = slot_[cl]) == 0) {
Tcl:iinstance().evalf("%s no-slot %d", name(), cl);
Packet::free(p);
return;
node->recv(p);
}
int Classifier::command(int argc, const char *const * argv)
{
Tcl& tcl = Tcl::instance();
if (argc == 3) {
| *
* $classifier clear $slot
*/

if (strcmp(argv[l], "clear") == 0) {
int slot = atoi(argv[2]);
clear(slot);
return (TCL_OK);

}

| *

* $classifier installNext $node

*/

if (strcmp(argv[l], "installNext") == 0) {
int slot = maxslot_ + 1;
NsObject * node = (NsObject =)TclObject::lookup(argv[2]);
install(slot, node);
tcl.resultf("%u”, slot);
return TCL_OK;

}
if (strcmp(argv[l], "slot") == 0) {
int slot = atoi(argv[2]);
if ((slot >= 0) || (slot < nslot)) {
tcl.resultf("%s", slot_[slot]->name());
return TCL_OK;
}
tcl.resultf("Classifier: no object at slot %d", slot);
return (TCL_ERROR);

52

}
} else if (argc == 4) {
| *
» $classifier install $slot $node
*/
if (strcmp(argv[l], "install") == 0) {
int slot = atoi(argv[2]);
NsObject * node = (NsObject =*)TclObject::lookup(argv[3]);
install(slot, node);
return (TCL_OK);
}
}

return (NsObject::command(argc, argv));

When a classifierecv ()’s a packet, it hands it to thelassify () method. This is defined differently in each type of
classifier derived from the base class. The usual formatithfeclassify () method to determine and return a slot index
into the table of slots. If the index is valid, and points toadid TclObject, the classifier will hand the packet to thajeab
using that object'secv () method. If the index is not valid, the classifier will inkhe instance procedune-slot {} to
attempt to populate the table correctly. However, in theelidassClassifier::no-slot {} prints and error message
and terminates execution.

Thecommand) method provides the following instproc-likes to the imieter:

e clear {(slot} clears the entryin a particular slot.
e installNext { (object} installs the object in the next available slot, and retutresslot number.

Note that this instproc-like is overloaded by an instanceedure of the same name that stores a reference to the object
stored. This then helps quick query of the objects instafidte classifier from OTcl.

e slot {(index} returns the object stored in the specified slot.
e install {(index), (objec}} installs the specifiedobject at the slot(indeX.

Note that this instproc-like too is overloaded by an instapmcedure of the same name that stores a reference to the
object stored. This is also to quickly query of the objectdatied in the classifier from OTcl.

5.4.1 Address Classifiers

An address classifier is used in supporting unicast packetafoling. It applies a bitwise shift and mask operation to a
packet’s destination address to produce a slot number. Bhegmber is returned from thelassify () method. The
class AddressClassifier (defined in ndclassifier-addr.cc) ide defined as follows:

class AddressClassifier : public Classifier {

public:

AddressClassifier() : mask_(~0), shift_(0) {
bind("mask_", (int *)&mask);
bind("shift_", &shift_);

}

protected:
int classify(Packet xconst p) {

IPHeader +*h = IPHeader::access(p->bits());
return ((h->dst() >> shift) & mask);

53

}
nsaddr_t mask_;
int shift_;

The class imposes no direct semantic meaning on a packetisalion address field. Rather, it returns some numbertsf bi
from the packet'sist field as the slot number used in tdassifier::recv () method. Themask andshift_
values are set through OTcl.

5.4.2 Multicast Classifiers

The multicast classifier classifies packets according th botirce and destination (group) addresses. It maintaicisaéngd
hash) table mapping source/group pairs to slot numbers.nVdhmacket arrives containing a source/group unknown to the
classifier, it invokes an Otcl procedux®de::new-group {}to add an entry to its table. This OTcl procedure may use the
methodset-hash to add new (source, group, slot) 3-tuples to the classifiabge. The multicast classifier is defined in
~ngclassifier-mcast.cc as follows:

static class MCastClassifierClass : public TclClass {
public:
MCastClassifierClass() : TclClass("Classifier/Multica st) {}
TclObject * create(int argc, const char *const * argv) {
return (new MCastClassifier());

} class_mcast_classifier;

class MCastClassifier : public Classifier {

public:
MCastClassifier();
~MCastClassifier();
protected:
int command(int argc, const char *const * argv);
int classify(Packet *const p);
int findslot();
void set_hash(nsaddr_t src, nsaddr_t dst, int slot);
int hash(nsaddr_t src, nsaddr_t dst) const {
u_int32_t s = src " dst;
s A= s >> 16;
s A= s >> §;
return (s & Oxff);
}
struct hashnode {
int slot;
nsaddr_t src;
nsaddr_t dst;
hashnode * next;
%
hashnode * ht [256];
const hashnode =+ lookup(nsaddr_t src, nsaddr_t dst) const;
¥
int MCastClassifier::classify(Packet xconst pkt)

54

IPHeader =*h = IPHeader::access(pkt->bits());
nsaddr_t src = h->src() >> 8; / * XXX/
nsaddr_t dst = h->dst();
const hashnode =* p = lookup(src, dst);
it (p ==0) {
| *
+ Didn’'t find an entry.
* Call tcl exactly once to install one.
+ |If tcl doesn't come through then fail.

*/
Tcl::instance().evalf("%s new-group %u %u", name(), Src, dst);
p = lookup(src, dst);
it (p == 0)
return (-1);
}
return (p->slot);
}
The class MCastClassifier mplements a chained hash table and applies a hash functibotbrthe packet source

and destination addresses. The hash function returnsahewshber to index thslot_ table in the underlying object. A
hash miss implies packet delivery to a previously-unknovaug; OTcl is called to handle the situation. The OTcl code is
expected to insert an appropriate entry into the hash table.

5.4.3 MultiPath Classifier

This object is devised to support equal cost multipath fodivey, where the node has multiple equal cost routes to time sa
destination, and would like to use all of them simultanepudlhis object does not look at any field in the packet. With
every succeeding packet, it simply returns the next filletlisl round robin fashion. The definitions for this classife in
~ng'classifier-mpath.cc, and are shown below:

class MultiPathForwarder : public Classifier {

public:
MultiPathForwarder() : ns_(0), Classifier() {}
virtual int classify(Packet * const) {
int cl;
int fail = ns_;
do {
cl = ns_++;
ns_ %= (maxslot_ + 1);
} while (slot_[cl] == 0 && ns_ != fail);
return cl;
_ }
private:
int ns_; / * next slot to be used. Probably a misnomer?
h

55

5.4.4 Hash Classifier

This object is used to classify a packet as a member of a pkatitow. As their name indicates, hash classifiers use a
hash table internally to assign packets to flows. These tshge used where flow-level information is required (e.g. in
flow-specific queuing disciplines and statistics collecfioSeveral “flow granularities” are available. In partiaylpack-

ets may be assigned to flows based on flow ID, destination asidseurce/destination addresses, or the combination of
source/destination addresses plus flow ID. The fields aeddssthe hash classifier are limited to fpe header:src(),

dst(), flowid() (seeip.h).

The hash classifier is created with an integer argumentfypegithe initial size of its hash table. The current hasHeab
size may be subsequently altered with thsize method (see below). When created, the instance varighiis and
mask__ are initialized with the simulator’s curreNtbdeShift andNodeMask values, respectively. These values are retrieved
from theAddrParams object when the hash classifier is instantiated. The hashifier will fail to operate properly if the
AddrParams structure is not initialized. The following constructorg aised for the various hash classifiers:

Classifier/Hash/SrcDest
Classifier/Hash/Dest
Classifier/Hash/Fid
Classifier/Hash/SrcDestFid

The hash classifier receives packets, classifies them aoegdadtheir flow criteria, and retrieves the classiféstindicating

the next node that should receive the packet. In severalroistances with hash classifiers, most packets should beiaesb
with a single slot, while only a few flows should be directesiegthere. The hash classifier includededault_ instance
variable indicating which slot is to be used for packets tlwabot match any of the per-flow criteria. Tefault may be

set optionally.

The methods for a hash classifier are as follows:

$hashcl set-hash buck src dst fid slot
$hashcl lookup buck src dst fid
$hashcl del-hash src dst fid

$hashcl resize nbuck

The set-hash () method inserts a new entry into the hash table within thehteassifier. Théuck argument specifies
the hash table bucket number to use for the insertion of titisz.e When the bucket number is not knowbyck may be
specified asuto . Thesrc, dst andfid arguments specify the IP source, destination, and flow |Dsetmatched for
flow classification. Fields not used by a particular class{feg. specifyingrc for a flow-id classifier) is ignored. Thsdot
argument indicates the index into the underlying slot tabthe baseClassifier object from which the hash classifier is
derived. Thdookup function returns the name of the object associated with iendpuck/src/dst/fid tuple. The
buck argument may bauto , as forset-hash . Thedel-hash function removes the specified entry from the hash table.
Currently, this is done by simply marking the entry as inagtso it is possible to populate the hash table with unusegken
Theresize function resizes the hash table to include the number ofdtisdpecified by the argumanttuck .

Provided no default is defined, a hash classifier will perfarcall into OTcl when it receives a packet which matches no flow
criteria. The call takes the following form:

$obj unknown-flow src dst flowid buck

Thus, when a packet matching no flow criteria is received ntiethodunknown-flow of the instantiated hash classifier
object is invoked with the source, destination, and flow iti§érom the packet. In addition, theick field indicates the hash

56

bucket which should contain this flow if it were inserted gséet-hash . This arrangement avoids another hash lookup
when performing insertions into the classifier when the btickalready known.

5.4.5 Replicator

The replicator is different from the other classifiers weédescribed earlier, in that it does not use the classifytionc
Rather, it simply uses the classifier as a table efots; it overloads theecv () method to produce copies of a packet, that
are delivered to alh objects referenced in the table.

To support multicast packet forwarding, a classifier reéiogia multicast packet from sour@edestined for groug: computes

a hash functioiu(S, G) giving a “slot number” in the classifier’s object table. In iticast delivery, the packet must be copied
once for each link leading to nodes subscribe@tminus one. Production of additional copies of the packeerfgumed by
aReplicator class, defined ineplicator.cc

A replicator is not really a packet classifier but

we simply find convenience in leveraging its slot table.
(this object used to implement fan-out on a multicast
* router as well as broadcast LANS)

* X * X

* |
class Replicator : public Classifier {
public:
Replicator();
void recv(Packet * Handler = h = 0);
virtual int classify(Packet * const) {};
protected:
int ignore_;
X
void Replicator::recv(Packet * p, Handler «)
{
IPHeader +iph = IPHeader::access(p->bits());
if (maxslot_ < 0) {
if (lignore_)
Tcl::iinstance().evalf("%s drop %u %u", name(),
iph->src(), iph->dst());
Packet::free(p);
return;
}
for (int i = 0; i < maxslot_; ++i) {
NsObject * o = slot_[i];
if (0 = 0)
o->recv(p->copy());
}
[+ we know that maxslot is non-nu#/
slot_[maxslot_]->recv(p);
}

As we can see from the code, this class does not really ofgsadkets. Rather, it replicates a packet, one for each antry
its table, and delivers the copies to each of the nodes listdte table. The last entry in the table gets the “originaltket.
Since theclassify () method is pure virtual in the base class, the replicatéinds an emptglassify () method.

57

5.5 Routing Module and Classifier Organization

As we have seen, msnode is essentially a collection of classifiers. The sintptesle (unicast) contains only one address
classifier and one port classifier, as shown in Figure 5.1.A/ime extends the functionality of the node, more classiéiezs
added into the base node, for instance, the multicast naniersim Figure 5.2. As more function blocks is added, and e&ch o
these blocks requires its own classifier(s), it becomes itapbfor the node to provideaniforminterface to organize these
classifiers and to bridge these classifiers to the route ctatipn blocks.

The classical method to handle this case is through classitahce. For instance, if one wants a node that supponmarbla-

cal routing, one simply derive a Node/Hier from the base ratteoverride the classifier setup methods to insert hieiaktch
classifiers. This method works well when the new functiorckéoare independent and cannot be “arbitrarily” mixed. For
instance, both hierarchical routing and ad hoc routing kie& bwn set of classifiers. Inheritance would require thathave
Node/Hier that supports the former, and Node/Mobile forl#teer. This becomes slightly problematic when one wantadn
hoc routing node that supports hierarchical routing. 18 #ifinple case one may use multiple inheritance to solve tigem,

but this quickly becomes infeasible as the number of sucttiom blocks increases.

The only method to solve this problem is object compositibime base node needs to define a set of interfaces for classifier
access and organization. These interfaces should

¢ allow individual routing modules that implement their owassifiers to insert their classifiers into the node;
o allow route computation blocks to populate routes to cfessiin all routing modules that need this information,

e provide a single point of management for existing routingioies.

In addition, we should also define a uniform interface fortimymodules to connect to the node interfaces, so as togeovi
a systematic approach to extending node functionalityhiigection we will describe the design of routing modulewel
as that of the corresponding node interfaces.

5.5.1 Routing Module
In general, every routing implementationns consists of three function blocks:

e Routing agenéxchanges routing packet with neighbors,

e Route logiauses the information gathered by routing agents (or theadtopology database in the case of static routing)
to perform the actual route computation,

o Classifierssit inside a Node. They use the computed routing table taparpacket forwarding.

Notice that when implementing a new routing protocol, onesdoot necessarily implement all of these three blocks. For
instance, when one implements a link state routing protaca simply implement a routing agent that exchanges irditiom

in the link state manner, and a route logic that does Dijksirdhe resulting topology database. It can then use the same
classifiers as other unicast routing protocols.

When a new routing protocol implementation includes moeatbne function blocks, especially when it contains its own
classifier, it is desirable to have another object, which alearouting modulethat manages all these function blocks and to
interface with node to organize its classifiers. Figure Bids functional relation among these objects. Notice thating
modules may have direct relationship with route computaiocks, i.e., route logic and/or routing agents. Howexamite
computation MAY not install their routes directly throughr@uting module, because there may exists other modules that

58

Routing

Modules
RtMgduIe/Base <«———| Base =J P Nodfa J
routing add-route routing add-route < Route
J i > 3 D Computation
delete-route Hier > delete-route P
transport tach transport tach) User
attac Mcast >le—> atac < Simulation
detach detach
Management Classifier
gemel MPLS > !
register insert-entry
unregister install-entry
. \ install-demux

Figure 5.3: Interaction among node, routing module, antimguThe dashed line shows the details of one routing module

are interested in learning about the new routes. This is metjairement, however, because it is possible that some rout
computation is specific to one particular routing modulejiigtance, label installation in the MPLS module.

A routing module contains three major functionalities:

1. A routing module initializes its connection to a node tigb register {}, and tears the connection down via
unregister {}. Usually, in register {} a routing module (1) tells the node whether it interestkirowing route
updates and transport agent attachments, and (2) creatdagsifiers and install them in the node (details described
in the next subsection). lanregister {} a routing module does the exact opposite: it deletes itssiffiers and
removes its hooks on routing update in the node.

2. If arouting module is interested in knowing routing upgathe node will inform the module via
RtModule::add-route {dst, target} andRtModule::delete-route {dst, nullagent}.

3. If a routing module is interested in learning about tramspgent attachment and detachment in a node, the node will
inform the module via
RtModule::attach {agent, port} andRtModule::detach {agent, nullagent}.

There are two steps to write your own routing module:

1. You need to declare the C++ part of your routing module (se#rtmodule.{cc,h}). For many modules this only
means to declare a virtual methadme() which returns a string descriptor of the module. Howevey goe free
to implement as much functionality as you like in C++; if nesary you may later move functionality from OTcl into
C++ for better performance.

2. You need to look at the above interfaces implemented it#se routing module (seagtcl/lib/ns-rtmodule.tcl) and
decide which one you'll inherit, which one you'll overridend put them in OTcl interfaces of your own module.

There are several derived routing module examplesnigitel/lib/ns-rtmodule.tcl, which may serve as templatesyour
modules.

Currently, there are six routing modules implementedsn

59

Module Name | Functionality

RtModule/Base | Interface to unicast routing protocols. Provide basic fiomality to add/delete route and
attach/detach agents.

RtModule/Mcast | Interface to multicast routing protocols. Its only purp@sestablishes multicast classifiel
All other multicast functionalities are implemented astfimecs of Node. This should be
converted in the future.

RtModule/Hier | Hierarchical routing. It's a wrapper for managing hieracahclassifiers and route instal
lation. Can be combined with other routing protocols, ead.hoc routing.

RtModule/Manual| Manual routing.
RtModule/VC Uses virtual classifier instead of vanilla classifier.

RtModule/MPLS | Implements MPLS functionality. This is the only existing dude that is completely selft
contained and does not pollute the Node namespace.

Z

Table 5.2: Available routing modules

5.5.2 Node Interface

To connect to the above interfaces of routing module, a nooldges a similar set of interfaces:

e In order to know which module to register during creatior Node class keeps a list of modules as a class variable.
The default value of this list contains only the base routiraglule. The Node class provides the following tprocs
to manipulate this module list:

Node::enable-module {name} If module RtModule/[name] exists, this proc puts [name] into the module
list.

Node::disable-module {name} If [name]is in the module list, remove it from the list

When a node is created, it goes through the module list of tieMlass, creates all modules included in the list, and
register these modules at the node.

After a node is created, one may use the following instprodist modules registered at the node, or to get a handle of
a module with a particular name:

Node::list-modules {} Return alist of the handles (shadow objects) of all registd modules.
Node::get-module {name} Return a handle of the registered module whose nanehms the given one. Notice

that any routing module can only have a single instancetesgid at any node.
e To allow routing modules register their interests of rogtipdates, a node object provide the following instprocs:
Node::route-notify {module} Add module into route update notification list.
Node::unreg-route-notify {module} Removemodule from route update notification list.
Similarly, the following instprocs provide hooks on thesatiment of transport agents:
Node::port-notify {module} Add module into agent attachment notification list.
Node::unreg-port-notify {module} Removemodule from agent attachment notification list.
Notice that in all of these instprocs, parameterdule should be a module handle instead of a module name.

o Node provides the following instprocs to manipulate itsradd and port classifiers:

— Node::insert-entry {module, clsfr, hook} inserts classifi@sfr into the entry point of the node. It also
associates the new classifier wittodule so that if this classifier is removed laterpdule will be unregistered.
If hook is specified as a number, the existing classifier will be teskinto slothook of the new classifier. In
this way, one may establish a “chain” of classifiers; see i€igu2 for an exampleNOTE: clsfr needs NOT

60

to be a classifier. In some cases one may want to put an ageaty @tass derived from Connector, at the entry
point of a node. In such cases, one simply suppiieget to parametehook .

— Node::install-entry {module, clisfr, hook} differs fromNode::insert-entry in that it deletes the
existing classifier at the node entry point, unregistersespciated routing module, and installs the new classifier
at that point. Ifhook is given, and the old classifier is connected into a classifiain, it will connect the chain
into slothook of the new classifier. As above,liibok equals taarget , clsfr will be treated as an object
derived from Connector instead of a classifier.

— Node::install-demux {demux, port} places the given classifidemux as the default demultiplexer. If
port is given, it plugs the existing demultiplexer into spairt of the new one. Notice that in either case it does
not delete the existing demultiplexer.

5.6 Commands at a glance

Following is a list of common node commands used in simufesiripts:

$ns_ node [<hier_addr>]

Command to create and return a node instance. If <hier_asldiwen, assign the node address to be <hier_addr>. Nate tha
the latter MUST only be used when hierarchical addressiegébled via eitheset-address-format

hierarchical {} or node-config -addressType hierarchical {}.

$ns_ node-config -<config-parameter> <optional-val>

This command is used to configure nodes. The different cqpdigmeters are addressingType, different type of the mktwo
stack components, whether tracing will be turned on or nobitalP flag is truned or not, energy model is being used or not
etc. An option -reset maybe used to set the node configurativsm default state. The default setting of node-configfin®
values are specified, creates a simple node (base class Witkléjat addressing/routing. For the syntax details see

Section 5.3.

$node id
Returns the id number of the node.

$node node-addr
Returns the address of the node. In case of flat addressegotte address is same as its node-id. In case of hierarchical
addressing, the node address in the form of a string (viA.31).is returned.

$node reset
Resets all agent attached to this node.

$node agent <port_num>
Returns the handle of the agent at the specified port. If notagéound at the given port, a null string is returned.

$node entry
Returns the entry point for the node. This is first object tratdles packet receiving at this node.

$node attach <agent> <optional:port_num>
Attaches the <agent> to this node. Incase no specific porbruia passed, the node allocates a port number and binds the
agent to this port. Thus once the agent is attached, it resgiackets destined for this host (node) and port.

$node detach <agent> <null_agent>

This is the dual of "attach" described above. It detacheagieat from this node and installs a null-agent to the post thi
agent was attached. This is done to handle transit packatatdy be destined to the detached agent. These on-the-fly
packets are then sinked at the null-agent.

61

$node neighbors
This returns the list of neighbors for the node.

$node add-neighbor <neighbor_node>
This is a command to adcheighbor_node> to the list of neighbors maintained by the node.

Following is a list of internal node methods:

$node add-route <destination_id> <target>

This is used in unicast routing to populate the classifiee fHnget is a Tcl object, which may be the entrndafux_ (port
demultiplexer in the node) incase tkdestination_id> is same as this node-id. Otherwise it is usually the headeof th
link for that destination. It could also be the entry for atblassifiers.

$node alloc-port <null_agent>
This returns the next available port number.

$node incr-rtgtable-size
The instance variablgsize is used to keep track of size of routing-table in each nodés ddmmand is used to
increase the routing-table size every time an routingydatadded to the classifiers.

There are other node commands that supports hierarchigiagodetailed dynamic routing, equal cost multipath gt

manual routing, and energy model for mobile nodes. Thesetra methods described earlier can be found in
~ngtcl/lib/ns-node.tcl and r'tcl/lib/ns-mobilenode.tcl.

62

Chapter 6

Links: Simple Links

This is the second aspect of defining the topology. In theipusvchapter (Chapter 5), we had described how to create the
nodes in the topology ins We now describe how to create the links to connect the naas@mplete the topology. In this
chapter, we restrict ourselves to describing the simplatgoipoint links.nssupports a variety of other media, including an
emulation of a multi-access LAN using a mesh of simple lirdesd other true simulation of wireless and broadcast media.
They will be described in a separate chapter. The CBQlinlkeissdd from simple links and is a considerably more complex
form of link that is also not described in this chapter.

We begin by describing the commands to create a link in tluSae As with the node being composed of classifiers, a gmpl
link is built up from a sequence of connectors. We also bridégcribe some of the connectors in a simple link. We then
describe the instance procedures that operate on the saamoponents of defined by some of these connectors (Sectipn 6
We conclude the chapter with a description the connectaabli§Section 6.2), including brief descriptions of the coomm
link connectors.

Theclass Link isastandalone class in OTcl, that provides a few simpleipvies. Theclass SimpleLink provides
the ability to connect two nodes with a point to point limis provides the instance procedwienplex-link {} to form a
unidirectional link from one node to another. The link isletclass SimpleLink. The following describes the syntaxhef t
simplex link:

set ns [new Simulator]
$ns simplex-link (node0) (nodel) (bandwidth) (delay) (queue_type)

The command creates a link frofnode0) to (nodel), with specified(bandwidth) and(delay) characteristics. The
link uses a queue of typglueue_type). The procedure also adds a TTL checker to the link. Five imtgtaariables define
the link:
head Entry point to the link, it points to the first object in thelkin
queue_ Reference to the main queue element of the link. Simple lirdusally
have one queue per link. Other more complex types of links hzae
multiple queue elements in the link.

link_ A reference to the element that actually models the linkeims of the
delay and bandwidth characteristics of the link.
ttl Reference to the element that manipulates the ttl in eveskgia
drophead_ Reference to an object thatis the head of a queue of eleneti{zrbcess
link drops.
In addition, if the simulator instance variabitraceAllFile_ , is defined, the procedure will add trace elements that

63

head _
—><?—>ean_ *lqueue_—* deqT_—"link_ > ttl >

I
| N
I
I drophead » drpT
|
|

|
|
|
|
I
rcvT —|—>'
|
|
|
|
|
|

Figure 6.1: Composite Construction of a Unidirectionalk.in

track when a packet is enqueued and dequeueddieene_ . Furthermore, tracing interposes a drop trace elemenntthafte
drophead_ . The following instance variables track the trace elements

engT_ Reference to the element that traces packets entqtiage_ .

deqT_ Reference to the element that traces packets leayiege .

drpT_ Reference to the element that traces packets droppedjuenne_ .
rcvT_ Reference to the element that traces packets received imgiti@ode.

Note however, that if the user enable tracing multiple timeshe link, these instance variables will only store a rfee to
the last elements inserted.

Other configuration mechanisms that add components to desiing are network interfaces (used in multicast routing),
link dynamics models, and tracing and monitors. We give aftmverview of the related objects at the end of this chapter
(Section 6.2), and discuss their functionality/implenagioh in other chapters.

The instance procedudziplex-link {} constructs a bi-directional link from two simplex links.

6.1 Instance Procedures for Links and SimpleLinks

Link procedures Theclass Link is implemented entirely in Otcl. The OT&impleLink class uses the C++
LinkDelay class to simulate packet delivery delays. The instancespiares in the class Link are:

64

head {}
queue {}
link {3
up{}

down{}

up?{}
all-connectors {3

returns the handle fohead_ .
returns the handle fogueue_ .
returns the handle for the delay elemefitk_

set link status to “up” in thedynamics_ element. Also, writes out a trace line to each file
specified through the procedurace-dynamics {}.

As with up{}, set link status to “down” in thedynamics_ element. Also, writes out a trace
line to each file specified through the procedwaee-dynamics {}.

returns status of the link. Statusis “up” or “down”; statis “up” if link dynamics is not enabled.

Apply specified operation to all connectors on the link.m &xample of such usage ligk
all-connectors reset

cost {} setlink costto value specified.
cost? {} returns the cost of the link. Default cost of link is 1, if st has been specified earlier.
SimpleLink Procedures The Otclclass SimpleLink implements a simple point-to-point link with an associated

queue and deldy It is derived from the base Otcl class Link as follows:

Class SimpleLink -superclass Link

SimpleLink instproc init { src dst bw delay g { litype "DelayL ink" } } {
$self next $src $dst
$self instvar link_ queue_ head_ toNode_ ttl_

set queue_ $q

set link_ [new Delay/Link]
$link_ set bandwidth_ $bw
$link_ set delay $delay

$queue_ target $link
$link_ target [$toNode_ entry]

SR

XXX

put the ttl checker after the delay

so we don’'t have to worry about accounting
for ttl-drops within the trace and/or monitor
fabric

set ttl_ [new TTLChecker]
$ttl_ target [$link_ target]
$link_ target $ttl_

Notice that when &impleLink object is created, ne®elay/Link andTTLChecker objects are also created. Note
also that, th&@ueue object must have already been created.

There are two additional methods implemented (in OTcl) asqgfdhe SimpleLink class:trace andinit-monitor
These functions are described in further detail in the saain tracing (Chapter 26).

1The current version also includes an object to examine theank layer “ttI” field and discard packets if the field reasheero.

65

6.2 Connectors

Connectors, unlink classifiers, only generate data for enipient; either the packet is delivered to theget . neighbor,
or it is sent to halrop-target_

A connector will receive a packet, perform some functiord daliver the packet to its neighbor, or drop the packet. &her
are a number of different types of connectoregnEach connector performs a different function.

networkinterface labels packets with incoming interfadenitifier—it is used by some multicast routing protocolse Th
class variable “Simulator Numberinterfaces_ 1" telisto add these interfaces, and then, it is added
to either end of the simplex link. Multicast routing protée@re discussed in a separate chapter
(Chapter 31).

DynaLink Object that gates traffic depending on whetherittleis up or down. It expects to be at the head of the
link, and is inserted on the link just prior to simulationrstdt’s status_ variable control whether
the link is up or down. The description of how the DynalLinkedijis used is in a separate chapter
(Chapter 32).

DelayLink Object that models the link’s delay and bandwicllaracteristics. If the link is not dynamic, then this
object simply schedules receive events for the downstredgjecbfor each packet it receives at the
appropriate time for that packet. However, if the link is dymic, then it queues the packets internally,
and schedules one receives event for itself for the nextgiablat must be delivered. Thus, if the
link goes down at some point, this objeat&set () method is invoked, and the object will drop all
packets in transit at the instant of link failure. We disctimsspecifics of this class in another chapter
(Chapter 8).

Queues model the output buffers attached to a link in a “nemlter in a network. Ims they are attached to,
and are considered as part of the link. We discuss the defaijjseues and different types of queues
in ndn another chapter (Chapter 7).

TTLChecker will decrement the ttl in each packet that it reee If that ttl then has a positive value, the packet is
forwarded to the next element on the link. In the simple lijNKBLCheckers are automatically added,
and are placed as the last element on the link, between thg didment, and the entry for the next
node.

6.3 Object hierarchy

The base class used to represent links is called Link. Matfardthis class are listed in the next section. Other linleoty
derived from the base class are given as follows:

e SimpleLink Object A SimpleLink object is used to represestraple unidirectional link. There are no state variables
or configuration parameters associated with this objecthbtis for this class arésimplelink enable-mcast
<src> <dst>
This turns on multicast for the link by creating an incomirggwork interface for the destination and adds an outgoing
interface for the source.

$simplelink trace <ns> <file> <optional:op>
Build trace objects for this link and update object linkalj@p is specified as "nam" create nam trace files.

$simplelink nam-trace <ns> <file>
Sets up nam tracing in the link.

$simplelink trace-dynamics <ns> <file> <optional:op>
This sets up tracing specially for dynamic links. <op> akosetting up of nam tracing as well.

66

$simplelink init-monitor <ns> <qtrace> <samplelnterval>
Insert objects that allow us to monitor the queue size oflthkis Return the name of the object that can be queried to
determine the average queue size.

$simplelink attach-monitors <insnoop> <outsnoop> <drops noop> <gmon>
This is similar to init-monitor, but allows for specificati@f more of the items.

$simplelink dynamic
Sets up the dynamic flag for this link.

$simplelink errormodule <args>
Inserts an error module before the queue.

$simpleilnk insert-linkloss <args>
Inserts the error module after the queue.

//Other link objects derived from class SimpleLink are FQi,iCBQLIink and IntServLink.
Configuration parameters for FQLink are:

gqueueManagement_The type of queue management used in the link. Default vallDeaopTail.
No configuration parameters are specified for CBQLink an8éntLink objects.

e DelayLink Object The DelayLink Objects determine the antafrtime required for a packet to traverse a link. This is
defined to be size/bw + delay where size is the packet sizes biweilink bandwidth and delay is the link propagation
delay. There are no methods or state variables associatiethig object.

Configuration Parameters are:

bandwidth_ Link bandwidth in bits per second.
delay_ Link propagation delay in seconds.

6.4 Commands at a glance

Following is a list of common link commands used in simulatieripts:

$ns_ simplex-link <nodel> <node2> <bw> <delay> <qtype> <ar gs>

This command creates an unidirectional link between noddinade2 with specified bandwidth (BW) and delay
characteristics. The link uses a queue type of <gtype> apdraing on the queue type different arguments are passed
through <args>.

$ns_ duplex-link <nodel> <node2> <bw> <delay> <qgtype> <arg s>

This creates a bi-directional link between nodel and no@ik. procedure essentially creates a duplex-link from two
simplex links, one from nodel to node2 and the other from Bdd@odel. The syntax for duplex-link is same as that of
simplex-link described above.

$ns_ duplex-intserv-link <n1> <n2> <bw> <dly> <sched> <sig nal> <adc> <args>

This creates a duplex-link between nl1 and n2 with queue tipeserv, with specified BW and delay. This type of queue
implements a scheduler with two level services prioritye Type of intserv queue is given by <sched>, with admission
control unit type of <adc> and signal module of type <signal>

$ns_ simplex-link-op <nl1> <n2> <op> <args>
This is used to set attributes for a simplex link. The attiésumay be the orientation, color, label, or queue-position

$ns_ duplex-link-op <nl> <n2> <op> <args>
This command is used to set link attributes (like orientatibthe links, color, label, or queue-position) for duplakk.

67

$ns_ link-lossmodel <lossobj> <from> <to>
This function generates losses (using the loss model dtgsdaserted in the link between <from> node and <to> node) in
the link that can be visualized by nam.

$ns_ lossmodel <lossobj> <from> <to>
This is used to insert a loss module in regular links.

Following is a list of internal link-related procedures:

$ns_ register-nam-linkconfig <link>
This is an internal procedure used'l$fink orient" to register/update the order in which links should be cibate
nam.

$ns_ remove-nam-linkconfig <id1> <id2>
This procedure is used to remove any duplicate links (dafgitinks may be created by GT-ITM topology generator).

$link head
Returns the instance varialiiead_ for the link. Thehead_ is the entry pont to the link and it points to the first object in
the link.

$link add-to-head <connector>
This allows the <connector> object to be now pointed byttbad element in the link, i.e, <connector> now becomes the
first object in the link.

$link link
Returns the instance variabiek_ . Thelink_ is the element in the link that actually models the link imtsrof delay
and bandwidth characteristics of the link.

$link queue
Returns the instance varialj@eue_ . queue_ is queue elementin the link. There may be one or more queueseks in
a particular link.

$link cost <c>
This sets a link cost of <c>.

$link cost?
Returns the cost value for the link. Default cost of link isteel.

$link if-label?
Returns the network interfaces associated with the linkr(folticast routing).

$link up
This sets the link status to "up". This command is a part ofvogt dynamics support ins

$link down
Similar to up, this command marks the link status as "down".

$link up?
Returns the link status. The status is always "up" as defélittk dynamics is not enabled.

$link all-connectors op

This command applies the specified operation <op> to all ectams in the link. Like$link all-connectors
reset or$link all-connectors isDynamic

68

$link install-error <errmodel>
This installs an error module after thek_ element.

In addition to the Link and link-related commands listed\adhere are other procedures to support the specific
requirements of different types of links derived from thedalass "Link" like simple-link (SimpleLink), integrateérvice
(IntServLink), class-based queue (CBQLInK), fair queu®l(fhk) and procedures to support multicast routing, sessio,
nam etc. These and the above procedures may be fourgtéfilib(ns-lib.tcl, ns-link.tcl, ns-intserv.tcl, nsamsupp.tcl,
ns-queue.tchngtcl/mcast/(McastMonitor.tcl, ns-mcast.tag'tcl/session/session.tcl.

69

Chapter 7

Queue Management and Packet Scheduling

Queues represent locations where packets may be held (gpetth Packet scheduling refers to the decision procesk use
to choose which packets should be serviced or dropped. Boffmagement refers to any particular discipline used to
regulate the occupancy of a particular queue. At presepphatiis included for drop-tail (FIFO) queueing, RED buffer
management, CBQ (including a priority and round-robin sicier), and variants of Fair Queueing including, Fair Quege
(FQ), Stochastic Fair Queueing (SFQ), and Deficit Roundi#R@DRR). In the common case wheredalay element is
downstream from a queue, the queue maploekeduntil it is re-enabled by its downstream neighbor. This &srfechanism

by which transmission delay is simulated. In addition, cqggemay be forcibly blocked or unblocked at arbitrary times by
their neighbors (which is used to implement multi-queueraegate queues with inter-queue flow control). Packet drops a
implemented in such a way that queues contain a “drop déistiriathat is, an object that receives all packets dropped b
queue. This can be useful to (for example) keep statistictropped packets.

7.1 The C++ Queue Class

The Queue class is derived from €onnector base class. It provides a base class used by particular ¢ffdsrived)
queue classes, as well as a call-back function to implemeciking (see next section). The following definitions arevpded
in queue.h :

class Queue : public Connector {
public:
virtual void enque(Packet *) = 0;
virtual Packet + deque() = 0;
void recv(Packet * Handler «);
void resume();
int blocked();
void unblock();
void block();
protected:
Queue();
int command(int argc, const char *CoNnst * argv);
int glim_; / * maximum allowed pkts in queué
int blocked_;
int unblock_on_resume_; / * unblock g on idle®/
QueueHandler gh_;

70

Theenque anddeque functions are pure virtual, indicating ti@ueue class is to be used as a base class; particular queues
are derived fromQueue and implement these two functions as necessary. Partigutares do not, in general, override the
recv function because it invokes the the particidague anddeque .

The Queue class does not contain much internal state. Often thesgaogas monitoring objects (Chapter 26). Tdién_
member is constructed to dictate a bound on the maximum qoetigancy, but this is not enforced by tQeeue class
itself; it must be used by the particular queue subclasst®if need this value. Thiglocked member is a boolean
indicating whether the queue is able to send a packet imredylia its downstream neighbor. When a queue is blockes, it i
able to enqueue packets but not send them.

7.1.1 Queue blocking

A queue may be either blocked or unblocked at any given timene@ally, a queue is blocked when a packet is in transit
between it and its downstream neighbor (most of the timedifigtheue is occupied). A blocked queue will remain blocked as
long as it downstream link is busy and the queue has at leagpacket to send. A queue becomes unblocked only when its
resume function is invoked (by means of a downstream neighbor adliveglit via a callback), usually when no packets are
queued. The callback is implemented by using the followlagsand methods:

class QueueHandler : public Handler {

public:
inline QueueHandler(Queue& q) : queue_(q) {}
void handle(Event x); | = calls queue_.resume() */
private:
Queue& queue_;
¥
void QueueHandler::handle(Event *)
{
queue_.resume();
}
Queue::Queue() : drop_(0), blocked (0), gh_(* this)
{
Tcl& tcl = Tcl::instance();
bind("limit_", &qlim_);
}
void Queue::recv(Packet * p, Handler =)
{
enque(p);
if ('blocked_) {
| *
* We're not block. Get a packet and send it on.
* We perform an extra check because the queue
* might drop the packet even if it was
* previously empty! (e.g., RED can do this.)
*/
p = deque();
if (p!=0) {
blocked_ = 1;

target_->recv(p, &gh_);

71

}
}
void Queue::resume()
{
Packet * p = deque();
if (p!'= 0)
target_->recv(p, &gh_);
else {
if (unblock_on_resume)
blocked = 0;
else
blocked = 1;
}
}

The handler management here is somewhat subtle. When &newe object is created, it includes@ueueHandler
object gh_) which is initialized to contain a reference to the n@weue object Queue& QueueHandler::queue_).

This is performed by th@ueue constructor using the expressigh_(*this) . When a Queue receives a packet it calls
the subclass (i.e. queueing discipline-specific) versiath@enque function with the packet. If the queue is not blocked,
it is allowed to send a packet and calls the spedfique function which determines which packet to send, blocks the
gueue (because a packet is now in transit), and sends thetgaake queue’s downstream neighbor. Note that any future
packets received from upstream neighbors will arrive toachdd queue. When a downstream neighbor wishes to cause
the queue to become unblocked it schedules the QueueHartdadle function by passinggh_ to the simulator sched-
uler. Thehandle function invokesesume , which will send the next-scheduled packet downstream [gank the queue
blocked), or unblock the queue when no packet is ready to e $ais process is made more clear by also referring to the
LinkDelay::recv () method (Section 8.1).

7.1.2 PacketQueue Class

The Queue class may implement buffer management and scheduling bnbtdanplement the low-level operations on a
particular queue. ThPacketQueue class is used for this purpose, and is defined as followsqseae.h):

class PacketQueue {
public:
PacketQueue();
int length(); / * queue length in packets * |
void enque(Packet * p);
Packet * deque();
Packet * lookup(int n);
/* remove a specific packet, which must be in the queue */
void remove(Packet *);
protected:
Packet * head_;
Packet *+ tail_;
int len_; /I packet count

This class maintains a linked-list of packets, and is conlgnaeed by particular scheduling and buffer management dis-
ciplines to hold an ordered set of packets. Particular adivegior buffer management schemes may make use of several

72

PacketQueue objects. ThePacketQueue class maintains current counts of the number of packetsihetlie queue
which is returned by théength () method. Theenque function places the specified packet at the end of the quedie an
updates théen_ member variable. Thdeque function returns the packet at the head of the queue and rsribfrom

the queue (and updates the counters), or returns NULL if tieeig is empty. Theokup function returns thexith packet
from the head of the queue, or NULL otherwise. TTeenove function deletes the packet stored in the given address from
the queue (and updates the counters). It causes an abnaogedm termination if the packet does not exist.

7.2 Example: Drop Tall

The following example illustrates the implementation ef @ueue/DropTail object, which implements FIFO scheduling
and drop-on-overflow buffer management typical of mostemeslay Internet routers. The following definitions deeldre
class and its OTcl linkage:

| *

* A bounded, drop-tail queue

* |

class DropTail : public Queue {

protected:
void enque(Packet *);
Packet * deque();
PacketQueue q_;

The base clas@ueue, from whichDropTail is derived, provides most of the needed functionality. Thapetail queue
maintains exactly one FIFO queue, implemented by includimgbject of thdPacketQueue class. Drop-tail implements
its own versions oénque anddeque as follows:

| *
* drop-tail
* |
void DropTail::enque(Packet * p)
{
q_.enque(p);
if (g_.length() >= qlim_) {
g_.remove(p);
drop(p);
}
}
Packet * DropTail::deque()
{
return (q_.deque());
}

Here, theenque function first stores the packet in the internal packet qednéch has no size restrictions), and then checks
the size of the packet queue vergllisn_ . Drop-on-overflow is implemented by dropping the packettmesently added

to the packet queue if the limit is reached or exceed¢ate: in the implementation oénque above, settingllim_ ton
actually means a queue sizersfl . Simple FIFO scheduling is implemented in theque function by always returning the
first packet in the packet queue.

73

7.3 Different types of Queue objects

A queue object is a general class of object capable of holdimypossibly marking or discarding packets as they travel
through the simulated topology. Configuration Parametsesl fior queue objects are:

limit_ The queue size in packets.
blocked_ Set to false by default, this is true if the queue is blockethfile to send a packet to its downstream neighbor).

unblock_on_resume_Set to true by default, indicates a queue should unblocK as¢he time the last packet packet sent
has been transmitted (but not necessarily received).

Other queue objects derived from the base class Queue graaikd-Q, SFQ, DRR, RED and CBQ queue objects. Each are
described as follows:

e Drop-tail objects: Drop-tail objects are a subclass of @uebjects that implement simple FIFO queue. There are no
methods, configuration parameter, or state variables tharecific to drop-tail objects.

e FQ objects: FQ objects are a subclass of Queue objects tpérmant Fair queuing. There are no methods that are
specific to FQ objects. Configuration Parameters are:

secsPerByte
There are no state variables associated with this object.

e SFQ objects: SFQ objects are a subclass of Queue objectarpligiment Stochastic Fair queuing. There are no
methods that are specific to SFQ objects. Configuration Reteamare:
maxqueue_
buckets_

There are no state variables associated with this object.

e DRR objects: DRR objects are a subclass of Queue objectsnipéement deficit round robin scheduling. These
objects implement deficit round robin scheduling among&int flows (A particular flow is one which has packets
with the same node and port id OR packets which have the sadeitialone). Also unlike other multi-queue objects,
this queue object implements a single shared buffer spadts fdifferent flows. Configuration Parameters are:
buckets_ Indicates the total number of buckets to be used for hastzinly ef the flows.
blimit_ Indicates the shared buffer size in bytes.
quantum_ Indicates (in bytes) how much each flow can send during its tur
mask_ mask_, when set to 1, means that a particular flow consistacKgts having the same node id (and possibly

different port ids), otherwise a flow consists of packetsmgthe same node and port ids.

e RED objects: RED objects are a subclass of Queue objectsntipddment random early-detection gateways. The
object can be configured to either drop or “mark” packets. rél@e no methods that are specific to RED objects.
Configuration Parameters are:

bytes Set to "true" to enable “byte-mode” RED, where the size ofvarg packets affect the likelihood of marking
(dropping) packets.

queue-in-bytes Set to "true" to measure the average queue size in bytes tatrepackets. Enabling this option also
causes thresh_ and maxthresh_ to be automatically scaledtay_pktsize_ (see below).

thresh_ The minimum threshold for the average queue size in packets.

74

maxthresh_ The maximum threshold for the average queue size in packets.

mean_pktsize_ A rough estimate of the average packet size in bytes. Useddating the calculated average queue
size after an idle period.

g_weight_ The queue weight, used in the exponential-weighted mowiegpge for calculating the average queue size.
wait_ Set to true to maintain an interval between dropped packets.

linterm_ As the average queue size varies between "thresh_" andtineakt ", the packet dropping probability varies
between 0 and "1/linterm".

setbit_ Setto "true" to mark packets by setting the congestion ataia bit in packet headers rather than drop packets.

drop-tail_ Set to true to use drop-tail rather than randomdrop when tleeig overflows or the average queue size
exceeds "maxthresh_". For a further explanation of thegahlas, see [2].

None of the state variables of the RED implementation aressible.

e CBQ objects: CBQ objects are a subclass of Queue objectartpement class-based queueing.

$cbq insert <class>

Insert traffic class class into the link-sharing structisgogiated with link object cbqg.

$cbg bind <cbgclass> <id1> [$id2]

Cause packets containing flow id id1 (or those in the rangeddd? inclusive) to be associated with the traffic class
cbqclass.

$cbg algorithm <alg>
Select the CBQ internal algorithm. <alg> may be set to onéasfcestor-only", "top-level”, or "formal".

¢ CBQ/WRR objects: CBQ/WRR objects are a subclass of CBQ tdjkat implement weighted round-robin scheduling
among classes of the same priority level. In contrast, CB@atdimplement packet-by-packet round-robin scheduling
among classes of the same priority level. ConfigurationRaters are:

maxpkt_ The maximum size of a packet in bytes. This is used only by OBRIR objects in computing maximum
bandwidth allocations for the weighted round-robin scheidu

CBQCLASS OBJECTS
CBQClass objects implement the traffic classes associdatbddBQ objects.

$cbgclass setparams <parent> <okborrow> <allot> <maxidle > <prio> <level>
Sets several of the configuration parameters for the CB@ati@ass (see below).

$cbqclass parent <chqcllnone>
specify the parent of this class in the link-sharing treee phrent may be specified as “none” to indicate this classasia r

$cbgclass newallot <a>

Change the link allocation of this class to the specified am¢n range 0.0 to 1.0). Note that only the specified class is
affected.

$cbqgclass install-queue <g>

Install a Queue object into the compound CBQ or CBQ/WRR littkhcgure. When a CBQ obiject is initially created, it
includes no internal queue (only a packet classifier anddsdbeg).

Configuration Parameters are:

okborrow_ is a boolean indicating the class is permitted to borrow kadith from its parent.

allot_ is the maximum fraction of link bandwidth allocated to thasd expressed as a real number between 0.0 and 1.0.

75

maxidle_ is the maximum amount of time a class may be required to haymitkets queued before they are permitted to be
forwarded

priority_ is the class’ priority level with respect to other classdsisvalue may range from 0 to 10, and more than one class
may exist at the same priority. Priority 0 is the highest ptyo

level_is the level of this class in the link-sharing tree. Leaf roitethe tree are considered to be at level 1; their parents are
at level 2, etc.

extradelay_ increase the delay experienced by a delayed class by théisgdicne

QUEUE-MONITOR OBJECTS
QueueMonitor Objects are used to monitor a set of packet steddsrival, departure and drop counters. It also includes
support for aggregate statistics such as average queyetize

$queuemonitor
reset all the cumulative counters described below (agjwdé¢partures, and drops) to zero. Also, reset the integratal
delay sampler, if defined.

$gueuemonitor set-delay-samples <delaySamp_>
Set up the Samples object delaySamp_ to record statistirg gbneue delays. delaySamp_is a handle to a Samples object
i.e the Samples object should have already been created.

$queuemonitor get-bytes-integrator
Returns an Integrator object that can be used to find theraitefithe queue size in bytes.

$queuemonitor get-pkts-integrator
Returns an Integrator object that can be used to find theraitegthe queue size in packets.

$queuemonitor get-delay-samples

Returns a Samples object delaySamp_ to record statisticg gheue delays.
There are no configuration parameters specific to this abject

State Variables are:

size_Instantaneous queue size in bytes.

pkts_ Instantaneous queue size in packets.

parrivals_ Running total of packets that have arrived.

barrivals_ Running total of bytes contained in packets that have atrive

pdepartures_ Running total of packets that have departed (not dropped).
bdepartures_ Running total of bytes contained in packets that have deg4rnot dropped).
pdrops_ Total number of packets dropped.

bdrops_ Total number of bytes dropped.

bytesint_ Integrator object that computes the integral of the queze isi bytes. The sum__ variable of this object has the
running sum (integral) of the queue size in bytes.

pktsint_ Integrator object that computes the integral of the quezrisi packets. The sum_ variable of this object has the
running sum (integral) of the queue size in packets.

76

QUEUEMONITOR/ED @BJECTS

This derived object is capable of differentiating regulacket drops from early drops. Some queues distinguishaedubps
(e.g. drops due to buffer exhaustion) from other drops (@ugdom drops in RED queues). Under some circumstances, it is
useful to distinguish these two types of drops.

State Variables are:

epdrops_ The number of packets that have been dropped “early”.

ebdrops_ The number of bytes comprising packets that have been dddepely”.

Note: because this class is a subclass of QueueMonitorctshyé this type also have fields such as pdrops_ and bdrops_.
These fields describe the total number of dropped packetbyrd, including both early and non-early drops.

QUEUEMONITOR/ED/FLOWMON OBJECTS
These objects may be used in the place of a conventional Meni®r object when wishing to collect per-flow counts and
statistics in addition to the aggregate counts and stiptiovided by the basic QueueMonitor.

$fmon classifier <cl>
This inserts (read) the specified classifier into (from) thesfinonitor object. This is used to map incoming packets tactvhi
flows they are associated with.

$fmon dump
Dump the current per-flow counters and statistics to the H&noel specified in a previous attach operation.

$fmon flows
Return a character string containing the names of all floveabjknown by this flow monitor. Each of these objects are of
type QueueMonitor/ED/Flow.

$fmon attach <chan>
Attach a tcl I/0 channel to the flow monitor. Flow statistice aritten to the channel when the dump operation is executed

Configuration Parameters are:

enable_in_ Set to true by default, indicates that per-flow arrival stteuld be kept by the flow monitor. If set to false, only
the aggregate arrival information is kept.

enable_out_Set to true by default, indicates that per-flow departureesthould be kept by the flow monitor. If set to false,
only the aggregate departure information is kept.

enable_drop_ Set to true by default, indicates that per-flow drop stateighbe kept by the flow monitor. If set to false,
only the aggregate drop information is kept.

enable_edrop_Set to true by default, indicates that per-flow early dropestdould be kept by the flow monitor. If set to
false, only the aggregate early drop information is kept.

QUEUEMONITOR/ED/FLOW OBJECTS

These objects contain per-flow counts and statistics mahlaga QueueMonitor/ED/Flowmon object. They are generally
created in an OTcl callback procedure when a flow monitoniemga packet it cannot map on to a known flow. Note that the
flow monitor’s classifier is responsible for mapping packetows in some arbitrary way. Thus, depending on the type of
classifier used, not all of the state variables may be retgeag. one may classify packets based only on flow id, in which
case the source and destination addresses may not be sigyifistate Variables are:

src_ The source address of packets belonging to this flow.

77

dst_ The destination address of packets belonging to this flow.

flowid_ The flow id of packets belonging to this flow.

7.4 Commands at a glance

Following is a list of queue commands used in simulationpgsri

$ns_ queue-limit <n1> <n2> <limit>
This sets a limit on the maximum buffer size of the queue iflitilebetween nodes <n1>and <n2>.

$ns_ trace-queue <nl> <n2> <optional:file>
This sets up trace objects to log events in the queue. Iffileéenot passed, it usésaceAllFile_ to write the events.

$ns_ namtrace-queue <nl> <n2> <optional:file>
Similar to trace-queue above, this sets up ham-tracinggmjtleue.

$ns_ monitor-queue <nl> <n2> <optional:gtrace> <optional :sampleinterval>

This command inserts objects that allows us to monitor tleugsize. This returns a handle to the object that may be
queried to determine the average queue size. The defau# f@ sampleinterval is 0.1.

7.5 Queue/JoBS

JoBS is developed and contributed by Nicolas Christin <kis@cs.virginia.edu>

This chapter describes the implementation of the Jointd8ufanagement and Scheduling (JoBS) algorithmsn This
chapter is in three parts. The first part summarizes the tgscof the JoBS algorithm. The second part explains how to
configure a JoBS queue irs The third part focuses on the tracing mechanisms implesdefor JOBS.

The procedures and functions described in this chapter edaund inngjobs.{cc, h}, ngmarker.{cc, h},ngdemarker.{cc,
h}. Example scripts can be found ig'tcl/ex/jobs-{lossdel, cn2002}.tcl.

Additional information can be found at http://qosbox.agwia.edu.

7.5.1 The JoBS algorithm

This section gives an overview of the objectives the JoBSrélgn aims at achieving, and of the mechanisms employed to
reach these objectives. The original JoBS algorithm, asritesl in [20], was using the solution to a non-linear optiation
problem. Thisns-2implementation uses the feedback-control based heudisticribed in [8].

Important Note:This ns-2implementation results from the merge between old codade?.1b5and code derived from the
BSD kernel-level implementation of the JoBS algorithiris still considered experimental. Due to the absence of binding
facilities for arrays between Tcl and C++titicl at the momenthe number of traffic classes is statically set to 4 and cannot
be changed without modifying the C++ code.

78

Objective

The objective of the JoBS algorithm is to provide absoluté esiative (proportional) loss and delay differentiatiowle-
pendently at each node fotassesof traffic. JoBS therefore provides service guarantees paréhopbasis. The set of
performance requirements are specified to the algorithmset af per-class Qualtiy of Service (Qo0S) constraints. As an
example, for three classes, the QoS constraints could e dbtm:

e Class-1 Delay~ 2 - Class-2 Delay,
e Class-2 Loss Rate: 10~ ! - Class-3 Loss Rate, or

e Class-3 Dela 5 ms.

Here, the first two constraints are relative constraintsthadast one is an absolute constraint. The set of consdreamt be
any mix of relative and absolute constraints. More spedific3oBS supports the five following types of constraints:

e Relative delay constraints (RDC)specify a proportional delay differentiation between st&s As an example, for
two classed and2, the RDC enforces a relationship

Delay of G1ass 2, constant
Delay of Class 1

e Absolute delay constraints (ADC) An ADC on class requires that the delays of classatisfy a worst-case bound
d;.

o Relative loss constraints (RLC)specify a proportional loss differentiation between agss

e Absolute loss constraints (ALC) An ALC on classi requires that the loss rate of clasbe bounded by an upper
boundL;.

e Absolute rate constraints (ARC) An ARC on classi means that the throughput of class bounded by a lower
boundy;.

JoBS does not rely on admission control or traffic policingy, does it make any assumption on traffic arrivals. Therefore
system of constraints may become infeasible, and someragristmay need to be relaxed. QoS constraints are prieditiz
the following order.

ALC > ADC, ARC > Relative Constraints

That is, if JOBS is unable to satisfy both absolute and radatonstraints, it will give preference to the absolute ti@sts.

Mechanisms

JoBS performs scheduling and buffer management in a siragls. pJoBS dynamically allocates service rates to classes in
order to satisfy the delay constraints. The service ratededfor enforcing absolute delay constraints are alldagten each
packet arrival, while service rates derived from relatiedagt constraints are computed only evé¥ypacket arrivals. If no
feasible service rate allocation existsr if the packet buffer overflows, packets are dropped atingrto the loss constraints.

The service rates are translated into packet schedulirigides by an algorithm resembling Deficit Round Robin. Tisat i
the scheduler tries to achieve the desired service ratesdgyitkg track of the difference between the actual transomisate
for each class and the desired service rate for each classd@ing in JoBS is work-conserving.

IFor instance, if the sum of the service rates needed is gridate the output link capacity.

79

7.5.2 Configuration

Running a JoBS simulation requires to create and configwedBS “link(s)”, to create and configure the Markers and
Demarkers in charge of marking/demarking the traffic, tackttan application-level data source (traffic generaton, ta
start the traffic generator.

Initial Setup

set ns [new Simulator] # preamble initialization
Queue/ JoBS set drop front_ false ;# use drop-tail
Queue/ JoBS set trace_hop_ true ;# enable statistic traces
Queue/ JoBS set adc_resolution_type_ O # see “commands at a glance”
Queue/ JoBS set shared buffer_ 1 # all classes share a common buffer
Queue/ JoBS set nean_pkt _size_ 4000 # we expect to receive 500-Byte pkts
Queue/ Dermar ker set demarker_arrvsl O # reset arrivals everywhere

Queue/ Demar ker set demarker_arrvs2_ 0
Queue/ Demar ker set denmarker_arrvs3_ 0
Queue/ Demar ker set denmarker_arrvs4_ 0
Queue/ Marker set nmarker_arrvsl_ O
Queue/ Marker set marker_arrvs2_ 0
Queue/ Marker set marker _arrvs3_ 0
Queue/ Marker set nmarker_arrvs4_ 0

set router(1l) [$ns node] # set first router
set router(2) [$ns node] ;# set second router
set source [$ns node] # setsource
set sink [$ns node] # set traffic sink
set bw 10000000 # 10 Mbps
set delay 0.001 # 1ms
set buff 500 ;# 500 packets

Creating the JoBS links

$ns dupl ex-link $router(1l) $router(2) $bw $del ay JoBS ;# Creates the JoBS link
$ns_ queue-limit $router(1) $router(2) $buff

set | [$ns_ get-link $router(1) $router(2)]

set q [$| queue]

$q init-rdecs -1 2 2 2 # Classes 2, 3 and 4 are bound by proportional delay diffeadinn with a factor of 2

$q init-rlcs -1 2 2 2 # Classes 2, 3 and 4 are bound by proportional loss differdiatiewith a factor of 2

$q init-alcs 0.01 -1 -1 -1 ;# Class 1 is provided with a loss rate bound of 1%
$q init-adcs 0.005 -1 -1 -1 ;# Class 1 is provided with a delay bound of 5 ms
$q init-arcs -1 -1 -1 500000 ;# Class 4 is provided with a minimumthroughput of 500 Kbps
$g link [$I 1ink] ;# The link is attached to the queue (required)
$q trace-file jobstrace ;# Trace per-hop, per-class metrics to the file jobstrace
$q sanpling-period 1 ;# Reevaluate rate allocation upon each arrival

$q id 1 ;# Assigns an ID of 1 to the JoBS queue
$q initialize # Proceed with the initialization

80

Marking the traffic

Marking the traffic is handled by Marker objects. MarkerskifeO queues that set the class index of each packet. To ensure
accuracy of the simulations, it is best to configure theseigsi¢o have a very large buffer, so that no packets are drapped
the Marker. Demarkers are used to gather end-to-end delfstists.

$ns_ sinplex-1ink $source $router(1l) $bw $del ay Marker ;# set-up marker
$ns_ queue-limit $source $router(l) [expr $buff * 10] # Select huge buffers for markers
$ns_ queue-limit $router(l) $source [expr $buff * 10] ;# toavoid traffic drops
set q [$ns_ get-queue $source $router(1)] ;# in the marker
$q marker _type 2 ;# Statistical marker
$q marker _frc 0.1 0.2 0.3 0.4 # 10% Class 1, 20% Class 2, 30% Class 3, 40% Class 4.
$ns_ sinplex-1ink $router(2) $sink $bw $del ay Denmrker ;# set-up demarker
$ns_ queue-limit $router(2) $sink [expr $buff *10]

$q trace-file e2e # trace end-to-end delays to file e2e

The remaining steps (attaching agents and traffic gensrataapplications to the nodes) are explained in Chaptersid0 a
40, and are handled as usual. We refer to these chapterseaadample scripts provided with yonsdistribution.

7.5.3 Tracing

Tracing in JoBS is handled internally, by the scheduler.nEBBS queue can generate a trace file containing the folgpwin
information. Each line of the tracefile consists of 17 colsmmPhe first column is the simulation time, columns 2 to 5 repne

the loss rates over the current busy period for classes 1doldimns 6 to 9 represent the delays for each class (average ov
a 0.5 seconds sliding window), columns 10 to 13 represeravheage service rates allocated to each class over the%ast 0
seconds, and columns 14 to 17 represent the instantaneeus ngth in packets. Additionally, Demarkers can be used t
trace end-to-end delays.

7.5.4 Variables

This section summarizes the variables that are used by M&&er and Demarker objects.

JoBS objects

trace_hop_ Can be true or false. If set to true, per-hop, per-class osatvill be traced. (Trace files have then to be specified,
using<JoBS object> trace-file <filename> .) Defaults to false.

drop_front_ Can be true or false. If set to true, traffic will be droppednirthe front of the queue. Defaults to false
(drop-tail).

adc_resolution_type_Can be 0 or 1. If set to 0, traffic will be dropped from classes ttave an ADC if the ADC cannot
be met by adjusting the service rates. If set to 1, traffic balldropped from all classes. A resolution mode setto 1 is
therefore fairer, in the sense that the pain is shared byasbes, but can lead to more deadline violations. Defaults t
0.

shared_buffer Can be 0 or 1. If set to O, all classes use a separate per-ciffiss(hich is required if only rate guarantees
are to provided). All per-class buffers have the same sfzetlto 1, all classes share the same buffer (which is redjuire
if loss differentiation is to be provided). Defaults to 1.

81

mean_pkt_size_Used to set the expected mean packet size of packets araivéndpBS link. Setting this variable is required
to ensure proper delay differentiation.

Marker objects

marker_arrvsl Number of Class-1 packets to have entered a Marker link.
marker_arrvs2_ Number of Class-2 packets to have entered a Marker link.
marker_arrvs3_ Number of Class-3 packets to have entered a Marker link.

marker_arrvs4 _ Number of Class-4 packets to have entered a Marker link.

Demarker objects

demarker_arrvsl Number of Class-1 packets to have entered a Demarker link.
demarker_arrvs2_ Number of Class-2 packets to have entered a Demarker link.
demarker_arrvs3_ Number of Class-3 packets to have entered a Demarker link.

demarker_arrvs4 _ Number of Class-4 packets to have entered a Demarker link.

7.5.5 Commands at a glance

The following is a list of commands used to configure the JdB&ker and Demarker objects.

JoBS objects

set q [new Queue/JoBS]
This creates an instance of the JoBS queue.

$q init-rdcs <k1> <k2> <k3> <k4>
This assigns the RDCs for the four JoBS classes. For instasitey a value of 4 for k2 means that Class-3 delays will be
roughly equal to four times Class-2 delays. A value of -1¢atks that the class is not concerned by RDCs.

Important Note:Since RDCs bound two classes, one would expect only threemers to be passed (k1, k2, and k3, since
k4 theoretically binds Classes 4 and 5, and Class 5 does isb}. étowever, in this prototype implementation, it is
imperative to specify a value different from 0 and -1 to k4 &€ 4 is to be concerned by RDCs.

Examples$q init-rdcs -1 2 1 -1 specifies that classes 2 and 3 are bound by a delay diffetientfactor of 2,$q
init-rdcs 4 4 4 4 specifies that all classes are bound by a delay differemtidiéictor of 4 and is equivalent &g
init-rdcs 4 4 4 1 , since the last coefficient is only used to specify that Claissto be bound by proportional

differentiation.

$qg init-rlcs <k’'1> <k'2> <k'3> <k'4>

This assigns the RLCs for the four JOBS classes. For instasggg a value of 3 for k1 means that Class-2 loss rates will be
roughly equal to four times Class-2 loss rates. A value ofdidates that the class is not concerned by RLCs. As with
RDCs, each RLC binds two classes, thus, one would expectlordg parameters to be passed (k'1, k'2, and k'3, since k'4

82

theoretically bounds Classes 4 and 5, and Class 5 does 3tt &g explained above, it is imperative to specify a value
different from 0 and -1 to k'4 if Class 4 is to be concerned byd3L

$q init-alcs <L1> <L2> <L3> <L4>

This assigns the absolute loss guarantees (ALCs) to alldlagses. L1 to L4 are given in fraction of 1. For instanceirsgt

L1 to 0.05 means that Class-1 loss rate will be guarantees leesls than 5%. A value of -1 indicates that the corresponding
class is not subject to an ALC.

$q init-adcs <D1> <D2> <D3> <D4>
This assigns the absolute loss guarantees (ADCSs) to alcfasses. D1 to D4 are given in milliseconds. A value of -1
indicates that the corresponding class is not subject tol2@.A

$q trace-file <filename>
This specifies the trace file for all per-hop metrics. JoBS aseinternal module to trace loss and delays, service iates,
per-class queue lengths in packets. If filename is setiig no trace will be provided.

$q link [<link-object> link]
This command is required to bind a link to a JoBS queue. Na@eJbBS needs to know the capacity of the link. Thus, this
commandhas tobe issued before the simulation is started.

$g sampling-period <sampling-interval>

This command specifies the sampling interval (in packetahath the service rate adjustments for proportional
differentiation will be performed. The default is a samplinterval of 1 packet, meaning that the rate allocation is
reevaluated upon each packet arrival. Larger samplingvialiespeed up the simulations, but typically result in goor
proportional differentiation.

$q id <num_id>
This command affects a numerical ID to the JoBS queue.

$q initialize
This command is required, and should be run after all cordigpm operations have been performed. This command will
perform the final checks and configuration of the JoBS queue.

$q copyright-info
Displays authors and copyright information.

A simple example script (with nam output), fully annotated @ommented can be foundrng/tcl/ex/jobs-lossdel.tcl. A
more realistic example of a simulation with JoBS queues esfobnd inngtcl/ex/jobs-cn2002.tcl. This script is very
similar to what was used in a simulation presented in [21Fo&sated tracefiles arghuplotscripts for visualization (in case
you favorgnuplotoverxgraphcan be found imgtcl/ex/jobs-lossdel, ands'tcl/ex/jobs-cn2002.

Marker objects

$g marker_type <1|2>
Selects the type of marker. 1 is DETERMINISTIC, 2 is STATISAL.

$q marker_class <1|2|3|4>
For a deterministic marker, selects which class packetslghee marked with.

$q marker_frc <f1> <f2> <f3> <f4>

For a statistical marker, gives the fraction of packets shaiuld be marked from each class. For instance, using Ofl for
means that 10 percent of the traffic coming to the Marker liilkive marked as Class 1.

83

Demarker objects

$q trace-file <filename>

This command specifies the trace file used for the demarkecbbiilename.1 will contain the end-to-end delays of each
Class-1 packet to have reached the Demarker link, filenamid.2ontain the end-to-end delays of each Class-2 packet to
have reached the Demarker link, and so forth. (There willoafrse be 4 trace files, one for each class.)

84

Chapter 8

Delays and Links

Delays represent the time required for a packet to travelink.aA special form of this object (“dynamic link”) also capes
the possibility of a link failure. The amount of time requdrfor a packet to traverse a link is defined todyé + d wheres

is the packet size (as recorded in its IP headei§ the speed of the link in bits/sec, adds the link delay in seconds. The
implementation of link delays is closely associated with tfocking procedures described for Queues in Section7.1.1

8.1 The LinkDelay Class

Theclass LinkDelay is derived from the baselass Connector . Its definition is in nddelay.cc, and is briefly
excerpted below:

class LinkDelay : public Connector {

public:
LinkDelay();
void recv(Packet * p, Handler =*);
void send(Packet * p, Handler =),
void handle(Event * e);
double delay(); / * line latency on this link /
double bandwidth(); / * bandwidth on this link /
inline double txtime(Packet * p) { [* time to send pkt p on this link/
hdr_cmn = hdr = (hdr_cmn =*) p->access(off_cmn_);
return (hdr->size() +* 8. |/ bandwidth);
}
protected:
double bandwidth_; / * pandwidth of underlying link (bits/see)
double delay_; / * line latencyx /
int dynamic_; / * indicates whether or not link is »/
Event inTransit_;
PacketQueue * itg_; /= internal packet queue for dynamic link$
Packet * nextPacket_; / * to be delivered for a dynamic link/
Event intr_;

85

Therecv () method overrides the base class Connector version. ¢fiset as follows:

void LinkDelay::recv(Packet * p, Handler = h)
{
double txt = txtime(p);
Scheduler& s = Scheduler::instance();
if (dynamic_) {
Event + e = (Event *)p;
e->time_ = s.clock() + txt + delay_;
itq_->enque(p);
schedule_next();
} else {
s.schedule(target , p, txt + delay);
}
[+ XXX only need one intr_ since upstream object should
block until it's handler is called

the link itself will hold the packet, and call the upstream
object at the appropriate time. This second interrupt is
* calledi nTransi t _, and is invoked throughchedul e_next ()
* |
s.schedule(h, &intr_, txt);

* This only holds if the link is not dynamic. Ifitis, then
*

This object supports one instproc-likpbject dynamic , to set its variabledynamic_ . This variable determines
whether the link is dynamic or not€., prone to fail/recover at appropriate times). The inteb®dlavior of the link in each
case is different.

For “non-dynamic” links, this method operates by receidrgacketp, and scheduling two events. Assume these two events
are calledr; and Es, and that evenkE; is scheduled to occur beforg,. F; is scheduled to occur when the upstream node
attached to this delay element has completed sending thentyracket (which takes time equal to the packet size divide
by the link bandwidth) F; is usually associated with@ueue object, and will cause it to (possibly) become unblocked (se
section 7.1.1).E> represents the packet arrival event at the downstream @igti the delay element. Eveiil, occurs a
number of seconds later thd equal to the link delay.

Alternately, when the link is dynamic, and receiygeshen it will schedule?; to possibly unblock the queue at the appropriate
time. However,E; is scheduled only ip is the only packet currently in transit. Otherwise, therati$east one packet in
transit on the link that must be delivered befprat E». Therefore, packet is held in the object’s inTransit queuigy_ .
When the packet just befogein transit on the link is delivered at the neighbor node, tledapLink object will schedule an
event for itself to fire afvs. At that appropriate time then, ittsandle () method will directly seng to its target. The object’s
internalschedule_next () method will schedule these events for packet sin traniteaappropriate time.

8.2 Commands at a glance

The LinkDelay object represents the time required by a patckéransverse the link and is used internally within a Link.
Hence we donot list any linkdelay related commands suitfavlsimulation scripts here.

86

Chapter 9

Differentiated Services Module inns

Note: The Differentiated Services module described in thishapter has been integrated into ns-2.1b8.

Differentiated Services, or DiffServ, is an IP QoS arcHitiee based on packet marking that allows packets to be fiziedi
according to user requirements. During the time of congestinore low priority packets are discarded than high psiori
packets. This chapter describes the DiffServ module thatosiginally implemented by the Advanced IP Networks graup i
Nortel Networks [28].

9.1 Overview

The DiffServ architecture provides QoS by dividing trafirtd different categories, marking each packet with a codetpo
that indicates its category, and scheduling packets arapettcordingly. The DiffServ module imscan support four classes
of traffic, each of which has three dropping precedencewaltpdifferential treatment of traffic within a single clas®ackets
in a single class of traffic are enqueued into one correspgahysical RED queue, which contains three virtual queoies (
for each drop precedence).

Different RED parameters can be configured for virtual qgenausing packets from one virtual queue to be dropped more
frequently than packets from another. A packet with a low@pging precedence is given better treatment in times of
congestion because it is assigned a code point that corrdspo a virtual queue with relatively lenient RED parameter

The DiffServ module imshas three major components:

Policy: Policy is specified by network administrator about the l@federvice a class of traffic should receive in the network.
Edge router: Edge router marks packets with a code point according todlieyspecified.

Core router: Core router examines packets’ code point marking and fatimgrthem accordingly.

DiffServ attempts to restrict complexity to only the edgeteys.

87

9.2 Implementation

The procedures and functions described in this section edound in -ngdiffserv/dsred, dsredq, dsEdge, dsCore, dsPol-
icy.{cc, h}.

9.2.1 RED queue in DiffServ module

A DiffServ queue (in clasdsREDQueue) derived from the base cla@ueue is implemented in DiffServ module to provide
the basic DiffServ router functionality, selsred.{h,cc}). dsSREDQueuehas the following abilities:

to implement multiple physical RED queues along a single lin

o to implement multiple virtual queues within a physical geewith individual set of parameters for each virtual queue;

to determine in which physical and virtual queue a packenggieued according to its code point;

to determine in from which physical and virtual queue a paiskéequeued according to the scheduling scheme chosen.

The classisREDQueueconsists of four physical RED queues, each containing tiraeal queues. The number of physical
and virtual queues are definednomPrec andnumQueues_. Each combination of physical and virtual queue number is
associated with a code point (or a drop preference), whiehips a certain level of service.

The physical queue is defined in clagziQueue , which enables traffic differentiation by defining virtualepes with
independent configuration and state parametersgdseszq.{h,cc} . For example, the length of each virtual queue is
calculated only on packets mapped to that queue. Thus, pdakeping decisions can be applied based on the state and
configuration parameters of that virtual queues. CtadQueue is not equivalent to cladlREDQueue which was already
present ims Instead, it is a modified version of RED implementation with notion of virtual queues and is only used by
classredQueue to realize physical queues. All user interaction with clesdQueue is handled through the command
interface of classisREDQueue

ClassdsREDQueue contains a data structure known as the Per Hop Behavior (HEBE In DiffServ, edge routers mark
packets with code points and core routers simply respongistireg code points; both of them use PHB table to map a code
point to a particular physical and virtual queue. The PHBI&&bdefined as an array with three fields:

struct phbParam {
int codePt_; // corresponding code point
int queue_; // physical queue
int prec_; // virtual queue (drop precedence)

3

9.2.2 Edge and core routers

The DiffServ edge and core routers are defined in cedgpeQueue and classcoreQueue , which are derived from
classdsREDQueue seedsEdge, dsCore.{h,cc}

Packet marking is implemented in clastgeQueue . A packet is marked with a code point according to the polpscified

before it is put into the corresponding physical and virtgatue. ClasgdgeQueue has a reference to an instance of
classPolicyClassifier , Which contains policies for packet marking.

88

9.2.3 Policy

ClassPolicy and its sub-classes (sdsPolicy.{cc, h}) define the policies used by edge routers to mark incoming
packets. A policy is established between a source and déstimode. All flows matching that source-destination paér
treated as a single traffic aggregate. Policy for each diffetraffic aggregate has an associated policer type, nygerand
initial code point. The meter type specifies the method foasneing the state variables needed by the policer. For eeamp
the TSW Tagger is a meter that measures the average traffjaisang a specified time window.

When a packet arrives at an edge router, it is examined tordigte to which aggregate it belongs. The meter specified by
the corresponding policy is invoked to update all statealdeis. The policer is invoked to determine how to mark thégiac
depending on the aggregate’s state variables: the speitified code point or a downgraded code point. Then the piiske
enqueued accordingly.

Currently, six different policy models are defined:

1. Time Sliding Window with 2 Color Marking (TSW2CMPoliceriises a CIR and two drop precedences. The lower
precedence is used probabilistically when the CIR is exeged

2. Time Sliding Window with 3 Color Marking (TSW3CMPolicenses a CIR, a PIR, and three drop precedences. The
medium drop precedence is used probabilistically when tiei€exceeded and the lowest drop precedence is used
probabilistic ally when the PIR is exceeded.

3. Token Bucket (tokenBucketPolicer): uses a CIR and a CRShwaa drop precedences. An arriving packet is marked
with the lower precedence if and only if it is larger than token bucket.

4. Single Rate Three Color Marker (srTCMPaolicer): uses a,CIBS, and an EBS to choose from three drop precedences.

5. Two Rate Three Color Marker (trTCMPolicer): uses a CIRSCBIR, and a PBS to choose from three drop prece-
dences.

6. NullPolicer: does not downgrade any packets

The policies above are defined as a sub-classdsPblicy . The specific meter and policer are implemented in functions
applyMeter andapplyPolicer , which are defined as virtual functions in clasfolicy . User specified policy can
be added in the similar way. Please refeNidlPolicy as the simplest example.

All policies are stored in the policy table in claBslicyClassifier . This table is an array that includes fields for the
source and destination nodes, a policer type, a meter tppeital code point, and various state information as shoatow:

The rates CIR and PIR are specified in bits per second:
CIR: committed information rate

PIR: peak information rate

The buckets CBS, EBS, and PBS are specified in bytes:
CBS: committed burst size

EBS: excess burst size

PBS: peak burst size

C bucket: current size of the committed bucket

E bucket: current size of the excess bucket

P bucket: current size of the peak bucket

Arrival time of last packet

89

Average sending rate
TSW window length

ClassPolicyClassifier also contains a Policer Table to store the mappings from iayptylpe and initial code point
pair to its associated downgraded code point(s).

9.3 Configuration

The number of physical and virtual queues can be configured as

$dsredq set numQueues_ 1

$dsredq setNumPrec 2

VariablenumQueues_ in classdsREDQueue specifies the number of physical queues. It has a defauleadut defined
in ~ngdtcl/lib/ns-default.tcl and can be changed as shown in #aenple above. VariablsetNumPrec sets the number of
virtual queues within one physical queue.

RED parameters can be configured for each virtual queue lasviol

$dsredg configQ 0 1 10 20 0.10

The mean packet size (in bytes) is also needed for the avBBEDBequeue length calculation.

$dsredg meanPktSize 1500

The variant of MRED used to calculate queue sizes can be cwatlg

$dsredq setMREDMode RIO-C 0

The above command sets the MRED mode of physical queue 0 tedRIf3he second argument was not included, all queues
would be set to RIO-C which is the default.

The various MRED modes supported in DiffServ module are:

RIO-C (RIO Coupled): The probability of dropping an out-of-profile packet is bdwsa the weighted average lengths of all
virtual queues; while the probability of dropping an in-fl@packet is based solely on the weighted average length of
its virtual queue.

RIO-D (RIO De-coupled): Similar to RIO-C; except the probability of dropping an aitprofile packet is based on the
size of its virtual queue.

WRED (Weighted RED): All probabilities are based on a single queue length.

DROP: Same as a drop tail queue with queue limit set by RED minimurastiold: when the queue size reaches the
minimum threshold, all packets are dropped regardless dfinta

The following command adds an entry to the PHB Table and mage point 11 to physical queue 0 and virtual queue 1.

$dsredq addPHBEntry 11 0 1

90

In ns, packets are defaulted to a code point of zero. Therefoez,raast add a PHB entry for the zero code point in order to
handle best effort traffic.

In addition, commands are available to allow the user to shadle scheduling mode between physical queues. For example
$dsredq setSchedularMode WRR
$dsredq addQueueWeights 1 5

The above pair of commands sets the scheduling mode to Viéeigttund Robin and the weight for queue 1 to 5. Other
scheduling modes supported are Weighted Interleaved RBobéh (WIRR), Round Robin (RR), and Priority (PRI). The
default scheduling mode is Round Robin.

For Priority scheduling, priority is arranged in sequerdiaer with queue 0 having the highest priority. Also, ona sat the
a limit on the maximum bandwidth a particular queue can gieiguss follows:

$dsredqg setSchedularMode PRI
$dsredg addQueueRate 0 5000000
These commands specify the maximum bandwidth that queue €ocesume is 5Mb.

The addPolicyEntry command is used to add an entry to the Policy Table. It takiésrelint parameters depending on
what policer type is used. The first two parameters after timensand name are always the source and destination node IDs,
and the next parameter is the policer type. Following th&potype are the parameters needed by that policer as surethar
below:

Null Initial code point

TSW2CM Initial code point CIR

TSW3CM Initial code point CIR PIR

TokenBucket Initial code point CIR CBS

SITCM Initial code point CIR CBS EBS

trTCM Initial code point CIR CBS PIR PBS

Note that the Null policer requires only the initial codemiiSince this policer does not downgrade packets, otherrirdtion
is not necessary. Consider a Tcl script for whiithis a variable for an edge queue, @#sland$d are source and destination
nodes. The following command adds a TSW2CM policer for kafbiing from the source to the destination:

$q addPolicyEntry [$s id] [$d id] TSW2CM 10 2000000

Other parameters could be used for different policers inepte "TSW2CM":

Null 10

TSW3CM 10 2000000 3000000

TokenBucket 10 2000000 10000

SITCM 10 2000000 10000 20000

trTCM 10 2000000 10000 3000000 10000

Note, however, that only one policy can be applied to any@®destination pair.

91

The following command adds an entry to the Policer Tablecifgag that the trTCM has initial (green) code point 10,
downgraded (yellow) code point 11 and further downgraded)(code point 12:

$dsredq addPolicerEntry trTCM 10 11 12

There must be a Policer Table entry in place for every poligee and initial code point pair. It should be noticed that th
Null policer is added in the following way:

$dsredq addPolicerEntry Null 10
Downgrade code points are not specified because the Nutlypadies not meter traffic characteristics.

Queries supported:

Output entires in Policy Table, one line at a time:
$dsredq printPolicyTable

Output entires in Policer Table, one line at a time:
$dsredq printPolicerTable

Output entries in PHB table, one line at a time:
$dsredq printPHBTable

Packets statistic results:
$dsredq printStats
Sample output:

Packets Statistics

CP TotPkts TxPkts Idrops edrops
All 249126 249090 21 15

10 150305 150300 O 5

20 98821 98790 21 10

CP: code point

TotPkts: packets received

TxPkts: packets sent

Idrops: packets are dropped due to link overflow
edrops: RED early dropping).

Returns the RED weighted average size of the specified pdygieue:
$dsredg getAverage O

Returns the current size of the C Bucket (in bytes):
$dsredq getCBucket

9.4 Commands at a glance

The following is a list of related commands commonly usedrnmsation scripts:

92

$ns simplex-link $edge $core 10Mb 5ms dsRED/edge
$ns simplex-link $core $edge 10Mb 5ms dsRED/core

These two commands create the queues along the link betwesdga router and a core router.

set gEC [[$ns link $edge $core] queue]

Set DS RED parameters from Edge to Core:

$qEC meanPktSize $packetSize

$gEC set numQueues_ 1

$gEC setNumPrec 2

$gEC addPolicyEntry [$s1 id] [$dest id] TokenBucket 10 $cir 0 $cbsO
$gEC addPolicyEntry [$s2 id] [$dest id] TokenBucket 10 $cir 1 $cbsl
$gEC addPolicerEntry TokenBucket 10 11

$qEC addPHBEntry 10 0 O

$qEC addPHBEntry 11 0 1

$gEC configQ 0 0 20 40 0.02

$gEC configQ 0 1 10 20 0.10

This block of code obtains handle to the DiffServ queue fromedge router to a core router and configures all of the
parameters for it.

The meanPktSize command is required for the RED state Vesiatobe calculated accurately. Setting the number of physi
queues and precedence levels is optional, but it aids efigieBecause neither the scheduling or MRED mode type are set
they default to Round Robin scheduling and RIO-C Active QGuElanagement.

The addPolicyEntry commands establish two policies at tiyge&ueue: one between nodes S1 and Dest and one between
nodes S2 and Dest. Note that $s1 id] command returns the ID value neededdudPolicyEntry . The CIR and
CBS values used in the policies are the ones set at the bagiofthe script.

TheaddPolicerEntry line is required because each policer type and initial caitet pair requires an entry in the Policer
Table. Each of the policies uses the same policer and iibidé point, so only one entry is needed.

TheaddPHBEnNtry commands map each code point to a combination of physicaviatual queue. Although each code
pointin this example maps to a unique combination of physied virtual queue, multiple code points could receive tobeth
treatment.

Finally, theconfigQ commands set the RED parameters for each virtual queue.edtifigs the virtual queue by first
two parameters, for example, 0 and 1. The next three parasrate the minimum threshold, maximum threshold, and the
maximum dropping probability. Note that as the precedemadgevincreases, the RED parameters become harsher.

set qCE [[$ns link $core $el] queue]

Set DS RED parameters from Core to Edge:
$qCE meanPktSize $packetSize

$qCE set numQueues_ 1

$qCE setNumPrec 2

$qCE addPHBENtry 10 0 0

$qCE addPHBEntry 11 0 1

$qCE configQ 0 0 20 40 0.02

93

$qCE configQ 0 1 10 20 0.10

Note that the configuration of a core queue matches that adge @ueue, except that there is no Policy Table or PolicdeTab
to configure at a core router. A core router’s chief requinetigthat it has a PHB entry for all code points that it will see

$gELC printPolicyTable
$qCE2 printCoreStats

These methods output the policy or policer tables on linkdiffdrent statistics.

For further information, please refer to the example ssriptder xgtcl/ex/diffserv.

94

%

95

Chapter 10

Agents

Agents represent endpoints where network-layer packetsarstructed or consumed, and are used in the implemeantatio
of protocols at various layers. Thatass Agent has an implementation partly in OTcl and partly in C++. ThetC+
implementation is contained imsagent.cc andrsagent.h, and the OTcl support is ingtcl/lib/ns-agent.tcl.

10.1 Agent state

The C++class Agent includes enough internal state to assign various fields imalated packet before it is sent. This
state includes the following:

addr_ node address of myself (source address in packets)
dst where | am sending packets to

size packet size in bytes (placed into the common packet header)
type_ type of packet (in the common header, see packet.h)
fid_ the IP flow identifier (formerlclassin ns-1)
prio_ the IP priority field
flags_ packet flags (similar to ns-1)
defttl_ default IP ttl value

These variables may be modified by any class derived fkgant , although not all of them may be needed by any particular
agent.

10.2 Agent methods

Theclass Agent supports packet generation and reception. The followingbe functions are implemented by the
C++ Agent class, and are generatlgt over-ridden by derived classes:

Packet = allocpkt () allocate new packet and assign its fields
Packet * allocpkt (int) allocate new packet with a data payload of n bytes asijasts fields

96

The following member functions are also defined by the clagsm butare intended to be over-ridden by classes deriving
from Agent:

void timeout (timeout number)
void recv (Packet*, Handler*)

subclass-specific time out method
receiving agent main receive path

Theallocpkt () method is used by derived classes to create packets to 3éwdfunction fills in the following fields in
the common packet header (Section 12, ptype, size , and the following fields in the IP headesrc, dst,
flowid, prio, ttl . It also zero-fills in the following fields of the Flags headecn, pri, usrl, usr2 . Any
packet header information not included in these lists mashhbst be handled in the classes derived fAgent .

Therecv () method is the main entry point for an Agent which receivasigets, and is invoked by upstream nodes when
sending a packet. In most cases, Agents make no use of thedsa@ument (the handler defined by upstream nodes).

10.3 Protocol Agents

There are several agents supported in the simulator. Thesber names in OTcl:

TCP
TCP/Reno
TCP/Newreno
TCP/Sackl
TCP/Fack
TCP/FullTcp
TCP/Vegas
TCP/Vegas/RBP
TCP/Vegas/RBP
TCP/Asym
TCP/Reno/Asym
TCP/Newreno/Asym
TCPSink
TCPSink/DelAck
TCPSink/Asym
TCPSink/Sackl
TCPSink/Sack1/DelAck

UbDP

RTP
RTCP

LossMonitor

IVS/Source
IVS/Receiver

a “Tahoe” TCP sender (cwnd =1 on any loss)

a “Reno” TCP sender (with fast recovery)

a modified Reno TCP sender (changes fast rggover
a SACK TCP sender

a “forward” SACK sender TCP

a more full-functioned TCP with 2-way traffic

a “Vegas” TCP sender

a Vegas TCP with “rate based pacing”

a Reno TCP with “rate based pacing”
an experimental Tahoe TCP for asymmetric links

an experimental Reno TCP for asymmetrislink

an experimental Newreno TCP for asymimiaiks
a Reno or Tahoe TCP receiver (not used for FullTcp)
a TCP delayed-ACK receiver

an experimental TCP sink for asymmetric links

a SACK TCP receiver

a delayed-ACK SACK TCP receiver

a basic UDP agent

an RTP sender and receiver
an RTCP sender and receiver

a packet sink which checks for losses
an IVS source

an IVS receiver

97

CtrMcast/Encap a “centralised multicast” encapsulator
CtrMcast/Decap a “centralised multicast” de-encapsulato
Message a protocol to carry textual messages
Message/Prune processes multicast routing prune messages

SRM an SRM agent with non-adaptive timers
SRM/Adaptive an SRM agent with adaptive timers

Tap interfaces the simulator to a live network
Null a degenerate agent which discards packets

rtProto/DV distance-vector routing protocol agent

Agents are used in the implementation of protocols at variayers. Thus, for some transport protocols (e.g. UDP) the
distribution of packet sizes and/or inter-departure timeyy be dictated by some separate object representing thandism
of an application. To this end, agents expose an applicatiogramming interface (API) to the application. For agerstsd

in the implementation of lower-layer protocols (e.g. rogtagents), size and departure timing is generally dictbyethe
agent’s own processing of protocol messages.

10.4 OfTcl Linkage

Agents may be created within OTcl and an agent’s intern& tan be modified by use of Tckget function and any Tcl
functions an Agent (or its base classes) implements. Natesttme of an Agent’s internal state may exist only within DTc
and is thus is not directly accessible from C++.

10.4.1 Creating and Manipulating Agents

The following example illustrates the creation and modifaraof an Agentin OTcl:

set newtcp [new Agent/TCP] # create new object (and C++ shadow object)
$newtcp set window_ 20 ;# sets the tcp agent’s window to 20
$newtcp target $dest # target is implemented in Connector class
$newtcp set portiD_ 1 # exists only in OTcl, notin C++

10.4.2 Default Values

Default values for member variables, those visible in OTrdiy@and those linked between OTcl and C++ witind are
initialized in the +dtcl/lib/ns-default.tcl file. For exampléygent is initialized as follows:

Agent set fid_ O
Agent set prio_ 0
Agent set addr_ O

98

Agent set dst_ O
Agent set flags_ 0

Generally these initializations are placed in the OTcl ngpmaee before any objects of these types are created. Thes,amh
Agent object is created, the calls bind in the objects’ constructors will causes the correspondiegiber variables to be
set to these specified defaults.

10.4.3 OTcl Methods

The instance procedures defined for the QAgént class are currently found imgtcl/lib/ns-agent.tcl. They are as follows:
port the agent’s port identifier
dst-port the destination’s port identifier
attach-source (stype) create and attach a Source object to an agent

10.5 Examples: Tcp, TCP Sink Agents

Theclass TCP represents a simplified TCP sender. It sends datd©©RSink agent and processes its acknowledgments.
It has a separate object associated with it which represenapplication’s demand. By looking at thiass TCPAgent
andclass TCPSinkAgent ,we may see how relatively complex agents are constructe@xAmple from the Tahoe TCP
agentTCPAgent is also given to illustrate the use of timers.

10.5.1 Creating the Agent

The following OTcl code fragment create§&Pagent and sets it up:

set tcp [new Agent/TCP] # create sender agent
$tcp set fid_ 2 # set IP-layer flow ID

set sink [new Agent/TCPSink] # create receiver agent
$ns attach-agent $n0 $tcp ;# put sender on node $n0
$ns attach-agent $n3 $sink ;# putreceiver on node $n3
$ns connect $tcp $sink ;# establish TCP connection
set ftp [new Application/FTP] # create an FTP source "application"
$ftp attach-agent $tcp H# associate FTP with the TCP sender
$ns at 1.2 "$ftp start" # arrange for FTP to start at time 1.2 sec

The OTclinstructiomew Agent/TCP results in the creation of a C+HcpAgent class object. Its constructor first invokes
the constructor of thAgent base class and then performs its own bindings. These twdrootm's appear as follows:

The TcpSimpleAgent constructorr{stcp.cc):

TcpAgent::TcpAgent() : Agent(PT_TCP), rtt_active_(0), r tt_seq_(-1),
rtx_timer_(this), delsnd_timer_(this)
{
bind("window_", &wnd_);
bind("windowlInit_", &wnd_init_);

99

bind("windowOption_", &wnd_option_);
bind("windowConstant ", &wnd_const);

bind("off_ip_", &off _ip_);
bind("off_tcp_", &off tcp);

}
The Agent constructor iagent.cc):
Agent::Agent(int pkttype) :

addr_(-1), dst_(-1), size_(0), type_(pkttype), fid_(-1) ,
prio_(-1), flags_(0)

{
memset(pending_, 0, sizeof(pending_)); / * timers*/
/I thisis really an IP agent, so set up
/I for generating the appropriate IP fields. ..
bind("addr_", (int *)&addr);
bind("dst_", (int *)&dst);
bind("fid_", (int *)&fid_);
bind("prio_", (int *)&prio_);
bind("flags_", (int *)&flags_);
}

These code fragments illustrate the common case where atisagenstructor passes a packet type identifier toAgent
constructor. The values for the various packet types are bigehe packet tracing facility (Section 26.5) and are deffiime
~ngdtrace.h. The variables which are bound in TepAgent constructor are ordinary instance/member variables fer th
class with the exception of the special integer valifstcp andoff_ip_ . These are needed in order to access a TCP
header and IP header, respectively. Additional detailsrattee section on packet headers (Section 12.1).

Note that théTcpAgent constructor contains initializations for two timerss_timer_ anddelsnd_timer_

TimerHandler objects are initialized by providing a pointer (tthés pointer) to the relevant agent.

10.5.2 Starting the Agent

TheTcpAgent agent is started in the example when its FTP source recdiessart directive at time 1.2. Thetart
operationis an instance procedure defined on the classa@pipin/FTP (Section 40.4). Itis defined ingtcl/lib/ns-source.tcl
as follows:

Application/FTP instproc start {} {
[$self agent] send -1
}

In this caseagent refers to our simple TCP agent ageind -1 is analogous to sending an arbitrarily large file.

The call tosend eventually results in the simple TCP sender generatinggiackhe following functiomutput performs
this:

void TcpAgent::output(int seqno, int reason)

100

Packet * p = allocpkt();

hdr_tcp *tcph = (hdr_tcp *)p->access(off_tcp_);
double now = Scheduler::instance().clock();
tcph->seqno() = seqno;

tcph->ts() = now;

tcph->reason() = reason;

Connector::send(p, 0);

if (1(rtx_timer_.status() == TIMER_PENDING))
/ * No timer pending. Schedule one/
set_rtx_timer();

Here we see an illustration of the use of thgent::allocpkt () method. This output routine first allocates a new packet
(with its common and IP headers already filled in), but therstill in the appropriate TCP-layer header fields. To find
the TCP header in a packet (assuming it has been enableib{S&2t2.4)) theoff tcp_ must be properly initialized, as
illustrated in the constructor. The paclkatcess () method returns a pointer to the TCP header, its sequenodemand
time stamp fields are filled in, and teend () method of the class Connector is called to send the packatistream one hop.
Note that the C++: scoping operator is used here to avoid callirgpSimpleAgent::send () (which is also defined).
The check for a pending timer uses the timer metstadus () which is defined in the base class TimerHandler. It is used
here to set a retransmission timer if one is not already SEC sender only sets one timer per window of packets on each
connection).

10.5.3 Processing Input at Receiver

Many of the TCP agents can be used with thess TCPSink as the peer. This class defines tieev () andack ()
methods as follows:

void TcpSink::recv(Packet + pkt, Handler)
{
hdr_tcp *th = (hdr_tcp *)pkt->access(off_tcp_);
acker_->update(th->seqno());
ack(pkt);
Packet::free(pkt);
}

void TcpSink::ack(Packet * Opkt)

{
Packet *» npkt = allocpkt();

hdr tcp *otcp = (hdr_tcp *)opkt->access(off _tcp);
hdr_tcp *ntcp = (hdr_tcp *)npkt->access(off_tcp_);
ntcp->seqno() = acker_->Seqgno();

ntcp->ts() = otcp->ts();

hdr_ip * oip = (hdr_ip *)opkt->access(off_ip_);
hdr_ip * nip = (hdr_ip *)npkt->access(off_ip_);
nip->flowid() = oip->flowid();

hdr_flags =* of = (hdr_flags * Jopkt->access(off_flags);

101

hdr_flags =* nf = (hdr_flags *)npkt->access(off_flags);
nf->ecn_ = of->ecn_;

acker_->append_ack((hdr_cmn *)npkt->access(off_cmn_),
ntcp, otcp->seqno());
send(npkt, 0);

Therecv () method overrides thAgent::recv () method (which merely discards the received packet). diabgs some
internal state with the sequence number of the receivedgpéaikd therefore requires tb& tcp_ variable to be properly
initialized. It then generates an acknowledgment for tleiked packet. Thack () method makes liberal use of access to
packet header fields including separate accesses to the €t IP header, Flags header, and common header. The call t
send () invokes theConnector::send () method.

10.5.4 Processing Responses at the Sender

Once the simple TCP’s peer receives data and generates an th€ksender must (usually) process the ACK. In the
TcpAgent agent, this is done as follows:

| *

* main reception path - should only see acks, otherwise the

* network connections are misconfigured

* |

void TcpAgent::recv(Packet +pkt, Handler «)

{
hdr tcp *tcph = (hdr_tcp *)pkt->access(off_tcp);
hdr_ip * iph = (hdr_ip *)pkt->access(off_ip_);

if (((hdr_flags *)pkt->access(off_flags_))->ecn_)
guench(1);
if (tcph->seqgno() > last_ack) {
newack(pkt);
opencwnd();
} else if (tcph->seqno() == last_ack) {
if (++dupacks_ == NUMDUPACKS) {

}
}
Packet::free(pkt);
send(0, 0, maxburst);

This routine is invoked when an ACK arrives at the senderhis tase, once the information in the ACK is processed (by
newack) the packet is no longer needed and is returned to the packabny allocator. In addition, the receipt of the ACK
indicates the possibility of sending additional data, soltbpSimpleAgent::send () method is invoked which attempts
to send more data if the TCP window allows.

102

10.5.5 Implementing Timers

As described in the following chapter (Chapter 11), spetifieer classes must be derived from an abstract lobesss
TimerHandler defined in agtimer-handler.h. Instances of these subclasses can thesdd as various agent timers. An
agent may wish to override thisgent::timeout () method (which does nothing). In the case of the Tahoe TGhtag
two timers are used: a delayed send tirdelsnd_timer_ and a retransmission timetix_timer_ . We describe the
retransmission timer in TCP (Section 11.1.2) as an exanfimer usage.

10.6 Creating a New Agent

To create a new agent, one has to do the following:

. decide its inheritance structure (Section 10.6.1), aedte the appropriate class definitions,
. define theecv () andtimeout () methods (Section 10.6.2),

. define any necessary timer classes,

. define OTcl linkage functions (Section 10.6.3),

. write the necessary OTcl code to access the agent (Sé€ti6r).

a b~ W N PP

The action required to create and agent can be illustrateddans of a very simple example. Suppose we wish to construct
an agent which performs the ICMP ECHO REQUEST/REPLY (or gfjjroperations.

10.6.1 Example: A “ping” requestor (Inheritance Structure)

Deciding on the inheritance structure is a matter of perstmzice, but is likely to be related to the layer at which tigeat
will operate and its assumptions on lower layer functidgalihe simplest type of Agent, connectionless datagraiented
transport, is thé\gent/UDP base class. Traffic generators can easily be connected toAdBRts. For protocols wishing to
use a connection-oriented stream transport (like TCP)yahieus TCP Agents could be used. Finally, if a new transport
“sub-transport” protocol is to be developed, uskgent as the base class would likely be the best choice. In our ebeamp
we'll use Agent as the base class, given that we are conistgent agent logically belonging to the IP layer (or just abity.

We may use the following class definitions:

class ECHO_Timer;

class ECHO_Agent : public Agent {
public:

ECHO_Agent();

int command(int argc, const char *const * argv);
protected:

void timeout(int);

void sendit();

double interval_;

ECHO_Timer echo_timer_;

k

class ECHO_Timer : public TimerHandler {

103

public:

ECHO_Timer(ECHO_Agent xa) : TimerHandler() { a_ = a; }
protected:

virtual void expire(Event *e);

ECHO_Agent *a_;

10.6.2 Therecv()andti meout () Methods

Therecv () method is not defined here, as this agent represents astdguetion and will generally not be receiving events
or packet$. By not defining theecv () method, the base class versioredv () (i.e., Connector::recv ())isused. The
timeout () method is used to periodically send request packets. dll@ning timeout () method is used, along with a
helper methodsendit ():

void ECHO_Agent::timeout(int)

{
sendit();
echo_timer_.resched(interval_);

}

void ECHO_Agent::sendit()

{
Packet » p = allocpkt();
ECHOHeader *eh = ECHOHeader::access(p->bits());
eh->timestamp() = Scheduler::instance().clock();
send(p, 0); 1 Connector::send()

}

void ECHO_Timer::expire(Event *e)

{
a_->timeout(0);

}

Thetimeout () method simply arranges feendit () to be executed eveipterval seconds. Theendit () method

creates a new packet with most of its header fields alreadypsleyallocpkt (). The packet is only lacks the current time
stamp. The call taccess () provides for a structured interface to the packet headklsfj and is used to set the timestamp
field. Note that this agent uses its own special header (“EBeBder”). The creation and use of packet headers is dedcribe
in later chapter (Chapter 12); to send the packet to the rexhstream nodeConnector::send () is invoked without a
handler.

10.6.3 Linking the “ping” Agent with OTcl

We have the methods and mechanisms for establishing OTkabmearlier (Chapter 3). This section is a brief review ef th
essential features of that earlier chapter, and desctilgaminimum functionality required to create the ping agent.

There are three items we must handle to properly link our agiggh Otcl. First we need to establish a mapping between the
OTcl name for our class and the actual object created whenssantiation of the class is requested in OTcl. This is dane a
follows:

1This is perhaps unrealistically simple. An ICMP ECHO REQUEent would likely wish to process ECHO REPLY messages.

104

static class ECHOClass : public TclClass {
public:
ECHOCIass() : TclClass("Agent/ECHO") {}
TclObject =+ create(int argc, const char *const * argv) {
return (new ECHO_Agent());
}

} class_echo;

Here, astaticobject “class_echo” is created. It's constructor (exedut@mediately when the simulator is executed) places
the class name “Agent/ECHQO” into the OTcl name space. Théngiaf case is by convention; recall from Section 3.5 in the
earlier chapters that the “/” character is a hierarchy digdinfor the interpreted hierarchy. The definition of treate ()
method specifies how a C++ shadow object should be created theeOTcl interpreter is instructed to create an object
of class “Agent/ECHQ?". In this case, a dynamically-all@mhbbject is returned. This is the normal way new C++ shadow
objects are created.

Once we have the object creation set up, we will want to link @G¥ember variables with corresponding variables in the OTcl

nname space, so that accesses to OTcl variables are adiaakgd by member variables in C++. Assume we would like
OTcl to be able to adjust the sending interval and the paéket $his is accomplished in the class’s constructor:

ECHO_Agent::ECHO_Agent() : Agent(PT_ECHO)

{
bind_time("interval_", &interval_);
bind("packetSize ", &size);
}
Here, the C++variablaaterval andsize_ arelinked tothe OTclinstance variablaeterval andpacketSize

respectively. Any read or modify operation to the Otcl valés will result in a corresponding access to the underlgimeg
variables. The details of theind () methods are described elsewhere (Section 3.4.2). TheedetionstanPT_ECHGQs
passed to thAgent () constuctor so that th&gent::allocpkt () method may set the packet type field used by the trace
support (Section 26.5). In this ca$¥l _ECHOepresents a new packet type and must be definexdditrace.h (Section 26.4).

Once object creation and variable binding is set up, we mayt teacreate methods implemented in C++ but which can be
invoked from OTcl (Section 3.4.4). These are often contsnttions that initiate, terminate or modify behavior. I ptesent
example, we may wish to be able to start the ping query agemt @Tcl using a “start” directive. This may be implemented
as follows:

int ECHO_Agent::command(int argc, const char *const * argv)
{
if (argc == 2) {
if (strcmp(argv[l], "start") == 0) {
timeout(0);

return (TCL_OK);
}
}

return (Agent::command(argc, argv));

Here, thestart () method available to OTcl simply calls the C++ member fiorctimeout () which initiates the first
packet generation and schedules the next. Note this classsimple it does not even include a way to be stopped.

105

10.6.4 Using the agent through OTcl

The agent we have created will have to be instantiated aadhetl to a node. Note that a node and simulator object is
assumed to have already been created. The following OTel petforms these functions:

set echoagent [new Agent/ECHO]
$simulator attach-agent $node $echoagent

To set the interval and packet size, and start packet gémertite following OTcl code is executed:

$echoagent set dst_ $dest
$echoagent set fid_ 0
$echoagent set prio_ 0
$echoagent set flags_ 0
$echoagent set interval_ 1.5
$echoagent set packetSize 1024
$echoagent start

This will cause our agent to generate one 1024-byte packtingd for nodebdest every 1.5 seconds.

10.7 The Agent API

Simulated applications may be implemented on top of prdtagents. Chapter 40 describes the API used by applications t
access the services provided by the protocol agent.

10.8 Different agent objects

Class Agent forms the base class from which different typedjects like Nullobject, TCP etc are derived. The methads f
Agent class are described in the next section. Configurgaoameters for:

fid_ Flowid.

prio_ Priority.

agent_addr_ Address of this agent.

agent_port_ Port adress of this agent.

dst_addr_ Destination address for the agent.
dst_port_ Destination port address for the agent.
flags_

ttl_ TTL defaults to 32.

There are no state variables specific to the generic agesst c@her objects derived from Agent are given below:

106

Null Objects Null objects are a subclass of agent objects that implemaaftfec sink. They inherit all of the generic agent
object functionality. There are no methods specific to thigct. The state variables are:
e sport_
e dport_
LossMonitor Objects LossMonitor objects are a subclass of agent objects thdemmgmt a traffic sink which also maintains

some statistics about the received data e.g., number of bgteived, number of packets lost etc. They inherit all of
the generic agent object functionality.

$lossmonitor clear
Resets the expected sequence number to -1.

State Variables are:

nlost_ Number of packets lost.

npkts_ Number of packets received.

bytes Number of bytes received.

lastPktTime_ Time at which the last packet was received.
expected_The expected sequence number of the next packet.

TCP objects TCP objects are a subclass of agent objects that implemerB8D Tahoe TCP transport protocol as de-
scribed in paper: "Fall, K., and Floyd, S. Comparisons ofoeglReno, and Sack TCP. December 1995." URL ftp://
ftp.ee.lbl.gov/papers/sacks.ps.Z. They inherit all @ gleneric agent functionality. Configuration Parametegs ar
window_ The upper bound on the advertised window for the TCP conmrecti

maxcwnd_ The upper bound on the congestion window for the TCP conmrectset to zero to ignore. (This is the
default.)

windowlnit_ The initial size of the congestion window on slow-start.
windowOption_ The algorithm to use for managing the congestion window.

windowThresh_ Gain constant to exponential averaging filter used to compuind (see below). For investigations
of different window-increase algorithms.

overhead_ The range of a uniform random variable used to delay eachubpgrcket. The idea is to insert random
delays at the source in order to avoid phase effects, whareddsee Floyd, S., and Jacobson, V. On Traffic Phase
Effects in Packet-Switched Gateways. Internetworkingsdech and Experience, V.3 N.3, September 1992. pp.
115-156]. This has only been implemented for the Tahoe '(J'tegrsion of tcp, not for tcp-reno. This is not
intended to be a realistic model of CPU processing overhead.

ecn_ Set to true to use explicit congestion notification in additio packet drops to signal congestion. This allows a
Fast Retransmit after a quench() due to an ECN (explicit estign notification) bit.

packetSize_The size in bytes to use for all packets from this source.

tcpTick_ The TCP clock granularity for measuring roundtrip times.téNihat it is set by default to the non-standard
value of 100ms.

bugFix_ Set to true to remove a bug when multiple fast retransmitaléoeed for packets dropped in a single window
of data.

maxburst_ Set to zero to ignore. Otherwise, the maximum number of gac¢kat the source can send in response to
a single incoming ACK.

slow_start_restart_ Set to 1 to slow-start after the connection goes idle. On lfgudie

syn_ Set to false to disable modeling the initial SYN/SYNACK eaadlge. On by default. Note: if this is set to false
and the DelAck sink is used, it's advisable to also disabdesink’s “SYN_immediate_ack_" flag.

Defined Constants are:

107

MWS The Maximum Window Size in packets for a TCP connection. MVé&tmines the size of an array in tcp-
sink.cc. The default for MWS is 1024 packets. For Tahoe TG®,window" parameter, representing the re-
ceiver’s advertised window, should be less than MWS-1. FendRTCP, the "window" parameter should be less
than (MWS-1)/2.

State Variables are:

dupacks_ Number of duplicate acks seen since any new data was ackigede

seqno_ Highest sequence number for data from data source to TCP.

t_segno_ Current transmit sequence number.

ack_ Highest acknowledgment seen from receiver. cwnd_ Currgoevof the congestion window.

awnd_ Current value of a low-pass filtered version of the congestimdow. For investigations of different window-
increase algorithms.

ssthresh_ Current value of the slow-start threshold.
rtt_ Round-trip time estimate.
srtt_ Smoothed round-trip time estimate.
rttvar_ Round-trip time mean deviation estimate.
backoff _ Round-trip time exponential backoff constant.
TCP/Reno Objects TCP/Reno objects are a subclass of TCP objects that impletmefiReno TCP transport protocol de-
scribed in paper: "Fall, K., and Floyd, S. Comparisons ofoeglReno, and Sack TCP. December 1995." URL ftp://

ftp.ee.lbl.gov/papers/sacks.ps.Z. There are no methoagiguration parameters or state variables specific tootts
ject.

TCP/Newreno Objects TCP/Newreno objects are a subclass of TCP objects that inggiea modified version of the BSD
Reno TCP transport protocol. There are no methods or stagbles specific to this object.
Configuration Parameters are:
newreno_changes_Set to zero for the default New Reno described in "Fall, Kd Bloyd, S. Comparisons of Tahoe,
Reno, and Sack TCP. December 1995". Set to 1 for additionalREno algorithms [see Hoe, J., Improving the
Start-up Behavior of a Congestion Control Scheme for TCBIGCOMM 96, August 1996, pp. 270-280. URL

http://www.acm.org/sigcomm/sigcomm96/papers/hoe.tthis includes the estimation of the ssthresh parame-
ter during slow-start.

TCP/Vegas Objects There are no methods or configuration parameters specifiistobject. State variables are:
e v_alpha_
e vV _beta_
e V_gamma_
o Vv _rtt
TCP/Sackl Objects TCP/Sack1 objects are a subclass of TCP objects that implehreeBSD Reno TCP transport protocol
with Selective Acknowledgement Extensions described all;'IK., and Floyd, S. Comparisons of Tahoe, Reno, and

Sack TCP. December 1995". URL ftp:// ftp.ee.lbl.gov/pafsacks.ps.Z. They inherit all of the TCP object functienal
ity. There are no methods, configuration parameters or etaiables specific to this object.

TCP/FACK Objects TCP/Fack objects are a subclass of TCP objects that implgimeBSD Reno TCP transport protocol
with Forward Acknowledgement congestion control. Theyenitall of the TCP object functionality. There are no
methods or state variables specific to this object.

Configuration Parameters are:

ss-div4 Overdamping algorithm. Divides ssthresh by 4 (instead of 2pbngestion is detected within 1/2 RTT of
slow-start. (1=Enable, O=Disable)

108

rampdown Rampdown data smoothing algorithm. Slowly reduces coigestindow rather than instantly halving it.
(1=Enable, 0O=Disable)

TCP/FULLTCP Objects This section has not yet been added here. The implementatithe configuration parameters
are described in paper: "Fall, K., Floyd, S., and HendersgiNs Simulator Tests for Reno FullTCP. July, 1997." URL
ftp://ftp.ee.Ibl.gov/papers/fulltcp.ps.

TCPSINK Objects TCPSink objects are a subclass of agent objects that impleaneceiver for TCP packets. The simu-
lator only implements "one-way" TCP connections, wherelt@® source sends data packets and the TCP sink sends
ACK packets. TCPSink objects inherit all of the generic ddenctionality. There are no methods or state variables
specific to the TCPSink object. Configuration Parameters are

packetSize_The size in bytes to use for all acknowledgment packets.

maxSackBlocks_The maximum number of blocks of data that can be acknowlenfige&ACK option. For a receiver
that is also using the time stamp option [RFC 1323], the SA@Hom specified in RFC 2018 has room to include
three SACK blocks. This is only used by the TCPSink/SackXkgs. This value may not be increased within
any particular TCPSink object after that object has beecated. (Once a TCPSink object has been allocated,
the value of this parameter may be decreased but not inctease

TCPSINK/DELACK Objects DelAck objects are a subclass of TCPSink that implement ayeéel ACK receiver for TCP
packets. They inherit all of the TCPSink object functiotyaliThere are no methods or state variables specific to the
DelAck object. Configuration Parameters are:

interval_ The amount of time to delay before generating an acknowleddffior a single packet. If another packet
arrives before this time expires, generate an acknowledgmenediately.

RFC2581_immediate_ack_A boolean flag. If true, conforms to RFC2581 (section 4.2) anly delays the ACK if
we know we're not doing recovery, i.e. not gap-filling. Otlvese all ACKs are delayed. The default value is true.

SYN_immediate_ack A boolean flag. Iftrue, the first packet in sequence (seqngis-diways ACKed immediately.
This simulates the behavior of the FullTCP agent, which AGKSYN immediately. The default value is true.
See also the “syn_" flag of the one-way TcpAgent.

TCPSINK/SACK1 Objects TCPSink/Sackl objects are a subclass of TCPSink that imgriea SACK receiver for TCP
packets. They inherit all of the TCPSink object functiotyallhere are no methods, configuration parameters or state
variables specific to this object.

TCPSINK/SACK1/DELACK Objects TCPSink/Sackl/DelAck objects are a subclass of TCPSimk/Sthat implement a
delayed-SACK receiver for TCP packets. They inherit allled TCPSink/Sackl object functionality. There are no
methods or state variables specific to this object. Conftgur&arameters are:

interval_ The amount of time to delay before generating an acknowleddffior a single packet. If another packet
arrives before this time expires, generate an acknowledgimenediately.

10.9 Commands at a glance

Following are the agent related commands used in simulatidpts:

ns_ attach-agent <node> <agent>

This command attaches the <agent> to the <node>. We assumthhethe <agent> has already been created. An agent is
typically created byget agent [new Agent/AgentType] where Agent/AgentType defines the class definiton of the
specified agent type.

$agent port
This returns the port number to which the agent is attached.

109

$agent dst-port
This returns the port number of the destination. When anyeotion is setup between 2 nodes, each agent stores the
destination port in its instance variable caltist port_

$agent attach-app <s_type>
This commands attaches an application of typetype> to the agent. A handle to the application object is returidsb
note that the application type must be defined as a packetrygaecket.h.

$agent attach-source <s_type>
This used to be the procedure to attach source offgpéype> to the agent. But this is obsolete now. Use attach-app
(described above) instead.

$agent attach-tbf <tbf>
Attaches a token bucket filter (tbf) to the agent.

$ns_ connect <src> <dst>
Sets up a connection between the src and dst agents.

$ns_ create-connection <srctype> <src> <dsttype> <dst> <p ktclass>

This sets up a complete connection between two agents.ckéates a source of type <srctype> and binds it to <src>. Then
creates a destination of type <dsttype> and binds it to <dstrally connects the src and dst agents and returns a hendle
the source agent.

$ns_ create-connection-list <srctype> <src> <dsttype> <d st> <pktclass>
This command is exactly similar to create-connection desdrabove. But instead of returning only the source-agkist,
returns a list of source and destination agents.

Internal procedures:

$ns_ simplex-connect <src> <dst>

This is an internal method that actually sets up an unideat connection between the <src> agent and <dst> agent. It
simply sets the destination address and destination ptiiecfsrc> as <dst>'s agent-address and agent-port. Tha@&cth
described above calls this method twice to set up a bi-dieat connection between the src and dst.

$agent set <args>
This is an internal procedure used to inform users of thewank compatibility issues resulting from the upgrade td82-
addressing space currently usechin

$agent attach-trace <file>
This attaches the <file> to the agent to allow nam-tracingpefagent events.

In addition to the agent related procedures described tiemes are additional methods that support different typegeints
like Agent/Null, Agent/TCP, Agent/CBR, Agent/TORA, Agémicast etc. These additional methods along with the
procedures described here can be founaldtcl/lib/(ns-agent.tcl, ns-lib.tcl, ns-mip.tcl, ns-mi@node.tcl, ns-namsupp.tcl,
ns-queue.tcl, ns-route.tcl, ns-sat.tcl, ns-sourceTtigy are also described in the previous section.

110

Chapter 11

Timers

Timers may be implemented in C++ or OTcl. In C++, timers argdolon an abstract base class defined#ftimer-handler.h.
They are most often used in agents, but the framework is ge@eough to be used by other objects. The discussion below is
oriented towards the use of timers in agents.

The procedures and functions described in this chapteredound in -ngtcl/ex/timer.tcl, and agtimer-handler.{cc, h}.

In OTcl, a simple timer class is defined img4cl/ex/timer.tcl. Subclasses can be derived to providiengle mechanism for
scheduling events at the OTcl level.

11.1 C++ abstract base class TimerHandler

The abstract base cla¥snerHandler contains the following public member functions:

void sched (double delay) schedule atimerto expire delay second<ifutinire
void resched (doubledelay) reschedule atimer (similastthed (), but timer may be pending)
void cancel () cancela pendingtimer

int status () returns timer status (either TIMER_IDLE, TIMER_PENDING or
TIMER_HANDLING)

The abstract base clagsnerHandler contains the following protected members:

virtual void expire (Event*e) =0 this method must be filled in by the timer client
virtual void handle (Event* e) consumes an event; invokegire()and setstatus_of the timer appro-
priately
int status_ keeps track of the current timer status
Event event_ event to be consumed upon timer expiration

The pure virtual functioexpire()must be defined by the timer classes deriving from this attdese class.

Finally, two private inline functions are defined:

inline void _sched(double delay) {

111

(void)Scheduler::instance().schedule(this, &event , d elay);

}

inline void _cancel() {
(void)Scheduler::instance().cancel(&event);

}

From this code we can see that timers make use of methods 8ttretluler class.

11.1.1 Definition of a new timer
To define a new timer, subclass this function and ddieadle () if needed flandle () is not always required):

class MyTimer : public TimerHandler {

public:
MyTimer(MyAgentClass xa) . TimerHandler() { a_ = a; }
virtual double expire(Event *e);

protected:
MyAgentClass *a_;

h

Then define expire:

double
MyTimer::expire(Event *e)

/I do the work

/I return TIMER_HANDLED; I => do not reschedule timer
/I return delay; I => reschedule timer after delay

}

Note thatexpire () can return either the flag TIMER_HANDLED or a delay valuepdnding on the requirements for this
timer.

OftenMyTimer will be a friend ofMyAgentClass , orexpire () will only call a public function ofMyAgentClass .

Timers are not directly accessible from the OTcl level,@lifph users are free to establish method bindings if they sioede

11.1.2 Example: Tcp retransmission timer

TCP is an example of an agent which requires timers. Theréheze timers defined in the basic Tahoe TCP agent defined in
tcp.cc

rtx_timer_; / * Retransmission timet/

delsnd_timer_; / * Delays sending of packets by a small random amount of tirhe,
/ * to avoid phase effectd

burstsnd_timer_; / * Helps TCP to stagger the transmission of a large winddw

/ = into several smaller bursts/

112

In ~ndtcp.h, three classes are derived from the base class TimerHandler

class RtxTimer : public TimerHandler {

public:
RtxTimer(TcpAgent *a) : TimerHandler() { a_ = a; }
protected:
virtual void expire(Event *e);
TcpAgent +*a_;
h
class DelSndTimer : public TimerHandler {
public:
DelSndTimer(TcpAgent +a) : TimerHandler() { a_ = a; }
protected:
virtual void expire(Event *e);
TcpAgent =*a_;
¥
class BurstSndTimer : public TimerHandler {
public:
BurstSndTimer(TcpAgent +xa) : TimerHandler() { a_ = a; }
protected:
virtual void expire(Event *e);

TcpAgent +*a_;

In the constructor fofcpAgent intcp.cc , each of these timers is initialized with ttids pointer, which is assigned to
the pointera_.

TcpAgent::TcpAgent() : Agent(PT_TCP), rtt_active_(0), r tt_seq_(-1),
rtx_timer_(this), delsnd_timer_(this), burstsnd_timer _(this)

{

}

In the following, we will focus only on the retransmissiomgr. Various helper methods may be defined to schedule timer
eventse.g,

| *
* Set retransmit timer using current rtt estimate. By calliresched()
* it does not matter whether the timer was already running.
* |

void TcpAgent::set rtx_timer()

{

}

| *
* Set new retransmission timer if not all outstanding
* data has been acked. Otherwise, if a timer is still

rtx_timer_.resched(rtt_timeout());

113

* outstanding, cancel it.

* [
void TcpAgent::newtimer(Packet * pkt)
{
hdr_tcp *tcph = (hdr_tcp *)pkt->access(off_tcp_);
if (t_seqgno_ > tcph->seqgno())
set_rtx_timer();
else if (rtx_timer_.status() == TIMER_PENDING)
rtx_timer_.cancel();
}
Inthe above code, theet_rtx_timer () method reschedules the retransmission timer by caltingimer_.resched 0.

Note that if itis unclear whether or not the timer is alreagiying, callingesched () eliminates the need to explicitly cancel
the timer. In the second function, examples are given of fieeadi thestatus () andcancel (void) methods.

Finally, theexpire (void) method for clasRtxTimer mustbe defined. Inthis casxpire (void) calls theimeout (void)

method forTcpAgent . This is possible becausieneout () is a public member function; if it were not, th&ixTimer
would have had to have been declared a friend cla3sp#fgent .

void TcpAgent::timeout(int tno)

{
[= retransmit timer */
if (tno == TCP_TIMER_RTX) {
if (highest ack_ == maxseq_ && !slow_start restart) {
| *
* TCP option:
* If no outstanding data, then don’t do anything.
*/
return;
%
recover_ = maxseq_;
recover_cause_ = 2;
closecwnd(0);
reset_rtx_timer(0,1);
send_much(0, TCP_REASON_TIMEOUT, maxburst);
} else {
| *
* delayed-send timer, with random overhead
* 1o avoid phase effects
* |
send_much(1, TCP_REASON_TIMEOUT, maxburst);
}
}
void RtxTimer::expire(Event xe) {
a_->timeout(TCP_TIMER_RTX);
}

The various TCP agents contain additional examples of §mer

114

11.2 OTcl Timer class

A simple timer class is defined img'tcl/mcast/timer.tcl. Subclasses Bimer can be defined as needed. Unlike the C++
timer API, where ached () aborts if the timer is already setched () andresched () are the same; i.e., no state is kept for
the OTcl timers. The following methods are defined inThmer base class:

$self sched $delay H causes "$self timeout" to be called $delay seconds in theefut
$self resched $delay # same as "$self sched $delay”
$self cancel ;# cancels any pending scheduled callback
$self destroy # same as "$self cancel”
$self expire # calls "$self timeout” immediately

11.3 Commands at a glance

Following is a list of methods for the class Timer. Note thatny different types of timers have been derived from thigbas
class (viz. LogTimer, Timer/Iface, Timer/Iface/Prunec@aTimer, Timer/Scuba etc).

$timer sched <delay>
This command cancels any other event that may have beenuetiemhd re-schedules another event after time <delay>.

$timer resched <delay>
Similar to "sched" described above. Added to have similaisAt that of the C++ timers.

$timer cancel
This cancels any scheduled event.

$timer destroy
This is similar to cancel. Cancels any scheduled event.

$timer expire
This command calls for a time-out. However the time-out phre needs to be defined in the sub-classes.

All these procedures can be foundidtcl/mcast/timer.tcl.

115

Chapter 12

Packet Headers and Formats

The procedures and functions described in this chapter ediound in -ngtcl/lib/ns-lib.tcl, ~ngtcl/lib/ns-packet.tcl, and
~ngpacket.{cc, h}.

Objects in theclass Packet — are the fundamental unit of exchange between objects iritidation. The clas®acket
provides enough information to link a packet on to a ligt.(in aPacketQueue or on a free list of packets), refer to a buffer
containing packet headers that are defined on a per-prdias@, and to refer to a buffer of packet data. New protocalg m
define their own packet headers or may extend existing headtr additional fields.

New packet headers are introduced into the simulator by idgfim C++ structure with the needed fields, defining a static
class to provide OTcl linkage, and then modifying some ofdineulator initialization code to assign a byte offset inteac
packet where the new header is to be located relative tosther

When the simulator is initialized through OTcl, a user magase to enable only a subset of the compiled-in packet fasmat
resulting in a modest savings of memory during the execwtfdhe simulation. Presently, most configured-in packenfats

are enabled. The management of which packet formats arentlyrenabled in a simulation is handled by a special packet
header manager object described below. This object suppo®OTcl method used to specify which packet headers will be
used in a simulation. If an object in the simulator makes dsefeeld in a header which has not been enabled, a run-time
fatal program abort occurs.

12.1 A Protocol-Specific Packet Header

Protocol developers will often wish to provide a specificderaype to be used in packets. Doing so allows a new protocol
implementation to avoid overloading already-existingderdields. We consider a simplified version of RTP as an exampl
The RTP header will require a sequence number fields and aesalentifier field. The following classes create the needed
header (seendrtp.h and Ag'rtp.cc):

From rtp.h:
[* rtp packet. For now, just have srcid + segne/
struct hdr_rtp {
u_int32_t srcid_;
int seqno_;
/= per-field member functionst /
u_int32_t& srcid() { return (srcid_); }

116

int& seqno() { return (seqno); }

/ = Packet header access functiong
static int offset_;
inline static int& offset() { return offset_; }
inline static hdr_rtp * access(const Packet * p) {
return (hdr_rtp *) p->access(offset);
}
%

From rtp.cc:

class RTPHeaderClass : public PacketHeaderClass {
public:
RTPHeaderClass() : PacketHeaderClass("PacketHeader/RT P,
sizeof(hdr_rtp)) {
bind_offset(&hdr_rtp::offset);
}
} class_rtphdr;

void RTPAgent::sendpkt()

{
Packet » p = allocpkt();
hdr rtp *rh = hdr_rtp::access(p);
lastpkttime_ = Scheduler::instance().clock();
/* Fillin srcid_ and segnox*/
rh->seqno() = seqno_++;
rh->srcid() = session_->srcid();
target_->recv(p, 0);

}

RTPAgent::RTPAgent()
. session_(0), lastpkttime (-1e6)
{

type_ = PT_RTP;
bind("seqno_", &seqno_);

The first structurehdr_rtp , defines the layout of the RTP packet header (in terms of wandstheir placement): which
fields are needed and how big they are. This structure definisi only used by the compiler to compute byte offsets of
fields; no objects of this structure type are ever directlgcated. The structure also provides member functions lwimc
turn provide a layer of data hiding for objects wishing tod-es modify header fields of packets. Note that the staticsclas
variableoffset_ is used to find the byte offset at which the rtp header is latatean arbitraryngacket. Two methods
are provided to utilize this variable to access this heademy packet:offset() andaccess() . The latter is what
most users should choose to access this particular headgraoket; the former is used by the packet header management
class and should seldom be used. For example, to access fhpd®Ket header in a packet pointeddyone simply says
hdr_rtp::access(p) . The actual binding obffset_ to the position of this header in a packet is done by routines
inside ~ndtcl/lib/ns-packet.tcl and rgpacket.cc. Theonst in access() ’s argument provides (presumably) read-only
access to aonst Packet, Ithough read-only is enforced since the returntpoig notconst . One correct way to do this is

to provide two methods, one for write access, the other fad4@nly access. However, this is not currently implemented

IMPORTANT : Notice that this is completely different from tlogiginal (and obsolete) method to access a packet header,
which requires that an integer variab&#f_ (hdrname)_, be defined for any packet header that one needs to access. Thi

117

method is now obsolete; its usage is tricky and its misuséearery difficult to detect.

The static objectlass_rtphdr of class RTPHeaderClass is used to provide linkage to OTcl when the RTP header
is enabled at configuration time. When the simulator exegtités static object calls tHeacketHeaderClass constructor

with argument§PacketHeader/RTP" andsizeof(hdr_rtp) . This causes the size of the RTP header to be stored and
made available to the packet header manager at configutiamtieiisee below, Section 12.2.4). Notice thatd_offset()

MUST be called in the constructor of this class, so that the pdodatier manager knows where to store the offset for this
particular packet header.

The sample member functisendpkt () method ofRTPAgent creates a new packet to send by calladfpcpkt (),
which handles assignment of all the network-layer packatibefields (in this case, IP). Headers other than IP are édndl
separately. In this case, the agent usesRi@Header defined above. Th@acket::access (void) member function
returns the address of the first byte in a buffer used to had&einformation (see below). Its return value is cast adrat@o
to the header of interest, after which member functions @RiPHeader object are used to access individual fields.

12.1.1 Adding a New Packet Header Type

Assuming we wish to create a new header catleathdr the following steps are performed:

1. create a new structure defining the raw fields (cdlidd newhdr), defineoffset_ and access methods.
2. define member functions for needed fields.

3. create a static class to perform OTcl linkage (defih@sketHeader/Newhdr), dobind_offset() in its con-
structor.

4. edit -ndtcl/lib/ns-packet.tcl to enable new packet format (se1212.2.4).

This is the recommended way to add your packet headers. dgoot follow this method, your simulation may still work,
but it may behave in a unpredictable way when more protoa@sdded into your simulation. The reason is that the BOB
(Bag of Bits, Section 12.2.1) impacket is a large sparse space, assigning one wrong packeteheffset may not trigger
failure immediately.

12.1.2 Selectively Including Packet Headers in Your Simuléon

By default, ns includes\LL packet headers &ALL protocols in ns irEVERYpacket in your simulation. This is a LOT of
overhead, and will increase as more protocols are addeditd-or “packet-intensive” simulations, this could be adug
overhead. For instance, as of now (Aug 30, 2000), the sizadfqt headers of all protocols in ns is about 1.9KB; however,
if you turn on only the common header, the IP header and the&aer, they add up to about 100 bytes. If you are doing
large-scale web traffic simulation with many big fat pipesjucing unused packet headers can lead to major memorgsavin

To include only the packet headers that are of interest tdrygaur specific simulation, follow this pattern (e.g., yoant to
remove AODV and ARP headers from your simulation):

remove-packet-header AODV ARP

set ns [new Simulator]

Notice tharemove-packet-header MUST go before the simulator is created. All packet headerasare in the forms
of PacketHeader/[hdr] . You only need to supply thiladr] part, not the prefix. To find the names of packet headers,
you may either look them up inng'tcl/lib/ns-packet.tcl, or run the following simple comnus inns

118

foreach cl [PacketHeader info subclass] {
puts $cl
}

To include only a specific set of headers in your simulatiog., #° and TCP, follow this pattern:

remove-all-packet-headers
add-packet-header IP TCP

set ns [new Simulator]

IMPORTANT: You MUST never remove common header from youridation. As you can see inngtcl/lib/ns-packet.tcl,
this is enforced by these header manipulation procs.

Notice that by default, all packet headers are included

12.2 Packet Classes

There are four C++ classes relevantto the handling of paeket packet headers in geneRdicket , p_info PacketHeader
andPacketHeaderManager . Theclass Packet defines the type for all packets in the simulation; it is a agxcof
Event so that packets may be scheduled (e.g. for later arrivalraesqpueue). Thelass packet_info holds all text
representations for packet names. Thess PacketHeader provides a base class for any packet header configured into
the simulation. It essentially provides enough internafesto locate any particular packet header in the colleatfgracket
headers present in any given packet. Thess PacketHeaderManager defines a class used to collect and manage
currently-configured headers. It is invoked by a methodlakbe to OTcl at simulation configuration time to enable some
subset of the compiled-in packet headers.

12.2.1 The Packet Class

The class Packet defines the structure of a packet and psavidmber functions to handle a free list for objects of thiety
Itis illustrated in Figure 12.1 and defined as followsimcket.h

class Packet : public Event {

private:
friend class PacketQueue;
u_char * bits_;
u_char = data_; / = variable size buffer for 'data* /
u_int datalen_; / = length of variable size buffet/
protected:
static Packet * free_;
public:

Packet * next_; / = for queues and the free list
static int hdrlen_;

Packet() : bits_(0), datalen_(0), next _(0) {}

u_char * const bits() { return (bits_); }

Packet * copy() const;

static Packet * alloc();

119

ip header body

Packet points to next packet in either
next_ free list or in a PacketQueue
hdrsize accessdata() eyt data
|
|
. : N\
| bits() p
| /
: ;| size determined
!)/ at compile time
|
|
|

Size Determined

at Simulator Config {
Time, stored in hdrsize .

static Packet

size determined
at compile time

. size det_erm_ined
N at compile time

. size determined
‘.| at compile time

Figure 12.1: A Packet Object

+ alloc(int);

inline void allocdata(int);

static void free(Packet *);
inline u_char = access(int off) {
if (off < 0)
abort();

return (&bits_[off]);

}

inline u_char

This class holds a pointer to a generic array of unsignedchens (commonly called the “bag of bits” or BOB for short)esé
packet header fields are stored. It also holds a pointer tkepéadata” (which is often not used in simulations). Tiies_
variable contains the address of the first byte of the BOBedfiffely BOB is (currently implemented as) a concatenaibn

all the structures defined for each packet header (by coioverthe structures with names beginnimdy_ (something))

that have been configured in. BOB generally remains a fixesl thicoughout a simulation, and the size is recorded in the
member variable. This size is updated during simulator gondition by OTcl.

Packet::hdrlen_

The other methods of the class Packet are for creating neketsaand storing old (unused) ones on a private free listhSuc
allocation and deallocation is performed by the followirngle (in -hgpacket.h):

inline Packet

* accessdata() { return data_; }

* Packet::alloc()

{
Packet » p = free_;
if (p !'=0)
free_ = p->next_;

tcp header body

rtp header body

trace header body

1itis not intended to be updated after configuration time.ngaioshouldbe possible, but is currently untested.

120

else {
p = new Packet;

p->bits_ = new u_char[hdrsize_];
if (p == 0 || p->bits_ == 0)
abort();
}
return (p);

}

/ = allocate a packet with an n byte data buffer
inline Packet * Packet:alloc(int n)

{
Packet * p = alloc();
if (n > 0)
p->allocdata(n);
return (p);
}

/ = allocate an n byte data buffer to an existing packet
inline void Packet::allocdata(int n)

{
datalen_ = n;
data_ = new u_char[n];
if (data_ == 0)
abort();
}
inline void Packet::free(Packet *)
{
p->next_ = free_;
free_ = p;
if (p->datalen_) {
delete p->data_;
p->datalen_ = 0;
}
}
inline Packet * Packet::copy() const
{
Packet » p = alloc();
memcpy(p->bits(), bits_, hdrlen_);
if (datalen_) {
p->datalen_ = datalen_;
p->data_ = new u_char[datalen_];
memcpy(p->data_, data_, datalen_);
}
return (p);
}
Thealloc () method is a support function commonly used to create neskgia. It is called byAgent::allocpkt 0

method on behalf of agents and is thus not normally invokesettly by most objects. It first attempts to locate an old gack
on the free list and if this fails allocates a new one usingdte new operator. Note thad®acket class objects and BOBs are
allocated separately. Tlieee () method frees a packet by returning it to the free list. Nbsgpackets are never returned to

121

the system’s memory allocatdnstead, they are stored on a free list wikatket::free () is called. Thecopy () member
creates a new, identical copy of a packet with the exceptfaheouid_ field, which is unique. This function is used by
Replicator objects to support multicast distribution and LANSs.

12.2.2 p_info Class

This class is used as a “glue” to bind numeric packet typeeglwith their symbolic names. When a new packet type is
defined, its numeric code should be added to the enumeraditket t (see -ngpacket.hy and its symbolic name should
be added to the constructorpfinfo

enum packet_t {

PT_TCP,

PT_NTYPE /I This MUST be the LAST one
h
class p_info {
public:

p_info() {

name_[PT_TCP]= "tcp";

}

}

12.2.3 The hdr_cmn Class
Every packet in the simulator has a “common” header whictefieéd in -ngpacket.h as follows:

struct hdr_cmn {

double ts_; [= timestamp: for g-delay measuremerit
packet t ptype_; | = packet type (see above)
int uid_; / * unique id*/
int size_; / = simulated packet size¢/
int iface_; / * receiving interface (labeR/

/ » Packet header access functiorg

static int offset_;

inline static int& offset() { return offset_; }

inline static hdr_cmn * access(Packet * p) {
return (hdr_cmn) p->access(offset);

}

[= per-field member functions/
int& ptype() { return (ptype_); }
int& uid() { return (uid_); }
int& size() { return (size); }
int& iface() { return (iface); }

°Note: PT_NTYPEshould remain the last element of this enumeration.

122

double& timestamp() { return (ts_); }

This structure primarily defines fields used for tracing tbe/fof packets or measuring other quantities. The time staehgb fi

is used to measure queuing delay at switch nodes.piyyee_ field is used to identify the type of packets, which makes
reading traces simpler. Thed_ field is used by the scheduler in scheduling packet arrividiesize_ field is of general
use and gives the simulated packet’s size in bytes. Notdhbatctual number of bytes consumed in the simulation may not
relate to the value of this field (i.esjze_ hasno relationship tosizeof(struct hdr_cmn) or other ns structures).
Rather, it is used most often in computing the time requicedaf packet to be delivered along a network link. As such it
should be set to the sum of the application data size and#sjport-, and application-level headers for the simdlpteket.
Theiface_ field is used by the simulator when performing multicastriistion tree computations. It is a label indicating
(typically) on which link a packet was received.

12.2.4 The PacketHeaderManager Class

An object of theclass PacketHeaderManager is used to manage the set of currently-active packet heggdes tand
assign each of them unique offsets in the BOB. It is definedth the C++ and OTcl code:

From tcl/lib/ns-packet.tcl:
PacketHeaderManager set hdrlen_ 0
foreach prot {
AODV
ARP
aSRM
Common
CtrMcast
Diffusion

H
}

Simulator instproc create_packetformat {} {
PacketHeaderManager instvar tab_
set pm [new PacketHeaderManager]
foreach cl [PacketHeader info subclass] {
if [info exists tab_($cl)] {
set off [$pm allochdr $cl]
$cl offset $off

add-packet-header $prot

}
}
$self set packetManager_ $pm
}
PacketHeaderManager instproc allochdr cl {
set size [$cl set hdrlen_]
$self instvar hdrlen_
set NS_ALIGN 8 ;# round up to nearest NS_ALIGN bytes, (needed on sparc/splari
set incr [expr ($size + ($NS_ALIGN-1)) & ~($NS_ALIGN-1)]
set base $hdrlen_

123

incr hdrlen_ $incr
return $base

}

From packet.cc:
/ * manages active packet header types
class PacketHeaderManager : public TclObject {
public:
PacketHeaderManager() {
bind("hdrlen_", &Packet::hdrlen_);
}

The code in ndtcl/lib/ns-packet.tcl is executed when the simulatotidtizes. Thus, théoreach statement is executed
before the simulation begins, and initializes the OTclglagaytab_ to contain the mapping between class the name and
the names of the currently active packet header classesiséissded above (12.1), packet headers should be accessgd us
hdr_ (hdrname)::access()

Thecreate_packetformat {}instance procedure is part of the basic Simulator clagsiartalled one time during sim-
ulator configuration. It first creates a singlacketHeaderManager object. The C++ constructor links the OTcl instance
variablehdrlen_ (of classPacketHeaderManager)to the C++ variabléacket::hdrlen_ (a static member of the
Packet class). This has the effect of setti@cket::hdrlen_ to zero. Note that binding across class types in this
fashion is unusual.

After creating the packet manager, tfogeach loop enables each of the packet headers of interest. Thisitemates
through the list of defined packet headers of the fékmo;) whereh; is the name of théth header and; is the name of the
variable containing the location of thie header in BOB. The placement of headers is performed bgltbehdr instproc

of the PacketHeaderManager OTcl class. The procedure keeps a running variadigen_ with the current length of
BOB as new packet headers are enabled. It also arrangesbfge&lignment for any newly-enabled packet header. This
is needed to ensure that when double-world length quastitie used in packet headers on machines where double-word
alignment is required, access faults are not proddced.

12.3 Commands at a glance

Following is a list of packet-header related procedures:

Simulator::create_packetformat

This is an internal simulator procedure and is called oneanduhe simulator configuration to setup a
packetHeaderManager object.

PacketHeaderManager::allochdr

This is another internal procedure of Class PacketHeadsalyker that keeps track of a variable calkeltlen_ as new
packet-headers are enabled. It also allows 8-byte allignfoe any newly-enabled pkt header.

add-packet-header takes a list of arguments, each of which is a packet headee (aithoutPacketHeader/
prefix). This global proc will tell simulator to include thpecified packet header(s) in your simulation.

3In some processer architectures, including the Sparc anBAdRlouble-word access must be performed on a double-wouddary (i.e. addresses
ending in 0 mod 8). Attempting to perform unaligned accesssslt in an abnormal program termination.

124

remove-packet-header operates in the same syntax, but it removes the specifieegrsefmdm your simulation; notice
that it does not remove the common header even it is insttuotdo so.

remove-all-packet-headers is a global Tcl proc. It takes no argument and removes all gidodaders, except the
common header, from your simulatioadd-all-packet-headers is its counterpart.

125

Chapter 13

Error Model

This chapter describes the implementation and configurafierror models, which introduces packet losses into alsitiom.

In addition to the basic class ErrorModel described in detalow, there are several other types of error modules @iagb
completely documented yet, which include:

e SRMErrorModel, PGMErrorModel: error model for SRM and PGM.
e ErrorModel/Trace: error model that reads a loss tracedatsbf a math/computed model)
e MrouteErrorModel: error model for multicast routing, nawherits from trace.

e ErrorModel/Periodic: models periodic packet drops (dreerg nth packet we see). This model can be conveniently
combined with a flow-based classifier to achieve drops iriqaatr flows

e SelectErrorModel: for Selective packet drop.
o ErrorModel/TwoState: Two-State: error-free and error
e ErrorModel/TwoStateMarkov, ErrorModel/Expo, ErrorMatienpirical: inerit from ErrorModel/TwoState.

e ErrorModel/List: specify a list of packets/bytes to drofhieh could be in any order.

Their definitions can be found imgqueue/errmodel.{cc, h} andndtcl/lib/ns-errmodel.tcl, ns-default.tcl.

13.1 Implementation

The procedures and functions described in this section edound in -ngerrmodel.{cc, h}.

Error model simulates link-level errors or loss by eitherrkivag the packet’s error flag or dumping the packet to a drop
target. In simulations, errors can be generated from a simldel such as the packet error rate, or from more compticate
statistical and empirical models. To support a wide varidtyodels, the unit of error can be specified in term of padiieg,

or time-based.

TheErrorModel class is derived from th€onnector base class. As the result, it inherits some methods for Ingakpd
objects such asmrget anddrop-target . If the drop target exists, it will received corrupted paskeomErrorModel

126

Otherwise ErrorModel just marks theerror_ flag of the packet's common header, thereby, allowing agentsndle

the loss. Thé&rrorModel also defines additional Tcl methaouhit to specify the unit of error anghnvar to specify the
random variable for generating errors. If not specified,uhi¢ of error will be in packets, and the random variable gl
uniform distributed from 0 to 1. Below is a simple example mfating an error model with the packet error rate of 1 percent
(0.01):

create a loss_module and set its packet error rate to 1 perce nt
set loss_module [new ErrorModel]
$loss_module set rate_ 0.01

optional: set the unit and random variable
$loss_module unit pkt ;# error unit: packets (the default)
$loss_module ranvar [new RandomVariable/Uniform]

settarget for dropped packets
$loss_module drop-target [new Agent/Null]

In C++, theErrorModel contains both the mechanism and policy for dropping packeis packet dropping mechanism
is handled by theecv method, and packet corrupting policy is handled bydbeupt method.

enum ErrorUnit { EU_PKT=0, EU_BIT, EU_TIME }

class ErrorModel : public Connector {
public:
ErrorModel();
void recv(Packet * Handler «);
virtual int corrupt(Packet *);
inline double rate() { return rate_; }
protected:
int command(int argc, const char *CONst * argv);
ErrorUnit eu_; / = error unit in pkt, bit, or timex /
RandomVariable =* ranvar_;
double rate_;

TheErrorModel only implements a simple policy based on a single error tieer in packets of bits. More sophisticated
dropping policy can be implemented in C++ by deriving fremorModel and redefining itgorrupt method.

13.2 Configuration

The previous section talked about error model, in this eaatve discuss how to use error models in ns over either wired
networks or wireless ones.

To use an error model for wired networks, at first it has to Iseiited into a SimpleLink object. Because a SimpleLink is a

composite object (Chapter 6), an error model can be insestethny places. Currently we provide the following methaxls t
insert an error module into three different places.

e Insert an error module in a SimpleLink BEFORE the queue maddlhis is provided by the following two OTcl
methods:

127

SimpleLink::errormodule args When an error model is giveragparameter, it inserts the error module into
the simple link, right after the queue module, and set th@-daoget of the er-
ror model to be the drop trace object of the simple link. Not this requires
the following configuration ordems namtrace-all followed by link con-
figurations, followed by error model insertion. When no angut is given, it
returns the current error model in the link, if there’s anfiisTmethod is defined
in ngtcl/lib/ns-link.tcl

Simulator::lossmodeglem) (sr¢) (dst Call SimpleLink::errormodule to insert the given error rotelinto the simple

link (src, dst). It's simply a wrapper for the above methotisimethod is defined
in ngtcl/lib/ns-lib.tcl.

e Insertan error module in a SimpleLink AFTER the queue but BRE the delay link. This is provided by the following
two methods:

SimpleLink::insert-linkloss args This method’s behavior is identical to that of
SimpleLink::errormodule , except that it inserts an error mod-
ule immediately after the queue object. It's defineadtcl/lib/ns-link.tcl

Simulator::link-lossmodelem) (sr¢) (dsty This is a wrapper foSimpleLink::insert-linkloss . It's defined

in ngtcl/lib/ns-lib.tcl

The nam traces generated by error models inserted using tvesmethods do not require special treatment and can
be visualized using an older version of nam.

e Insert an error module in a Link AFTER the delay link modulehisTcan be done biink::install-error
Currently this API doesn’t produce any trace. It only seraes placeholder for possible future extensions.

To add an error model over wireless networks, each node cantia given statistical error model either over outgoing or
incoming wireless channels. Precisely, the instanciatest enodel would be stuck between mac and netif modules tegpic

in Figure 16.2. For the outgoing link, the error module wolbédpointed by downtarget of the above mac module while for
the incoming link it would be linked by uptaget_ pointer oéthelow netif module. And in each case the target_ of the error
module points to either the netif or the mac respectivelye difference of placing over the two different locationdghattthe
outgoing causes all the receivers to receive the packetrfujfthe same degree of errors since the error is deterrbfede
wireless channel module copies the packet. On the other, lamihcoming error module lets each receiver get the packet
corrupted with different degree of error since the erronteipendently computed in each error module.

The insertion into the wireless protocol stack can be donealling node-config command explained in Section 5.3 with th
two options IncomingErrrProc and OutgoingErrProc. We cemthese two options at the same time or each one separately.
The argument of the two option is the name of the global proceevhich creates an error model object, feeds it with
necessary initial values appropriate for the new error rfegdand finally returns the object pointer. The following wisca
simple TCL example script to add an error module into the é® protocol stack.

$ns node-config -IncomingErrProc UniformErr -OutgoingEr rProc UniformErr

proc UniformErr

set err [new ErrorModel]
$err unit packet

return $err

13.3 Multi-state error model

Contributed by Jianping Pan (jpan@bbcr.uwaterloo.ca).

128

The multi-state error model implements time-based eraiegtansitions. Transitions to the next error state octtiveaend
of the duration of the current state. The next error statiedn selected using the transition state matrix.

To create a multi-state error model, the following paramseséould be supplied (as definedigitcl/lib/ns-errmodel.tcl):

e states : an array of states (error models).

e periods : an array of state durations.

e trans : the transition state model matrix.

e transunit : one of[pkt|byte|time]

e sttype : type of state transitions to use: eithigne or pkt .
e nstates : number of states.

e start :the start state.
Here is a simple example script to create a multi-state enautel:

set tmp [new ErrorModel/Uniform 0 pkt]
set tmpl [new ErrorModel/Uniform .9 pkt]
set tmp2 [new ErrorModel/Uniform .5 pkt]

Array of states (error models)
set m_states [list $tmp $tmpl $tmp2]
Durations for each of the states, tmp, tmp1 and tmp2, resmdygt
set m_periods [list 0 .0075 .00375]
Transition state model matrix
set m_transmx { {0.95 0.05 0}
{0 o0 1}
{1t 0 0}}
set m_trunit pkt
Use time-based transition
set m_sttype time
set m_nstates 3
set m_nstart [lindex $m_states 0]

set em [new ErrorModel/MultiState $m_states $m_periods $m _transmx

$m_trunit $m_sttype $m_nstates $m_nstart]

13.4 Commands at a glance

The following is a list of error-model related commands caomihy used in simulation scripts:

set em [new ErrorModel]

$em unit pkt

$em set rate_ 0.02

$em ranvar [new RandomVariable/Uniform]
$em drop-target [new Agent/Null]

129

This is a simple example of how to create and configure an eroafel. The commands to place the error-model in a simple
link will be shown next.

$simplelink errormodule <args>
This commands inserts the error-model before the queuetahjsimple link. However in this case the error-model’s
drop-target points to the linkdrophead_ element.

$ns_ lossmodel <src> <dst>
This command places the error-model before the queue in@elink defined by the <src> and <dst> nodes. This is
basically a wrapper for the above method.

$simplelink insert-linkloss <args>

This inserts a loss-module after the queue, but right bef@elelaylink_ element in the simple link. This is because nam
can visualize a packet drop only if the packet is on the linilndhe queue. The error-module’s drop-target points to the
link’s drophead_ element.

$ns_ link-lossmodel <src> <dst>

This too is a wrapper method for insert-linkloss method dbed above. That is this inserts the error-module rigterefie
gueue element in a simple link (src-dst).

130

Chapter 14

Local Area Networks

The characteristics of the wireless and local area netwwkal) are inherently different from those of point-to-poimks.

A network consisting of multiple point-to-point links casincapture the sharing and contention properties of a LAN. To
simulate these properties, we created a new type of a Notled tmnNode. The OTcl configurations and interfaces for
LanNode reside in the following two files in the mamsdirectory:

tcl/lan/vian.tcl
tcl/lan/ns-ll.tcl
tcl/lan/ns-mac.tcl

14.1 Tcl configuration

The interface for creating and configuring a LAN slightlyfdit from those of point-to-point link. At the top level, the
OTcl classSimulator exports a new method calledake-lan . The parameters to this method are similar to the method

duplex-link , except thamake-lan only accepts a list of nodes as a single parameter insteadpafémeters as in
duplex-link
Simulator instproc make-lan {nodes bw delay lltype ifqtype mactype chantype}

The optional parameters tnake-lan specify the type of objects to be created for the link layer)(the interface queue,
the MAC layer Mac), and the physical layetQhannel). Below is an example of how a new CSMA/CD (Ethernet) LAN is
created.

Example:

$ns make-lan "$nl $n2" $bw $delay LL Queue/DropTail Mac/Csm a/Cd

creates a LAN with basic link-layer, drop-tail queue, andM2$CD MAC.

131

i Higher Layers

_ Queue Queue Queue
2
©
- n [[]
X
oy
£
LL LL LL
7]
&
— Mac Mac e e . Mac
3
=
g
©
i | |
S
Q Channel Classifier/Mac
=
o

| !

Figure 14.1: Connectivity within a LAN

14.2 Components of a LAN
LanLink captures the functionality of the three lowest layi@ the network stack:

1. Link Layer (LL)
2. Medium Access Control (MAC) Layer
3. Physical (PHY) Layer

Figure 14.1 illustrates the extended network stack thatasmiaknulations of local area network possiblam A packet sent
down the stack flows through the link layeépieue andLL), the MAC layer Mac), and the physical layeQhannel to
Classifier/Mac). The packet then makes its way up the stack througivihe and thel L.

At the bottom of the stack, the physical layer is composediofdimulation objects: th€hannel andClassifier/Mac
TheChannel object simulates the shared medium and supports the medicesamechanisms of the MAC objects on the
sending side of the transmission. On the receiving sideCthssifier/Mac is responsible for delivering and optionally
replicating packets to the receiving MAC objects.

Depending on the type of physical layer, the MAC layer musttam a certain set of functionalities such as: carrier sens
collision detection, collision avoidance, etc. Since eh&sctionalities affect both the sending and receivingsidhey are

132

implemented in a singl®lac object. For sending, thBlac object must follow a certain medium access protocol before
transmitting the packet on the channel. For receiving, tA&€Nayer is responsible for delivering the packet to the lenker.

Above the MAC layer, the link layer can potentially have mémyctionalities such as queuing and link-level retransiois.
The need of having a wide variety of link-level schemes lgadke division of functionality into two componentQueue
andLL (link-layer). TheQueue object, simulating the interface queue, belongs to the SQuee class that is described
in Chapter 7. The.L object implements a particular data link protocol, such &ABy combining both the sending and
receiving functionalities into one module, the object can also support other mechanisms such as piggytgacki

14.3 Channel Class

TheChannel class simulates the actual transmission of the packet aghtpsical layer. The basi€hannel implements

a shared medium with support for contention mechanismslloiva the MAC to carry out carrier sense, contention, and
collision detection. If more than one transmissions oyeria time, a channel raises the collision flag. By checkiigftag,

the MAC object can implement collision detection and hamglli

Since the transmission time is a function of the number of initthe packet and the modulation speed of each individual

interface (MAC), theChannel object only sets its busy signal for the duration requestedhe MAC object. It also
schedules the packets to be delivered to the destination M#€xts after the transmission time plus the propagatitayde

14.3.1 Channel State

The C++class Channel includes enough internal state to schedule packet delaedydetect collisions. It exports the
following OTcl configuration parameter:

delay propagation delay on the channel

14.3.2 Example: Channel and classifier of the physical layer

set channel_ [new Channel]
$channel_ set delay_ 4us # propagation delay

set mcl_ [new Classifier/Mac]

$channel_ target $mcl_
$mcl_ install $mac_DA $recv_iface

14.3.3 Channel Class in C++

In C++, the class Channel extends the Connector object withral new methods to support a variety of MAC protocols.
The class is defined as follow ims'channel.h:

class Channel : public Connector {
public:
Channel();

133

void recv(Packet * p, Handler «);

virtual int send(Packet * p, double txtime);
virtual void contention(Packet *, Handler «);
int hold(double txtime);

virtual int collision() { return numtx_ > 1; }

virtual double txstop() { return txstop_; }

The important methods of the claGfannel are:

e txstop() = method returns the time when the channel will become idléghvban be used by the MAC to implement

carrier sense.

e contention() method allows the MAC to contend for the channel before sendipacket. The channel then use

this packet to signal the correspondigc object at the end of each contention period.

e collision() method indicates whether a collision occurs during theemtidn period. When th€hannel signal
method to detect collision.

the end of the contention period, the MAC can usedbiéision()

e send() method allows the MAC object to transmit a packet on the chbfun a specified duration of time.

e hold() method allows the MAC object to hold the channel for a spetifieration of time without actually transmit-

ting any packets. This is useful in simulating the jamminghamism of some MAC protocols.

14.4 MacClassifier Class

The MacClassifier class extends th€lassifier class to implement a simple broadcasting mechanism. It fiesdi
therecv() method in the following way: since the replication of a pacdkeexpensive, normally a unicast packet will
be classified by the MAC destination addresacDA _and delivered directly to the MAC object with such an address
However, if the destination object cannot be found or if the@/Adestination address is explicitly set to the broadcadiess
BCAST_ADDRhe packet will be replicated and sent to all MACs on the biieding the one that is the source of the packet.
Finally, by setting the bound variabMacClassifier::bcast_ to a non—zero value, will causdacClassifier

always to replicate packets.

class MacClassifier : public Classifier {

public:
void recv(Packet *, Handler =);
h
void MacClassifier::recv(Packet * p, Handler =)
{
Macx mac;
hdr_mac * mh = hdr_mac::access(p);
if (bcast_ || mh->macDA() == BCAST_ADDR || (mac =
/I Replicate packets to all slots (broadcast)
return;
}
mac->recv(p);
}

134

*)find(p)) == 0) {

14.5 MAC Class

The Mac object simulates the medium access protocols that are sageis the shared medium environment such as the
wireless and local area networks. Since the sending and/iegenechanisms are tightly coupled in most types of MAC
layers, it is essential for thdac object to be duplex.

On the sending side, thdac object is responsible for adding the MAC header and trarisigithe packet onto the channel.

On the receiving side, thiglac object asynchronously receives packets from the classifigre physical layer. After MAC
protocol processing, it passes the data packet to the hmt.la

145.1 Mac State

The C++class Mac class contains enough internal state to simulate the peatidlAC protocol. It also exports the
following OTcl configuration parameter:

bandwidth__ modulation rate of the MAC
hlen_ additional bytes added to packet for MAC header
label_ MAC address

14.5.2 Mac Methods

Theclass Mac class added several Tcl methods for configuration, in pdaiclinking with other simulation objects:

channel specify the channel for transmission
classifier the classifier that deliver packets to receiving MAC
maclist a link list of MAC interfaces on the same node

14.5.3 Mac Classin C++

In C++, theMac class derives fron€onnector . When therecv() method gets a packet, it identifies the direction of
the packet based on the presence of a callback handler.ré itha callback handler, the packet is outgoing, othenitise,
incoming.

class Mac : public Connector {

public:
Mac();
virtual void recv(Packet * p, Handler = h);
virtual void send(Packet * p);
virtual void resume(Packet * p = 0)
h

When aMac object receives a packet via itscv() method, it checks whether the packet is outgoing or incomkay
an outgoing packet, it assumes that the link-layer of thelsehas obtained the destination MAC address and filled in the
macDA_field of the MAC headehdr_mac . TheMacobijectfills in the rest of the MAC header with the source MAQE$s

135

and the frame type. It then passes the packet teeitgl() method, which carries out the medium access protocol. For th
basicMac object, thesend method callgxtime() to compute the transmission time, then invokdsnnel::send to
transmit the packet. Finally, it schedules itself to resafter the transmission time has elapsed.

For an incoming packet, the MAC object does its protocol pssing and passes the packet to the link-layer.

14.5.4 CSMA-based MAC

Theclass CsmaMac extends theMac class with new methods that implements carrier sense andfianechanisms.
The CsmaMac::send() method detects when the channel becomes idle uSimannel::txtime() . If the chan-
nel is busy, the MAC schedules the next carrier sense at threembthe channel turns idle. Once the channel is idle,
the CsmaMacobject initiates the contention period wi@hannel::contention() . At the end of the contention pe-
riod, the endofContention() method is invoked. At this time, the bas@&smaMacjust transmits the packet using
Channel::send

class CsmaMac : public Mac {
public:

CsmaMac();

void send(Packet = p);

void resume(Packet * p = 0);

virtual void endofContention(Packet * p);
virtual void backoff(Handler * h, Packet =* p, double delay=0);
h
class CsmaCdMac : public CsmaMac {
public:
CsmaCdMac();
void endofContention(Packet *);
h
class CsmaCaMac : public CsmaMac {
public:
CsmaCaMac();
virtual void send(Packet *);
h

The CsmaCdMacextends€CsmaMacto carry out collision detection procedure of the CSMA/CDBhgEnet) protocol. When

the channel signals the end of contention periodetidofContention method checks for collision using t@annel::collision()
method. If there is a collision, the MAC invokes Itsickoff method to schedule the next carrier sense to retransmit the
packet.

The CsmaCaMacextends thesend method ofCsmaMacto carry out the collision avoidance (CSMA/CA) procedurne- |

stead of transmitting immediately when the channel is itlleCsmaCaMaabject backs off a random number of slots, then
transmits if the channel remains idle until the end of thekbferiod.

136

14.6 LL (link-layer) Class

The link-layer object is responsible for simulating theadik protocols. Many protocols can be implemented withis t
layer such as packet fragmentation and reassembly, aathleelink protocol.

Another important function of the link layer is setting theédld destination address in the MAC header of the packet. In the
currentimplementation this task involves two separatgeissfinding the next—hop—node’s IP address (routing) aswlviag

this IP address into the correct MAC address (ARP). For suoityl the default mapping between MAC and IP addresses is
one—to—one, which means that IP addresses are re—usedvdA@&ayer.

14.6.1 LLClassin C++

The C++ clasd.L derives from thdLinkDelay class. Since it is a duplex object, it keeps a separate pdorté¢he send
target,sendtarget , and the receive targetcvtarget . It also defines the methodscvfrom() andsendto() to
handle the incoming and outgoing packets respectively.

class LL : public LinkDelay {
public:
LLO;
virtual void recv(Packet * p, Handler = h);
virtual Packet * sendto(Packet =+ p, Handler * h = 0);
virtual Packet * recvfrom(Packet * p);

inline int segno() return seqno_;

inline int ackno() return ackno_;

inline int macDA() return macDA_;

inline Queue xifq() return ifq_;

inline NsObject * sendtarget() return sendtarget ;
inline NsObject * recvtarget() return recvtarget_;

protected:
int command(int argc, const char *const * argv);
void handle(Event * e) recv((Packet *)e, 0);
inline virtual int arp (int ip_addr) return ip_addr;
int seqno_; // link-layer sequence number
int ackno_; // ACK received so far
int macDA_; /I destination MAC address
Queue* ifq_; /I interface queue
NsObject * sendtarget ; // for outgoing packet
NsObject * recvtarget_; // for incoming packet

LanRouter =* lanrouter_; // for lookups of the next hop

14.6.2 Example: Link Layer configuration

set Il [new LL]
set ifg_ [new Queue/DropTail]
$I_ lanrouter [new LanRouter $ns $lan] # LanRouter is one ob ject

137

per LAN

$Il_ set delay_ $delay # link-level overhead

$Il_ set bandwidth_ $bw # bandwidth

$Il_ sendtarget $mac # interface queue at the sender side
$Il_ recvtarget Siif # input interface of the receiver

14.7 LanRout er class

By default, there is just oneanRouter object per LAN, which is created when a néanNode is initialized. For every
node on the LAN, the link layer object) has a pointer to theanRouter , so it is able to find the next hop for the packet
that is sent on the LAN:

Packet » LL::sendto(Packet * p, Handler = h)
{

int nh = (lanrouter_) ? lanrouter_->next_hop(p) : -1;

LanRouter is able to find the next hop by querying the currBouteLogic

int LanRouter::next_hop(Packet *p) {
int next_hoplP;
if (enableHrouting_) {
routelogic_->lookup_hier(lanaddr_, adst, next_hoplP);
} else {

}

routelogic_->lookup_flat(lanaddr_, adst, next hoplP);

One limitation of this is thaRouteLogic may not be aware of dynamic changes to the routing. But itwaygd possible to
derive a new class frommanRouter so that to re—define itsext_hop method to handle dynamic changes appopriately.

14.8 Other Components

In addition to the C++ components described above, sinmgdtical area networks also requires a number of existing com
ponents imssuch aLlassifier , Queue, andTrace , networkinterface , etc. Configuring these objects requires
knowledge of what the user wants to simulate. The defaufigoration is implemented in the two Tcl files mentioned at the
beginning of this chapter. To obtain more realistic sinmolad of wireless networks, one can use freorModel described

in Chapter 13.

14.9 LANs andnsrouting

When a LAN is created using eitherake-lan or newLan, a “virtual LAN nodé LanNode is created LanNode keeps
together all shared objects on the LAGhannel , Classifier/Mac ,andLanRouter . Then for each node on the LAN,

138

alanlface objectis created.anlface contains all other objects that are needed on the per—-naite bueue, a link
layer (LL), Mac, etc. It should be emphasized thatnNode is a node only for routing algorithmdJyode andLanNode
have very little in common. One of few things that they sharari identifier taken from thidode ID—space. lthierarchical
routing is usedLanNode has to be assigned a hierarchical addrésst like any other node. From the point of view rof
(static) routinglLanNode is just another node connected to every node on the LAN. Laoksecting the.anNode with

P

Figure 14.2: Actual LAN configuration (left) and as seemisyouting (right)

the nodes on the LAN are also “virtual(ink). The default routing cost of such a linkig2, so the cost of traversing two
Vlink s (e.g.n1 — LAN — n2)is counted as just one hop.

Most important method d¥link is the one that gives the head of the link:

Vlink instproc head {} {

$self instvar lan_ dst_ src_

if {$src_ == [$lan_ set id_]} {
if this is a link FROM the lan vnode,
it doesn’t matter what we return, because
it's only used by $lan add-route (empty)
return "

} else {
if this is a link TO the lan vnode,
return the entry to the laniface object
set src_lif [$lan_ set lanlface_($src_)]
return [$src_lif entry]

}
}
This method is used by static (default) routing to instatreot routes at a node (s&mulator methods
compute-flat-routes and compute-hier-routes in tcl/lib/ns-route.tcl , as well asNode methods
add-route andadd-hroute in tcl/lib/ns-node.tcl).

From the code fragment above it can be seen that it returnsibfdiface of the node as a head of the link to be installed in
the appropriate classifier.

Thus,VIink does notimpose any delay on the pac®d serves the only purpose to install LAN interfaces irdstdanormal
links at nodes’ classifiers.

Note, that this design allows to have nodes connected byi@drANs, while in the current implementation it is impob&s

to have nodes connected by parallel simple links and use Bwm(the arraySimulator instvar link_ holds the
link object for each connected pair of source and destinatind it can be only one object per source/destination.pair)

139

14.10 Commands at a glance

The following is a list of lan related commands commonly usesimulation scripts:

$ns_ make-lan <nodelist> <bw> <delay> <LL> <ifg> <MAC> <cha nnel> <phy>

Creates a lan from a set of nodes given by <nodelist>. Barttinil@lay characteristics along with the link-layer, Ifaee
queue, Mac layer and channel type for the lan also needs tefiieed. Default values used are as follows:

<LL>..LL

<ifg>.. Queue/DropTall

<MAC>.. Mac

<channel>.. Channel and

<phy>.. Phy/WiredPhy

$ns_ newlLan <nodelist> <BW> <delay> <args>

This command creates a lan similar to make-lan describedealBut this command can be used for finer control whereas
make-lan is a more convinient and easier command. For exanepiLan maybe used to create a lan with hierarchical
addresses. Sew/tcl/ex/vlantest-hier.tcl, vlantest-mcst.tcl, lantedt mac-test.tcl for usage of newLan. The possible
argument types that can be passed are LL, ifq, MAC, chanhglapd address.

$lannode cost <c>
This assigns a cost of ¢/2 to each of the (uni-directionakdiin the lan.

$lannode cost?
Returns the cost of (bi-directional) links in the lan, i.e c.

Internal procedures :

$lannode addNode <nodes> <bw> <delay> <LL> <ifgq> <MAC> <phy >

Lan is implemented as a virtual node. The LanNode mimics lende and uses an address (id) from node’s address space.
This command adds a list of <nodes> to the lan representezhimptie. The bandwidth, delay and network characteristics o
nodes are given by the above arguments. This is an intermrahemd used by make-lan and newLan.

$lannode id
Returns the virtual node’s id.

$lannode node-addr
Returns virtual nodes’s address.

$lannode dump-namconfig
This command creates a given lan layout in nam. This funcatiag be changed to redefine the lan layout in a different way.

$lannode is-lan?

This command always returns 1, since the node here is a Minta® representing a lan. The corresponding command for
base class Nodgnode is-lan? always returns a 0.

140

Chapter 15

The (Revised) Addressing Structure in NS

This chapter describes the internals of the revised addefgmat implemented ins The chapter consists of five sections.
We describe the APIs that can be used for allocating bitsémthaddressing structure. The address space can be théught o
a contiguous field of bits, where n may vary as per the address requirement ofrindation. Typically, however, n is not
varied and is held at 31 bits. The default valuendd 31 (as defined bPEFADDRSIZE). The maximum value afi is set to

31 (defined aMAXADDRSIZE). These default and maximum address sizes are definausificl/lib/ns-default.tcl.

ns addresses exist in both OTcl and C++ realms. In Tcl, ehienytis a string, while C++ has strongly typed integers. Tcl
handling of integers, especially 32 bit and larger integisrsiconsistent across versions, and behavior of 32 bitesdés is
inconsistent across 32- and 64-bit machine architectihégen addresses cross the boundary between OTcl and C++, they
are cast to a signed integer. Therefore, we avoid these ipatipilities by fixing the maximum address size at 31 bitsolPr

to ns-2.35 (when this maximum was established), the maximam32 bits, but users are now advised to avoid changing the
default and maximum from 31 bits.

The address space consists of 2 parts, the node-id and thiel p8t bits are allocated for the node-id, and 31 bits dozated
for the port-id or the identification of the agent attachedh#® node. Of the node-id bits, 1 bit (the most-significan}-isi
assigned for multicast. Additionally, the address spacg a0 be set in hierarchical format, consisting of multighels of
addressing hierarchy. We shall be describing the APIs fitingeaddress structure in different formats as descrilbed@as

well as expanding the address space. The procedures artobhsmdescribed in this chapter can be found m¥'tel/lib/ns-
address.tcl, address.cc and address.h.

15.1 The Default Address Format

The default settings allocates 31 lower bits for port-id,ighler bit for mcast and the rest 30 higher bits for node-ide Th
procedure to set the address format in default mode is cdlledg initialisation of the simulator as:

The preamble
set ns [new Simulator] ;# initialise the simulation

It can also be called explicitly set as:

$ns set-address-format def

141

Note that this is the default and users do not typically neexbhfigure an address format.

15.2 The Hierarchical Address Format

There are two options for setting an address to hierarcfocalat, the default and the specified.

15.2.1 Default Hierarchical Setting

The default hierarchical node-id consists of 3 levels w1 { 11) bits in the three levels. The hierarchical configaratnay
be invoked as follows:

$ns set-address-format hierarchical

This sets :

* 31 bits for port-id, * 31 bits for node-id assigned in - 3 Iévef hierarchy - (9 11 11) bits for the three levels. -
or (8 11 11) if multicast is enabled.

15.2.2 Specific Hierarchical Setting

The second option allows a hierarchical address to be sbtspicified number of levels with number of bits assigned for
each level. The API would be as the following:

$ns set-address-format hierarchical <#n hierarchy levelthits for levell> <#bits for level 2><#bits for nthvkd>
An example configuration would be:
$ns set-address-format hierarchical 2 8 15

where 2 levels of hierarchy is specified, assigning 8 bitsterlst level and 15 bits for the second.

15.3 Errors in setting address format

Errors are returned for boset-address-formatndexpand-port-field-bitprimitives in the following cases:

* if number of bits specified is less than 0. * if bit positionash (contiguous number of requested free bits not
* found). * if total number of bits exceed MAXADDRSIZE_. * ifumber of hierarchy levels donot match with
number of bits * specified (for each level).

15.4 Commands at a glance

The following is a list of address-format related commanskilin simulation scripts:

142

$ns_ set-address-format def

This command is used internally to set the address forméd ttefault value of 31 lower bits for port-id, 1 higher bit for
mcast and the rest 30 higher bits for node-id. However thisl#aB been replaced by the new node API

$ns_ node-config -addressType flat

$ns_ set-address-format hierarchical

This command is used to set the address format to the higcatclonfiguration that consists of 3 levels and 31 lower bits
for port-id. However this APl has been replaced by the newendl

$ns_ node-config -addressType hierarchical

$ns_ set-address-format hierarchical <levels> <args>

This command is used to set the address format to a specifartidcal setting. The <levels> indicate the number oflkeve
of hierarchy in the addressing structure, while the argsidefumber of bits for each level. An example wouldins
set-address-format hierachical 3 4 4 16 , where 4, 4 and 16 defines the number of bits to be used for the
address space in level 1, 2 and 3 respectively.

143

Chapter 16

Mobile Networking in ns

This chapter describes the wireless model that was origipakted as CMU’s Monarch group’s mobility extensionria

This chapter consists of two sections and several subsscfide first section covers the original mobility model pdrfrom
CMU/Monarch group. In this section, we cover the interndla mobilenode, routing mechanisms and network components
that are used to construct the network stack for a mobilenbae components that are covered briefly are Channel, Nktwor
interface, Radio propagation model, MAC protocols, Irdeef Queue, Link layer and Address resolution protocol model
(ARP). CMU trace support and Generation of node movementraffic scenario files are also covered in this section. The
original CMU model allows simulation of pure wireless LANsmultihop ad-hoc networks. Further extensions were made to
this model to allow combined simulation of wired and wiralegtworks. MobilelP was also extended to the wireless model
These are discussed in the second section of this chapter.

16.1 The basic wireless model in ns

The wireless model essentially consists of the MobileNddée core,with additional supporting features that all®ivs-
ulations of multi-hop ad-hoc networks, wireless LANs etcheTMobileNode object is a split object. The Celass
MobileNode is derived from parentlass Node . Refer to Chapter 5 for details ddode. A MobileNode thus is

the basicNode object with added functionalities of a wireless and mobibela like ability to move within a given topol-
ogy, ability to receive and transmit signals to and from aeleiss channel etc. A major difference between them, though,
is that aMobileNode is not connected by means binks to other nodes or mobilenodes. In this section we shall de-
scribe the internals dflobileNode , its routing mechanisms, the routing protocols dsdv, atoha, puma and dsr, creation
of network stack allowing channel accessMobileNode , brief description of each stack component, trace suppult a
movement/traffic scenario generation for wireless sinnorhet

16.1.1 Mobilenode: creating wireless topology

MobileNode is the basiasNode object with added functionalities like movement, abilivttansmit and receive on a chan-

nel that allows it to be used to create mobile, wireless st environments. The class MobileNode is derived froen th

base class Nod@&JobileNode is a split object. The mobility features including node mmet, periodic position updates,
maintaining topology boundary etc are implemented in C+H#ayplumbing of network components withiobileNode

itself (like classifiers, dmux , LL, Mac, Channel etc) haveehémplemented in Otcl. The functions and procedures de-
scribed in this subsection can be found ingmobilenode.{cc,h}, Adtcl/lib/ns-mobilenode.tcl, rgtcl/mobility/dsdv.tcl,
~ndtcl/mobility/dsr.tcl, -ngtcl/mobility/tora.tcl. Example scripts can be found ingtcl/ex/wireless-test.tcl andhdtcl/ex/wireless.tcl.

144

While the first example uses a small topology of 3 nodes, tbersbexample runs over a topology of 50 nodes. These scripts
can be run simply by typing

$ns tcl/ex/wireless.tcl (or /wireless-test.tcl)

The five ad-hoc routing protocols that are currently supgabdre Destination Sequence Distance Vector (DSDV), Dyoami
Source Routing (DSR), Temporally ordered Routing AlgaritifrORA), Adhoc On-demand Distance Vector (AODV) and
Protocol for Unified Multicasting Through Announcementd{®A). The primitive to create a mobilenode is described elo
Please note that the old APIs for creating a mobilenode digzkan which routing protocol was used, like

set mnode [$opt(rp)-create-mobile-node $id]

where

$opt(rp)

defines "dsdv", "aodv", "tora", "dsr" or "puma" and id is threléx for the mobilenode. But the old API's use is being
deprecated and the new API is described as follows:.

$ns_ node-config -adhocRouting $opt(adhocRouting)
-IIType $opt(ll)
-macType $opt(mac)
-ifgType $opt(ifq)
-ifgLen $opt(ifglen)
-antType $opt(ant)
-proplnstance [new $opt(prop)]
-phyType $opt(netif)
-channel [new $opt(chan)]
-topolnstance $topo
-wiredRouting OFF
-agentTrace ON
-routerTrace OFF
-macTrace OFF

The above API configures for a mobilenode with all the givelues of adhoc-routing protocol, network stack, chan-
nel,topography, propagation model, with wired routinghtd on or off (required for wired-cum-wireless scenaria) a
tracing turned on or off at different levels (router, macemat). Incase hierarchical addressing is being used, threaldie
dress of the node needs to be passed as well. For more info timoommand (part of new node APIs) see chapter titled
"Restructuring ns node and new Node APIs" in ns Notes and Deatation.

Next actually create the mobilenodes as follows:

for { set j 0 } { $j < $opt(nn)} {incr j} {
set node_($j) [$ns_ node]
$node_($i) random-motion 0 ;# disable random motion

The above procedure creates a mobilenode (split)objeesites an adhoc-routing routing agent as specified, crdaes t
network stack consisting of a link layer, interface queuachayer, and a network interface with an antenna, uses fireede

145

port
addr

IP address
dem =

defaulttarget_

target_
arptable_
uptarget_ LL ARP
downtarget_
IFq
downtarget_
mac_ MAC uptarget_

downtarget_ uptarget_
Radio propagation_
Propagation NetlF
Model

channel_ i uptarget_
Channel

Figure 16.1: Schematic of a mobilenode under the CMU morsvdheless extensions tas

propagation model, interconnects these components antectanthe stack to the channel. The mobilenode now looks like
the schematic in Figure 16.1.

The mobilenode structure used for DSR routing is slightfiedént from the mobilenode described above. The class $SIRNo
is derived from class MobileNode. SRNode doesnot use asldiesiux or classifiers and all packets received by the node

146

port

dem%/

—_—
entr ~
® y_ DSR | target_
7
I I1_(0)
arptable_
uptarget_ LL ARP
downtarget_
IFq
downtarget_
MAC uptarget_
downtarget_ uptarget_
Radio propagation_
Propagation NetlF
Model

channel_ i uptarget_
Channel

Figure 16.2: Schematic of a SRNode under the CMU monarchi&egs extensions tts

are handed dow n to the DSR routing agent by default. The D8Bngagent either receives pkts for itself by handing it
over to the port dmux or forwards pkts as per source routelsepkt hdr or sends out route requests and route replies for
fresh packets. Details on DSR routing agent may be foundaticsel16.1.5. The schematic model for a SRNode is shown in
Figure 16.2.

147

16.1.2 Creating Node movements

The mobilenode is designed to move in a three dimensionaldgy. However the third dimension (Z) is not used. That is
the mobilenode is assumed to move always on a flat terrainZvitlivays equal to 0. Thus the mobilenode has X, Y, Z(=0)
co-ordinates that is continually adjusted as the node mdauesre are two mechanisms to induce movement in mobilenodes
In the first method, starting position of the node and itsfeitiestinations may be set explicitly. These directivesiareally
included in a separate movement scenario file.

The start-position and future destinations for a mobilenmay be set by using the following APIs:

$node set X_ <x1>
$node set Y_ <yl>
$node set Z_ <zl>

$ns at $time $node setdest <x2> <y2> <speed>

At $time sec, the node would start moving from its initial o of (x1,y1) towards a destination (x2,y2) at the defined
speed.

In this method the node-movement-updates are triggeredeviee the position of the node at a given time is required to be
known. This may be triggered by a query from a neighbourirdpreeeking to know the distance between them, or the setdest
directive described above that changes the direction aeeldspf the node.

An example of a movement scenario file using the above APisbedound in ag'tcl/mobility/scene/scen-670x670-50-600-
20-0. Here 670x670 defines the length and width of the topoldth 50 nodes moving at a maximum speed of 20m/s with
average pause time of 600s. These node movement files maybrter using CMU'’s scenario generator to be found under
~ngindep-utils/cmu-scen-gen/setdest. See subsection8lferldetails on generation of node movement scenarios.

The second method employs random movement of the node. Thiipe to be used is:
$mobilenode start

which starts the mobilenode with a random position and haugired updates to change the direction and speed of the node
The destination and speed values are generated in a randbiorfaWe have not used the second method and leave it to the
user to explore the details. The mobilenode movement issmphted in C++. See methods ingmobilenode.{cc.h} for

the implementational details.

Irrespective of the methods used to generate node movethnewpography for mobilenodes needs to be defined. It sheuld

defined before creating mobilenodes. Normally flat topolisgyreated by specifying the length and width of the topolgyap
using the following primitive:

set topo [new Topography]
$topo load_flatgrid $opt(x) $opt(y)

where opt(x) and opt(y) are the boundaries used in simulatio

The movement of mobilenodes may be logged by using a proediétarthe following:

proc log-movement {} {

148

global logtimer ns_ ns

set ns $ns_
source ../mobility/timer.tcl
Class LogTimer -superclass Timer
LogTimer instproc timeout {} {
global opt node_;
for {set i O} {$i < $opt(nn)} {incr i} {
$node_($i) log-movement

}
$self sched 0.1
}

set logtimer [new LogTimer]
$logtimer sched 0.1

In this case, mobilenode positions would be logged everngécl

16.1.3 Network Components in a mobilenode

The network stack for a mobilenode consists of a link layef(lan ARP module connected to LL, an interface priority
queue(lFq), a mac layer(MAC), a network interface(nettl) connected to the channel. These network components are
created and plumbed together in OTcl. The relevant MobiteNmethod add-interface() ims'tcl/lib/ns-mobilenode.tcl is
shown below:

The following setups up link layer, mac layer, network inte rface
and physical layer structures for the mobile node.

Z R

ode/MobileNode instproc add-interface { channel pmodel
litype mactype qtype glen iftype anttype } {

$self instvar arptable_ nifs_
$self instvar netif . mac_ ifg_ II_

global ns_ MacTrace opt

set t $nifs_

incr nifs_

set netif ($t) [new Siftype] # net-interface

set mac_(%t) [new $mactype] # mac layer
set ifq_($t) [new $qtype] ;# interface queue
set Il_($t) [new Slitype] # link layer

set ant_($t) [new $anttype]

#

Local Variables

#

set nullAgent_ [$ns_ set nullAgent_]

149

set netif $netif ($t)
set mac $mac_($t)
set ifq $ifq_($t)

set Il $II_($t)

#

Initialize ARP table only once.
#

if { $arptable_ == " } {

set arptable_ [new ARPTable $self $mac]
set drpT [cmu-trace Drop "IFQ" $self]
$arptable_ drop-target $drpT

}

#

Link Layer

#

$ll arptable $arptable_
$Il mac $mac

$Il up-target [$self entry]
$ll down-target $ifq

#

Interface Queue

#

$ifq target $mac

$ifg set glim_ $glen

set drpT [cmu-trace Drop "IFQ" $self]
$ifq drop-target $drpT

#

Mac Layer

#

$mac netif $netif

$mac up-target $ll
$mac down-target $netif
$mac nodes $opt(nn)

#

Network Interface

#

$netif channel $channel
$netif up-target $mac

$netif propagation $pmodel ;# Propagation Model

$netif node $self # Bind node <---> interface
$netif antenna $ant_($t) ;# attach antenna

#

Physical Channel

#

$channel addif $netif # add to list of interfaces
s b s s sy ——— ===

Setting up trace objects

150

if { $MacTrace == "ON" } {
#
Trace RTS/CTS/ACK Packets
#
set rcvT [cmu-trace Recv "MAC" $self]
$mac log-target $revT

#

Trace Sent Packets

#

set sndT [cmu-trace Send "MAC" $self]
$sndT target [$mac sendtarget]

$mac sendtarget $sndT

#

Trace Received Packets

#

set rcvT [cmu-trace Recv "MAC" $self]
$revT target [$mac recvtarget]

$mac recvtarget $revT

#
Trace Dropped Packets
#
set drpT [cmu-trace Drop "MAC" $self]
$mac drop-target $drpT
} else {
$mac log-target [$ns_ set nullAgent_]
$mac drop-target [$ns_ set nullAgent_]

s === =

$self addif $netif

The plumbing in the above method creates the network stadeaén Figure 16.1.

Each component is briefly described here. Hopefully moreidet docuentation from CMU shall be available in the future

Link Layer ThelL used by mobilenode is same as described in Chapter 14. Thaliffierence being the link layer for
mobilenode, has an ARP module connected to it which resal/#3to hardware (Mac) address conversions. Normally
for all outgoing (into the channel) packets, the packethareled down to theL by the Routing Agent. TheL hands
down packets to the interface queue. For all incoming padkett of the channel), the mac layer hands up packets to
the LL which is then handed off at theode_entry_ point. Theclass LL is implemented in r9ll.{cc,h} and
~ndtcl/lan/ns-Il.tcl.

ARP The Address Resolution Protocol (implemented in BSD styleflule receives queries from Link layer. If ARP has
the hardware address for destination, it writes it into thteceader of the packet. Otherwise it broadcasts an ARP
guery, and caches the packet temporarily. For each unknestindtion hardware address, there is a buffer for a single
packet. Incase additional packets to the same destinatioenit to ARP, the earlier buffered packet is dropped. Once

151

the hardware address of a packet's next hop is known, theep#&lhnserted into the interface queue. Thass
ARPTable is implemented in rdarp.{cc,h} and -ndtcl/lib/ns-mobilenode.tcl.

Interface Queue Theclass PriQueue isimplemented as a priority queue which gives priority totiog rotocol packets,
inserting them at the head of the queue. It supports runniiftgeover all packets in the queue and removes those with
a specified destination address. Sedpriqueue.{cc,h} for interface queue implementation.

Mac Layer Historically, ns-2 (prior to release ns-2.33) has usedni@émentation of IEEE 802.11 distributed coordination
function (DCF) from CMU. Starting with ns-2.33, several 80Rimplementations are available. See section 16.3 for
more information.

Tap Agents Agents that subclass themselvesdass Tap defined in mac.h can register themselves with the mac object
using method installTap(). If the particular Mac protocelmits it, the tap will promiscuously be given all packets
received by the mac layer, before address filtering is doee fdmac.{cc,h} forclass Tap mplementation.

Network Interfaces The Network Interphase layer serves as a hardware intesfaioh is used by mobilenode to access the
channel. The wireless shared media interface is implerderstglass Phy/WirelessPhy . This interface subject
to collisions and the radio propagation model receives @zdkansmitted by other node interfaces to the channel. The
interface stamps each transmitted packet with the metardatted to the transmitting interface like the transroissi
power, wavelength etc. This meta-data in pkt header is ugdlebpropagation model in receiving network interface
to determine if the packet has minimum power to be receivellcarcaptured and/or detected (carrier sense) by the
receiving node. The model approximates the DSSS radidate(Lucent WavelLan direct-sequence spread-spectrum).
See nagphy.{cc.h} and -ngwireless-phy.{cc,h} for network interface implementats.

Radio Propagation Model It uses Friss-space attenuatidri4?) at near distances and an approximation to Two ray Ground
(1/r*) at far distances. The approximation assumes speculartiefi@ff a flat ground plane. Seastworayground.{cc,h}
for implementation.

Antenna An omni-directional antenna having unity gain is used by ileslodes. Seengantenna.{cc,h} for implementation
details.

16.1.4 Different MAC layer protocols for mobile networking

In ns two MAC layer protocols are implemented for mobile netwgrikhich are 802.11 and TDMA. In this section we briefly
discuss each of them.

802.11 MAC protocol

Historically, ns-2 (prior to release ns-2.33) has used thyglementation of IEEE 802.11 distributed coordinationdiion
(DCF) from CMU. Starting with ns-2.33, several 802.11 inmpéntations are available. See section 16.3 for more informa
tion.

Preamble based TDMA protocol

Note: this works is still at a preliminary stage, some practicalies, such as: contention in the preamble phase and time slot
reuse in a multi-hop environment are not considered.

Unlike contention based MAC protocol (802.11, for exampe) DMA MAC protocol allocates different time slots for nade
to send and receive packets. The superset of these timésstatted a TDMA frame.

152

Currently, ns supports a single hop, preamble-based TDMA MAC protocolthWhis protocl, a TDMA frame contains
preamble besides the data transmission slots. Within #enplole, every node has a dedicated subslot and uses it tichsta
the destination node id of outgoing packet. Other nodesnligt the preamble and record the time slots to receive packet
Like other common TDMA protocols (GSM, for example), eacldedas a data transmission slot to send packets.

To avoid unnecessary power consumption, each node tumaslitson and off explicitly by invoking node AREt_node_sleep()
The radio only needs to be on when: in the pramble phase (tadeeslot time) and there is a packet to send and receive.

The preamble is implemented as a central data struttime_preamble_ , which is accessible to all the nodes. At the
beginning of a frame, each node writes the destination rebateta its subslot in preambile if it has a packet to send. kotig
preamble phase, each node sends packet in its data traimsnsiss and checks the preamble to determine if there is ghac
to receive in other slots.

The following parameters are user configurable: the wisdlak bandwidtthandwith_ | the slot lengtipacket_slot_len_ ,
and the number of nodesax_node_num_. See agmac-tdma.{cc,h} for implementation details.

16.1.5 Different types of Routing Agents in mobile networkng

The five different ad-hoc routing protocols currently impkented for mobile networking insare dsdv, dsr, aodv, tora and
puma. In this section we shall briefly discuss each of them.

DSDV

In this routing protocol routing messages are exchangeudsst neighbouring mobilenodes (i.e mobilenodes that atérwi
range of one another). Routing updates may be triggereditineo Updates are triggered in case a routing informatiomf
one of t he neighbours forces a change in the routing tableackqt for which the route to its destination is not known is
cached while routing queries are sent out. The pkts are daah# route-replies are received from the destinationeréhs

a maximum buffer size for caching the pkts waiting for rogtinformation beyond which pkts are dropped.

All packets destined for the mobilenode are routed direlsyiythe address dmux to its port dmux. The port dmux hands
the packets to the respective destination agents. A porbeuwf 255 is used to attach routing agent in mobilenodes. The
mobilenodes al so use a default-targetin their classifreaddress demux). In the event a targetis not found for thigndeion

in the classifier (which happens when the destination of Huket is not the mobilenode itself), the pkts are handedeo th
default-ta rget which is the routing agent. The routing agesigns the next hop for the packet and sends it down tortke li
layer.

The routing protocol is mainly implemented in C++. See/dsdv directory and rgtcl/mobility/dsdv.tcl for all procedures
related to DSDV protocol implementation.

DSR

This section briefly describes the functionality of the dyi@source routing protocol. As mentioned earlier 8®Nodeis
different from theMobileNode . TheSRNode€s entry _ points to the DSR routing agent, thus forcing all packetsixed
by the node to be handed down to the routing agent. This mededjuired for future implementation of piggy-backed rogti
information on data packets which otherwise would not flomtigh the routing agent.

The DSR agent checks every data packet for source-routeniaf®n. It forwards the packet as per the routing inforomati

Incase it doesnot find routing information in the packetravides the source route, if route is known, or caches th&giac
and sends out route queries if route to destination is noivkndouting queries, always triggered by a data packet with n

153

route to its destination, are initially broadcast to allgidiours. Route-replies are send back either by internedi@des or
the destination node, to the source, if it can find routing ifofr the destination in the route-query. It hands over atiqess

destined to itself to the port dmux. BRNodethe port number 255 points to a null agent since the packealneady been
processed by the routing agent.

See nddsr directory and rdtcl/mobility/dsr.tcl for implementation of DSR protocol

TORA

Tora is a distributed routing protocol based on "link reaéralgorithm. At every node a separate copy of TORA is run for
every destination. When a node needs a route to a given dtstint broadcasts a QUERY message containing the address
of the destination for which it requires a route. This padkatels through the network until it reaches the destimati

an intermediate node that has a route to the destination Adde recepient node node then broadcasts an UPDATE packet
listing its height wrt the destination. As this node propgagahrough the network each node updates its height to & valu
greater than the height of the neighbour from which it reegihe UPDATE. This results in a series of directed links fthen
node that originated the QUERY to the destination node. bdendiscovers a particular destination to be unreachabégst

a local maximum value of height for that destination. Inddgenode cannot find any neighbour having finite height wa thi
destination it attempts to find a new route. In case of netyarkition, the node broadcasts a CLEAR message that rdkets a
routing states and removes invalid routes from the network.

TORA operates on top of IMEP (Internet MANET EncapsulatiootBcol) that provides reliable delivery of route-message
and informs the routing protocol of any changes of the link&g neighbours. IMEP tries to aggregate IMEP and TORA
messages into a single packet (called block) in order toaedwerhead. For link-status sensing and maintaining aflist
neighbour nodes, IMEP sends out periodic BEACON messagehuhanswered by each node that hears it by a HELLO
reply message. Sewsstora directory anchgtcl/mobility/tora.tcl for implementation of tora ins

AODV

AODV is a combination of both DSR and DSDV protocols. It has tfasic route-discovery and route-maintenance of DSR
and uses the hop-by-hop routing, sequence numbers andnseaicDSDV. The node that wants to know a route to a given
destination generates a ROUTE REQUEST. The route requigstiarded by intermediate nodes that also creates a reverse
route for itself from the destination. When the requestiea@ node with route to destination it generates a ROUTE REPL
containing the number of hops requires to reach destinatitbmodes that participates in forwarding this reply to gwairce
node creates a forward route to destination. This statéedd@am each node from source to destination is a hop-bystaip

and not the entire route as is done in source routing.nSaedv anchgtcl/lib/ns-lib.tcl for implementational details of aodv

PUMA

TheProtocol for Unified Multicasting Through Announceme®EIMA) is a distributed, receiver initiated, mesh based-mul
ticast routing protocol. By default, the first receiver in altitast group acts as the core (i.eendezvous poiptfor that
particular group. PUMA uses a simple and very efficient aaitressage, enulticast announcemernb maintain the mesh.
Besides that, multiple meshes can be compiled into a singiewncement bucket. PUMA does not require any unicast
protocol, and all transmissions are broadcasts. Even thbugadcast transmissions are unreliable, the mesh itgsdidiuces
some redundancy, and because the mesh includes only granpereand the nodes interconnecting them, broadcastsremai
scoped within the mesh.

As a multicast announcement propagates throughout the, mesles learn the shortest path to the core. This way, data

packets can be quickly routed to the core. On its way towagdtre, two things can happen to a data packet: (a) the packet
goes all the way until it reaches the core, or (b) a mesh memherbefore reaching the core. Anyway, once a data packet

154

reaches the mesh, the packet propagates only inside the frteskbore is not a single point of failure, because when the co
fails a group member quickly takes the core role. 8#puma directory ands'tcl/ex/puma.tcl for implementation of PUMA
in ns

M-DART

The Multi-Path Dynamic Addressing Routing (M-DART) is a timg protocol for ad hoc networks with the following fea-
tures:

e proactive, every node keeps information about the availedites;
e multi-path, every node tracks redundant routes to face twjtblogy changes;
e hierarchic, the routing overhead is reduced with a logaritifactor;

e DHT-based, since a DHT is used at the network layer.

The M-DART extends the DART protocol, first proposed by JkEsbn, M. Faloutsos and S. Krishnamurthy. The ns-2
implementation has been extensively tested for ad hoc mkéng to 4096 nodes. The ./mdart/example/ folder contains a
example of static ad hoc network scenario used for the republished in M. Caleffi, L. Paura, "On Reliability of Dynami
Addressing Routing Protocols in Mobile Ad Hoc Networks"ceypted for publication in the special issue on "Architeesur
and Protocols for Wireless Mesh, Ad Hoc, and Sensor NetWwafdd/ireless Communications and Mobile Computing, 2010.

For more information:

e M. Caleffi, G. Ferraiuolo, L. Paura, "Augmented Tree-basedtiRg Protocol for Scalable Ad Hoc Networks", Proc.
of IEEE MASS '07: IEEE * Internatonal Conference on Mobile at and Sensor Systems, Pisa (ltaly), * October
8-11 2007.

o M. Caleffi, "Mobile Ad Hoc Networks: the DHT Paradigm, Ph.Chdsis", University of Naples Federico Il, December
2008.

16.1.6 Trace Support

The trace support for wireless simulations currently use-trace objects. In the future this shall be extended to mefith
trace and monitoring support available in ns, which wousbahclude nam support for wireless modules. For now we will
explain briefly with cmu-trace objects and how they may bealusdrace packets for wireless scenarios.

The cmu-trace objects are of three typ€\WMUTrace/Drop ,CMUTrace/Recv andCMUTrace/Send . These are used for
tracing packets that are dropped, received and sent bysageunters, mac layers or interface queuessnThe methods and
procedures used for implementing wireless trace supporbedound underrdtrace.{cc,h} and Adtcl/lib/ns-cmutrace.tcl.

A cmu-trace object may be created by the following API:
set sndT [cmu-trace Send "RTR" $self]

which creates a trace object, sndT, of the t@déUTrace/Send for tracing all packets that are sent out in a router. Theetrac
objects may be used to trace packets in MAC, agents (routinthers), routers or any other NsObject.

155

The cmu-trace objed€MUTrace is derived from the base cla3sace .

classCMUTrace is defined as the following:

class CMUTrace : public Trace {

See Chapter 26 for details on clagsmce . The

public:
CMUTrace(const char *s, char t);
void recv(Packet *p, Handler =h);
void recv(Packet *p, const char * why);
private:
int off_arp_;
int off mac_;
int off _sr_;
char tracename[MAX_ID_LEN + 1];
int tracetype;
MobileNode *node_;
int initialized() { return node_ && 1; }
int command(int argc, const char *const * argv);
void format(Packet *p, const char *why);
void format_mac(Packet *p, const char *why, int offset);
void format_ip(Packet *p, int offset);
void format_arp(Packet *p, int offset);
void format_dsr(Packet *p, int offset);
void format_msg(Packet *p, int offset);
void format_tcp(Packet *p, int offset);
void format_rtp(Packet *p, int offset);
h

The type field (described ifirace class definition) is used to differentiate among differgpes of traces. For cmu-trace
this can bes for sendingy for receiving orD for dropping a packet. A fourth typfeis used to denote forwarding of a packet

(When the node is not the originator of the packet). Simiathe method Trace::format(), the CMUTrace::format() degin

and dictates the trace file format. The method is shown below:

void CMUTrace::format(Packet * p, const char *why)
{

hdr_cmn *ch = HDR_CMN(p);

int offset = O;

| *

* Log the MAC Header

* [

format_mac(p, why, offset);
offset = strlen(wrk);

switch(ch->ptype()) {

case PT_MAC:

156

break;

case PT_ARP:
format_arp(p, offset);
break;

default:

format_ip(p, offset);
offset = strlen(wrk);

switch(ch->ptype()) {
case PT_DSR:
format_dsr(p, offset);

break;

case PT_MESSAGE:

case PT_UDP:
format_msg(p, offset);
break;

case PT_TCP:

case PT_ACK:
format_tcp(p, offset);
break;

case PT_CBR:
format_rtp(p, offset);
break;

}

The above function calls different format functions degegan the type of the packet being traced. All traces ardevrito
the buffer wrk_. A count of the offset for the buffer is keptdais passed along the different trace functions. The most bas
format is defined by format_mac() and is used to trace allype$. The other format functions print additional inforioat
as defined by the packet types. The mac format prints thexfiitp

#ifdef LOG_POSITION
double x = 0.0, y = 0.0, z = 0.0;
node_->getLoc(&x, &y, &z);

#endif

sprintf(wrk_ + offset,

#ifdef LOG_POSITION

"%c %.9f %d (%6.2f %6.2f) %3s %4s %d %s %d [%x %X %x %x]
#else

"%cC %.9f _%d_ %3s %4s %d %s %d [%Xx %X %X %X] ",
#endif

op, /I's, r, D or f

Scheduler::instance().clock(), // time stamp

157

src_, /l the nodeid for this node
#ifdef LOG_POSITION

X, /I x co-ord
Y, /l'y co-ord

#endif
tracename, /I name of object type tracing
why, /I reason, if any
ch->uid(), /I identifier for this event
packet_info.name(ch->ptype()), // packet type
ch->size(), /I size of cmn header
mh->dh_duration, /I expected time to send data
ETHER_ADDR(mh->dh_da), // mac_destination address
ETHER_ADDR(mh->dh_sa), /I mac_sender address

GET_ETHER_TYPE(mh->dh_body)); // type - arp or IP

If the LOG_POSITION is defined the x and y co-ordinates forri@bilenode is also printed. The descriptions for different
fields in the mac trace are given in the comments above. FiP glackets additional IP header fields are also added to the
above trace. The IP trace is described below:

sprintf(wrk_ + offset, "------- [%d:%d %d:%d %d %d] ",
src, /I IP src address
ih->sport_, // src port number
dst, /Il 1P dest address
ih->dport_, // dest port number
ih->ttl_, /I TTL value
(ch->next_hop_ < 0) ? 0 : ch->next_hop_); // next hopaddress , if any.

An example of a trace for a tcp packet is as follows:

r 160.093884945 6_ RTR -— 5 tcp 1492 [a2 4 6 800] ----- [655
36:0 16777984:0 31 16777984] [1L 0] 2 O

Here we see a TCP data packet being received by a node witl6id D of this pktis 5 with a cmn hdr size of 1492. The mac
details shows an IP pkt (ETHERTYPE_IP is defined as OxO80MERTYPE_ARP is 0x0806), mac-id of this receiving
node is 4. That of the sending node is 6 and expected time ththéndata pkt over the wireless channel is a2 (hex2dec
conversion: 160+2 sec). Additionally, IP traces inforraatabout IP src and destination addresses. The src tra@lisiag

a 3 level hier-address of 8/8/8) to a address string of 0.1l port of 0. The dest address is 1.0.3 with port address of 0.
The TTL value is 31 and the destination was a hop away fromrthefglditionally TCP format prints information about tcp
seqno of 1, ackno of 0. See other formats describechg¥emu-trace.cc for DSR, UDP/MESSAGE, TCP/ACK and CBR
packet types.

Other trace formats are also used by the routing agents (T&RASR) to log certain special routing events like "origjimgl'
(adding a SR header to a packet) or "ran off the end of a soaute'rindicating some sort of routing problem with the seurc
route etc. These special event traces begin with "S" for D8R'&" for Tora and may be found inng'tora/tora.cc for TORA
and ~ngdsr/dsrgent.cc for DSR routing agent.

158

16.1.7 Revised format for wireless traces

In an effort to merge wireless trace, using cmu-trace objetith ns tracing, a new, inproved trace format has beeo-intr
duced. This revised trace support is backwards compatiittetiae old trace formatting and can be enabled by the folowi
command:

$ns use-newtrace

This command should be called before the universal tracemami$ns trace-all <trace-fd> . Primitiveuse-newtrace
sets up new format for wireless tracing by setting a simuledoiable callechewTraceFormat . Currently this new trace
support is available for wireless simulations only and ldbalextended to rest ofsin the near future.

An example of the new trace format is shown below:

s -t 0.267662078 -Hs 0 -Hd -1 -Ni 0 -Nx 5.00 -Ny 2.00 -Nz 0.00 -Ne

-1.000000 -NI RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt O -Is 0.255 -Id -1. 255 -It

message -ll 32 -If O -li O -lv 32

s -t 1.511681090 -Hs 1 -Hd -1 -Ni 1 -Nx 390.00 -Ny 385.00 -Nz 0.0 0 -Ne

-1.000000 -NI RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt O -Is 1.255 -Id -1. 255 -t

message -Il 32 -If O -li 1 -lv 32

s -t 10.000000000 -Hs O -Hd -2 -Ni 0 -Nx 5.00 -Ny 2.00 -Nz 0.00 -N e

-1.000000 -NI AGT -Nw --- -Ma 0 -Md O -Ms 0 -Mt O -Is 0.0 -ld 1.0 -I t tcp -l 1000 -If
2 -li 2 -lv 32 -Pn tcp -Ps 0 -Pa 0 -Pf 0 -Po O

r -t 10.000000000 -Hs O -Hd -2 -Ni 0 -Nx 5.00 -Ny 2.00 -Nz 0.00 -N e

-1.000000 -NI RTR -Nw --- -Ma 0 -Md 0 -Ms 0 -Mt O -Is 0.0 -ld 1.0 -I t tcp -l 1000 -If
2 -li 2 -lv 32 -Pn tcp -Ps 0 -Pa 0 -Pf 0 -Po O

r -t 100.004776054 -Hs 1 -Hd 1 -Ni 1 -Nx 25.05 -Ny 20.05 -Nz 0.00 -Ne

-1.000000 -NI AGT -Nw --- -Ma a2 -Md 1 -Ms 0 -Mt 800 -Is 0.0 -ld 1. 0 -t

tcp -l 1020 -If 2 -li 21 -lv 32 -Pn tcp -Ps 0 -Pa 0 -Pf 1 -Po O

s -t 100.004776054 -Hs 1 -Hd -2 -Ni 1 -Nx 25.05 -Ny 20.05 -Nz 0.0 0 -Ne

-1.000000 -NI AGT -Nw --- -Ma 0 -Md O -Ms 0 -Mt O -Is 1.0 -Ild 0.0 -I t ack -Il 40

-If 2 -li 22 -lv 32 -Pn tcp -Ps 0 -Pa 0 -Pf 0 -Po O

Explanation of new trace format

The new trace format as seen above can be can be divided etolldwing fields :

Event type In the traces above, the first field (as in the older trace fordescribes the type of event taking place at the node
and can be one of the four types:

s send
r receive
d drop
f forward

General tag The second field starting with "-t" may stand for time or gliodetting

-t time
-t * (global setting)

159

Node property tags This field denotes the node properties like node-id, the levevhich tracing is being done like agent,
router or MAC. The tags start with a leading "-N" and are tistes below:

-Ni:
-Nx:
-Ny:
-Nz:
-Ne:
-NI:

-Nw:

node id
node’s x-coordinate
node’s y-coordinate
node’s z-coordinate
node energy level
trace level, such as AGT, RTR, MAC
reason for the event. The different reasons for dropping&qtare given below:
"END" DROP_END_OF_SIMULATION
"COL" DROP_MAC COLLISION
"DUP" DROP_MAC DUPLICATE
"ERR" DROP_MAC_PACKET_ERROR
"RET" DROP_MAC_ RETRY_COUNT_EXCEEDED
"STA" DROP_MAC INVALID STATE
"BSY" DROP_MAC_BUSY
"NRTE" DROP_RTR_NO_ROUTE i.e no route is available.
"LOOP" DROP_RTR_ROUTE_LOORP i.e there is a routing loop
"TTL" DROP_RTR_TTL i.e TTL has reached zero.
"TOUT" DROP_RTR_QTIMEOUT i.e packet has expired.
"CBK" DROP_RTR_MAC_CALLBACK
"IFQ" DROP_IFQ_QFULL i.e no buffer space in IFQ.
"ARP" DROP_IFQ_ARP_FULL i.e dropped by ARP

"OUT" DROP_OUTSIDE_SUBNET i.e dropped by base stations on regmeiouting updates from nodes out-
side its domain.

Packet information at IP level The tags for this field start with a leading "-I" and are liséddng with their explanations as
following:

-lv:

. source address.source port number
. dest address.dest port number

packet type

. packet size

flow id

i: uniqueid

ttl value

Next hop info This field provides next hop info and the tag starts with ailegqt-H".

-Hs:
-Hd:

id for this node
id for next hop towards the destination.

Packet info at MAC level This field gives MAC layer information and starts with a leagll-M" as shown below:

-Ma: duration

-Md
-Ms
-Mt:

. dst’s ethernet address

. src’s ethernet address

ethernet type

160

Packet info at "Application level" The packet information at application level consists oftiee of application like ARP,
TCP, the type of adhoc routing protocol like PUMA, DSR, AODi being traced. This field consists of a leading "-P"
and list of tags for different application is listed as below

-P arp Address Resolution Protocol. Details for ARP is given byftiilowing tags:

-Po: ARP Request/Reply
-Pm: src mac address
-Ps: src address
-Pa: dst mac address
-Pd: dst address
-P dsr This denotes the adhoc routing protocol called Dynamica®twuting. Information on DSR is represented by
the following tags:
-Pn: how many nodes traversed
-Pqg: routing request flag
-Pi: route request sequence number
-Pp: routing reply flag
-PI: reply length
-Pe: src of srcrouting->dst of the source routing
-Pw: error report flag ?
-Pm: number of errors
-Pc: report to whom
-Pb: link error from linka->linkb
-P cbr Constant bit rate. Information about the CBR applicatiorejzresented by the following tags:

-Pi: sequence number
-Pf: how many times this pkt was forwarded
-Po: optimal number of forwards

-P tcp Information about TCP flow is given by the following subtags:

-Ps: seq number

-Pa: ack number

-Pf: how many times this pkt was forwarded
-Po: optimal number of forwards

This field is still under development and new tags shall beedddr other applications as they get included along the
way.

16.1.8 Generation of node-movement and traffic-connectiofor wireless scenarios

Normally for large topologies, the node movement and traffitcnection patterns are defined in separate files for camniei.
These movement and traffic files may be generated using CMbi&ment- and connection-generators. In this section we
shall describe both separately.

MobileNode Movement

Some examples of node movement files may be foundniitet/mobility/scene/scen-670x670-50-600-20-*. Thedesfi
define a topology of 670 by 670m where 50 nodes move with a spiedim/s with pause time of 600s. each node is assigned

161

a starting position. The information regarding number giibetween the nodes is fed to the central object "GOD" (XXX
but why/where is this information used??-answer awaiteshft MU.) Next each node is a speed and a direction to move to.

The generator for creating node movementfiles are to be fanddr +wsindep-utils/cmu-scen-gen/setdest/ directory. Com-
pile the files under setdest to create an executable. ruastetith arguments in the following way:

Jsetdest -n <num_of nodes> -p <pausetime> -s <maxspeed> - t <simtime>
-X <maxx> -y <maxy> > <outdir>/<scenario-file>

Note that the index used for nodes now start from O insteadax Was in the original CMU version, to match witls
tradition of assigning node indices from O.

Generating traffic pattern files

The examples for traffic patterns may be found n#'tel/mobility/scene/cbr-50-{10-4-512, 20-4-512}.

The traffic generator is located undersindep-utils/cmu-scen-gen/ and are called cbrgen.tcltapgen.tcl. They may be
used for generating CBR and TCP connections respectively.

To create CBR connecions, run

ns cbrgen.tcl [-type cbr|tcp] [-nn nodes] [-seed seed]
[-mc connections] [-rate rate]

To create TCP connections, run
ns tcpgen.tcl [-nn nodes] [-seed seed]

You will need to pipe the outputs from above to a cbr-* or atdjte.

16.2 Extensions made to CMU'’s wireless model

As mentioned earlier, the original CMU wireless model akosimulation of wireless LANs and ad-hoc networks. However
in order to use the wireless model for simulations using ated and wireless nodes we had to add certain extensions to
cmu model. We call this wired-cum-wireless feature. AlsaN&MobilelP (implemented for wired nodes) was integrated
into the wireless model allowing mobilelP to run over widenmobilenodes. The following two subsections describsethe
two extensions to the wireless modelkia

16.2.1 wired-cum-wireless scenarios

The mobilenodes described so far mainly supports simulatfanulti-hop ad-hoc networks or wireless LANs. But what if
we need to simulate a topology of multiple wireless LANs aeeted through wired nodes, or may need to run mobilelP on
top of these wireless nodes? The extensions made to the Ck#lless model allows us to do that.

162

The main problem facing the wired-cum-wireless scenaris tha issue of routing. In ns, routing information is genedat
based on the connectivity of the topology, i.e how nodes ammected to one another througinks . Mobilenodes on the
other hand have no concept of links. They route packets art@myselves, within the wireless topology, using their irogit
protocol. so how would packets be exchanged between thesgpas of nodes?

So a node calleaseStationNode is created which plays the role of a gateway for the wired aivdlass domains.
The BaseStationNode is essentially a hybrid between a Hierarchical nogi¢ierNode) and aMobileNode . The
basestation node is responsible for delivering packetsantl out of the wireless domain. In order to achieve this vezine
Hierarchical routing.

Each wireless domain along with its base-station would avgnique domain address assigned to them. All packetsiddsti
to a wireless node would reach the base-station attachée omain of that wireless node, who would eventually haed th
packet over to the destination (mobilenode). And mobilesowute packets, destined to outside their (wireless) dgrma
their base-station node. The base-station knows how tcefiitihese packets towards the (wired) destination. Thesatie

of aBaseStationNode is shown in Figure 16.3.

The mobilenodes in wired-cum-wireless scenario are requo support hierarchical addressing/routing. ThustbbileNode
looks exactly like theBaseStationNode . The SRNode, however, simply needs to have its own hieremddsince it does
not require any address demuxes and thus is not requiregpoethier routing.

The DSDV agent on having to forward a packet checks to see ifléistination is outside its (wireless) subnet. If so, @gri

to forward the packet to its base-station node. In case nie toubase-station is found the packet is dropped. Otherwise
the packet is forwarded to the next_hop towards the baserstaVhich is then routed towards the wired network by base-
station’s classifiers.

The DSR agent, on receiving a pkt destined outside its subeetls out a route-query for its base-station in case tte tou
base-station is not known. The data pkt is temporarily cdettdle it waits to hear route replies from base-station. @tigg

a reply the packet is provided with routing information imliteader and send away towards the base-station. The htise-st
address demuxes routes it correctly toward the wired ndtwor

The example script for a wired-cum-wireless simulation lsarfiound at Aistcl/ex/wired-cum-wireless-sim.tcl. The methods
for wired-cum-wireless implementations are defined m¥'tel/lib/ns-bsnode.tcl, rgtcl/mobility/{com.tcl,dsr.tcl, dsdv.tcl},
~ngdsdv/dsdv.{cc,h} and rddsr/dsragent.{cc,h}.

16.2.2 MobilelP

The wired-cum-wireless extensions for the wireless modekef the path for supporting wireless MobilelPrin Sun
Microsystem’s (Charlie Perkinst al) MobilelP model was based on ns’s wired model (consistinblade’s andLink 's)
and thus didnot use CMU’s mobility model.

Here we briefly describe the wireless MobilelP implementatie hope that Sun would provide the detailed version of the
documentation in the future.

The mobilelP scenario consists of Home-Agents(HA) and iardgents(FA) and have Mobile-Hosts(MH) moving be-
tween their HA and FAs. The HA and FA are essentially baséestanodes we have described earlier. While MHs are
basically the mobileNodes described in section 16.1.1.r&ods and procedures for MobilelP extensions are destiib
~ngmip.{cc,h}, ~ngmip-reg.cc, Adtcl/lib/ns-mip.tcl and Agtcl/lib/ns-wireless-mip.tcl.

The HA and FA nodes are definedsbileNode/MIPBS having a registering agent (regagent_) that sends bea¢ado ou

1Refer to Chapter 33 for details on hierarchical routing anernals oHierNode .
2In order to do away with all these different variations of tiedinition of a node, we are planning to revise the node archite that would allow a more
flexible and modularised construction of a node without theessity of having to define and be limited to certain Clagsitlens only.

163

Hierarchical port

classifiers dem%/

node / IP address 255
entry f

e
iy, N

RTagent
(DSDV

defaulttarget
target_
arptable_
uptarget_ LL ARP
downtarget
IFq
downtarget
mac_ MAC uptarget_

downtarget_ uptarget_
Radio propagation_
Propagation NetlF
Model

channel_ i uptarget_
Channel

Figure 16.3: Schematic of a baseStationNode

the mobilenodes, sets up encapsulator and decapsulateqused and replies to solicitations from MHs. The MH nodes
are defined aMobileNode/MIPMH which too have a regagent_ that receives and responds torseand sends out solic-
itations to HA or FAs. Figure 16.4 illustrates the schemafia MobileNode/MIPBS node. TheMobileNode/MIPMH

node is very similar to this except for the fact that it dodgdrawve any encapsulator or decapsulator. As for the SRNad®wve

of a MH, it doesnot have the hierarchical classifiers and theagent forms the entry point of the node. See Figure 16.2 for

164

target_ '

encapsulator reg_agent_
target_
MH IP address 0 decapsulator_
—=
~—1 255
Hierarchical default
classifiers own IP address target
Ie\k&
entry_ / """"
P—= Iek%
Rtg Agent
Ie\b\\ defaulttarget
target_
uptarget_ LL
downtarget_ Lo
Channel

Figure 16.4: Schematic of a Wireless MobilelP BaseStatiodeN

model of a SRNode.

TheMobileNode/MIPBS node routinely broadcasts beacon or advertisement messag® MHs. A solicitation from a
mobilenode generates an ad that is send directly to the séggeMH. The address of the base-station sending out béacon
heard by MH and is used as the COA (care-of-address) of theTWhis as the MH moves from its native to foreign domains,
its COA changes. Upon receiving reg_request (as reply tpfemt®m a mobilehost the base-station checks to see if it is the
HA for the MH. If not, it sets up its decapsulator and forwattts reg_request towards the HA of the MH.

In case the base-statiimthe HA for the requesting MH but the COA doesnot match its diveets up an encapsulator and

sends reg-request-reply back to the COA (address of the) hvas forwarded the reg_request to it. so now all packets
destined to the MH reaching the HA would be tunneled throlmghencapsulator which encapsulates the IP pkthdr with a
IPinIP hdr, now destined to the COA instead of MH. The FAsafesulator recives this packet, removes the encapsulation

165

and sends it to the MH.

If the COA matches that of the HA, it just removes the encagieulit might have set up (when its mobilehost was roaming
into foreign networks) and sends the reply directly baclh®NMH, as the MH have now returned to its native domain.

The mobilehost sends out solicitations if it doesnot hegrads from the base-stations. Upon receiving ads, it chaitges
COA to the address of the HA/FA it has heard the ad from, antleepack to the COA with a request for registration
(reg-request). Initially the MH maybe in the range of the HA and receivdgpéts directly from its COA which is HA in
this case. Eventually as the MH moves out of range of its HAiatalthe a foreign domain of a FA, the MH’s COA changes
from its HA to that of the FA. The HA now sets up an encapsulatat tunnels all pkts destined for MH towards the FA.
The FA decapsulates the pkts and hands them over to the MHdataefrom MH destined for the wired world is always
routed towards its current COA. An example script for wisslenobilelP can be found ahstcl/ex/wireless-mip-test.tcl. The
simulation consists of a MH moving between its HA and a FA. TH#eand FA are each connected to a wired domain on one
side and to their wireless domains on the other. TCP flowseiresbetween the MH and a wired node.

16.3 802.11 MAC protocol

Prior to release ns-2.33, there was only one main-tree 82ddel, although other researchers were maintaining-frarty
patches on the web. Starting with ns-2.33, there are maltipbices in the main distribution.

The first extension described below (infrastructure mogrels the legacy model to include infrastructure mode. él@x
the last two items (802.11Ext and dei802mr) are completiacements for the legacy model.

Therefore, researchers now have a choice of 802.11 mocelsheould carefully read the documentation and code of each
one to understand which is the best fit for the job.

802.11 DCF from CMU This model has been the only model available in the nmasource tree prior to release ns-2.33.
See Agmac-802_11.{cc,h}for implementation details. It usesTESRCTS/DATA/ACK pattern for all unicast packets
and simply sends out DATA for all broadcast packets. The é@mantation uses both physical and virtual carrier sense.
Theclass Mac802_11 isimplemented in rRdmac-802_11.{cc,h}.

802.11 infrastructure extensionsllango Purushothaman from the University of Washingtonimeemented infrastructure
extensions to the above 802.11 model, and fixed some bugg #ilerway. The extensions include passive and active
scanning, authentication, association, inter-AP comgatitns, and mobility support (handoff). Please note thiat t
model still supports single-channel scenarios only.

e Documentation: http://ee.washington.edu/research/funlab/802_1arftef0211_IM.pdf
e Example script: tcl/ex/infra.tcl
o Test suite: tcl/test/test-suite-wireless-infra-mobility.tcl tigbt/test-suite-wireless-infra.tcl
802.11Ext A team from Mercedes-Benz Research and Development Nortiriéeand from University of Karlsruhe have

collaborated to develop a completely new 802.11 Mac and Pbgein called Mac802_11Ext and WirelessPhyExt,
respectively. The new model contains the following feagure

e Structured design of MAC functionality modules: transnaas reception, transmission coordination, reception
coordination, backoff manager, and channel state monitor

Cumulative SINR computation

MAC frame capture capabbilities

Multiple modulation scheme support

Packet drop tracing at the PHY layer

166

e Nakagami fading model

This model should be used as a replacement for the existimglsioThe example scripts show how to do this.

Key files: apps/pbc.{cc,h}, mac/mac-802_11Ext.{cc,h}, mac/wissghyExt.{cc,h}, mobile/nakagami.{cc,h}

Documentation: http://dsn.tm.uni-karlsruhe.de/Overhaul_NS-2.php
Example scripts: tcl/ex/802.11/ directory: IEEE802-11a.tcl IEEE802-tfbroadcast_validation.tclunicast_validatiol
Test suite: tcl/test/test-suite-wireless-lan-newnode-80211Elxt.t

dei80211mr The dei80211mr library - nicknamed 'multirate’ for shortrogides an 802.11 derived from the CMU imple-
mentation. This library depends on the Dynamic Library (@ka28) and is included in the ns-allinone distribution
only (see the top-level dei80211mr directory in the nsaaltie distribution or see http://www.dei.unipd.it/wdyid8ezione=509:
For step-by-step installation instructions, please redethe tutorial at http://www.dei.unipd.it/%7Ebaldo/risatle-
dei80211mr-howto.html The following functionalities grevided by the dei80211mr library:

e support for multiple PHY modes is included; in particolagj@D211mr simulation of the different transmission
rates, modulation and coding schemes defined in the IEEE8DB2) standards.

¢ a SINR-based packet level error model is introduced:

— the RX Threshold variable which was used in the 802.11 implgation included in standard NS to deter-
mine successful receptions has been removed. Insteaktfackr Rate (PER) is used to determine random
packet losses.

— PER is calculated using pre-determined curves (PER vs SitRpacket size); the curves can be specified
by the user via TCL. Some default curves for both 802.11g &2d18 b are provided.

— SINR is calculated using received signal strength, noiskterference

— interference is calculated using a gaussian model to at¢ouall transmissions which happen simultane-
ously to the one which is considered for reception

— noise power is set via TCL

o the capture model, i.e. the determination of whether a pgaze be received when there are other concurrent
transmissions are simultaneously ogoing, is now embedd#giabove mentioned interference model (no more
Capture Threshold)

¢ In the wireless channel, the affected nodes distance is me determined using the CS threshold, but we used
a fixed value in meters which can be set at the beginning ofithelation. The reason is that, since we use a
gaussian interference model, nodes well below the CS thlesliten still provide a non-negligible contribution
to interference. The default value for the affected nodsetadtce is very conservative, so that all nodes are
considered for interference calculation. This defaultieaherefore yields accurate but computationally intensiv
simulations. The value can be adjusted via TCL to achieVieraifit trade-offs between computational load and
simulation accuracy.

e Documentation: http://www.dei.unipd.it/%7Ebaldo/nsmiracle-dei80&irthowto.html
e Example script: dei80211mr-1.1.4/samples/adhoc_tcp.tcl
e Test suite:None

In addition, a patch (relating to the CMU implementationpnoving ns-2 802.11 wireless supportis available at Httpav.telematica.
The patch introduces realistic channel propagation, acosantmultiple data transmission rates among stations arE A
mechanisms, has been tested with ns-2.29, and featureditheifg contributions:

e channel propagation improvements by Wu Xiuchao
e ricean propagation model by Ratish J. Punnoose

e SNOOPYy calendar scheduler by David X. Wei

167

e 802.11 bug fixes by Felix Schmidt-Eisenlohr
e multiple data transmission rates support by Marco Fiore

e Adaptive Auto Rate Fallback (AARF) by Marco Fiore.

16.4 Lists of changes for merging code developed in older v&@on of ns (2.1b5 or
later) into the current version (2.1b8)

The CMU-wireless model developed by David Johnhson’s Mamaroject was merged into ns around 1998-99 in what was
then the ns-2.1b5 version. Since then the ns versions usklbbgrch and by us here at ISI have forked quite a bit. Recently
we ported a newer version of DSR developed by the Monarchpgbagk into ns and in the process have created a list of
changes that were required to be made for the merge. Hopéiiigllist will be helpful for those who have been working on
older versions of ns from around that time or or later, to hthedr stuff merged in to the current version of ns-2.1b8.

The following lists of changes are required for merging thruorsersion of ns (2.1b5) in to current version of 2.1b8. Each
change is followed by a brief explanation for why the changs made.

Methods for accessing pkt hdrs have changed from

(hdr_sr =)p->access(off_sr)

to a static access method defined for each hdr, as
hdr_sr::access(p)

where for class hdr_sr a static metretess() is defined as

inline static hdr_sr * access(const Packet *)
return (hdr_sr *)p->access(offset);

why: This change avoids using casts everywhere.

As the method for accessing hdrs have changed, there is damegplicitly bind the hdr offset values. This is now done
while establishing tcl linkage for the individual hdr class so lines like

bind("off_ SR_", &off_sr);

bind("off_Il_", &off_II_);

bind("off_mac_", &off _mac);

bind("off_ip_", &off_ip_);

should be removed.

AF_ enumerations replaced by NS_AF_asin
enum ns_af enum NS_AF NONE, NS _AF _ILINK, NS_AF_INET ;
why: This avoids header clashes between ns and the OS.

The ip hdr (dst/src) address fields that used be integersoar@efined as structures called ns_addr_t. ns_addr_thas 2
members address__and port_ that are both defined as int. tieeséke

iph->src() should change to

iph->saddr() & iph->sport();

Also lines like

dst_ = (IP_BROADCAST « 8) | RT_PORT

should be replaced by

dst_.addr_ = IP_BROADCAST;

168

dst .port_ = RT_PORT;
Why: This extension supports 32hbit addressing.

The addrs_ member for hdr_sr class has a separate functiogtdoning its value . Thus need to chBr.addrs()
instead of hsr.addrs.
why: addrs_ is now a private variable which is accessed by pulntictfonaddrs()

All includes that had absolute paths by usitrgwere replaced by' . Thus
<cmu/dsr/dsragent.h>

was changed to

"cmu/dsr/dsragent.h”

The tcl command "ip-addr" was changed to "addr".

Other new tcl commands like "node", "port-dmux" and "tréarget” were added.
why: Part of support for mobilelP and wired-cum-wireless sirtialzs.

Need to convert address in string format into int format; se u
Address::instance().str2addr(argv[2])

instead of

atoi(argv[2])

why: This is required for supporting hier-addressing/routing.

The arraypacket_names[] has changed tpacket_info.name()
why: In order to remove a bunch éfdefines for pkt types, an enumeration called packet_t noerites all packet types in
ns. class p_info was created that now describes an array nidnaehas replaced packet_names array used previously.

Have to explicitly set direction of new pkts to DOWN beforadig them down to the LL.

why: A variable direction_in hdr_cmn is now used. This is usedhalower layers like LL, mac, phy etc to determine the
direction of the pkt flow. All incoming pkts are marked as UPdivannel, which should be remarked as DOWN by agents
before sending them out into the network again.

Instead ofogtarget->buffer , should now callogtarget->pt_->buffer

why: This change reflects support for eventtracing. Tracing lialved into two types, packet tracing and event tracing.
Class Trace essentially supports packet tracing. Howenaddlition to the basic tracing properties that it derivegfia
BaseTrace class, pkt-tracing also requires to inherit sofittee Connector class properties as well. Hence pt_, ataaset
object represents the pure tracing functionalities rexgliior a trace object.

The parameter used to describe the reason a pkt was dropgetbuse an integer. This was changedhar *. Hence
needed to define different pkt-drop reasons in string fosmat
Why: Allows greater expandibility and flexibility.

linkHead changed to dsrLinkHead.
why: name clashed with linkHead used elsewhere in ns.

The older cmu model used an incoming_ flag added in all pktgtodiout direction of pkt flow in the lower layers like |l
mac etc. Later this was replaced by a variable called doectadded in cmn_hdr. direction value can be set to UP, DOWN
or NONE. all pkts created with a DOWN dir by default.

why: Both these flags were being used which is not really reqd.smniing__flag has been replaced with direction_.

169

16.5 Commands at a glance

Following is a list of commands used in wireless simulations

$ns_ node-config -addressingType <usually flat or hierarc hical used for
wireless topologies>
-adhocRouting <adhoc rotuing protocol like PUMA, DSR,
TORA, AODV, DSDV etc>

-lIType <LinkLayer>

-macType <MAC type like Mac/802_11>

-propType <Propagation model like
Propagation/TwoRayGround>

-ifqType <interface queue type like
Queue/DropTail/PriQueue>

-ifgLen <interface queue length like 50>

-phyType <network inteface type like
Phy/WirelessPhy>

-antType <antenna type like Antenna/OmniAntenna>

-channelType <Channel type like Channel/WirelessChannel >

-topolnstance <the topography instance>

-wiredRouting <turning wired routing ON or OFF>
-mobilelP <setting the flag for mobilelP ON or OFF>
-energyModel <EnergyModel type>

-initialEnergy <specified in Joules>

-rxPower <specified in W>
-txPower <specified in W>
-agentTrace <tracing at agent level turned ON or OFF>
-routerTrace <tracing at router level turned ON or OFF>
-macTrace <tracing at mac level turned ON or OFF>
-movementTrace <mobilenode movement logging turned

ON or OFF>

This command is used typically to configure for a mobilendéa. more info about this command (part of new node APIs)
see chapter titled "Restructuring ns node and new Node ARIsS Notes and Documentation.

$ns_ node <optional:hier address>
This command is used to create a mobilenode after node coatiigniis done as shown in the node-config command. Incase
hierarchical addressing is being used, the hier addre$®afdde needs to be passed as well.

$node log-movement
This command previously used to enable logging of mobilersaxchovement has now been replacedbbyg_
node-config -movementTrace <ON or OFF>

create-god <num_nodes>

This command is used to create a God instance. The numbertofemodes is passed as argument which is used by God to
create a matrix to store connectivity information of thedtogy.

$topo load_flatgrid <X> <Y> <optional:res>

This initializes the grid for the topography object. <X> and> are the x-y co-ordinates for the topology and are used for
sizing the grid. The grid resolution may be passed as <restefault value of 1 is normally used.

$topo load_demfile <file-descrptor>

170

For loading DEMFile objects into topography. Se#dem.cc,.h for details on DEMFiles.

$ns_ namtrace-all-wireless <namtrace> <X> <Y>
This command is used to initialize a namtrace file for logginde movements to be viewed in nam. The namtrace file
descriptor, the X and Y co-ordinates of the wireless topplisgpassed as parameters with this command.

$ns_ nam-end-wireless <stop-time>
This command is used to tell nam the simulation stop timergbye<stop-time>.

$ns_ initial_node_pos <node> <size>
This command defines the node initial position in nam. <sdexotes the size of node in nam. This function must be called
after mobility model has been defined.

$mobilenode random-motion <0 or 1>
Random-motion is used to turn on random movements for thélemaale, in which case random destinations are assigned
to the node. 0 disables and 1 enables random-motion.

$mobilenode setdest <X> <Y> <s>
This command is used to setup a destination for the mobikernblde mobile node starts moving towards destination given
by <X> and <Y> at a speed of <s>m/s.

$mobilenode reset
This command is used to reset all the objects in the nodew¢netomponents like LL, MAC, phy etc).

Internal procedures
Following is a list of internal procedures used in wirelesgaorking:

$mobilenode base-station <BSnode-hier-addr>
This is used for wired-cum-wireless scenarios. Here theilmo@de is provided with the base-stationnode info for its
domain. The address is hierarchical since wired-cum-eg®bscenarios typically use hierarchical addressing.

$mobilenode log-target <target-object>
The <target-object>, which is normally a trace object, st log mobilenode movements and their energy usage, if
energy model is provided.

$mobilenode topography <topoinstance>
This command is used to provide the node with a handle to thagi@phy object.

$mobilenode addif
A mobilenode may have more than one network interface. Tdnisncand is used to pass handle for a network interface to
the node.

$mobilenode namattach <namtracefd>
This command is used to attach the namtrace file descriptontmacefd> to the mobilenode. All nam traces for the node
are then written into this namtrace file.

$mobilenode radius <r>
The radius <r> denotes the node’s range. All mobilenodadalavithin the circle of radius <r> with the node at its cent
are considered as neighbours. This info is typically usethbygridkeeper.

$mobilenode start
This command is used to start off the movement of the mobileno

171

Chapter 17

Satellite Networking in ns

This chapter describes extensions that enable the simwlatisatellite networks ins. In particular, these extensions enable
ns to model the following: i) traditional geostationary “bepipe” satellites with multiple users per uplink/downliakd
asymmetric links, ii) geostationary satellites with presiag payloads (either regenerative payloads or full pgasskigching),
and iii) polar orbiting LEO constellations such as Iridiundaleledesic. These satellite models are principally aiatersing
nsto study networking aspects of satellite systems; in pagic MAC, link layer, routing, and transport protocols.

17.1 Overview of satellite models

Exact simulation of satellite networks requires a detaitextielling of radio frequency characteristics (interferfading),
protocol interactions (e.g., interactions of residuakberrors on the link with error checking codes), and secanaer orbital
effects (precession, gravitational anomalies, etc.). él@s, in order to study fundamental characteristics oflgataetworks
from anetworkingperspective, certain features may be abstracted out. FEonge, the performance of TCP over satellite
links is impacted little by using an approximate rather tbatailed channel model— performance can be charactenfedtt
order by the overall packet loss probability. This is therapgh taken in this simulation model- to create a framework f
studying transport, routing, and MAC protocols in a satelinvironment consisting of geostationary satellitesomstella-
tions of polar-orbiting low-earth-orbit (LEO) satellite®f course, users may extend these models to provide maxé aeh
given layer.

17.1.1 Geostationary satellites

Geostationary satellites orbit the Earth at an altitude 2BQ0 miles above the equator. The position of the satelige
specified in terms of the longitude of the nadir point (subliisg point on the Earth’s surface). In practice, geostairy
satellites can drift from their designated location duervdational perturbations— these effects are not modéties

Two kinds of geostationary satellites can be modelled. licathl “bent-pipe” geostationary satellites are meredpeaters
in orbit— all packets received by such satellites on an kiptimannel are piped through at RF frequencies to a correspgnd
downlink, and the satellite node is not visible to routingtpcols. Newer satellites will increasingly use basebaondgssing,
both to regenerate the digital signal and to perform fask@iaswitching on-board the spacecraft. In the simulatitimsse
satellites can be modelled more like traditionahodes with classifiers and routing agents.

Previously, users could simulate geostationary satdiikss by simply simulating a long delay link using tradit@imslinks
and nodes. The key enhancement of these satellite extensitin respect to geostationary satellites is the capghiit

172

Counter-rotating planes Overlap of coverage at the poles
cause rapid “crossseam” U~ Interplane intersatellite
ISL handoffs e < links (ISLs) are turned off

An “intraplane” ISL

An “interplane” ISL

Figure 17.1: Example of a polar-orbiting LEO constellatidhis figure was generated using the SaVi software package fr
the geometry center at the University of Minnesota.

simulate MAC protocols. Users can now define many termirtadéff@rent locations on the Earth’s surface and connecehthe
to the same satellite uplink and downlink channels, and thpggation delays in the system (which are slightly diffefer
each user) are accurately modelled. In addition, the ugink downlink channels can be defined differently (perhapis wi
different bandwidths or error models).

17.1.2 Low-earth-orbiting satellites

Polar orbiting satellite systems, such as Iridium and tlippsed Teledesic system, can be modellesirin particular, the
simulator supports the specification of satellites thaitanlpurely circular planes, for which the neighboring parare co-
rotating. There are other non-geostationary consteflatanfigurations possible (e.g., Walker constellationsg-interested
user may develop new constellation classes to simulate titbsr constellation types. In particular, this would rhaiequire

defining new intersatellite link handoff procedures.

The following are the parameters of satellite constelieithat can currently be simulated:

e Basic constellation definitionIincludes satellite altitude, number of satellites, numdfgslanes, number of satellites
per plane.

e Orbits Orbit inclination can range continuously from 0 to 180 degrénclination greater than 90 degrees corresponds
to retrograde orbits). Orbit eccentricity is not modeleddsl precession is not modeled. Intersatellite spaciniimvi
given plane is fixed. Relative phasing between planes is {eildough some systems may not control phasing between
planes).

o Intersatellite (ISL) links For polar orbiting constellations, intraplane, interdaand crossseam ISLs can be defined.
Intraplane ISLs exist between satellites in the same plad@ee never deactivated or handed off. Interplane ISL$ exis
between satellites of neighboring co-rotating planes s€Hieks are deactivated near the poles (above the “ISlutit
threshold” in the table) because the antenna pointing nméstmacannot track these links in the polar regions. Like
intraplane ISLs, interplane ISLs are never handed off. &®am ISLs may exist in a constellation between satellites

173

in counter-rotating planes (where the planes form a seddeam” in the topology). GEO ISLs can also be defined
for constellations of geostationary satellites.

e Ground to satellite (GSL) links Multiple terminals can be connected to a single GSL sagetlitannel. GSL links for
GEO satellites are static, while GSL links for LEO channeésgzeriodically handed off as described below.

e Elevation mask The elevation angle above which a GSL link can be operatioGairrently, if the (LEO) satellite
serving a terminal drops below the elevation mask, the teahsiearches for a new satellite above the elevation mask.
Satellite terminals check for handoff opportunities adaog to a timeout interval specified by the user. Each ter-
minal initiates handoffs asynchronously; it would be pbkesialso to define a system in which each handoff occurs

synchronously in the system.

The following table lists parameters used for example satiom scripts of the Iridiurhand Teledesfcsystems.

| Iridium | Teledesic|

Altitude 780 km | 1375km
Planes 6 12
Satellites per plane 11 24
Inclination (deg) 86.4 84.7
Interplane separation (deg) 31.6 15
Seam separation (deg) 22 15
Elevation mask (deg) 8.2 40
Intraplane phasing yes yes
Interplane phasing yes no
ISLs per satellite 4 8
ISL bandwidth 25 Mb/s | 155 Mb/s
Up/downlink bandwidth 1.5Mb/s| 1.5 Mb/s
Cross-seam ISLs no yes
ISL latitude threshold (deg) 60 60

Table 17.1: Simulation parameters used for modeling a lraadversion of the Iridium system and the proposed 288ligate
Teledesic system. Both systems are examples of polarmghitnstellations.

1Aside from the link bandwidths (Iridium is a narrowband systonly), these parameters are very close to what a broadlsasibn of the Iridium

system might look like.
2These Teledesic constellation parameters are subjeciatigeh thanks to Marie-Jose Montpetit of Teledesic for mlimg tentative parameters as of

January 1999. The link bandwidths are not necessarily ateur

174

® longitude at
equator

Figure 17.2: Spherical coordinate system used by satatites

17.2 Using the satellite extensions

17.2.1 Nodes and node positions

There are two basic kinds of satellite nodgeostationaryandnon-geostationargatellite nodes. In additioterminalnodes

can be placed on the Earth’s surface. As is explained lat&ertion 17.3, each of these three different types of nodes
is actually implemented with the sanctass SatNode object, but with different position, handoff manager, aimi |
objects attached. The position object keeps track of tredlisatnode’s location in the coordinate system as a funatitthe
elapsed simulation time. This position information is usedletermine link propagation delays and appropriate tifoes
link handoffs. Section 5.3 introduced the "node-configlitytused to prime the node generator for different typesadélite
nodes.

Figure 17.2 illustrates the spherical coordinate systemd, tae corresponding Cartesian coordinate system. Thedicoor
nate system is centered at the Earth’s center, and:thgis coincides with the Earth’s axis of rotation(R, 6, ¢) =
(6378km, 90°,0°) corresponds t6° longitude (prime meridian) on the equator.

Specifically, there is one class of satellite n@lass Node/SatNode ,to which one of three types &fosition objects
may be attached. Ea®atNode andPosition object is a split OTcl/C++ object, but most of the code resimheC++.
The following types of position objects exist:

e Position/Sat/Term A terminal is specified by its latitude and longitude. Ladiéuranges from—90, 90] and
longitude ranges from-180, 180], with negative values corresponding to south and westertsgly. As simulation
time evolves, the terminals move along with the Earth’saef The node generator can be used to create a terminal
with an attached position object as follows:

$ns node-config -satNodeType terminal \
(other node config commands go here...)

set nl [$ns node]

$nl set-position $lat $lon; # in decimal degrees

175

e Position/Sat/Geo A geostationary satellite is specified by its longitude abthe equator. As simulation time
evolves, the geostationary satellite moves through thedioate system with the same orbital period as that of the
Earth’s rotation. The longitude ranges frgm180, 180] degrees. As we describe further below, two flavors of geosta-
tionary nodes exist: “geo” (for processing satellites) &ypeb-repeater” (for bent-pipe satellites). The node gatoer
can be used to create a geostationary satellite with arhetiqmosition object as follows:

$ns node-config -satNodeType geo (or ‘“geo-repeater”) \
(other node config commands go here...)

set nl1 [$ns node]

$nl set-position $lon; # in decimal degrees

e Position/Sat/Polar A polar orbiting satellite has a purely circular orbit aloadixed plane in the coordinate
system; the Earth rotates underneath this orbital planthese is both an east-west and a north-south component to
the track of a polar satellite’s footprint on the Earth’sfage. Strictly speaking, the polar position object can edus
to model the movement of any circular orbit in a fixed plane;use the term “polar” here because we later use such
satellites to model polar-orbiting constellations.

Satellite orbits are usually specified by six parametalstude, semi-major axiseccentricity right ascension of as-
cending nodginclination, andtime of perigee passag&he polar orbiting satellites inshave purely circular orbits, so
we simplify the specification of the orbits to include onlydl parametersltitude, inclination, andlongitude with a
fourth parametealphaspecifying initial position of the satellite in the orbits described belowAltitude is specified
in kilometers above the Earth’s surface, amelination can range fronf0, 180] degrees, witl90 corresponding to pure
polar orbits and angles greater thEhdegrees corresponding to “retrograde” orbits. @keending nodesfers to the
point where the footprint of the satellite orbital track ses the equator moving from south to north. In this simuati
model, the parametdongitude of ascending nodespecifies the earth-centric longitude at which the sat&linadir
point crosses the equator moving south to nértrongitude of ascending nod=n range from—180, 180] degrees.
The fourth parametealpha, specifies the initial position of the satellite along thibig starting from the ascending
node. For example, adphaof 180 degrees indicates that the satellite is initially abovestheator moving from north
to south. Alphacan range from0, 360] degrees. Finally, a fifth parametglane, is specified when creating polar
satellite nodes— all satellites in the same plane are giversame plane index. The node generator used to create a
polar satellite with an attached position object as follows

$ns node-config -satNodeType polar \
(other node config commands go here...)

set nl1 [$ns node]

$nl set-position $alt $inc $lon $alpha $plane

17.2.2 Satellite links

Satellite links resemble wireless links, which are desdiln Chapter 16. Each satellite node has one or more satellit
network interface stacks, to which channels are conneotttetphysical layer object in the stack. Figure 17.3 illatgs the
major components. Satellite links differ frons wireless links in two major respects: i) the transmit anceiee interfaces
must be connected to different channels, and ii) there isRB Anplementation. Currently, tHeadio Propagation Modeas

a placeholder for users to add more detailed error modetsdesired; the current code does not use a propagation model.

Network interfaces can be added with the following instppb€lass Node/SatNode

$node add-interface $type $Il $qtype $glim $mac $mac_bw $ph y

STraditionally, the “right ascension” of the ascending niglspecified for satellite orbits— the right ascension apoads to theelestiallongitude. In
our case, we do not care about the orientation in a celestatinate system, so we specify the earth-centric longitodtead.

176

IFq

MAC

/\ Radi

Phy_tx Phy_rx | Propagatign

Model
Channeli

Figure 17.3: Main components of a satellite network integfa

Channel

The add-interface instproc returns an index value that can be used to accessetherk interface stack later in the
simulation. By convention, the first interface created omdeis attached to the uplink and downlink channels of algatel
or terminal. The following parameters must be provided:

e type: The following link types can be indicatedeo or polar for links from a terminal to a geo or polar satellite,
respectivelygsl andgsl-repeater for links from a satellite to a terminal, andtraplane , interplane
andcrossseam ISLs. The type field is used internally in the simulator tontiy the different types of links, but
structurally they are all very similar.

e lI: Thelink layer type ¢lass LL/Sat is currently the only one defined).

e (type: The queue type (e.gclass Queue/DropTail). Any queue type may be used— however, if additional
parameters beyond the length of the queue are needed, tkandtproc may need to be modified to include more
arguments.

e glim: The length of the interface queue, in packets.

e mac. The MAC type. Currently, two types are definedlass Mac/Sat — a basic MAC for links with only one
receiver (i.e., it does not do collision detection), &ldss Mac/Sat/UnslottedAloha —an implementation of
unslotted Aloha.

e mac_bw The bandwidth of the link is set by this parameter, whichtoals the transmission time how fast the MAC
sends. The packet size used to calculate the transmissierigithe sum of the valusize() in the common packet
header antlINK_HDRSIZE, which is the size of any link layer headers. The default@#étu LINK_HDRSIZE is 16
bytes (settable isatlink.h). The transmission time is encoded in the packet headestoatthe receive MAC (to
simulate waiting for a whole packet to arrive).

e phy: The physical layer— currently two Phy€lass Phy/Sat andClass Phy/Repeater) are defined. The
classPhy/Sat just pass the information up and down the stack— as in thdessecode described in Chapter 16, a
radio propagation model could be attached at this point. cTéesPhy/Repeater pipes any packets received on a
receive interface straight through to a transmit interface

An ISL can be added between two nodes using the followingiost

177

$ns add-isl $ltype $nodel $node2 $bw $qtype $glim

This creates two channels (of ty@hannel/Sat), and appropriate network interfaces on both nodes, aladhat the
channels to the network interfaces. The bandwidth of tHeifirset tobw. The linktype {type) must be specified as either
intraplane ,interplane , orcrossseam .

A GSL involves adding network interfaces and a channel orrdbtze satellite (this is typically done using the wrapper
methods described in the next paragraph), and then definéngarrect interfaces on the terrestrial node and attachem
to the satellite link, as follows:

$node add-gsl $type $ll $qtype $glim $mac $bw_up $phy \
[$node_satellite set downlink] [$node_satellite set upl ink]

Here, thetype must be eithegeo or polar , and we make use of tldownlink_ anduplink_ instvars of the satellite;
therefore, the satellite’s uplink and downlink must be teddefore this instproc is called.

By default, the node generator for satellite nodes (desdrib Section 5.3) will create nodes of a given type, give tlaem
uplink and downlink interface, and create and attach atigihuplink and downlink channel, based on the interfactons
specified.

17.2.3 Handoffs

Satellite handoff modelling is a key component of LEO séatehetwork simulations. It is difficult to predict exactlyw
handoffs will occur in future LEO systems because the stiigemt well treated in the literature. In these satelliteeesions,
we establish certain criteria for handoffs, and allow naddadependently monitor for situations that require a tedfidAn

alternative would be to have all handoff events synchrah&moss the entire simulation— it would not be difficult taobe
the simulator to work in such a manner.

There are no link handoffs involving geostationary satsli but there are two types of links to polar orbiting siésIthat
must be handed off: GSLs to polar satellites, and crosss8am KA third type of link, interplane ISLs, are not handedtmnft
are deactivated at high latitudes as we describe below.

Each terminal connected to a polar orbiting satellite rutimar that, upon expiry, causes thandoffManager to check
whether the current satellite has fallen below the elevati@sk of the terminal. If so, the handoff manager detaches th
terminal from that satellite’s up and down links, and seasctinrough the linked list of satellite nodes for anothersjizs
satellite. First, the “next” satellite in the current oddiplane is checked- a pointer to this satellite is storedthénRosition
object of each polar satellite node and is set during sinwlatonfiguration using thdlode/SatNode instproc ‘$node
set_next $next_node . If the next satellite is not suitable, the handoff managgarches through the remaining satel-
lites. If it finds a suitable polar satelite, it connects ietwork interfaces to that satellite’s uplink and downlitiaanels, and
restarts the handoff timer. If it does not find a suitablelBtggit restarts the timer and tries again later. If anyklchanges
occur, the routing agent is notified.

The elevation mask and handoff timer interval are settalal€cl:

HandoffManager/Term set elevation_mask_ 10; # degrees
HandoffManager/Term set term_handoff _int_ 10; # seconds

In addition, handoffs may be randomized to avoid phase &sftecsetting the following variable:
HandoffManager set handoff_randomization_ 0; # 0 is false, 1 is true

178

If handoff_randomization_ is true, then the next handoff interval is a random variat&eud from a uniform distribu-
tion acrosg0.5 * term_handof f_int_, 1.5 x term_handof f_int_).

Crossseam ISLs are the only type of ISLs that are handed dfé cFiteria for handing off a crossseam ISL is whether
or not there exists a satellite in the neighboring planeithaloser to the given satellite than the one to which it iseutly
connected. Again, a handoff timer running within the hahdanager on the polar satellite determines when the cdatsoel

is checked for handoff opportunities. Crossseam ISL hdad@oé initiated by satellites in the lower-numbered plahthe
two. It is therefore possible for a transient condition tsaiin which a polar satellite has two crossseam ISLs (te@ufit
satellites). The satellite handoff interval is again s#&drom OTcl and may also be randomized:

HandoffManager/Sat set sat _handoff int_ 10; # seconds

Interplane and crossseam ISLs are deactivated near the peleause the pointing requirements for the links are teerse
as the satellite draw close to one another. Shutdown of thdseis governed by a parameter:

HandoffManager/Sat set latitude_threshold_ 70; # degrees

The values for this parameter in the example scripts areutgde; the exact value is dependent upon the satellitdviene.
The handoff manager checks the latitude of itself and its g&tellite upon a handoff timeout; if either or both of theedldes
is abovdatitude_threshold degrees latitude (north or south), the link is deactivat&ti both satellites drop below
this threshold.

Finally, if crossseam ISLs exist, there are certain situegiin which the satellites draw too close to one anotheramnmiid-
latitudes (if the orbits are not close to being pure polaiteyb We check for the occurence of this orbital overlap with
following parameter:

HandoffManager/Sat set longitude_threshold_ 10; # degree S

Again, the values for this parameter in the example scrigspeculative. If the two satellites are closer togethémgitude
thanlongitude_threshold_ degrees, the link between them is deactivated. This paearigetiisabled (set t0) by
default- all defaults for satellite-related bound varéshtan be found inng'tcl/lib/ns-sat.tcl.

17.2.4 Routing

The current status of routing is that it is incomplete. Itle@ne should be able to run all existimgrouting protocols over
satellite links. However, many of the existing routing ails implemented in OTcl require that the conventioredinks be
used. Contributions in this area are welcome, but unfotelp# is not a trivial change.

With that being said, the current routing implementatiosimilar to Session routing described in Chapter 30, exdegt t

it is implemented entirely in C++. Upon each topology charayeentralized routing genie determines the global network
topology, computes new routes for all nodes, and uses thegado build a forwarding table on each node. Currently, the
slot table is kept by a routing agent on each node, and packétiestined for agents on the node are sent by default to this
routing agent. For each destination for which the node hasirthe forwarding table contains a pointer to the heatlef t
corresponding outgoing link. As noted in Chapter 30, the isseautioned that this type of centralized routing can lead
minor causality violations.

The routing genie is alass SatRouteObject and is created and invoked with the following OTcl commands:
set satrouteobject_ [new SatRouteObject]

179

$satrouteobject compute_routes

where the call tacompute_routes is performed after all of the links and nodes in the simul&i@re been instantiated.
Like theScheduler , there is one instance of a SatRouteObject in the simuladioa it is accessed by means of an instance
variable in C++. For example, the call to recompute routesr @ftopology change is:

SatRouteObject::instance().recompute();

Despite the current use of centralized routing, the desfgmawing a routing agent on each node was mainly done with
distributed routing in mind. Routing packets can be sentaxt p55 of each node. The key to distributed routing working
correctly is for the routing agent to be able to determinenfkghich link a packet arrived. This is accomplished by thédunc
sion of aclass Networkinterface object in each link, which uniquely labels the link on whitte tpbacket arrived. A
helper functiorNsObject * intf_to_target(int label) can be used to return the head of the link corresponding
to a given label. The use of routing agents parallels that®fiobility extensions, and the interested reader can ¢utmose
examples to see how to implement distributed routing paia this framework.

The shortest-path route computations use the current gatipa delay of a link as the cost metric. It is possible to pate
routes using only the hop count and not the propagation deillayrder to do so, set the following default variable tdsé:

SatRouteObject set metric_delay_ "true"

Finally, for very large topologies (such as the Teledesianegle), the centralized routing code will produce a veryslo
runtime because it executes an all-pairs shortest pathitdgoupon each topology change even if there is no data itlyre
being sent. To speed up simulations in which there is not ndath transfer but there are lots of satellites and ISLs, ane ¢
disablehandoff-driverand enablelata-drivenroute computations. With data-driven computations, reate computed only
when there is a packet to send, and furthermore, a singlesashortest-path algorithm (only for the node with a patiet
send) is executed instead of an all-pairs shortest pathitigo The following OTcl variable can configure this opti@which

is set to "false" by default):

SatRouteObject set data_driven_computation_ "false"

17.2.5 Trace support

Tracefiles using satellite nodes and links are very simil@onventionahstracing described in Chapter 26. Special SatTrace
objects ¢lass SatTrace derives fronclass Trace) are used to log the geographic latitude and longitude ofitite
logging the trace (in the case of a satellite node, the itand longitude correspond to the nadir point of the stdglli

For example, a packet on a link from node 66 to node 26 mighhally be logged as:

+ 1.0000 66 26 cbr 210 ------- 0 66.0 67.0 0 O

but in the satellite simulation, the position informatisrappended:

+ 1.0000 66 26 cbr 210 ------- 0 66.0 67.0 0 0 37.90 -122.30 48.9 0 -120.94

In this case, node 66 is at latitude 37.90 degrees, longifilgiz 30 degrees, while node 26 is a LEO satellite whose seilita
point is at 48.90 degrees latitude, -120.94 degrees lothgitnegative latitude corresponds to south, while negétivgitude
corresponds to west).

180

One addition is th&lass Trace/Sat/Error , which traces any packets that are errored by an error mathel.error
trace logs packets dropped due to errors as follows, for pi&am

e 1.2404 12 13 cbr 210 ------- 0 12.0 13.0 0 0 -0.00 10.20 -0.00 - 10.00

It may happen that a satellite node generates a packet ttatribt forward (such as in sat-mixed.tcl). This will showasma
drop in the tracefile with a destination field set to -2, andaberdinates set to -999.00:

d 848.0000 14 -2 cbr 210 ------- 1 14.0 15.0 6 21 0.00 10.00 -999 .00 -999.00

This indicates that node 14, in trying to send a packet to dédeould not find an available route.

To enable tracing of all satellite links in the simulatore ke following commandseforeinstantiating nodes and links:

set f [open out.tr w]
$ns trace-all $f

Then use the following line after all node and link creatiand all error model insertion, if any) to enable tracing df al
satellite links:

$ns trace-all-satlinks $f

Specifically, this will put tracing around the link layer ques in all satellite links, and will put a receive trace betwé¢he
mac and the link layer for received packets. To enable tgaoinly on a specific link on a specific node, one may use the
command:

$node trace-inlink-queue $f $i
$node trace-outlink-queue $f $i

where: is the index of the interface to be traced.

The implementations of the satellite trace objects can badan ~ndtcl/lib/ns-sat.tcl and rgsattrace.{cc,h}.

17.2.6 Error models

nserror models are described in Chapter 13. These error moaelse set to cause packets to be errored according to various
probability distributions. These error models are simpld don’t necessarily correspond to what would be experigooe

an actual satellite channel (particularly a LEO channeBerd are free to define more sophisticated error models thig m
closely match a particular satellite environment.

The following code provides an example of how to add an ermdehto a link:

set em_ [new ErrorModel]

$em_ unit pkt

$em_ set rate_ 0.02

$em_ ranvar [new RandomVariable/Uniform]
$node interface-errormodel $em__

181

This will add an error model to the receive path of the firstifece created on nodmode (specifically, between the MAC
and link layer)- this first interface generally correspotadthe uplink and downlink interface for a satellite or a terah (if
only one uplink and/or downlink exists). To add the error midd a different stack (indexed liy, use the following code:

$node interface-errormodel $em_ $i

17.2.7 Other configuration options

Given an initial configuration of satellites specified fan&0, it is possible to start the satellite configuration from anlyi-
trary pointin time through the use of tlime_advance_ parameter (this is really only useful for LEO simulatiori3juring
the simulation run, this will set the position of the objezthe position at tim&cheduler::instance().clock +
time_advance_ seconds.

Position/Sat set time_advance_ 0; # seconds

17.2.8 nam support

nam is not currently supported. Addition ofam for satellite is open to interested contributors.

17.2.9 Integration with wired and wireless code

Recently (November 2001), support has been added to cotradittonal OTcl-based wired nodes with the satellite rode
This section describes the capabilities and limitationthaf code.

The satellite code (and the wireless code) normally persaathrouting in C++, while the traditional ns code uses a nfix o
OTcl and C++ code. For backward compatibility reasons, difficult to fully integrate both the wired and wireless code
The strategy for integrating wireless and wired code has beelefine a special gateway node (called a "basestatian"), t
use hierarchial routing, and to locate a single basestatiole in the wireless network with a network stack locatedathb
the wireless and the wired subnet. Because routing is nigtifukegrated, the topology of the simulation is limited toly
one gateway node per wireless subnet (i.e., a packet cantestthe wireless network from one wired gateway and leaze vi
another).

The satellite/wired code integration takes a differerdtsyy. By selecting the node configuratims node-config
-wiredRouting ON option, the C++ routing in the satellite code is turned ofiil anstead, all satellite topology changes
lead to upcalls into the OTcl code. As a result, ing_ array in OTcl is manipulated according to all topology chesig
and OTcl-based routing can occur. The penalty for doingishésmuch longer execution time for larger simulations (sash
Teledesic), but for smaller simulations, the differencedsas noticeable.

An example script detailing the use of this new option is shdw-~ng'tcl/ex/sat-wired.tcl, and a similar test in the satellite
test suite exercises this code. Additionally, all of theeBi¢ example scripts inng'tcl/ex directory can be converted to OTcl
routing by using théns node-config -wiredRouting ON option. However, there are a few caveats:

e The wired routing option for satellite has only been testét he default) static routingbns rtProto Static
The code triggers a global routing table update upon anjlisatepology change.

e The optiondata_driven_computation_ can not be set to “true” when wiredRouting is ON. Note thatehe
abling or disabling oflata_driven_computation_ can give subtle differences in simulation output sinceesut

182

are computed at different times (while propagation delagscantinuously changing). This effect can be seen by
toggling this parameter in the Iridium example scripticl/ex/sat-iridium.tcl.

In the trace file, when a packet is dropped due to “no route $t'tfsuch as when there is a topology change), the trace
looks a bit different depending on whether wiredRoutingiimed OFF or ON. In the former case, there is one line per
drop, with the destination labelled as “-2”. In the latteseathere are three events (enque “+”, deque “-”, and drop “d”
corresponding to the same packet, and the destinationvgsas “-1".

In rare cases, there may be warning messages during thetiexeiadicating “node out of range.” This can occur if a
node becomes disconnected in the topology and then anaitiettries to send a packet to it. For example, try enabling
wiredRouting in the file ~ngtcl/ex/sat-mixed.tcl. This occurs because the routitdetés dynamically sized upon
topology change, and if a node becomes disconnected it malyave any entries inserted in the routing table (and
hence the routing table is not grown to accommodate its nodeber). This warning should not affect actual trace
output.

There has been no attempt to interoperate with wireless bileat® code.

17.2.10 Example scripts

Example scripts can be found in thagtcl/ex directory, including:

sat-mixed.tcl A simulation with a mixture of polar and geostationary déaes.

sat-wired.tcl Similar to the previous script, but shows how to connect@vitedes to a satellite simulation.
sat-repeater.tcl Demonstrates the use of a simple bent-pipe geostationgaljitea and also error models.
sat-aloha.tcl Simulates one hundred terminals in a mesh-VSAT configuraiging an unslotted Aloha MAC

protocol with a “bent-pipe” geostationary satellite. Témais listen to their own transmissions (after a delay), #nd
they do not successfully receive their own packet withimatut interval, they perform exponential backoff and then
retransmit the packet. Three variants exissic , basic_tracing , andpoisson . These variants are described
further in the header comments of the script.

sat-iridium.tcl Simulates a broadband LEO constellation with parametengasito that of the Iridium con-
stellation (with supporting scriptsat-iridium-links.tcl , sat-iridium-linkswithcross.tcl , and
sat-iridium-nodes.tcl).

sat-teledesic.tcl Simulates a broadband LEO constellation with parameteri#asito those proposed for the
288 satellite Teledesic constellation (with supportingts sat-teledesic-links.tcl andsat-teledesic-nodes.tcl

In addition, there is a test suite script that tries to exserei lot of features simultaneously, it can be foundrettel/test/test-
suite-sat.tcl.

17.3 Implementation

The code for the implementation of satellite extensionstmafound in wg{sat.h, sathandoff.{cc,h}, satlink.{cc,h}, satn-
ode.{cc,h}, satposition.{cc,h}, satroute.{cc,h}, satte.{cc,h}}, and +dtcl/lib/ns-sat.tcl. Almost all of the mechanism is
implemented in C++.

In this section, we focus on some of the key components ofrttptementation; namely, the use of linked lists, the node
structure, and a detailed look at the satellite link strrgtu

183

name

“name” is the name of the structure containing the list head

—= Ih first “lh_first” is a pointer of type *obyj, initialized to NULL
T “lh_next” is a pointer of type *obj

“lh_prev” (of type **obj) is a pointer to the previous Ih_next
obj obj obj

NULL
<</

Figure 17.4: Linked list implementation ims
17.3.1 Use of linked lists

There are a number of linked lists used heavily in the impleiatéon:

e class Node maintains a (static) list of all objects of cladsde in the simulator. The variabMode::nodehead_
stores the head of the list. The linked list of nodes is useddatralized routing, for finding satellites to hand off to,
and for tracing.

e class Node maintains a list of all (satellite) links on the node. Speailly, the list is a list of objects of class
LinkHead . The variabldinklisthead_ stores the head of the list. The linked list of LinkHeads isdufor
checking whether or not to handoff links, and to discoveptogy adjacencies.

e class Channel maintains a list of all objects of clagghy on the channel. The head of the list is stored in the
variableif_head_ . This list is used to determine the set of interfaces on amélathat should receive a copy of a
packet.

Figure 17.4 provides a schematic of how the linked list issaiged. Each objectin the listis linked through a “LINK_ERN"
that is a protected member of the class. This entry contgiegser to the nextitem in the list and also a pointer to therass
of the previous “next” pointer in the preceding object. \dais macros found innglist.h can be used to manipulate the list;
the implementation of linked-lists insis similar to thequeue implementation found in some variants of BSD UNIX.

17.3.2 Node structure

Figure 17.5 is a schematic of the main components@didNode . The structure bears resemblance toNtabileNode in

the wireless extensions, but there are several differerigks all nsnodes, the SatNode has an “entry” point to a series of
classifiers. The address classifier contains a slot tabl®faarding packets to foreign nodes, but since OTcl routsnigot
used, all packets not destined for this node (and hence fdeslao the port classifier), are sent to the default targbiglwv
points to a routing agent. Packets destined on the node fo2pb are classified as routing packets and are also forwaode
the routing agent.

Each node contains one or more “network stacks” that includenericSatLinkHead at the entry point of the link. The
SatLinkHead is intended to serve as an API to get at other objects in thestiucture, so it contains a number of pointers
(although the API here has not been finalized). Packetsrigdtie network stack are sent to the node’s entry. An impbrtan
feature is that each packet leaving a network stack h#fads_ field in the common packet header coded with the unique

NetworklInterface index corresponding to the link. This value can be used tpauplistributed routing as described
below.
The base class routing agentiass SatRouteAgent it can be used in conjunction with centralized routing ReatteAgents

contain a forwarding table that resolves a packet’s addoesparticular LinkHead target—it is the job of tBatRouteObject

184

List of pointers:
node_head nodehead_ | |satLinkHead """ | [satLinktead

linklist_head linklisthead_|
Channel* uplink_

Channel* downlink_
Other link Other link
objects objects

Figure 17.5: Structure aflass SatNode

to populate this table correctly. The SatRouteAgent pdpaleertain fields in the header and then sends the packettdown
the approprate link. To implement a distributed routingtpcol, a new SatRouteAgent could be defined— this would learn
about topology by noting the interface index marked in eaatkpt as it came up the stack— a helper function in the node
intf_to_target() allows it to resolve an index value to a particular LinkHead.

There are pointers to three additional objects in a SatNBitst, each SatNode contains a position object, discussttki
previous section. Second, each SatNode contdliislkddandoffMgr that monitors for opportunities to hand links off and
coordinates the handoffs. Satellite nodes and terminafiedch have their specialized version of a LinkHandoffMgr.

Finally, a number of pointers to objects are contained inthi8de. We discusselihklisthead andnodehead_ in
the previous subsection. Thuplink_ anddownlink_ pointers are used for convenience under the assumptionitthat
most simulations, a satellite or a terminal has only onenliidind downlink channel.

17.3.3 Detailed look at satellite links

Figure 17.6 provides a more detailed look at how satellitkdiare composed. In this section, we describe how packets
move up and down the stack, and the key things to note at egeh Bhe file -ndtcl/lib/ns-sat.tcl contains the various OTcl
instprocs that assemble links according to Figure 17.6. §¢eribe the composite structure herein as a “network Sthtdst

of the code for the various link components is imssatlink.{cc,h}.

The entry point to a network stack is tBatLinkHead object. The SatLinkHead object derives fr@tass LinkHead ;

the aim of link head objects is to provide a uniform API formagitwork stacks? The SatLinkHead object contains pointers
to the LL, Queue, MAC, Error model, and both Phy objects. Tag.iBkHead object can also be queried as to what type of
network stack it is— e.g., GSL, interplane ISL, crosssealm &&.. Valid codes for théype_ field are currently found in
~ngsat.h. Finally, the SatLinkHead stores a boolean varitikeip_ that indicates whether the link to at least one other
node on the channel is up. The C++ implementation of SatLeddHs found in Agsatlink.{cc,h}.

Packets leaving a node pass through the SatLinkHead tnamg[yato theclass SatLL object. The SatLL class derives
from LL (link layer). Link layer protocols (like ARQ protods) can be defined here. The current SatLL assigns a MAC

4In the author’s opinion, all network stacksns should eventually have a LinkHead object at the front— thesBatLinkHead would then disappear.

185

from routing agent to Node->entry

!

Network
" Interface

1%

SatLinkHea

Sat/Drop ‘ ‘ Sat/Dequ#

Mac

‘ Phy_tx‘ ‘ Phy_rx‘

i T

to SatChannel from SatChannel

Figure 17.6: Detailed look at network interface stack.

address to the packet. Note that in the satellite case, wetdsse an Address Resolution Protocol (ARP); instead, wplgim
use the MACindex_ variable as its address, and we use a helper function to fentithC address of the corresponding
interface of the next-hop node. Sinclass LL derives fronclass LinkDelay ,thedelay parameter of LinkDelay
can be used to model any processing delay in the link layedgefgult this delay is zero.

The next object an outgoing packet encounters is the irteidaeue. However, if tracing is enabled, tracing elemeratg m
surround the queue, as shown in Figure 17.6. This part oidlisatink functions like a conventionals link.

The next layer down is the MAC layer. The MAC layer draws paskem the queue (or deque trace) object— a handshaking
between the MAC and the queue allows the MAC to draw packdtefahe queue as it needs them. The transmission time
of a packet is modelled in the MAC also— the MAC computes thagmission delay of the packet (based on the sum of the
LINK_HDRSIZE field defined irsatlink.h and thesize field in the common packet header), and does not call up for
another packet until the current one has been “sent” to tkelager down. Therefore, it is important to set the bandivioft

the link correctly at this layer. For convenience, the traitéime is encoded in thmac header; this information can be used
at the receiving MAC to calculate how long it must wait to @ collision on a packet, for example.

Next, the packet is sent to a transmitting interface (PhyoftelassSatPhy . This object just sends the packet to the attached
channel. We noted earlier in this chapter that all inter$eatttached to a channel are part of the linked list for thahobh
This is not true for transmit interfaces, however. Only ree@nterfaces attached to a channel comprise this linkggddince
only receive interfaces should get a copy of transmitted@ac The use of separate transmit and receive interfacesrmi
the real world where full-duplex satellite links are madeofifRF channels at different frequencies.

The outgoing packet is next sent tGatChannel , which copies the packet to every receiving interface (aésbatPhy)

on the channel. The Phy_rx sends the packet to the MAC layaheAMAC layer, the packet is held for the duration of its
transmission time (and any appropriate collision detecisoperformed if the MAC, such as the Aloha MAC, supports it).
If the packet is determined to have arrived safely at the Mid@ext passes to aBrrorModel object, if it exists. If not,

the packet moves through any receive tracing objects t&HiEL object. The SatLL object passes the packet up after a
processing delay (again, by default, the valuedelay _ is zero).

186

The final object that a received packet passes through is jectalf class Networkinterface . This object stamps
theiface_ field in the common header with the network stack’s uniqueinalue. This is used to keep track of which
network stack a packet arrived on. The packet then goes teniing of the SatNode (usually, an address classifier).

Finally, “geo-repeater” satellites exist, as describatleran this chapter. Geo-repeater network stacks are sianple— they

only contain a Phy_tx and a Phy_rxdfss RepeaterPhy , and a SatLinkHead. Packets received by a Phy_rx are sent
to the Phy_tx without delay. The geo-repeater satellitedegenerate satellite node, in that it does not contain $hlikg
tracing elements, handoff managers, routing agents, ootingy link interfaces other than repeater interfaces.

17.4 Commands at a glance

Following is a list of commands related to satellite netviogk

$ns_ node-config -satNodeType <type>

This node configuration declares that the subsequent neasrwdated will be of type <type>, where <type> can be one of
the following: geo, geo-repeater, polar, terminal . Other required fields for satellite nodes (for setting up
initial links and channels) are as follows (see Section:%8%_ node-config -lIType <type>

$ns_ node-config -ifqType <type>

$ns_ node-config -ifgLen <length>

$ns_ node-config -macType <type>

$ns_ node-config -channelType <type>

$ns_ node-config -downlinkBW <value>

(note— satNodeType geo-repeater only requires specifiimghannelType— all other options are disregarded. See
tcl/ex/sat-repeater.tcl for an example.)

$ns_ satnode-polar <alt> <inc> <lon> <alpha> <plane> <link args> <chan>

This a simulator wrapper method for creating a polar sééatibde. Two links, uplink and downlink, are created alonthwi
two channels, uplink channel and downlink channel. <althéspolar satellite altitude, <inc> is orbit inclinationni.
equator, <lon> is the longitude of ascending node, <alplaesghe initial position of the satellite along this orkiplane>
defines the plane of the polar satellite. <linkargs> is adlisink argument options that defines the network interfdi&e (
LL, Qtype, Qlim, PHY, MAC etc).

$ns_ satnode-geo <lon> <linkargs> <chan>
This is a wrapper method for creating a geo satellite noddfitisacreates a satnode plus two link interfaces (uplink and
downlink) plus two satellite channels (uplink and down)inkchan> defines the type of channel.

$ns_ satnode-geo-repeater <lon> <chan>
This is a wrapper method for making a geo satellite repeateée that first creates a satnode plus two link interfacesnpl
and downlink) plus two satellite channels (uplink and dankjl.

$ns_ satnode-terminal <lat> <lon>
This is a wrapper method that simply creates a terminal ndde <lat> and <lon> defines the latitude and longitude
respectively of the terminal.

$ns_ satnode <type> <args>
This is a more primitive method for creating satnodes of tyfyge> which can be polar, geo or terminal.

$satnode add-interface <type> <II> <qtype> <glim> <mac_bw > <phy>

This is an internal method of Node/SatNode that sets up éigkn, mac layer, interface queue and physical layer strestu
for the satellite nodes.

187

$satnode add-isl <ltype> <nodel> <node2> <bw> <qtype> <qli m>

This method creates an ISL (inter-satellite link) betwdenttvo nodes. The link type (inter, intra or cross-seam), B\thhe
link, the queue-type and queue-limit are all specified.

$satnode add-gsl <Itype> <opt_II> <opt_ifg> <opt_glim> <o pt_mac> <opt_bw> <opt_phy>
<opt_inlink> <opt_outlink>

This method creates a GSL (ground to satellite link). Finsétawork stack is created that is defined by LL, IfQ, Qlim, MAC,
BW and PHY layers. Next the node is attached to the chanriekiahd outlink.

188

Chapter 18

Radio Propagation Models

This chapter describes the radio propagation models imgiéaad inns These models are used to predict the received signal
power of each packet. At the physical layer of each wireleskenthere is a receiving threshold. When a packet is redgive
if its signal power is below the receiving threshold, it isrked as error and dropped by the MAC layer.

Up to now there are three propagation modelsisnwhich are the free space motetwo-ray ground reflection model

and the shadowing model Their implementation can be found imspropagation.{cc,h}, agtworayground.{cc,h} and
~ng'shadowing.{cc,h}. This documentation reflects the APIa$r2.1b7.

18.1 Free space model

The free space propagation model assumes the ideal pragragandition that there is only one clear line-of-sightipat
between the transmitter and receiver. H. T. Friis presetitedollowing equation to calculate the received signal eoin
free space at distanedefrom the transmitter [12].

_ PGiG N

Pr(d) = T (18.1)

where P, is the transmitted signal powet;; andG,. are the antenna gains of the transmitter and the receivgectgely.
L(L > 1) is the system loss, andis the wavelength. It is common to sel€ét = G, = 1 andL = 1 in ns simulations.

The free space model basically represents the communiaatitye as a circle around the transmitter. If a receivertisimvi
the circle, it receives all packets. Otherwise, it losepatikets

The OTcl interface for utilizing a propagation model is timle-config command. One way to use it here is
$ns_ node-config -propType Propagation/FreeSpace

Another way is

1Based on the code contributedrtsfrom the CMU Monarch project.
2Contributed tansfrom the CMU Monarch project.
SImplemented imsby Wei Ye at USC/ISI

189

set prop [new Propagation/FreeSpace]
$ns_ node-config -proplnstance $prop

18.2 Two-ray ground reflection model

A single line-of-sight path between two mobile nodes is agldhe only means of propation. The two-ray ground reflection
model considers both the direct path and a ground reflecth. plt is shown [29] that this model gives more accurate
prediction at a long distance than the free space model. ddwved power at distancds predicted by

_ PGiGhi’h,?

Fr(d) d*L

(18.2)

whereh; andh,. are the heights of the transmit and receive antennas résggctNote that the original equation in [29]
assumed. = 1. To be consistent with the free space modeis added here.

The above equation shows a faster power loss than Eqn. @8dijtance increases. However, The two-ray model does not
give a good result for a short distance due to the oscillatiarsed by the constructive and destructive combinatidmeotito
rays. Instead, the free space model is still used whisrsmall.

Therefore, a cross-over distangeis calculated in this model. Wheh< d., Eqn. (18.1) is used. Wheh> d., Eqn. (18.2)
is used. At the cross-over distance, Eqns. (18.1) and (§8:@the same result. Sh can be calculated as

d. = (47hehy) /X (18.3)
Similarly, the OTcl interface for utilizing the two-ray gunad reflection model is as follows.
$ns_ node-config -propType Propagation/TwoRayGround
Alternatively, the user can use

set prop [new Propagation/TwoRayGround]
$ns_ node-config -proplnstance $prop

18.3 Shadowing model

18.3.1 Backgroud

The free space model and the two-ray model predict the redgiower as a deterministic function of distance. They both
represent the communication range as an ideal circle. lityrethe received power at certain distance is a randonmabéei
due to multipath propagation effects, which is also knowfadig effects. In fact, the above two models predicts thamnme
received power at distanck A more general and widely-used model is called the shadpwiodel [29].

190

Environment B
Outdoor Free space 2
Shadowed urban arep 2.7t0 5
In building | Line-of-sight 16t01.8
Obstructed 4t06

Table 18.1: Some typical values of path loss exporment

Environment oap (dB)
Outdoor 41012
Office, hard partition 7
Office, soft partition 9.6
Factory, line-of-sight| 3to6
Factory, obstructed 6.8

Table 18.2: Some typical values of shadowing deviatign

The shadowing model consists of two parts. The first one isvkiras path loss model, which also predicts the mean received
power at distancé, denoted byP,.(d). It uses a close-in distandg as a referencel, (d) is computed relative t&, (dy) as
follows.

Pr(do) _ <di0>6 (18.4)

S is called the path loss exponent, and is usually empiricldtgrmined by field measurement. From Eqgn. (18.1) we knotv tha
B = 2 for free space propagation. Table 18.1 gives some typidaksafs. Larger values correspond to more obstructions
and hence faster decrease in average received power axdiiacomes largeR,.(dy) can be computed from Eqgn. (18.1).
The path loss is usually measured in dB. So from Eqgn. (18.4)ave

Py (d)
PT'(dO)

= —108log (di> (18.5)
dB 0

The second part of the shadowing model reflects the variatidhe received power at certain distance. It is a log-normal
random variable, that is, it is of Gaussian distribution &asured in dB. The overall shadowing model is represented by

dB 0

whereX,p is a Gaussian random variable with zero mean and standaiatioew ;5. o4 is called the shadowing deviation,
and is also obtained by measurement. Table 18.2 shows spinaltyalues otry5. Eqn. (18.6) is also known as a log-normal
shadowing model.

The shadowing model extends the ideal circle model to arsta¢istic model: nodes can only probabilistically comicate
when near the edge of the communication range.

191

18.3.2 Using shadowing model

Before using the model, the user should select the valuelBeopath loss exponerit and the shadowing deviation; s
according to the simulated environment.

The OTcl interface is still theode-config command. One way to use itis as follows, and the values faetparameters
are just examples.

first set values of shadowing model

Propagation/Shadowing set pathlossExp_ 2.0 ;# path loss ex ponent
Propagation/Shadowing set std_db_ 4.0 ;# shadowing deviat ion (dB)
Propagation/Shadowing set dist0_ 1.0 # reference distanc e (m)
Propagation/Shadowing set seed_ 0 # seed for RNG

$ns_ node-config -propType Propagation/Shadowing

The shadowing model creates a random number generator (Rbjédt. The RNG has three types of seeds: raw seed,
pre-defined seed (a set of known good seeds) and the hugstic(details in Section 25.1). The above API only uses the
pre-defined seed. If a user want different seeding methedpttowing API can be used.

set prop [new Propagation/Shadowing]

$prop set pathlossExp_ 2.0

$prop set std_db_ 4.0

$prop set dist0_ 1.0

$prop seed <seed-type> 0 # user can specify seeding method

$ns_ node-config -proplnstance $prop

The<seed-type> above can beaw, predef or heuristic

18.4 Communication range

In some applications, a user may want to specify the comnatioit range of wireless nodes. This can be done by set an
appropriate value of the receiving threshold in the netvintdrfacej.e.,

Phy/WirelessPhy set RXThresh_ <value>

A separate C program is provided atgindep-utils/propagation/threshold.cc to compute theeirgng threshold. It can be
used for all the propagation models discussed in this chapgsume you have compiled it and get the excutable named as
threshold . You can use it to compute the threshold as follows

threshold -m <propagation-model> [other-options] distan ce

where<propagation-model> is eitherFreeSpace , TwoRayGround or Shadowing , and thedistance is the
communication range in meter.

192

[other-options] are used to specify parameters other than their defaulesal&or the shadowing model there is a
necessary parameter, <receive-rate> , which specifies the rate of correct reception at distance . Because
the communication range in the shadowing model is not ar ede, an inverse Q-function [29] is used to calculate the
receiving threshold. For example, if you want 95% of packets be correctly received at the distance of 50m, you can
compute the threshold by

threshold -m Shadowing -r 0.95 50

Other available values ¢bther-options] are shown below

-pl <path-loss-exponent> -std <shadowing-deviation> -Pt <transmit-power>
-fr <frequency> -Gt <transmit-antenna-gain> -Gr <receive -antenna-gain>

-L <system-loss> -ht <transmit-antenna-height> -hr <rece ive-antenna-height>

-d0 <reference-distance>

18.5 Commands at a glance
Following is a list of commands for propagation models.

$ns_ node-config -propType <propagation-model>
This command selectgpropagation-model> in the simulation. thecpropagation model> can be
Propagation/FreeSpace , Propagation/TwoRayGround or Propagation/Shadowing

$ns_ node-config -proplnstance $prop
This command is another way to utilize a propagation mdl@lop is an instance of thepropagation-model>

$sprop_ seed <seed-type> <value>
This command seeds the RN$&sprop_ is an instance of the shadowing model.

threshold -m <propagation-model> [other-options] distan ce

This is a separate program atgindep-utils/propagation/threshold.cc, which is useddmpute the receiving threshold for
a specified communication range.

193

Chapter 19

Energy Model in ns

Energy Model, as implemented img is a node attribute. The energy model represents level efggrin a mobile host.
The energy model in a node has a initial value which is thel le’energy the node has at the beginning of the simulation.
This is known asnitialEnergy . It also has a given energy usage for every packet it trassanitl receives. These
are calledxPower_ andrxPower_ . The files where the energy model is defined are ns/energyfraadand.h]. Other
functions/methods described in this chapter may be foundsfwireless-phy.cc, ns/cmu-trace.cc, ns/tcl/lib[stdi, ns-
node.tcl, ns-mobilenode.tcl].

19.1 The C++ EnergyModel Class
The basic energy model is very simple and is defined by classggModel as shown below:

class EnergyModel : public TclObject

public:
EnergyModel(double energy) energy = energy;
inline double energy() return energy_;

inline void setenergy(double e) energy = e;
virtual void DecrTxEnergy(double txtime, double P_tx)
energy_ -= (P_tx * txtime);

virtual void DecrRcvEnergy(double rcvtime, double P_rcv)
energy_ -= (P_rcv * rcvtime);

protected:
double energy_;

As seen from the EnergyModel Class definition above, theoalig a single class variablenergy _ which represents the
level of energy in the node at any given time. The construet@mrgyModel(energy) requires the initial-energy to bespds
along as a parameter. The other class methods are used ¢askethhe energy level of the node for every packet transinitte

(DecrTxEnergy(txtime, P_tx)) and every packet receiveddecrRcvEnergy (rcvtime, P_rcv)) by the
node.P_tx andP_rcv are the transmitting and receiving power (respectivelguied by the node’s interface or PHY. At
the beginning of simulatiorenergy _ is set toinitialEnergy which is then decremented for every transmission and

194

reception of packets at the node. When the energy level atdtie goes down to zero, no more packets can be received or
transmitted by the node. If tracing is turned on, IDEBUG: node <node-id> dropping pkts due to energy
= 0 is printed in the tracefile.

19.2 The OTcl interface

Since the energy model is a node attribute, it may be defingdedfollowing node configuration APIs:

$ns_ node-config -energyModel $energymodel \
-rxPower $p_rx \
-txPower $p_tx \
-initialEnergy $initialenergy

Optional values for above configuration parameters of tleeggnmodel are given in the following table:

Attribute optional values default values
-energyModel "EnergyModel" none

-rxPower receiving power in watts (e.g 0.3)] 281.8mW

-txPower transmitting power in watts (e.g 0.4) 281.8mW
-initialEnergy energy in joules (e.g 0.1) 0.0

195

Chapter 20

Directed Diffusion

The directed diffusion module in ns has been ported from SB8@roup’s implementation of directed diffusion at USC/ISI
There is an older version of diffusion in ns that was impletadrseveral years back and has become relatively old and
outdated. This older version can be found under directdffasion. And the newer version of diffusion resides under
~ng/diffusion3. This chapter talks about the newer diffusiondel in ns. The module and methods described here can
be found under rdtcl/lib/ns-diffusion.tcl, ns-lib.tcl and all relevant#3 code can be found undengdiffusion3. Visit the
SCADDS group webpage http://www.isi.edu/scadds for details about their implementation.

20.1 What is Directed Diffusion?

Directed Diffusion is a method of data dissemination esghcsuitable in distributed sensing scenarios. It diffiecsn IP
method of communication. For IP “nodes are identified byrtleeid-points, and inter-node communication is layered on
an end-to-end delivery service provided within the netWorRirected diffusion, on the other hand is data-centric.tdDa
generated by sensor nodes are identified by their attriaites pair. Sinks or nodes that request data send out “Btisri@ato

the network. Data generated by “source” nodes that matcetimerests, “flow” towards the sinks. Intermediate nodes a
capable of caching and transforming data. For details actid diffusion, see “Directed Diffusion: A Scalable andoRst
Communication Paradigm for Sensor Networks”, authored bgl€mek Intanagonwiwat, Ramesh Govindan and Deborah
Estrin that appeared in MobiCOM, August 2000, Boston, Melssaetts. This and other diffusion related papers can be
viewed athttp://www.isi.edu/scadds/publications.html under publications section.

20.2 The diffusion model in ns

The directed diffusion model consists of a core diffusioyela a diffusion library provides an application programmi
interface for overlying diffusion applications and finatlye application layer which includes both diffusion apations and
filters. The core diffusion layer is used to receive/sendpadkets from/into the network. The library provides a ifgee
for the overlying application classes for publishing/striising etc. These APIs have been described in details ircardent
called Network Routing API 8.0 and can be foundp://www.isi.edu/scadds/publications.html under
APIs section. In the following paragraphs we are going tedes how the diffusion model looks like ims

First we start with a brief description of the diffusion3efitory structure. If the reader wishes to examine the C++ cod

related to NS Diffusion that underpins the OTcl script comds it may be found inrgns/diffustion3aHere is a summary
by subdirectory:

196

App

Filter Filter
F1 F2

4 5 6 7

Directed Diffusion Core

Figure 20.1: Message flow in directed diffusion

apps contains sample source and sink applications like geag, qirdl rmst.

lib has DiffusionRouting class definitions and definitions dfudiion application class. In addition there are sub-dalted
main and nr. main houses misc diffusion utility code. nrinigs attribute definition and the class NR which is an
abstract factory for the API (so that either ISI or MIT implentations may derive from it.

ns contains ns wrappers for diffusion cod&hese wrapper classes allow the core diffusion code amiffasion API to be
seamlessly incorporated into the NS class hierarchy. THR®@itingAgent is a wrapper for the Core Diffusion code,
and DiffAppAgent is a wrapper for the DiffusionRouting (ARode.

filter_core has the core diffusion agent.

filters holds the different filters supported by diffusion implertaion including two-phase-pull, one-phase-pull, geasty
log, tag and srcrt (as of 10/03/03).

The above Figure 20.1 is from SCADDS’ network routing API doent available from their homepage (URL given earlier).
The document describes attribute factories, matching raleattributes, how applications interface with the coifeudion
layer, and filter/timer APIs. All messages coming from/gpait in the network is received at/sent out from the corauditin
layer. Messages can also come to core-diffusion layer fiarallapplications and/or filters that might be connectedhéo t
node. The applications use the publish/subscribe/seadaige to send interest and data messages to the network.

The core diffusion agent and diffusion application agemt atached to two well-known ports defined ing#tcl/lib/ns-
default.tcl. Diffusion applications attached to the nodithe underlying diffusion application agent for publistysubscribing/sendir
data.

20.3 Some mac issues for diffusion in ns

In the shim layer that sits between diffusion and ns, (seigidn3/ns dir for code implementing this layer) all diffois
packets are encapsulated within ns packets and are markedtmadcasted. In previous versions all diffusion packete
marked to be broadcast in ns. This is now changed. Now allgldh pkts in ns uses the diffusion next_hop info thus alhmwi
both broadcast and unicast.

So previously this only-brdcast feature supported fondifin packets resulted in some problems at the mac layenmm&lee
802.11 doesnot try to re-transmit a broadcast packet irtbase is a collision and the packet is dropped. Coupled tovtiais
the fact that mac-802.11 didn't do random selection of stotee contention window before it transmitted a packet ¢(ichst
data or rts for unicast pkts). As a result there were a highbairaf collisions at the mac layer and a lot of packets were los
This was fixed by adding random selection of slots before iad & brdcast pkt (or a rts pkt).

197

However if we have a large and dense topology, there is a ehttmat two or more nodes may select the same slot in the
mac contention window (the contention window size variesfi31 to 1023 for DSSS PHY MIB specifications). Thus now
we need to add some extra jitter at the higher applicatioarlaRiffusion has a provision to do this by compiling ns with
the macro USE_BROADCAST_MAC. What this does is it in additio delaying certain messages (to avoid collisions),
when run with a BROADCAST MAC layer, diffusion will use a diffent set of values for delays and jitters. These different
delayl/jitter values are defined under diffusion3/lib/me@mfig.hh. Since this might increase the latency you miggnttvwto
fine-tune the delay values by hand.

20.4 APIs for using filters in diffusion

As described earlier (see figure 20.1), filters can be atthtthe diffusion node for various reasons. There can be bé#ie d
sion filters providing two-phase-pull (GradientFilter)daone-phase-pull (OnePhasePullFilter) diffusion routigprithms.

There is the GeoRoutingFilter or gear that provides a geftaiation (co-ordinate) based routing algorithm. Therals®

other filters for RMST routing algorithm (RmstFilter), loiag (LogFilter), source routing (SourceRouteFilter) aadding

(TagFilter). See Commands at a glance section for detaifsRia for adding filters to a diffusion node.

20.5 Ping: an example diffusion application implementatia

There is a ping application implemented under diffusiopp&ping subdir. The application consists of a ping senddr a
receiver. The receiver requests for data by sending oug¢rést’s in the network. The interests get diffused throumgh t
network. The ping-sender on receiving matching interastsds out data.

20.5.1 Ping Application as implemented in C++

The ping-sender and -receiver classes, namely PingSepded PingReceiverApp both derive from DiffApp, the parent
class for all diffusion based applications. See diffusibh&liffapp{.cc,.hh}for detailed implementation of tHaiffApp class.

The ping-sender uses MySenderReceive object that hantlitsslbacks for it. Also the ping-sender defines two funoo
setupSubscription() and setupPublication(). The firstfiom creates interest attributes that matches with datidates it
(the sender) has to offer. Next it calls the dr-library fuoctsubscribe(). The subscription is used by the ping-seiodaeate
an internal state against which attributes for intereatsived from the network are matched against. Incase of ahniite
matching data is sent outinto the network. Function setbp&ation() create attributes for the data it has to offed aalls
the library function publish() which inturn returns a publihandle. The ping-sender uses this handle to period&atigl out
data which is forwarded by the gradient to core-diffusiobécsent out into the network only if it finds a matching intéres

The ping-receiver object uses a similar callback objededallyReceiverReceive. And it defines a function setupStifpsc
tion() that creates attributes for the interest the recewiébe sending. Next it calls the dr library supported sriifse() which
sends the interest out into the network. The recv() fundarsed to recv matching data and the receiver then caletilage
latency for each data packet received from the ping-serilee. ping sender can be found under ping_sender.cc,.h. And
the ping_receiver is implemented under ping_receivehcGome common defines and attribute factories for dataéiat
attributes are defined in ping.hh and ping_common.cc.

198

20.5.2 Tcl APIs for the ping application

An example script for the ping application is undesicl/ex/diffusion3/simple-diffusion.tcl. The exampleehario consists

of 3 nodes of which one is a ping-sender and another is a giogiver. The source and sink nodes are far away from one
another and communicate only through a third node. The ppiithocRouting is defined as Directed_Diffusion. This eesbl

a core-diffusion agent to be created during the time of nodation. Also it creates a diffusionApplication agent ida not
present already. The option diffusionFilter needs to be&ipgex at the time of node configuration that defines the oneasem
filters that would be added to the node. There is also an oftitspecifying stopTime which is the time the simulation end

At this time there is a callback to a function that prints dustatistical data into /tmp/diffusion-*.out.

Node configuration is done as follows:

$ns_ node-config -adhocRouting $opt(adhocRouting) -IITy pe $opt(ll)
-diffusionFilter $opt(filters) -stopTime $opt(prestop)

The ping sender application is created in the following way:

set src_(0) [new Application/DiffApp/PingSender]
$ns_ attach-diffapp $node_(0) $src_(0)
$ns_ at 0.123 "$src_(0) publish”

The first line creates a ping-sender object. Simulator cteethod attach-diffapp basically attaches the applicatdahe un-
derlying diffusionApplication agent for that given nodéhéfcommangbublish essentially “starts” the sender application.

Similarly the ping sink is created as follows:

#Diffusion sink application

set snk_(0) [new Application/DiffApp/PingReceiver]
$ns_ attach-diffapp $node_(2) $snk_(0)

$ns_ at 1.456 "$snk (0) subscribe"

The commandubscribe starts the ping-receiver application.

Thus in order to create your own application, you need to :

1. define attribute-factories and attributes for applicatiiarest/data.
2. create the application class (using dr-library APISs)

3. add tcl commands to start the application

See ndftcl/lib/ns-lib.tcl, ns-diffusion.tcl for implementaths of OTcl hooks for directed diffusion. Alo see chapter oo-M
bility in this manual for details on mobility model and wiesls simulations ins

20.6 Changes required to add yr diffusion application to ns

Let's say you have an application (it might even be a certhar fivhich also is by class hierarchy, a diffusion appimagnd
it would derive from class DiffApp) that runs on the test-lwedsion. Now you want to run diffusion on ns and so want to use

199

yr application in the ns context. The few lines describe th@nges/additions you need to make for yr diffusion appboat
to work in ns environment.

We will consider onePhasePullFilter object (under diffurd/filters/misc/log.*) as an example. As a first step youdntee
create a split object out of the application class obje@spmably defined as a pure c++ object. A split object is oneigha
created by the user in the interpretor (in OTcl space) andhisialso has a shadow object in the compiled hierarchy (@n c+
space). In ns, a split object is derived from class TclClassh@awn below:

#ifdef NS_DIFFUSION
static class LogFilterClass : public TclClass

public:
LogFilterClass() : TclClass("Application/DiffApp/LogF ilter")
TclObject * create(int argc, const char *Const * argv)

return(new LogFilter());

class_log_filter;
#endif //DIFFUSION

Note that all filter objects specifically have a handle to th##AppAgent (the diffusion routing object) passed in theneo
structor call. Filter objects get created from functionateediffusionApp-agent diffFilters defined in ns-diffasitcl. Users
need not specifically call the OTcl function create-diftushpp-agent as it is called during node creation based ondte-
configuration parameters. See how filters are defined in todég under commands at a glance section. However apjplicati
objects which are not filter objects (like ping_sender, pusbeiver etc) are created by users directly from usertscrind

in that case the handle to DiffAppAgent is passed uding attach-diffapp $node $app where the application
$app is attached to the node objekriode .

So for the reasons explained above the constructors aegetitfin non NS_DIFFUSION context as shown below.

#ifdef NS_DIFFUSION

LogFilter::LogFilter()

#else

LogFilter::LogFilter(int argc, char *x argv)
#endif // NS_DIFFUSION

/I Create Diffusion Routing class
#ifndef NS_DIFFUSION

parseCommandLine(argc, argv);

dr_ = NR:createNR(diffusion_port);
#endif // INS_DIFFUSION

filter_callback = new LogFilterReceive(this);
#ifndef NS_DIFFUSION

/I Set up the filter
filter_handle_ = setupFilter();

#endif // INS_DIFFUSION

200

Next you need to add the c++ function command(..) that allewecution of tcl commands through the compiled shadow
object. For example the otcl commastdrt is used to start a filter application as follohapp start . While commands
publish andsubscribe are used to start sender and receiver applications regplgcirhe command function is added,
again with the NS_DIFFUSION scope using ifdef statemerst$olows:

#ifdef NS_DIFFUSION

int LogFilter::command(int argc, const char *CONSt * argv)
if (argc == 2)
if (strcmp(argv[l], "start") == 0)
run();

return TCL_OK;

return DiffApp::command(argc, argv);

#endif // NS_DIFFUSION

Note how the parent class command function is invoked int@seommand string is not found. Look into lib/diffapp.* to
see all otcl commands supported for the DiffApp class.

Once these changes made to your c++ code, you would alsomesite a tcl script (see the section on test-suite for exampl
tcl scripts) that uses your diffusion application using tigét tcl APIs.

20.7 Test-suites for diffusion

we start with a simple testcase of 3 nodes with 1 ping sourde gring sender. There are other tests for 2 phase-pull(2pp),
phase-pull(1pp), push and gear (with 2pp and push) scendriduture we plan to extend the test-suite for testingedéht
components/functionalities of directed diffusion. Alffdsion3 related test cases can be found undheftel/test/test-suite-
diffusion3.tcl.

20.8 Commands at a glance
Following is a list of commands used for diffusion relatesgiation in ns.

$ns_ node-config -adhocRouting $opt(adhocRouting)
-IIType $opt(ll)

-diffusionFilter $opt(filters)
-stopTime $(pre-stop)

where,

value of opt(adhocRouting) is set to Directed_Diffusion

This command is used to enable directed diffusion in wireles s nodes.

value of opt(filters) can be a list of filters that is require d to be attached to diffusion
This command allows adding filter objects to diffusion-ena bled nodes.

201

value of opt(pre-stop) is usually the time simulation stops
This command allows dumping of statistical data into an outp

set src [new Application/DiffApp/PingSender]
This command is used to create ping-sender application.

set snk [new Application/DiffApp/PingReceiver]
This command is used to create ping-receiver application.

set src [new Application/DiffApp/PushSender]
This command is used to create push-sender application.

set snk [new Application/DiffApp/PushReceiver]
This command is used to create push-receiver application.

set src [new Application/DiffApp/GearSenderApp]
This command is used to create gear-sender application.

set snk [new Application/DiffApp/GearReceiverApp]
This command is used to create gear-receiver application.

$gearApp push-pull-options <push/pull> <point/region> <

when all statistical data is dumped
ut file after running a diffusion

co-ordinatesX1> <X2> <Y1>

<Y2> This command defines the type of routing algorithm gear isgidncase the second option is defined as region, all
four co-ordinates should be defined. While if point is choserly X1 and Y1 maybe defined.

$ns_ attach-diffapp $node_ $src_

where the diffusion applicatiofsrc_ gets attached to the givémode_ .

$src_(0) publish
Command to start a ping source (sender).

$snk_(0) subscribe
Command to start a ping sink (receiver).

202

Chapter 21

XCP: eXplicit Congestion control Protocol

XCP is a feedback-based congestion control system thatdissd, explicit, router feedback to avoid congestion ia th
network. It is designed for both scalability and generalitywas developed by Dina Katabi, starting from a suggedbpn
Mark Handley (refer to7] for detailed descriptions). Thescode for XCP which was originally developed by Dina Katabi
was modified, extended and integrated into ns-2.28 at USQYISill continues to evolve as of today. If you are intdegkin
looking at Dina’s original source code please go to her wielaihttp://www.ana.lcs.mit.edu/dina/XCP/

21.1 Whatis XCP?

XCP is a congestion control protocol that can be applied joteansport protocol. It performs especially well in verghi
delay-bandwidth product networks. Typically in large bardth-delay product networks, efficiency of TCP goes down in
the event of multiple of packet losses and becomes unstakkpective of queueing schemes used. However in similar
environments, XCP, using a control theory based feedbadeimachieves much more efficiency, stability and fairngss b
sending feedback from the network to the sender for settiaglata flow into the network.

XCP’s scalability results from the fact that it requires rey{flow state in the router to calculate the feedback. Mosteie
assisted congestion control systems maintain per-flowrnmétion used to allocate the resources. XCP keeps very littl
information in the router, and this information is chosemimimize both the amount of router state and the per-packet
operations needed to update that state.

For generality, XCP divides the resource allocation fuorctoetween two controllers: a congestion controller thauess
that flows use all available capacity, and a fairness cdetrthat ensures that flows are allocated the capacity faillgst
congestion control systems fail to make this division, mleds to implement as two conceptually distinct systems.s Thi
division allows a clear exposition and implementation ob twasic resource allocation functions in XCP. XCP sourced se
additional information about their current round-trip émand router-assigned throughput in each packet. XCPrsangert
feedback into the packets that is interpreted by the sources

Although XCP may be implemented for any transport protokolyever as an initial test it has been implemented in TCP.
The next section gives details of the way XCP is implementati

203

21.2 Implementation of XCP in NS

In ng the XCP implementation can be found undesxcp directory. The protocol needs to be deployed in the TG e
points (source and receiver) as well within the intermediaides which is mostly the router and may sometimes be a link-
layer switch as well. The end-point part of XCP code may bafbunder xcp-end-sys.cc,h and the router portion of the code
may be found under xcp.cc,h and xcpg.cc,h.

21.2.1 Endpoints in XCP

The end points consist of TCP source and sink agents usinga$QReir congestion control mechanism. The intermediate
node or router writes feedback in each packet header as ftae iheoughput value, about the data capacity that maydredin
mented if feedback is positive and should be decreaseddtiveg When this packet reaches the receiver this deltaugfmput
value is returned to the sender in a reverse_feedback fieddcohgestion header in the returning packet, which is an ACK
packet in case of TCP.

The sender upon receiving this reverse_feedback valuestadjs sending rate by increasing or decreasing its coiogest
window size as the case maybe.

The packet header that is used by XCP is implemented as as&walled hdr_xcp imsand is defined as follows:

double x_; /I idealized inter-packet time
double rtt_;
enum {
XCP_DISABLED = 0,
XCP_ENABLED,

XCP_ACK,
} xcp_enabled_; // to indicate that the flow is XCP enabled
int xcpld_; /I Sender’'s ID (debugging only)

double cwnd_; // The current window (debugging only)
double reverse_feedback_;

/I --- Initialized by source and Updated by Router
double delta_throughput_;
unsigned int controlling_hop_;// router ID (debugging onl y)

The xcp receiver is responsible for copying the delta_thhput value into the reverse_feedback field of the ack packet
some cases where delayed ack is used, the receiver caictilateum of the delta_throughput values in arriving padiasts
copying into the reverse_feedback field of the outgoing axakpt.

The controlling_hop_ field that carries the address of theetowho has last updated the feedback is used for debugging
purposes only.

In case of a packet loss in the network, TCP’s Van Jacobsogestion control should most likely override XCP. However
in nghis happens a little differently. With receiving of dugte acks indicating packet loss, the cwnd gets halved and fas
retransmit and fast recovery algorithms come into play. el@v xcp routers continue to send feedback to the sourcd base
which the source tries to open its cwnd. So it seems to be amésth of VJCC and XCP algorithms. However for most cases
this issue doesnot arise as XCP router very rarely expezgea@kt drop as the queue is continuously regulated andedfain
by XCP. Understanding the correct behaviour of XCP in faggkbioss is an area of current study and shall be implemented
in the future.

204

21.2.2 XCP Router

The XCP router consists of a wrapper class that holds viqualies for XCP, TCP and OTHER traffic flows. OTHER flow
maybe anything other than XCP and TCP. In the current imphtation, the XCP queue is a drop-tail queue while those for
TCP and OTHER use RED.

These underlying queues are bundled in a wrapper class X@BWithat provides necessary interface to the XCP router.
The XCP/TCP/OTHER queues are serviced in a Weighted RowfdrRnanner. Each queue has a weight that determines
the percentage of the service it receives. The current qweights of 0.5 each for the XCP and TCP allows equal service
between the two. The third queue reserved for OTHER flows babeen used as yet and has a weight of 0.0.

OTCL Class Queue/XCP has a flag named tcp_xcp_on_ whichis aatefault value of 0. This should be set to 1 for those
simulations that use both XCP and TCP flows. This flag is useglibthe link capacity of the router between the XCP and
TCP queues in simulations that use both flow types. This ipasgd to be a temporary fix and should go away once the
dynamic queue weights come into effect. A caveat for thexcp flag is that it is set as an OTcl class variable and not per
instance variable. This might cause some problems in tgiedahat uses mix of intermittent xcp and tcp flows for which
some router would require to support both TCP and XCP and scon&in't.

Every packet received by the wrapper queue class is firstedarkassigned a code point depending on the type of the packet

Packets, for the current TCP implementation, are markeX @, TCP/TCP-ACK and OTHER packets. This code point is
used to enque packets in the right queue. The wrapper clasplismented in xcp.cc,h.

21.2.3 XCP queue

The XCP queue is responsible for sending back feedback iy paeket header which is used by the sender to control rate of
sending data packets into the network. XCP uses two corlgotithms, the congestion controller and the fairnessodier
that are executed once every estimation control inteneal, T

In nsthe estimation_timer is used to maintain this interval whbased on the average rtt values of the (xcp) flows seen
through the router. However there may be better ways of aefithis interval. The outstanding queue in the router is ek

at a separate interval Tq, for which a queue_timer is usathlllyian rtt_timer is used to measure certain parameteitsain t
router like packet drops, queue size, utilization etc foivaig interval Tr, that may either be set by user from tcl derigr it

may use the highest rtt value seen for all flows in the router.

The rtt_timer interval value, Tr maybe set from tcl using tbkkowing API:

$queue queue-sample-everyrtt $rtt_value

where $queue is a handle to the xcp router and $rtt_valueigterval for which xcp queue parameters like packet drop ,
queue size etc shall be measured. See example script ungiel/ex/xcp/parking_lot_topo/parking_lot_topo.tckfose of

this API.

On packet arrival the total input traffic seen at the XCP gusurecremented by the size of the packet received. The sum of
inversed throughput and sum of rtt by throughput is incretietas well. Values for throughput and rtt are read from the xc
header as set by the TCP source. Each value is normalisee ipatket size.

On the event of the estimation timer going off, average rtlbflows is estimated using the above two sums as follows

avg_rtt = sum_rtt_by throughput/ sum_inv_throughput

The aggregate feedback is calculated based on the availabtiavidth capacity of the router, arriving traffic bandvidind

205

the persistent queue length in the router. Further detaigthnation of calculations used by the XCP router algoritan
be found in XCP specification available from XCP’s websitatip://www.isi.edu/isi-xcp/docs/draft-falk-xcp-spé0.txt

Each packet carries the current throughput value of the flodvathroughput adjustment or the delta_throughput in its
header. The XCP router based on the feedback values it atdsuih the estimation control timeout, calculates a pekgia
throughput adjustment feedback for every packet. Posigiedback is applied equally per-flow while negative feetéthiac
made proportional to each flow’s capacity. Also a downsreamter can change the delta_throughput value in a packet’s
header only if the feedback value calculated is less tharirtliae header (written by an less congested upstream joiitees
implementation of XCP queue imismay be found in xcpq.{cc,h}.

21.3 XCP example script

Let's walk through a simple xcp script that is similar tagtcl/ex/xcp/xcp_test.tcl The example uses a small dunibbel
topology having 3 xcp sources running over a bottleneck link

The topology is setup using the node and link creation APIse Bottleneck is a duplex link that has a xcp router in both
directions. For details on creating nodes, links etassee Marc Greis’ NS tutorial at http://www.isi.edu/nsnasfttorial.

The bottleneck link having a XCP queue is created as follows:

set RO [$ns node] ;# create Bottleneck between nodes RO and R1
set R1 [$ns node]
$ns duplex-link $RO $R1 <BW>Mb <delay>ms XCP

The side links connecting source nodes to the bottlene&khave XCP queues as well. The A@lieue-limit allows
users to set the buffer size in the queue.

The xcp source and sink is created as follows (very simil&acpd:

set xcp [new Agent/TCP/Reno/XCP]

$ns attach-agent $src_node $xcp

set xcp_sink [new Agent/TCPSink/XCPSinkK]
$ns attach-agent $rcvr_node $xcp_sink
$ns connect $xcp $xcp_sink

There is a tcl class GeneralSender used in the example Htaipsets up xcp agents in the source nodes and then connects
them to the xcp receiver in the destination node. An FTP soisrased in all the 3 sources.

Note that once the topology is set up the link bandwidth imfation needs to be propagated to the xcp queue as this is used
by the xcp router for feedback calculation. So for every xapuge use the following tcl command:

$xcp_queue set-link-capacity <bandwidth_in_bits_per_s ec> Next we need to trace variables in the

xcp router and xcp sources. The GeneralSender class prectdoe-xcp sets up tracing for xcp sources using variable-
tracing inns

206

GeneralSender instproc trace-xcp parameters {
$self instvar tcp_ id_ tcpTrace
global ftracetcp$id_
set ftracetcp$id_ [open xcp$id_.tr w]
set tcpTrace_ [set ftracetcp$id_]
$tcp_ attach-trace [set ftracetcp$id_]
if { -1 < [Isearch $parameters cwnd] } { $tcp_ tracevar cwnd_ }
if { -1 < [Isearch $parameters seqno] } { $tcp_ tracevar t seq no_ }

}

For tracing xcp queue it is required to attach a file descrifgtéhe xcp queue.

$xcpq attach <file-descriptor>

This is an example of how the trace at an xcp source looks like:

0.00000 2 0 1 O cwnd_ 1.000
0.00000 2 0 1 O tsegno_O
0.079 x x x x throughput 0.1

0.119064
0.11906

X X X throughput 50000
0O 1 0 t.segno_ 3

0.07900 2 0O 1 O ¢tsegno_1
0.119064 x x x x reverse_feedback 0
0.119064 x x x x controlling_hop_ 0
0.119064 x x x x newcwnd 1
0.11906 2 0 1 0 cwnd_ 2.000
0.119064 x x x x throughput 50000
0.11906 2 0 1 O t_segno_ 2

X

2

The first field gives the timestamp; the next 4 fields give thes®id (node/port) and destination id (node/port) for thp x
flow. The next field gives the name of the variable being trdoflowed by the value of the variable. Note that variabl&e li

cwnd_, t_seqgno_ are using variable tracing which is a foncsupported by the OTcl lib. While variables like throughpu
reverse_feedback use the XCPAgent class function tracelefimed in xcp-end-sys.cc. For more on variable tracingsin

please read section 3.4.3 in the ns manual at http://wwediginsnam/ns/doc/index.html

And example of trace output at a xcp bottleneck router loikesbelow:

Tq_ 0.0472859 0.025
queue_bytes 0.0472859 0
routerld_ 0.0472859 0
pos_fbk 0.053544 0
neg_fbk 0.053544 0
delta_throughput 0.053544 0
Thruput2 0.053544 60000
pos_fbk 0.054024 0
neg_fbk 0.054024 0
delta_throughput 0.054024 0O

207

Thruput2 0.054024 60000

residue_pos_fbk not_allocated 0.0638023 0
residue_neg_fbk_not_allocated 0.0638023 0
input_traffic_bytes 0.0638023 2480
avg_rtt_ 0.0638023 0.04

Here the first field describes the name of the variable, thergkfield gives the timestamp and the third field gives theevalu
of the variable. The XCPQueue class functimace_var() is used to trace variables in the xcp queue.

Additionally packet traces may be createdsusing the following tcl APIs:

set f_all [open out.tr w]
$ns trace-all $f all

First open a file and then attach the file descriptor tortheace object such that a trace of each packet as it travelaghr
the network is logged and dumped into the output file.

An example of such a file would look like:

+ 0.003 4 0 xcp 40 --—----- 2401200

- 0.003 4 0 xcp 40 ------- 2401200

r 0.013016 4 0 xcp 40 ------- 2401200

+ 0.013016 0 1 xcp 40 ------- 2401200

- 0.013016 0 1 xcp 40 ------- 2401200

r 0.023032 0 1 xcp 40 ------- 2401200

+ 0.023032 1 0 ack 40 ------- 2124001

- 0.023032 1 0 ack 40 ------- 2124001

r 0.033048 1 0 ack 40 ------- 2124001

+ 0.033048 0 4 ack 40 ------- 2124001

- 0.033048 0 4 ack 40 ------- 2124001

r 0.043064 0 4 ack 40 ------- 2124001

+ 0.043064 4 0 xcp 1200 ------- 2401212
- 0.043064 4 0 xcp 1200 ------- 2401212
+ 0.043064 4 0 xcp 1200 ------- 24012 23
- 0.043544 4 0 xcp 1200 ------- 24012 23

Lets try to read the first line:

+ 0.003 4 0 xcp 40 ----- 2401200

+ means a packet is enqueued in the queue (in node 4) as itdhbppeeen node 4 to node 0. You'll find traces showing
packets enqued (+) and then dequed (-) at the queue, afteh ks transmitted over the link to be received by the nextso

packet type is xcp and it is of size 40 bytes. The xcp flow haglaf R and the packet header has a source node/port id of
4.0 and dest node/port id of 1.2 and the unique packet id is O.

208

21.4 Test-suites for XCP

The xcp test-suite uses 3 tests. The first one is similar totkeave discussed in the earlier section. It consists of a doatib
topology where 3 xcp flows share a bottleneck link. The setesichas a similar topology having 3 xcp and 1 tcp flow sharing
the same bottleneck. And finally the last test is built on CKiadabi’'s parking-lot experiment referred in her SIGCOMK'0
paper. Itis a downsized version of Dina’s example. The tessa 9-hop link string topology. It has 10 long XCP flows that
flow through the entire length of the chain topology. Thereis 10 XCP flows that run through each hop, starting at (n-1)th
hop and ending at nth hop and so on creating the intermittewsfl And finally there are long XCP flows in the reverse
direction, starting from the last (10th) node and endindnnfirst (1st) node. There is a bottleneck at the middle of tiac
topology. Thus the third test employs a large and complealtiyy and shows the utilization, queue length and packei dro
values at every link.

21.5 Commands at a glance

Following is a list of commands used for xcp related simolain ns.

set xcp_src [new Agent/TCP/Reno/XCP]
This command creates an XCP source agent.

set xcp_dst [new Agent/TCPSink/XCPSink]
This command creates an XCP sink.

$ns duplex-link $R0 $R1 <BW>Mb <delay>ms XCP
This code creates a duplex link with specified bandwidth ariddelay using an XCP router between node RO and R1.

$xcp_queue set-link-capacity <bandwidth_in_bits _per_s ec>
This command propagates the link bandwidth informatiom#oxcp queue which uses it for the router feedback calculatio

set tfile [open tfile w]
$xcp_queue attach $tfile
This Tcl command allows a file to be attached for tracing xcpwpiparameters.

$xcp_src attach-trace <file-descriptor> $xcp_src tracev ar <var-to-traced>
This command allows the xcp sources to trace variables.

$queue queue-sample-everyrtt $rit_value
This command allows the user to set rtt interval values atkvkariables like packet_drops and queue lengths are neshsur
at the xcp queue.

Queue/XCP set tcp_xcp_on_ 1

This flag lets tcp and xcp flows to use the same xcp router. Tdgsgla temporary fix and should go away when dynamic
queue weights come into effect.

209

Chapter 22

DelayBox: Per-Flow Delay and Loss

DelayBox is an ns node that should be placed in between theesamnd destination nodes. With Delaybox, packets from
a TCP flow can be delayed, dropped, and/or forced throughtiebetk link before being passed on to the next node. A
distribution can be used to specify delay, loss, and/otdrodtk link speed for a source - destination pair. Each flomvéen
that source - destination pair draws from the distributioétermine its characteristics. Delays in DelayBox arefiper,
rather than per-packet. Since DelayBox distinguishes &etvwilows, thdid_ variable (flow identifier) should be set for
each flow in the simulation. DelayBox can be used with both diegh FullTcp agents.

22.1 Implementation Details

DelayBox maintains two tables: a rule table and a flow tabletri€s in the rule table are added by the user in the OTcl
simulation script and give an outline of how flows from a s@utc a destination should be treated. The fields are source,
destination, delay Random Variable (in ms), loss rate Randariable (in fraction of packets dropped), and bottleniadk
speed Random Variable (in Mbps). The bottleneck link spesd i optional. Entries in the flow table are created intdyna
and specify exactly how each flow should be handled. Its gzdwe obtained by sampling from the distributions given & th
rule table. The fields are source, destination, flow ID, ddtzgs, and bottleneck link speed (if applicable). Full-Ti&Rvs

are defined as beginning at the receipt of the first SYN of a nwHD and ending after the sending of the first FIN. Packets
after the first FIN are forwarded immediately (<i>i.e.</hey are neither delayed nor dropped by DelayBox). For Tepg
flows are defined as beginning at the receipt of the first 40 pgtket of a new flow ID. Since there are no FIN packets in
TcpAgent, TcpAgent flows are never considered finished rtray removed from the flow table.

DelayBox also maintains a set of queues to handle delayiokgts There is one queue per entry in the flow table. These
queues are implemented as delta queues, in that the timansfer the packet is kept only for the head packet. All other
packets are stored with the difference between the timegheuld be transferred and the time the previous packet dhoul
be transferred. The actual time the previous packet shaulbdnsferred is stored in the varialdeltasum_ , named so
because it is the sum of all delta values in the queue (inetutlie head packet’s transfer time). If the bottleneck lip&exl

has been specified for the flow, a processing delay is compatedch packet by dividing the size of the packet by the flow's
bottleneck link speed.

When a packet is received, its transfer time (current timelay is calculated. (This transfer time is the time thatfites bit

of the packet will begin transfer. Packets that wait in thewgbehind this packet must be delayed by the amount of time to
transfer all bits of the packet over the bottleneck link.efidhare two scenarios to consider in deciding how to set tblegtpa
delta:

210

1. If the packet is due to be transferred before the last btheflast packet in the queue, its delta (the time between
transferring the previous packet and transferring thikegds set to the previous packet’s processing delay. This
packet has to queue behind the previous packet, but will &eyreo be transmitted as soon as the previous packet has
completed its transfer.

2. If the packet is due to be transferred after the last biheflast packet in the queue, its delta is difference betwen t
packet’s transfer time and the previous packet’s transfes.t

If the current packet is the only packetin the queue, Delaydtedules a timer for the receipt of the packet. When timistti
expires, DelayBox will pass the packet on to the standarllgidorwarder for processing. Once a packet has been papsed u
DelayBox will look for the next packet in the queue to be psseal and schedule a timer for its transfer. All packets, both
data and ACKs, are delayed in this manner.

Packets that should be dropped are neither queued nor passédl packets in a queue are from the same connection and
are delayed the same amount (except for delays due to parkgaad are dropped with the same probabilNgte: Drops
at DelayBox are not recorded in the trace-queue file.

22.2 Example
More examples are available in tted/ex/delaybox/ directory of the ns source code. The validation sagpt-suite-delaybox.tc
is in tcl/test/ and can be run with the commatest-all-delaybox from that directory.

test-delaybox.tcl - NS file transfer with DelayBox

setup ns

remove-all-packet-headers; # removes all packet headers
add-packet-header IP TCP; # adds TCP/IP headers
set ns [new Simulator]; # instantiate the simulator

global defaultRNG
$defaultRNG seed 999

create nodes

set n_src [$ns node]
set db(0) [$ns DelayBox]
set db(1) [$ns DelayBox]
set n_sink [$ns node]

setup links

$ns duplex-link $db(0) $db(1) 100Mb 1ms DropTail
$ns duplex-link $n_src $db(0) 100Mb 1ms DropTalil
$ns duplex-link $n_sink $db(1) 100Mb 1ms DropTail

set src [new Agent/TCP/FullTcp]
set sink [new Agent/TCP/FullTcp]
$src set fid_ 1
$sink set fid_ 1

attach agents to nodes
$ns attach-agent $n_src $src

211

$ns attach-agent $n_sink $sink

make the connection
$ns connect $src $sink
$sink listen

create random variables

set recvr_delay [new RandomVariable/Uniform]; # delay 1-2
$recvr_delay set min_ 1

$recvr_delay set max_ 20

set sender_delay [new RandomVariable/Uniform; # delay 20
$sender_delay set min_ 20

$sender_delay set max_ 100

set recvr_bw [new RandomVariable/Constant]; # bw 100 Mbps

$recvr_bw set val_ 100

-100 ms

set sender_bw [new RandomVariable/Uniform]; # bw 1-20 Mbps

$sender_bw set min_ 1
$sender_bw set max_ 20

set loss_rate [new RandomVariable/Uniform]; # loss 0-1%

$loss_rate set min_ 0
$loss_rate set max_ 0.01

setup rules for DelayBoxes

$db(0) add-rule [$n_src id] [$n_sink id] $recvr_delay $los
$db(1) add-rule [$n_src id] [$n_sink id] $sender_delay $lo
output delays to files

$db(0) set-delay-file "db0.out"

$db(1) set-delay-file "dbl.out"

schedule traffic

$ns at 0.5 "$src advance 10000"

$ns at 1000.0 "$db(0) close-delay-file; $db(1) close-dela

start the simulation
$ns run

22.3 Commands at a Glance

The following commands on the DelayBox class can be accdssmdOTcl:

[$ns DelayBox]
Creates a new DelayBox node.

$delaybox add-rule <srcNodelD> <dstNodelD> <delayRV> [<I

SS

s_rate $recvr_bw
ss_rate $sender_bw

y-file; exit 0"

0ssRV>] [<linkSpeedRV>]

Add a rule to the rule table, specifying delay, loss rate, lamitleneck link speed RandomVariables for packets flomogf
srcNode todstNode . Delay is required, but loss rate and link speed are optional

$delaybox list-rules
List all rules in the rule table

212

$delaybox list-flows
List all flows in the flow table

$delaybox set-asymmetric
Specifies that the delay should be only on the data path rtitherapplied to both the data and ACK paths

$delaybox set-delay-file <filename>
Output delays for each flow tilename . Format:srcNode dstNode fid delay

$delaybox close-delay-file
Closes the file where delays are written

$delaybox set-debug <int>
Set the debugging level

e 1: Output when packets are dropped at DelayBox

e 2:Levell+
Contents of the queue at each queue operation

213

Chapter 23

Changes made to the IEEE 802.15.4
Implementation in NS-2.31

In the following, changes made to the IEEE 802.15.4 WPAN ni®dtuas ofnsrelease 2.31 are described along with the
reasons for the modifications and a list of files affectedsTité was authored by lyappan Ramachandran.

23.1 Radio shutdown

Ability to put a WPAN node to sleep has been added in this selea

1. A macro called SHUTDOWN has been defined in ./wpan/p8024de&f.h that provides the capability to shut a node
down when it does not have any packet to transmit. Currethiyre is no provision to enable/disable radio shutdown
from the tcl interface directly, but an indirect way existeé point 4).

2. Two functions Phy802_15_4::wakeupNode() and Phy80241putNodeToSleep() have been added that can be called
to shutdown and wake up the radio. These functions primaetye to decrement the correct amount of energy con-
sumed in sleep state.

File affected: ./wpan/p802_15 4phy.cc, ./wpan/p8024phy.h

3. A new timer called macWakeupTimer has been added to seraa alarm clock for the node to wake itself up (for
beacon reception, etc.) before it shuts down. The timer pirgxgalls Phy802_15 4::wakeupNode().
Files changed: ./wpan/p802_15_4mac.cc, ./wpan/p802rh&c.h, ./wpan/p802_15_4timer.cc, ./wpan/p802_15 efthm
Jwpan/p802_15_4csmaca.h

4. Variables P_sleep_ (sleep state power consumptionjafsition_ (power consumption in sleep-wakeup transjtion
and T_transition_ (time taken for sleep-wakeup transjtadready exist in mac/wireless-phy.h. T_transition_ was n
initialized earlier and now has been. In addition, a new vawable named T_sleep_ has been added to wireless-phy
to indicate the time at which radio shutdown is to be enabldds can be set from the tcl interface using the variable
name sleepTime (see ./tcl/ex/wpan_demo_sleep.tcl)., ThHagpossible to keep the SHUTDOWN macro #defined, but
set sleepTime to a very large value to keep radio shutdovabigid throughout the simulations. This provides a means
to turn on/off radio shutdown from the tcl interface.

Files affected: mac/wireless-phy.h

214

5. The radio if asleep should be woken up when MAC receivesclgido transmit. Similarly, a sleeping radio needs
to be woken up to receive beacons whenever they are experidive. If radio shutdown is activated, the ra-
dio needs to be put to sleep after transmission of a packetc888a 15 4::recv() does this by calling functions
Phy802_15_4::wakeupNode() and Phy802_15_4::putNode@p§, which decrement energy spent sleeping.

Files affected: ./wpan/p802_15 4mac.cc

6. After every beacon reception, the node can shutitselfdbidoesn’t have a packet pending to be transmitted when ra
dio shutdown has been activated. This is done by Mac802_:¥8cvBeacon() by calling Phy802_15 4::putNodeToSleep(
Files affected: ./wpan/p802_15 4mac.cc

7. If the node is being put to sleep when not in use, the sleggk transition needs to be accounted for. This is done in
CsmaCA802_15 4::start(). The backofftime for the firsidadicstage is calculated as wtime=MAX(wtime,ceil(phyl _transitic
Files affected: ./wpan/p802_15 4csmaca.cc

23.2 Other changes

1. After backing offmacMaxCSMABackoféad being unable to transmit a packet, the MAC has to repdraarel access
failure. The older implementation kept attempting to trait¢he packet indefinitely, instead of reporting channekss
failure. This has been fixed in the Mac802_15_4::mcps_detmest() function. Also the node is put to sleep (if need
be) at this stage.

Files affected: ./wpan/p802_15 4mac.cc

2. A new constant called aCCATime has been added, whichatedche CCA duration in symbol periods.
Files affected: ./wpan/p802_15 4const.h

3. CCA duration has been specified to be 8 symbol durationthemlder implementation, CCA was being done right
at the end of the 8th symbol duration to determine channeh&hs. As a result, if the channel is busy for the first 8
symbol durations and goes idle after that (which is liketip implementation would indicate channel idle while in
reality it shouldn’t. This has been fixed by doing the CCA & &md of the 4th symbol duration, but reporting channel
status at the 8th. For this purpose, a new timer CCAReporstbban added which on expiry calls CCAReportHandler
that does the reporting. Files affected: ./wpan/p802_pBy4c, ./wpan/p802_15_4phy.h

4. The Phy802_15_ 4::PD_DATA_indication() function caNrelessChannel::sendUp() to check if the packet has been
received correctly and to decrement the energy consumdekipacket reception. The SendUp() function is already
being called by recv() and calling it a second time causergrie be decremented twice. This bug has been fixed in
Phy802_15 4::PD_DATA _indication().

Files affected: ./wpan/p802_15 4phy.cc

5. Phy802_15 4::recv() function that receives packetsfilte channel checks if the packet has been received cgrrectl
using WirelessPhy::sendUp(), failing which the packetréefl. sendUp() returns a O either when the node is asleep
or when the packets received power is less than the CS thdestmothe former case, the variables rxTotPower and
rxTotNum need to be updated for CS purposes before droppagacket, while in the latter case the packet simply
needs to be dropped. Zheng’s implementation was droppliipgekets without updating the variables. This has been
fixed in Phy802_15 4::recv().

Files affected: ./wpan/p802_15 4phy.cc

6. The receiver has to be turned on for the carrier sensincatipe and therefore receive powgr is consumed during
this period. The earlier implementation did not decremengive energy due to carrier sensing. This has been added
in function Phy802_15_4::CarrierSenser(). Also, enesgpient during the tx-rx turnaround. This has been accounted
for as well.
Files affected: ./wpan/p802_15 4phy.cc

215

Part Il

Support

216

Chapter 24
Debugging ns

nds a simulator engine built in C++ and has an OTcl (Objectted Tcl) interface that is used for configuration and
commands. Thus in order to debagve will have to deal with debugging issues involving both Cdred C++. This chapter
gives debugging tips at Tcl and C++ level and shows how to nayfeo the Tcl and C++ boundaries. It also briefly covers
memory debugging and memory conservationsn

24.1 Tcl-level Debugging

Ns supports Don Libs’ Tcl debugger (see its Postscript dentation at http://expect.nist.gov/tcl-debug/tcl-dgips.Z and

its source code at http://expect.nist.gov/tcl-debuglathug.tar.gz). Install the program or leave the source aod directory
parallel to ns-2 and it will be built. Unlike expect, des@ibin the tcl-debug documentation, we do not support the -D
flag. To enter the debugger, add the lines "debug 1" to youptsat the appropriate location. In order to build ns with
the debugging flag turned on, configure ns with configuratjgioo "—enable-debug” and incase the Tcl debugger has been
installed in a directory not parallel to ns-2, provide th&hpaith configuration option "—with-tcldebug=<give/yopath/to/tcl-
debug/library>".

An useful debugging command$ns_ gen-map which may be used to list all OTcl objects in a raw form. Thisiseful
to correlate the position and function of an object givemase. The name of the object is the OTcl handle, usually of the
form _o### . For TclObjects, this is also available in a C++ debuggerhsas gdb, athis->name_

24.2 C++-Level Debugging

Debugging at C++ level can be done using any standard debufge following macro for gdb makes it easier to see what
happens in Tcl-based subroutines:

for Tcl code

define pargvc

set $i=0

while $i < argc
p argv[$i]
set $i=$i+1

217

end
end
document pargvc
Print out argc argv[i]'s common in Tcl code.
(presumes that argc and argv are defined)
end

24.3 Mixing Tcl and C debugging

Itis a painful reality that when looking at the Tcl code an8uaigging Tcl level stuff, one wants to get at the C-level @asand
vice versa. This is a smallish hint on how one can make thiaasier. If you are running ns through gdb, then the follawin
incantation (shown below) gets you access to the Tcl debufjgges on how you can then use this debugger and what you
can do with it are documented earlier in this chapter andisttRL (http://expect.nist.gov/tcl-debug/tcl-debugf)s

(gdb) run
Starting program: /nfs/prot/kannan/PhD/simulators/ns/ ns-2/ns
Breakpoint 1, AddressClassifier::AddressClassifier (th is=0x12fbd8)

at classifier-addr.cc:47

(gdb) p this->name_

$1 = 0x2711e8 " 073"

(gdb) call Tcl:instance().eval("debug 1")
15: lappend auto_path $dbg_library
dbg15.3> w

+(0: application

15: lappend auto_path /usr/local/lib/dbg
dbg15.4> Simulator info instances
_ol

dbg15.5> 01 now

0

dbgl5.6> # and other fun stuff
dbgl5.7> 073 info class
Classifier/Addr

dbg15.8> 073 info vars

slots_ shift_ off ip_ offset_ off flags_ mask_ off cmn_
dbg15.9> ¢

(gdb) w

Ambiguous command "w": while, whatis, where, watch.
(gdb) where

#0 AddressClassifier::AddressClassifier (this=0x12fbd 8)
at classifier-addr.cc:47
#1 0x5c68 in AddressClassifierClass::create (this=0x10d 6c8, argc=4,

argv=0xefffcdc0) at classifier-addr.cc:63

(gdb)

In a like manner, if you have started ns through gdb, then youadways get gdb’s attention by sending an interrupt, Wisual
a<Ctrl-c> on berkeloidrones. However, note that these do tamper htistack frame, and on occasion, may (sometimes
can (and rarely, does)) screw up the stack so that, you madyeniata position to resume execution. To its credit, gdb afgpea
to be smart enough to warn you about such instances when poildsinead softly, and carry a big stick.

218

24.4 Memory Debugging

The first thing to do if you run out of memory is to make sure yan ose all the memory on your system. Some systems by
default limit the memory available for individual progratossomething less than all available memory. To relax thig, the
limit or ulimit command. These are shell functions—see tlaual page for your shell for details. Limit is for csh, ulinsi

for sh/bash.

Simulations of large networks can consume a lot of memory2817 supports Gray Watson’s dmalloc library (see its web
documentation at http://www.letters.com/dmalloc/ anttlge source code from ftp://ftp.letters.com/src/dmadtiocalloc.tar.gz

). To add it, install it on your system or leave its source iriradory parallel to ns-2 and specify —with-dmalloc whem-<o
figuring ns. Then build all components of ns for which you war@mory information with debugging symbols (this should
include at least ns-2, possibly tclcl and otcl and maybe &l$0

24.4.1 Using dmalloc
In order to use dmalloc do the following:

Define an alias

for csh: alias dmalloc 'eval \dmalloc -C \! * ",
for bash: function dmalloc { eval ‘command dmalloc -b $ *' 1%$

Next turn debugging on by typindmalloc -l logfile low

Run your program (which was configured and built with dmalsdescribed above).

Interpret logfile by runningmalloc_summarize ns <logdfile . (You need to downloadmalloc_summarize
separately.)

On some platforms you may need to link things statically to dpalloc to work. On Solaris this is done by linking
with these options:"-Xlinker -B -Xlinker -static libraries -Xlinker -B -Xlink er -dynamic
-ldl -IX11 -IXext" . (You'll need to change Makefile. Thanks to Haobo Yu and Donntls for working this out.)

We can interpret a sample summary produced from this pracess-2/tcl/ex/newmcast/cmcast-100.tcl with an exiestant
after the 200°'th duplex-link-of-interefaces statement:

Ns allocates 6MB of memory.

1MB is due to TclObject::bind

900KB is StringCreate, all in 32-byte chunks

700KB is NewVar, mostly in 24-byte chunks

Dmalloc_summarize must map function names to and from twokdresses. It often can’t resolve addresses for shared li-
braries, so if you see lots of memory allocated by thingshr@gg with “ra=", that's what it is. The best way to avoid this
problem is to build ns statically (if not all, then as much asgible).

Dmalloc’s memory allocation scheme is somewhat expenglus,there’s bookkeeping costs. Programs linked againat-dm
loc will consume more memory than against most standarcocsll

Dmalloc can also diagnose other memory errors (duplicatsfrbuffer overruns, etc.). See its documentation foildeta

219

24.4.2 Memory Conservation Tips
Some tips to saving memory (some of these use examples f@omhbast-100.tcl script): If you have many links or nodes:

Avoid trace-al |l : $ns trace-all $f causes trace objects to be pushed on all links. If you onlytwatrace one
link, there’s no need for this overhead. Saving is about 14iKB

Use arrays for sequences of variables Each variable, sag$i in set n$i [$ns node] , has a certain overhead. If a
sequence of nodes are created as an arrap($8. , then only one variable is created, consuming much less memo
Saving is about 40+ Byte/variable.

Avoid unnecessary variables :If an object will not be referred to later on, avoid naming thigect. E.g.set cmcast(1)
[new CtrMcast $ns $n(1) $ctrmcastcomp [list 1 1]] would be better if replaced mew CtrMcast
$ns $n(1) $ctrmcastcomp [list 1 1] . Saving is about 80 Byte/variable.

Run on top of FreeBSD : malloc() overhead on FreeBSD is less than on some othemsysté/e will eventually port that
allocator to other platofrms.

Dynamic binding : Using bind() in C++ consumes memory for each object you ereEttis approach can be very expensive
if you create many identical objects. Changinigd() to delay_bind() changes this memory requirement to
per-class. Sersobject.cc for an example of how to do binding, either way.

Disabling packet headers :For packet-intensive simulations, disabling all packeades that you will not use in your
simulation may significantly reduce memory usage. See @etf.1 for detail.

24.4.3 Some statistics collected by dmalloc

A memory consumption problem occured in recent simulati@nscast-[150,200,250].tcl), so we decided to take a closer
look at scaling issue. See page http://www-mash.cs.bgyrleslu/ns/ns-scaling.html which demostrates the effofiading
the bottineck.

The following table summarises the results of investigatire bottleneck:

KBytes cmcast-50.tcl(217 Links) cmcast-100.tcl(950 Links
trace-all 8,084 28,541
turn off trace-all 5,095 15,465
use array 5,091 15,459
remove unnecessay variables 5,087 15,451
on SunOS 5,105 15,484

24.5 Memory Leaks

This section deals with memory leak problem&igboth in Tcl as well as C/C++.

220

24.5.1 OTcl

OTcl, especially TcICL, provides a way to allocate new otgetElowever, it does not accordingly provide a garbage ctitia
mechanism for these allocated objects. This can easilytteadintentional memory leaks. Important: tools such aslthma
and purify are unable to detect this kind of memory leaks.éxample, consider this simple piece of OTcl script:

set ns [new Simulator]
for set i 0 $i < 500 incr i
set a [new RandomVariable/Constant]

One would expect that the memory usage should stay the saenétedf first RandomVariable is allocated. However, because
OTcl does not have garbage collection, when the second Ravltable is allocated, the previous one is not freed and
hence results in memory leak. Unfortunately, there is ng &&gor this, because garbage collection of allocated dsjex
essentially incompatible with the spirit of Tcl. The onlyy fix this now is to always explicitly free every allocated €)
object in your script, in the same way that you take care ofonatd object in C/C++.

2452 C/C++

Another source of memory leak is in C/C++. This is much easi@rack given tools that are specifically designed for this
task, e.g., dmalloc and purifynishas a special target ns-pure to build purified ns executéditst make sure that the macro
PURIFY in the ns Makefile contains the right -collector fouydinker (check purify man page if you don’t know what this
is). Then simply typenake ns-pure . See earlier sections in this chapter on how to use ns witimailoc.

221

Chapter 25

Mathematical Support

The simulator includes a small collection of mathematioalictions used to implement random variate generation &gl in
gration. This area of the simulator is currently undergaome changes.

The procedures and functions described in this chapter eafound in +dtools/rng.{cc, h}, -hstools/random.{cc, h},
~ngtools/ranvar.{cc, h}, Agtools/pareto.{cc, h}, ngtools/expoo.{cc, h}, Agtools/integrator.{cc, h}, and rdtcl/lib/ns-
random.tcl.

25.1 Random Number Generation

The RNG class contains an implementation of the combinedipraifecursive generator MRG32k3a proposed by L'Ecuyer
[16]. The C++ code was adapted from [18]. This replaces tegipus implementation dRNG which used the minimal
standard multiplicative linear congruential generatoPafk and Miller [27]. The newer (MRG32k3&NGis used in ns
versions 2.1b9 and later.

The MRG32k3a generator providésx10'° independent streams of random numbers, each of which teéi.3x10'5
substreams. Each substream has a petiegthe number of random numbers before overlag).6k10%2. The period of the
entire generator i8.1x10%". Figure 25.1 provides a graphical idea of how the streamsabstreams fit together.

A default RNG @efaultRNG), created at simulator initialization time, is providefimiultiple random variables are used in

a simulation, each random variable should use a separated®i¢Gt. When a new RNG object is created, it is automatically
seeded to the beginning of the next independent stream dbnamumbers. Used in this manner, the implementation allows
for a maximum ofl.8x10'° random variables.

Often, multiple independent replications of a simulatioe aeededi(e., to perform statistical analysis given multiple runs
with fixed parameters). For each replication, a differetssteam should be used to ensure that the random numbenstrea
are independent. (This process is given as an OTcl exantgle) IZhis implementation allows for a maximumBx10*°
independent replications. Each random variable in a siregiication can produce up ©6x10%? random numbers before
overlapping.

Note: Only the most common functions are described here. For nmboennation, see [18] and the source code found in

tools/rng.h andtools/rng.cc . For a comparison of this RNG to the more common LCG16807 Ralt@l (vhy
LCG16807 is not a good RNG), see [17].

222

2191 =
3.1x107 1 24
/V """"""""""""""""" : 2127: 1.3‘!1038

§=7191-127
=1.8x101°

276 — 7651022

Figure 25.1: Overall arrangement of streams and substrdasijs

25.1.1 Seeding The RNG

Due to the nature of the RNG and its implementation, it is remtassary to set a seed (the default is 12345). If you wish to
change the seed, functions are available. You should onltheeseed of the default RNG. Any other RNGs you create are
automatically seeded such that they produce independeatss. The range of valid seeds is MAXINT.

To get non-deterministic behavior, set the seed of the #efRNG to 0. This will set the seed based on the current time of
day and a counteiThis method should not be used to set seeds for independentpications. There is no guarantee that
the streams produced by two random seeds will not overlap.ohty way to guarantee that two streams do not overlap is to
use the substream capability provided by the RNG implentienta

Example

Usage: ns rng-test.tcl [replication number]

if {$argc > 1} {
puts "Usage: ns rng-test.tcl \[replication number\]
exit

}

set run 1
if {$argc == 1} {

223

set run [lindex $argv 0]

}

if {$run < 1} {
set run 1

}

seed the default RNG
global defaultRNG
$defaultRNG seed 9999

create the RNGs and set them to the correct substream
set arrivalRNG [new RNG]
set sizeRNG [new RNG]
for {set j 1} {$j < $run} {incr j} {
$arrivalRNG next-substream
$sizeRNG next-substream

}

arrival_ is a exponential random variable describing the t
between consecutive packet arrivals

set arrival_ [new RandomVariable/Exponential]

$arrival_ set avg_ 5

$arrival_ use-rng $arrivalRNG

size_ is a uniform random variable describing packet sizes
set size_ [new RandomVariable/Uniform]

$size_ set min_ 100

$size_ set max_ 5000

$size_ use-rng $sizeRNG

print the first 5 arrival times and sizes
for {set j O} {$j < 5} {incr j} {

puts [format "%-8.3f %-4d" [$arrival_ value] \
[expr round([$size_ value])]]

Output

% ns rng-test.tcl 1

6.358 4783
5.828 1732
1.469 2188
0.732 3076
4.002 626
% ns rng-test.tcl 5
0.691 1187
0.204 4924
8.849 857
2111 4505
3.200 1143

224

ime

25.1.2 QOTcl Support
Commands
The following commands on the RNG class can be accessed fiiarha@d are found inools/rng.cc

seed n —seedthe RNG te, if n == 0, the seed is set according to the current time and a counter

next-random — return the next random number

seed - return the current value of the seed

next-substream — advance to the next substream

reset-start-substream — reset the stream to the beginning of the current substream

normal avg std —return a number sampled from a normal distribution withgiven average and standard deviation

lognormal avg std —return a number sampled from a lognormal distribution hth given average and standard devi-
ation

The following commands on the RNG class can be accessed fiiarhadd are found inicl/lib/ns-random.tcl

exponential mu — return a number sampled from an exponential distributiith meanmu
uniform min maxz —return an integer sampled from a uniform distribution enin, max]

integer k —return an integer sampled from a uniform distribution onkfQ]

Example

Usage: ns rng-test2.tcl [replication number]

if {$argc > 1} {
puts "Usage: ns rng-test2.tcl \[replication number\]"
exit

}

set run 1

if {$argc == 1} {
set run [lindex $argv 0]

}

if {$run < 1} {
set run 1

}

the default RNG is seeded with 12345

create the RNGs and set them to the correct substream
set arrivalRNG [new RNG]
set sizeRNG [new RNG]
for {set j 1} {$j < $run} {incr j} {
$arrivalRNG next-substream

225

$sizeRNG next-substream

}

print the first 5 arrival times and sizes
for {set j O} {$j < 5} {incr j} {
puts [format "%-8.3f %-4d" [$arrivalRNG lognormal 5 0.1] \
[expr round([$sizeRNG normal 5000 100])]]

Output

% ns rng-test2.tcl 1
142.776 5038
174.365 5024
147.160 4984
169.693 4981
187.972 4982

% ns rng-test2.tcl 5
160.993 4907
119.895 4956
149.468 5131

137.678 4985
158.936 4871

25.1.3 C++ Support
Member Functions

The random number generator is implemented by the RNG classalefined irtools/rng.h
Note: The Random class itwols/random.h is an older interface to the standard random number stream.

Member functions provide the following operations:

void set_seed (long seed) — set the seed of the RNG, déed == 0, the seed is set according to the current time
and a counter

long seed (void) — return the current seed

long next (void) — return the next random number as an integer oMJXINT]

double next_double (void) — return the next random number on [0, 1]

void reset_start_substream (void) — reset the stream to the beginning of the current substream

void reset_next_substream (void) —advance to the next substream

int uniform (int k) — return an integer sampled from a uniform distribution orkfa]

double uniform (double r) — return a number sampled from a uniform distribution onJO0, r

226

double uniform (double a, double b) — return a number sampled from a uniform distribution on [a, b

double exponential (void) — return a number sampled from an exponential distributiith mean 1.0

double exponential (double k) — return a number sampled from an exponential distributith mean k

double normal (double avg, double std) -

given average and standard deviation

double lognormal (double avg, double std)
the given average and standard deviation

Example

/= create new RNGs =/
RNG arrival (23456);
RNG size;

/= set the RNGs to the appropriate substream

for (int i =1; 1 < 3; i++) {
arrival.reset_next_substream();
size.reset_next_substream();

}

[+ print the first 5 arrival times and sizes
for (int j = 0; j < 5; j++) {

return a number sampled from a normal distribution with the

— return a number sampled from a lognormal distribution with

*/

printf ("%-8.3f %-4d\n", arrival.lognormal(5, 0.1),

int(size.normal(500, 10)));

}

Output
161.826 506
160.591 503
157.145 509
137.715 507
118.573 496

25.2 Random Variables

Theclass RandomVariable provides a thin layer of functionality on top of the base mmchumber generator and the
default random number stream. It is defined in¥ranvar.h:

class RandomVariable : public TclObject {
public:
virtual double value() = O;
int command(int argc, const char
RandomVariable();

*CoNnst * argv);

227

protected:
RNG rng_;

3

Classes derived from this abstract class implement spelifficbutions. Each distribution is parameterized with tlalues
of appropriate parameters. The value method is used taratualue from the distribution.

The currently defined distributions, and their associatrdmeters are:

class UniformRandomVariable min_ , max_
class ExponentialRandomVariable avg_
class ParetoRandomVariable avg , Shape__
class ParetollRandomVariable avg_ , Shape__
class ConstantRandomVariable val_
class HyperExponentialRandomVariable avg_ , COV_
class NormalRandomVariable avg_ , std_
class LogNormalRandomVariable avg_ , std_

The RandomVariable class is available in OTcl. For instattcereate a random variable that generates number unifanml
[10, 20]:

set u [new RandomVariable/Uniform]
$u set min_ 10

$u set max_ 20

$u value

By default, RandomVariable objects use the default randomber generator described in the previous section. Thengse-
method can be used to associate a RandomVariable with aefanittRNG:

set rng [new RNG]
$rng seed O

set e [new RandomVariable/Exponential]
$e use-rng $rng

25.3 Integrals

The class Integrator supports the approximation of (continuous) integration(thgcrete) sums; it is defined in
~ngintegrator.h as

From integrator.h:
class Integrator : public TclObject {
public:
Integrator();
void set(double x, double vy);
void newPoint(double X, double y);
int command(int argc, const char *CoNnst * argv);

228

protected:

double lastx_;
double lasty ;
double sum_;
2
From integrator.cc:
Integrator::Integrator() : lastx_(0.), lasty_(0.), sum_ 0.
{
bind("lastx_", &lastx_);
bind("lasty ", &lasty);
bind("sum_", &sum_);
}
void Integrator::set(double x, double vy)
{
lastx_ = x;
lasty = vy;
sum_ = 0.
}
void Integrator::newPoint(double x, double y)
{
sum_ += (X - lastx) * lasty ;
lastx_ = Xx;
lasty = vy;
}
int Integrator::command(int argc, const char *const * argv)
{
if (argc == 4) {
if (strcmp(argv[l], "newpoint”) == 0) {
double x = atof(argv[2]);
double y = atof(argv[3]);
newPoint(x, y);
return (TCL_OK);
}
}
return (TclObject::command(argc, argv));
}

This class provides a base class used by other classes sQeleasMonitor that keep running sums. Each new element
of the running sum is added by tinewPoint (X, y) function. After thekth execution olhewPoint , the running sum is
equal ttoZl yi—1(x; —x;—1) wherexg = yo = 0 unlesdastx_ ,lasty_ , orsum_ are reset via OTcl. Note that a new
point in the sum can be added either by the C++ membaiPoint or the OTcl membenewpoint . The use of integrals
to compute certain types of averages (e.g. mean queue 8ngthiven in (pp. 429-430, [15]).

25.4 ns-random

ns- r andomis an obsolete way to generate random numbers. This informan is provided only for backward com-
patibility.

229

ns-random is implemented in rgmisc.{cc,h}. When called with no argument, it generatearadom number with uniform
distribution between 0 anfAXINT. When an integer argument is provided, it seeds the randarergeer with the given
number. A special case is whas-random O is called, it randomly seeds the generator based on cuimeat This feature
is useful to produce non-deterministic results across.runs

25.5 Some mathematical-support related objects

INTEGRATOR OBJECTdntegrator Objects support the approximate computatia@oofinuous integrals using discrete sums.
The running sum(integral) is computed aam_ += [lasty * (X lastx)] where (X, y) is the last element entered
and (lastx_, lasty) was the element previous to that adadidet sum. lastx_ and lasty are updated as new elements are
added. The first sample point defaults to (0,0) that can begdtaby changing the values of (lastx_,lastysijtegrator

newpoint <x> <y>

Add the point (x,y) to the sum. Note that it does not make sémrseto be less than lastx_.

There are no configuration parameters specific to this abject

State Variables are:

lastx_ x-coordinate of the last sample point.
lasty _ y-coordinate of the last sample point.

sum_ Running sum (i.e. the integral) of the sample points.

SAMPLES OBJECT Samples Objects support the computation of mean and var&atstics for a given sample.

$samples mean
Returns mean of the sample.

$samples variance
Returns variance of the sample.

$samples cnt
Returns a count of the sample points considered.

$samples reset
Reset the Samples object to monitor a fresh set of samples.

There are no configuration parameters or state variable#fisge this object.

25.6 Commands at a glance

Following is a list of mathematical support related comnsatoimmonly used in simulation scripts:

set rng [new RNG]
This creates a new random number generator.

230

$rng seed <0 or n>
This command seeds the RNG. If 0 is specified, the RNG is seeealaristically. Otherwise the RNG is seeded with the
value <n>.

$rng next-random
This returns the next random number from RNG.

$rng uniform <a>
This returns a number uniformly distributed on <a> and .

$rng integer <k>
This returns an integer uniformly distributed on 0 and k-1.

$rng exponential
This returns a number that has exponential distributioh aiterage 1.

set rv [new Randomvariable/<type of random-variable>]

This creates an instance of a random variable object thargts random variables with specific distribution. Théednt
types of random variables derived from the base class are:

RandomVariable/Uniform, RandomVariable/Exponenti@nBomVariable/Pareto, RandomVariable/Constant,
RandomVariable/HyperExponential. Each of these distidlutypes are parameterized with values of appropriate
parameters. For details see section 25.2 of this chapter.

$rv use-rng <rng>

This method is used to associated a random variable objéteawion-default RNG. Otherwise by default, the random
variable object is associated with the default random numgéeerator.

231

Chapter 26

Trace and Monitoring Support

The procedures and functions described in this chapter edound in ndtrace.{cc, h}, -ndtcl/lib/ns-trace.tcl, Asqueue-
monitor.{cc, h}, ~ndtcl/lib/ns-link.tcl, ~ngpacket.h, agflowmon.cc, and r9classifier-hash.cc.

There are a number of ways of collecting output or trace datgimulation. Generally, trace data is either displayesttly
during execution of the simulation, or (more commonly) stbin a file to be post-processed and analyzed. There are two
primary but distinct types of monitoring capabilities cemtly supported by the simulator. The first, calteates record each
individual packet as it arrives, departs, or is dropped atladr queue. Trace objects are configured into a simulasomaes

in the network topology, usually with a Tcl “Channel” objéeioked to them, representing the destination of collected d
(typically a trace file in the current directory). The othgrés of objects, calledhonitors record counts of various interesting
quantities such as packet and byte arrivals, departui@siemnitors can monitor counts associated with all paclaten a
per-flow basis using iow monitorbelow (Section 26.7).

To support traces, there is a speai@immonheader included in each packet (this format is definedrigpacket.h as
hdr_cmn). It presently includes a unique identifier on each packgtaeket type field (set by agents when they gener-
ate packets), a packet size field (in bytes, used to detertimngansmission time for packets), and an interface laissd

for computing multicast distribution trees).

Monitors are supported by a separate set of objects thatreated and inserted into the network topology around queues

They provide a place where arrival statistics and times atiesged and make use of thlass Integrator (Section 25.3)
to compute statistics over time intervals.

26.1 Trace Support

The trace supportin OTcl consists of a number of speciatif@sbes visible in OTcl but implemented in C++, combinedhwit
a set of Tcl helper procedures and classes defined ingligrary.

All following OTcl classes are supported by underlying CH4asses defined inngtrace.cc. Objects of the following types
are inserted directly in-line in the network topology:

232

Trace/Hop trace a “hop” (XXX what does this mean exactlys mot really used XXX)
Trace/Enque a packet arrival (usually at a queue)
Trace/Deque a packet departure (usually at a queue)
Trace/Drop packet drop (packet delivered to drop-target)
Trace/Recv packet receive event at the destination nodérd€ a
SnoopQueue/In on input, collect a time/size sample (padsgpan)
SnoopQueue/Out on output, collect a time/size sample (et on)
SnoopQueue/Drop on drop, collect a time/size sample (pdeepon)
SnoopQueue/EDrop on an "early" drop, collect a time/sirepda (pass packet on)

Objects of the following types are added in the simulatiod arreferenced by the objects listed above. They are used to
aggregate statistics collected by the SnoopQueue objects:

QueueMonitor receive and aggregate collected samplessnmopers

QueueMonitor/ED queue-monitor capable of distinguistiatyveen “early” and standard packet drops
QueueMonitor/ED/Flowmon per-flow statistics monitor (ragar)

QueueMonitor/ED/Flow per-flow statistics container
QueueMonitor/Compat a replacement for a standard Queuigddavhennsvl compatibility is in use

26.1.1 OfTcl Helper Functions

The following helper functions may be used within simulatgzripts to help in attaching trace elements (segtel/lib/ns-
lib.tcl); they are instance procedures of the class Siroulat

flush-trace {} flush buffers for all trace objects in simulation

create-trace { type file src dst } create a trace object of tyggpe between the given src and dest
nodes. Iffile is non-null, it is interpreted as a Tcl channel and is
attached to the newly-created trace object. The procedtuens
the handle to the newly created trace object.

trace-queue { nl n2 file } arrange for tracing on the link between noddsandn2. This func-
tion calls create-trace, so the same rules apply with respéuefile
argument.
trace-callback{ ns command } arranges to catommandwhen a line is to be traced. The procedure

treatscommandas a string and evaluates it for every line traced. See
~ngltcl/ex/callback_demao.tcl for additional details on usag

monitor-queue { nl1 n2 } this function calls thenit-monitor function on the link be-
tween nodeslandn2.
drop-trace { nl1 n2 trace } the givertraceobject is made the drop-target of the queue associated

with the link between nodasl andn2.

Thecreate-trace {} procedure is used to create a n@nace object of the appropriate kind and attach an Tcl I/O channel
to it (typically a file handle). Therc_ anddst_ fields are are used by the underlying C++ object for produttiegrace
output file so that trace output can include the node addsebsining the endpoints of the link which is being traced.eNot
that they are not used fanatching Specifically, these values in no way relate to the packedérsac anddst fields, which

are also displayed when tracing. See the description ofthee class below (Section 26.3).

Thetrace-queue function enable&nque, Deque, andDrop tracing on the link between nodag andn2. The Link
trace procedure is described below (Section 26.2).

233

The monitor-queue function is constructed similarly ttrace-queue . By calling the link'sinit-monitor pro-
cedure, it arranges for the creation of obje@adgopQueue andQueueMonitor objects) which can, in turn, be used to
ascertain time-aggregated queue statistics.

Thedrop-trace function provides a way to specify@ueue’s drop target without having a direct handle of the queue.

26.2 Library support and examples

The Simulator procedures described above requirettiage andinit-monitor methods associated with the OTcl
Link class. Several subclasses of link are defined, the most carofmehich is calledSimpleLink . Thus, thetrace
andinit-monitor methods are actually part of tf&mpleLink class rather than thieink base class. Theace
function is defined as follows (ins-link.tcl):

#

Build trace objects for this link and
update the object linkage
#
S

impleLink instproc trace { ns f } {
$self instvar enqT_ deqT_ drpT_ queue_ link_ head_ fromNode _ toNode_
$self instvar drophead

set enqT_ [$ns create-trace Enque $f $fromNode_ $toNode]
set deqT_ [$ns create-trace Deque $f $fromNode_ $toNode]
set drpT_ [$ns create-trace Drop $f $fromNode $toNode]

$drpT_ target [$drophead_ target]
$drophead_ target $drpT_
$queue_ drop-target $drpT_

$deqT_ target [$gqueue_ target]
$queue_ target $deqT

if { [$head_ info class] == "networkinterface" } {
$enqT_ target [$head_ target]
$head_ target $enqT_
puts "head is i/f"
} else {
$enqgT_ target $head_
set head_ $enqT_
puts "head is not i/f"

This function establishegnque, Deque, andDrop traces in the simulatd®ns and directs their output to 1/0 hand}é .

The function assumes a queue has been associated with khdtlioperates by first creating three new trace objects and
inserting theEnque object before the queue, tiEque object after the queue, and tBeop object between the queue and
its previous drop target. Note that all trace output is deddo the same 1/O handle.

This function performs one other additional tasks. It clsgcksee if a link contains a network interface, and if so,dsavas
the first object in the chain of objects in the link, but otheeinserts th&nque object as the first one.

234

The following functionsinit-monitor andattach-monitor , are used to create a set of objects used to monitor queue
sizes of a queue associated with a link. They are defined lasviol

SimpleLink instproc attach-monitors { insnoop outsnoop dr opsnoop gmon } {
$self instvar queue_ head_ snoopln_ snoopOut_ snoopDrop_
$self instvar drophead_ gMonitor_

set snoopln_ $insnoop
set snoopOut_ $outsnoop
set snoopDrop_ $dropsnoop

$snooplin_ target $head_
set head_ $snoopin_

$snoopOut_ target [$queue_ target]
$queue_ target $snoopOut_

$snoopDrop_ target [$drophead_ target]
$drophead_ target $snoopDrop

$snoopln_ set-monitor $gmon
$snoopOut_ set-monitor $gmon
$snoopDrop_ set-monitor $gmon
set gMonitor_ $gmon

Insert objects that allow us to monitor the queue size
of this link. Return the name of the object that
can be queried to determine the average queue size.

EEE

impleLink instproc init-monitor { ns qgtrace samplelnterv al} {
$self instvar gMonitor_ ns_ qgtrace_ samplelnterval_

set ns_ $ns

set gtrace_ $qtrace

set samplelnterval_ $sampleinterval
set gMonitor_ [new QueueMonitor]

$self attach-monitors [new SnoopQueue/In] \
[new SnoopQueue/Out] [new SnoopQueue/Drop] $gMonitor

set bytesint_ [new Integrator]
$gMonitor_ set-bytes-integrator $bytesint_
set pktsint_ [new Integrator]

$gMonitor_ set-pkts-integrator $pktsint_
return $gMonitor_

These functions establish queue monitoring on $irapleLink object in the simulatons. Queue monitoring is im-
plemented by constructing thr&noopQueue objects and onQueueMonitor object. TheSnoopQueue objects are
linked in around &Queue in a way similar toTrace objects. TheSnoopQueue/In(Out) object monitors packet ar-
rivals(departures) and reports them to an associ@igeleMonitor agent. In addition, &noopQueue/Out object is

235

also used to accumulate packet drop statistics to an assd€laeueMonitor object. Forinit-monitor the same
QueueMonitor object is used in all cases. The C++ definitions of 8BropQueue andQueueMonitor classes are
described below.

26.3 The C++ Trace Class

Underlying C++ objects are created in support of the intrfgpecified in Section 26.3 and are linked into the netwqgr<o
ogy as network elements. The single Chrace class is used to implementthe OTcl clasesce/Hop , Trace/Enque
Trace/Deque ,andTrace/Drop . Thetype field is used to differentiate among the various types oftsamy particu-
lar Trace object might implement. Currently, this field may contaireaf the following symbolic characters:for enque,
- for dequeh for hop, andd for drop. The overall class is defined as follows ingtrace.cc:

class Trace : public Connector {
protected:
int type_;
nsaddr_t src_;
nsaddr_t dst_;
Tcl_Channel channel_;

int callback_;

char wrk_[256];

void format(int tt, int s, int d, Packet * p);

void annotate(const char * S);

int show_tcphdr_; // bool flags; backward compat
public:

Trace(int type);

~Trace();

int command(int argc, const char *CONst * argv);

void recv(Packet * p, Handler =x);

void dump();

inline char + buffer() { return (wrk)); }
h

Thesrc_ ,anddst_ internal state is used to label trace output and is indepemdé¢he corresponding field names in packet
headers. The mairecv () method is defined as follows:

void Trace::recv(Packet * p, Handler = h)
{
format(type , src_, dst , p);
dump();
/ = hack: if trace object not attached to anything free packét
if (target_ == 0)
Packet::free(p);
else

send(p, h); / * Connector::send() * |

The function merely formats a trace entry using the souregtjiolation, and particular trace type character. dimap function
writes the formatted entry out to the I/O handle associati#d @hannel_ . Theformat function, in effect, dictates the
trace file format.

236

26.4 Trace File Format

The Trace::format () method defines the trace file format used in trace files prediy theTrace class. It is con-
structed to maintain backward compatibility with outpuggilin earlier versions of the simulatare(, nsv1) so thamnsvl
post-processing scripts continue to operate. The impopianes of its implementation are as follows:

/I this function should retain some backward-compatibiBtythat
/I scripts don't break.
void Trace::format(int tt, int s, int d, Packet *)
{
hdr_cmn =th = (hdr_cmn «)p->access(off_cmn_);
hdr_ip +iph = (hdr_ip *)p->access(off ip);
hdr tcp *tcph = (hdr_tcp *)p->access(off _tcp);
hdr rtp *rh = (hdr_rtp *)p->access(off _rtp_);
packet t t = th->ptype();
const char * name = packet_info.name(t);

if (name == 0)
abort();

int segno;

[* XXX */

/ * CBR’s now have seqno’s toe/

if { == PT_RTP || t == PT_CBR)
seqno = rh->seqno();

else if (t == PT_TCP || t == PT_ACK)
seqno = tcph->seqgno();

else
segno = -1;

if (!show_tcphdr_) {

sprintf(wrk_, "%c %g %d %d %s %d %s %d %d.%d %d.%d %d %d",
tt,
Scheduler::instance().clock(),
S,
d,
name,
th->size(),
flags,
iph->flowid() / * was p->class_ */,
iph->src() >> 8, iph->src() & Oxff, Il XXX
iph->dst() >> 8, iph->dst() & O0xff, Il XXX
seqgno,
th->uid() / * was p->uid_ */);

} else {

sprintf(wrk_,

"%c %g %d %d %s %d %s %d %d.%d %d.%d %d %d %d 0x%x %d",
tt,
Scheduler::instance().clock(),
S,
d,

237

name,

th->size(),

flags,

iph->flowid() / * was p->class_ */,
iph->src() >> 8, iph->src() & Oxff, Il XXX
iph->dst() >> 8, iph->dst() & Oxff, Il XXX
seqgno,

th->uid(), / * was p->uid_ */
tcph->ackno(),
tcph->flags(),
tcph->hlen());

This function is somewhat unelegant, primarily due to theirdeto maintain backward compatibility. It formats the sm)
destination, and type fields defined in the trace object in the packet headérghe current time, along with various packet
header fields including, type of packet (as a name), sizes {gmbolically), flow identifier, source and destinatior ket
header fields, sequence number (if present), and uniquéifiden The show_tcphdr_ variable indicates whether the
trace output should append tcp header information (ack eunflags, header length) at the end of each output line. This
is especially useful for simulations using FullTCP agefsation 35.3). An example of a trace file (without the tcp leead
fields) might appear as follows:

+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610
- 184375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600

r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602

+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611
- 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611
r 1.84609 0 2 cbr 210 ------- 0 0.0 3.1 225 610

+ 1.84609 2 3 cbr 210 ------- 0 0.0 3.1 225 610
d 1.84609 2 3 cbr 210 ------- 0 0.0 3.1 225 610
- 1.8461 2 3 cbr 210 ------- 0 0.0 3.1 192 511

r 1.84612 3 2 cbr 210 ------- 1 3.0 1.0 196 603

+ 1.84612 2 1 cbr 210 ------- 1 3.0 1.0 196 603
- 1.84612 2 1 cbr 210 ------- 1 3.0 1.0 196 603

+ 1.84625 3 2 cbr 210 ------- 1 3.0 1.0 199 612

Here we see 14 trace entries, five enque operations (indibgtét+” in the first column), four deque operations (indichtey

“-"), four receive events (indicated by “r"), and one dropeet. (this had better be a trace fragment, or some packetislwou

have just vanished!). The simulated time (in seconds) athveach event occurred is listed in the second column. Thie nex
two fields indicate between which two nodes tracing is happenThe next field is a descriptive name for the the type of

packet seen (Section 26.5). The next field is the packees azencoded in its IP header.

The next field contains the flags, which not used in this examphe flags are defined in the flags[] array in trace.cc. Four
of the flags are used for ECN: “E” for Congestion Experiencgi)(and “N” for ECN-Capable-Transport (ECT) indications
in the IP header, and “C” for ECN-Echo and “A’ for Congestioimndbw Reduced (CWR) in the TCP header. For the other
flags, “P” is for priority, and “F” is for TCP Fast Start.

The next field gives the IRow identifierfield as defined for IP version®.The subsequent two fields indicate the packet’s
source and destination node addresses, respectively.ollbing field indicates the sequence numbérhe last field is a

lIn nsv1, each packet includedctass field, which was used by CBQ to classify packets. It then foadditional use to differentiate between “flows”
at one trace point. Insv2, the flow ID field is available for this purpose, but any diddial information (which was commonly overloaded into thass
field in nsv1) should be placed in its own separate field, possibly inesother header

2In nsv1, all packets contained a sequence number, whereas\@l only those Agents interested in providing sequencing géherate sequence
numbers. Thus, this field may not be usefuhisv2 for packets generated by agents that have not filled in aeseg number. It is used here to remain
backward compatible withsv1.

238

unique packet identifier. Each new packet created in thelation is assigned a new, unique identifier.

26.5 Packet Types

Each packet contains a packet type field used@itage::format to print out the type of packet encountered. The type field
is defined in th&raceHeader class, and is considered to be part of the trace suppormndtigiterpreted elsewhere in the
simulator. Initialization of the type field in packets is flrmed by theAgent::allocpkt (void) method. The type field is
set to integer values associated with the definition passtittAgent constructor (Section 10.6.3). The currently-supported
definitions, their values, and their associated symblicemare as follows (defined imspacket.h):

enum packet_t {
PT_TCP,

PT_UDP,

PT_CBR,
PT_AUDIO,
PT_VIDEO,
PT_ACK,
PT_START,
PT_STOP,
PT_PRUNE,
PT_GRAFT,
PT_GRAFTACK,
PT_JOIN,
PT_ASSERT,
PT_MESSAGE,
PT_RTCP,

PT_RTP,
PT_RTPROTO_DV,
PT_CtrMcast_Encap,
PT_CtrMcast_Decap,
PT_SRM,

/ = simple signalling messages */
PT_REQUEST,
PT_ACCEPT,
PT_CONFIRM,
PT_TEARDOWN,
PT_LIVE,// packet from live network
PT_REJECT,

PT_TELNET,// not needed: telnet use TCP
PT_FTP,

PT_PARETO,

PT_EXP,

PT_INVAL,

PT_HTTP,

/ * new encapsulator */
PT_ENCAPSULATED,

PT_MFTP,

/ * CMU/Monarch’s extnsions */
PT_ARP,

PT_MAC,

239

PT_TORA,
PT_DSR,
PT_AODV,
PT_AOMDYV,
/+ DCCP*/
PT_DCCP,

PT_MDART,
/I insert new packet types here

PT_NTYPE // This MUST be the LAST one
h

The constructor of clags _info glues these constants with their string values:

p_info() {

name_[PT_TCP]= "tcp";
name_[PT_UDP]= "udp";
name_[PT_CBR]= "cbr";
name_[PT_AUDIO]= "audio";

name_[PT_NTYPE]= "undefined";
}

See also section 12.2.2 for more details.

26.6 Queue Monitoring

Queue monitoring refers to the capability of tracking theawyics of packets at a queue (or other object). A queue nronito
tracks packet arrival/departure/drop statistics, and oytionally compute averages of these values. Monitoring be
applied to all packets (aggregate statistics), or per-flavstics (using a Flow Monitor).

Several classes are used in supporting queue monitoringn\&packet arrives at a link where queue monitoring is edaible
generally passes througtsaoopQueue object when it arrives and leaves (or is dropped). Thesetshimntain a reference
to aQueueMonitor object.

A QueueMonitor s defined as follows (rgqueue-monitor.cc):

class QueueMonitor : public TclObject {
public:
QueueMonitor() : bytesint (NULL), pktsint_(NULL), delay Samp_(NULL),
size_(0), pkts_(0),
parrivals_(0), barrivals_(0),
pdepartures_(0), bdepartures (0),
pdrops_(0), bdrops_(0),
srcld_(0), dstld_(0), channel_(0) {

bind("size_", &size);

240

bind("pkts_", &pkts);
bind("parrivals_", &parrivals_);
bind("barrivals_", &barrivals_);
bind("pdepartures_", &pdepartures_);
bind("bdepartures_", &bdepartures_);
bind("pdrops_", &pdrops);
bind("bdrops_", &bdrops);
bind("off_cmn_", &off_cmn_);

¥

int size() const { return (size); }

int pkts() const { return (pkts); }

int parrivals() const { return (parrivals_); }

int barrivals() const { return (barrivals_); }

int pdepartures() const { return (pdepartures); }
int bdepartures() const { return (bdepartures); }
int pdrops() const { return (pdrops_); }

int bdrops() const { return (bdrops); }

void printStats();

virtual void in(Packet *);

virtual void out(Packet *);

virtual void drop(Packet *);

virtual void edrop(Packet x) { abort(); }; // not here

virtual int command(int argc, const char *const * argv);

/I packet arrival to a queue

void QueueMonitor::in(Packet * p)

{
hdr_cmn = hdr = (hdr_cmn =)p->access(off_cmn_);
double now = Scheduler::instance().clock();
int pktsz = hdr->size();

barrivals_ += pktsz;
parrivals_++;
size_ += pktsz;
pkts_++;
if (bytesint)
bytesInt_->newPoint(now, double(size));
if (pktsint))
pktsint_->newPoint(now, double(pkts_));
if (delaySamp_)
hdr->timestamp() = now;
if (channel)
printStats();

. in(), out(), drop() are all defined similarly ...

It addition to the packet and byte counters, a queue moniayroptionally refer to objects that keep an integral of theug
size over time usingntegrator objects, which are defined in Section 25.3. Thiegrator class provides a simple
implementation of integral approximation by discrete sums

All bound variables beginning witp refer to packet counts, and all variables beginning weittefer to byte counts. The

241

variablesize_ records the instantaneous queue size in bytes, and thélegplds records the same value in packets.
When aQueueMonitor is configured to include the integral functions (on bytes ackets or both), it computes the
approximate integral of the queue size (in bytes) with resgetime over the intervdt, now|, wheret, is either the start of
the simulation or the last time ttsaim__field of the underlyingntegrator class was reset.

The QueueMonitor class is not derived fror@onnector , and is not linked directly into the network topology. Rathe
objects of theSnoopQueue class (or its derived classes) are inserted into the netwpddogy, and these objects contain
references to an associated queue monitor. OrdinarilytjpreiSnoopQueue objects will refer to the same queue monitor.
Objects constructed out of these classes are linked in tingl&tion topology as described above and @aleueMonitor

out ,in , ordrop procedures, depending on the particular type of snoopyeueu

26.7 Per-Flow Monitoring

A collection of specialized classes are used to to implempenflow statistics gathering. These classes include:
QueueMonitor/ED/Flowmon , QueueMonitor/ED/Flow , andClassifier/Hash . Typically, an arriving packet

is inspected to determine to which flow it belongs. This irsjpe and flow mapping is performed byctassifierobject
(described in section 26.7.1). Once the correct flow is d@texd, the packet is passed tl@v monitor which is responsible

for collecting per-flow state. Per-flow state is containeflow objects in a one-to-one relationship to the flows known by the
flow monitor. Typically, a flow monitor will create flow objecbn-demand when packets arrive that cannot be mapped to an
already-known flow.

26.7.1 The Flow Monitor

TheQueueMonitor/ED/Flowmon class is responsible for managing the creation of new flowaibjwhen packets arrive
on previously unknown flows and for updating existing flowesttg. Because it is a subclassieueMonitor , each flow
monitor contains an aggregate count of packet and byteadsridepartures, and drops. Thus, it is not necessary ttecaea
separate queue monitor to record aggregate statisticeodiges the following OTcl interface:

classifier get(set) classifier to map packets to flows
attach attach a Tcl I/O channel to this monitor
dump dump contents of flow monitor to Tcl channel
flows return string of flow object names known to this monitor

The classifier function sets or gets the name of the previously-allocatgdad which will perform packet-to-flow
mapping for the flow monitor. Typically, the type of classifiesed will have to do with the notion of “flow” held by the user.
One of the hash based classifiers that inspect various #PHewader fields is typically used here (e.g. fid, src/dstdstéid).
Note that while classifiers usually receive packets and dodvthem on to downstream objects, the flow monitor uses the
classifier only for its packet mapping capability, so the flmenitor acts as a passive monitor only and does not actively
forward packets.

The attach and dump functions are used to associate a Tcl I/O stream with the flawitar, and dump its contents
on-demand. The file format used by tthemp command is described below.

Theflows function returns a list of the names of flows known by the flownitar in a way understandable to Tcl. This
allows tcl code to interrogate a flow monitor in order to obtaandles to the individual flows it maintains.

242

26.7.2 Flow Monitor Trace Format

The flow monitor defines a trace format which may be used by-pastessing scripts to determine various counts on a
per-flow basis. The format is defined by the following codemgffowmon.cc:

void
FlowMon::fformat(Flow * f)
{
double now = Scheduler::instance().clock();
sprintf(wrk_, "%8.3f %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %dod
%d",
now,
f->flowid(), /I flowid
0, /I category
f->ptype(), /I type (from common header)
f->flowid(), /I flowid (formerly class)
f->src(),
f->dst(),
f->parrivals(), // arrivals this flow (pkts)
f->barrivals(), // arrivals this flow (bytes)
f->epdrops(), // early drops this flow (pkts)
f->ebdrops(), // early drops this flow (bytes)
parrivals(), /[all arrivals (pkts)
barrivals(), /[all arrivals (bytes)
epdrops(), /I total early drops (pkts)
ebdrops(), /I total early drops (bytes)
pdrops(), /I total drops (pkts)
bdrops(), /I total drops (bytes)
f->pdrops(), /I drops this flow (pkts) [includes edrops]
f->bdrops() /I drops this flow (bytes) [includes edrops]
);
h

Most of the fields are explained in the code comments. Thefgay” is historical, but is used to maintain loose backward
compatibility with the flow manager format imsversion 1.

26.7.3 The Flow Class

The classQueueMonitor/ED/Flow is used by the flow monitor for containing per-flow counterss & subclass of
QueueMonitor , it inherits the standard counters for arrivals, depagyaad drops, both in packets and bytes. In addition,
because each flow is typically identified by some combinatibthe packet source, destination, and flow identifier fields,
these objects contain such fields. Its OTcl interface costanly bound variables:

src_ source address on packets for this flow
dst_ destination address on packets for this flow
flowid_ flow id on packets for this flow

Note that packets may be mapped to flows (by classifiers) usitayia other than a src/dst/flowid triple. In such circum-
stances, only those fields actually used by the classifiegiifopming the packet-flow mapping should be consideredédi

243

26.8 Commands at a glance

Following is a list of trace related commands commonly usesimulation scripts:

$ns_ trace-all <tracefile>
This is the command used to setup tracing in ns. All tracesvatten in the <tracefile>.

$ns_ namtrace-all <namtracefile>
This command sets up nam tracing in ns. All nam traces arganriih to the <namtracefile>.

$ns_ namtrace-all-wireless <namtracefile> <X> <Y>
This command sets up wireless nam tracing. <X> and <Y> arg-theo-ordinates for the wireless topology and all
wireless nam traces are written into the <namtracefile>.

$ns_ nam-end-wireless <stoptime>
This tells nam the simulation stop time given in <stoptime>.

$ns_ trace-all-satlinks <tracefile>
This is a method to trace satellite links and write traces #itacefile>.

$ns_ flush-trace
This command flushes the trace buffer and is typically cdiefdre the simulation run ends.

$ns_ get-nam-traceall
Returns the namtrace file descriptor stored as the Simutetamce variable callegamtraceAllFile_

$ns_ get-ns-traceall
Similar to get-nam-traceall. This returns the file desonifior ns tracefile which is stored as the Simulator instaratied
traceAllFile_

$ns_ create-trace <type> <file> <src> <dst> <optional:op>

This command creates a trace object of type <type> betweendit> and <dst> nodes. The traces are written into the
<file>. <op> is the argument that may be used to specify the tfpirace, like nam. if <op> is not defined, the default trace
object created is for nstraces.

$ns_ trace-queue <nl> <n2> <optional:file>
This is a wrapper method fareate-trace . This command creates a trace object for tracing eventseolinth
represented by the nodes <n1> and <n2>.

$ns_ namtrace-queue <nl> <n2> <optional:file>
This is used to create a trace object for namtracing on thkebktween nodes <nl1> and <n2>. This method is very similar to
and is the namtrace counterpart of mettade-queue

$ns_ drop-trace <nl> <n2> <trace>
This command makes the given <trace> object a drop-targétéoqueue associated with the link between nodes <n1> and
<n2>.

$ns_ monitor-queue <nl> <n2> <qtrace> <optional:samplein terval>
This sets up a monitor that keeps track of average queuehleftjte queue on the link between nodes <n1> and <n2>. The
default value of sampleinterval is 0.1.

$link trace-dynamics <ns> <fileID> Trace the dynamics of this link and write the output to filelleHandle.
ns is an instance of the Simulator or MultiSim object that wasated to invoke the simulation.

244

The tracefile format is backward compatible with the outgdasfin the ns version 1 simulator so that ns-1 postprocessing
scripts can still be used. Trace records of traffic for linkegbs with Enque, Deque, receive or Drop Tracing have the
following form:

<code> <time> <hsrc> <hdst> <packet>

where

<code> := [hd+-] h=hop d=drop +=enque -=deque r=receive <ti me> =
simulation time in seconds
<hsrc> = first node address of hop/queuing link

<hdst> := second node address of hop/queuing link

<packet> := <type> <size> <flags> <flowID> <src.sport> <ds t.dport> <seq>
<pktID>

<type> := tcp|telnet|cbr|ack etc.

<size> := packet size in bytes

<flags> := [CP] C=congestion, P=priority

<flowID> := flow identifier field as defined for IPv6
<src.sport> := transport address (src=node,sport=agent)
<dst.sport> := transport address (dst=node,dport=agent)
<seq> := packet sequence number

<pktID> := unique identifer for every new packet

Only those agents interested in providing sequencing witlggate sequence numbers and hence this field may not bé usefu
for packets generated by some agents. For links that use REWagys, there are additional trace records as follows:
<code> <time> <value>

where

<code> := [Qap] Q=queue size, a=average queue size, p=packe t dropping
probability

<time> := simulation time in seconds

<value> := value

Trace records for link dynamics are of the form:
<code> <time> <state> <src> <dst>
where

<code> = [v]

<time> := simulation time in seconds
<state> := [link-up | link-down]

<src> := first node address of link
<dst> := second node address of link

245

Chapter 27

Test Suite Support

The ns distribution contains many test suites undedtel/test, which used by validation programs§validate, validate-
wired, validate-wireless, and validate.win32) to vertiat the installation of ns is correct. If you modify or add nesdules
to ns, you are encouraged to run the validation programs k& mare that your changes do not affect other parts in ns.

27.1 Test Suite Components
Each test suite undengitcl/test is written to verify the correctness of a certaindule in ns. It has 3 components:

e A shell script (test-all-xxx) to start the test;
e A ns tcl script (test-suite-xxx.tcl) to actually run thrduthe tests defined.

e A subdirectory (test-output-xxx) undenstcl/test, which contains thecorrect trace files generaiethe test suite.
These files are used to verify if the test suite runs correitly your ns.

(Note: xxx stands for the name of the test suite.)

27.2 Write a Test Suite

You can take one of the test suites undeg/tel/test as a template when you are writing your own, fomaegke the test suite
written for wireless lan (test-all-wireless-lan, testtstwireless-lan.tcl, and test-output-wireless-lan).

To write a test suite, you first need to write the shell scripsttall-xxx). In the shell script, you specify the modubebie

tested, the name of the ns tcl script and the output subdinecYou can run this shell script in quiet mode. Below is the
example (test-all-wireless-lan):

To run in quiet mode: "./test-all-wireless-lan quiet".

f="wireless-lan" # Specify the name of the module to test.

246

file="test-suite-$f.tcl" # The name of the ns script.
directory="test-output-$f* # Subdirectory to hold the tes t results
version="v2" # Speficy the ns version.

Pass the arguments to test-all-templatel, which will run t hrough
all the test cases defined in test-suite-wireless-lan.tc l.
Jtest-all-templatel $file $directory $version $@

You also need to create several test cases in the ns scpis(tite-xxx.tcl) by defining a subclass of TestSuite fazhea
different test. For example, in test-suite-wirelessildneach test case uses a different Ad Hoc routing prototbey are
defined as:

Class TestSuite

wireless model using destination sequence distance vecto r
Class Test/dsdv -superclass TestSuite

wireless model using dynamic source routing
Class Test/dsr -superclass TestSuite

Each test case is basically a simulation scenario. In therstlpss TestSuite, you can define some functions, like it a
finish to do the work required by each test case, for exampimgeip the network topology and ns trace. The test specific
configurations are defined within the corresponding subsclBach sub-class also has a run function to start the giorula

TestSuite instproc init {} {
global opt tracefd topo chan prop
global node_ god_
$self instvar ns_ testName_
set ns_ [new Simulator]

TestSuite instproc finish {} {
$self instvar ns_
global quiet

$ns_ flush-trace

puts "finishing.."
exit O

}

Test/dsdv instproc init {} {
global opt node_ god_
$self instvar ns_ testName_
set testName_ dsdv

$self next

247

$ns_ at Sopt(stop).1 "$self finish"
}

Test/dsdv instproc run {} {
$self instvar ns_
puts "Starting Simulation..."
$ns_ run

}

All the tests are started by the function runtest in the nipscr

proc runtest {arg} {
global quiet
set quiet O

set b [llength $arg]
if {$b == 1} {
set test $arg
} elseif {$b == 2} {
set test [lindex $arg 0]
if {[lindex $arg 1] == "QUIET"} {
set quiet 1
}
} else {
usage
}

set t [new Test/$test]
$t run

}

global argv arg0
runtest $argv

When you run the tests, trace files are generated and savied tatput subdirectory. These trace files are compared to the
those correct trace coming with the test suite. If the comupam shows difference, the test is failed.

248

Chapter 28

Dynamic Libraries

Starting with the ns-2.33 release, ns-2 has support formijoaly loadable libraries.

28.1 Motivation

Many researchers around the world are developing modifiesiores of ns2 in order to introduce new features such as
agents, protocols, algorithms, etc. The standard praatiopted in doing this is to get an official version of the ns2ree
distribution, make the needed modifications on the sourde,cadd new files somewhere in the existing code tree, andi/final
build everything into the ns2 executable.

The introduction of dynamically loadable libraries prozéda new way to extend ns-2, with the following features:

e People can develop add-ons for ns2 (e.g. introducing newtageacket types, protocols) without having to modify
the core simulator.

o New packet headers and types, as well as packet tracers, lmewefined to assist debugging, collection of statistics
and inter-module communication. These can also be loadé@mand according to user’s needs.

e Dynamic libraries can be loaded at simulation time, with eecdto recompile the whole ns2 distribution or to keep
different ns2 binaries.

e The installation of third-party ns2 extensions is madeaxagiereby facilitating their dissemination.

e Dynamic libraries will make life easier for lab techniciaarsd students. In fact, an official ns2 version can be installe
by the administrator and students can just build and usephefierred extensions independently.

e Besides, these modifications will make ns2 more modular eathlle. Adding new features to the simulator will be
easier and backward compatibility will be preserved.

The below sections briefly summarize the more complete deatettion that can be found at: http://www.dei.unipd.itEbaldo/ns_dl.

249

28.2 Support

The dynamic libraries extension is available for the nsafie-2.33 release, with support existing in ns-2 from t&&€r33
release.

It has been tested on Linux i386, Linux x86_64, and Cygwinl§8psystems. It has not been tested with OS X and likely
further extensions are necessary.

The best way to use the system in Cygwin is to install the hiseasle-2.33 release, since there have been two small patche
to the tcl.m4 files in the tcl and tk directories.

If you are using an older version of ns-2, one of the belowhmeganay work: http://www.dei.unipd.it/%7Ebaldo/ns_ditgh/Downloac

28.3 Usage

From a user’s perspective, the only thing to do in order toaudgnamic module in ns is to load it. After this operation, the
module itself can be used exactly as if it had been embeddbe ins binary.

The loading of a dynamic module should be performed at thenhawy of the tcl script used for the simulation. The loading
consists of the following tcl instruction:

load libmodulename.so

where libmodulename.so is the filename of the shared library

One thing we have to take care of is to use the right path toiltihary. Relative and absolute paths can be used for this
purpose; e.g., respectively,

load ../src/.libs/libmodulename.so
load /locale/baldo/lib/somethingelse.so

Note that you can just provide the file name without any péthgi path it resides in is in the LD_LIBRARY_PATH environ-
mental variable in Linux, or the PATH environment variabfe@ygwin.

Also remember that the format of the shared libraries is ®@eddent: .so libraries are found in unix systems, while for
instance on cygwin you will need to use .dll libraries, andafh X the .dylib suffix is used. With respect to this point, itds

be noted that also the actual name of the library file mighhgea for instance, the same library mentioned before woeld b
called cygmodule-0.dll when built using libtool on a cygvelystem. Just remember to chek the actual filename if you load
command fails.

We note that, for libraries built using libtool (which is theethod we propose in this document), when you install thratib

on cygwin - i.e., when you type make install -, the dll file getgalled in YOUR_PREFIX/bin, and notin YOUR_PREFIX/lib
as you might expect. Therefore, you should add YOUR_PRHfiX6 your PATH to make everything work smoothly.

250

Chapter 29

ns Code Styles

We recommend the following coding guidelines for ns

29.1 Indentation style

e We recommend using the BSD Kernel Normal Form coding stydatkd at
http://cvsweb.netbsd.org/bsdweb.cgi/sharesrc/smigelstyle?rev=HEAD&content-type=text/x-cvsweb-mask

e Although KNF is specified for C, it also applies reasonablyl veeC++ and Tcl. Most of ns already follows KNF and
it is also extensively used for the BSD and Linux kernels.

e The high order bitis 8-space indents. Using 8-space inagsmnisl confusion about what a "tab" character represents. A
downside is it makes deeply nested looping structures ledfitlin 80 columns. (Some people consider this a feature.

=)

29.2 Variable Naming Conventions

e Instance variables of a class should all end in an undersbig helps distinguish instance variables from global and
local variables.

e C++ and Tcl bound variables should have the same names Tipsidentify the bound variables quickly and reduces
complexity

29.3 Miscellaneous

e Avoid the use of C++ templates. Ns is supported on multiptgfpims and templates are not very portable and are
often difficult to debug. Exception: This guideline has beslaxed for some imported code, but the core of ns should
build and run without templates.

e For NsObjects, use the debug_ instance variable to enablegdiang functionality. This avoids repetitive definations
of debug statements and allows debugging a particular sbhjthout recompilation.

251

Example: To enable debugging in Queue object include theviiolg statement in your tcl script.
Queue set debug_ true

Debugging statments can be inserted in the classes imgefitim Queue as follows:
debug("This is a debug statement %d",variable_to_debug);

All debugging statements are sent to stdout.

e Error messages which cause the program to exit should becsstaterr. All other messages should be sent to stdout

252

Part IV

Routing

253

Chapter 30

Unicast Routing

This section describes the structure of unicast routingsin/Ve begin by describing the interface to the user (Sectioh)30
through methods in thelass Simulator and theclass RoutelLogic . We then describe configuration mechanisms
for specialized routing (Section 30.2) such as asymmatritimg, or equal cost multipath routing The next sectiorcdbss
the the configuration mechanisms for individual routingtggies and protocols (Section 30.3). We conclude with gpcem
hensive look at the internal architecture (Section 30.4pafing inns

The procedures and functions described in this chapter edaund in gtcl/lib/ns-route.tcl, Adtcl/riglib/route-proto.tcl,
~ndtcl/mcast/McastProto.tcl, andhgrtProtoDV.{cc, h}.

30.1 The Interface to the Simulation Operator (The API)

The user level simulation script requires one command: égi§pthe unicast routing strategy or protocols for the datian.

A routing strategy is a general mechanism by whiskvill compute routes for the simulation. There are four rogtrategies

in ns Static, Session, Dynamic and Manual. Conversely, a rgytintocol is a realization of a specific algorithm. Currgntl
Static and Session routing use the Dijkstra’s all-pairs SRerithm []; one type of dynamic routing strategy is cutign
implemented: the Distributed Bellman-Ford algorithm [h ris we blur the distinction between strategy and protocol for
static and session routing, considering them simply aspaois.

rtproto {} is the instance procedure in thdass Simulator that specifies the unicast routing protocol to be used in
the simulation. It takes multiple arguments, the first ofethis mandatory; this first argument identifies the routingtqcol

to be used. Subsequent arguments specify the nodes thatiwithe instance of this protocol. The default is to run the
same routing protocol on all the nodes in the topology. As»amnmle, the following commands illustrate the use of the
rtproto {} command.

$ns rtproto Static # Enable static route strategy for the simulation
$ns rtproto Session # Enable session routing for this simulation
$ns rtproto DV $nl $n2 $n3 # Run DV agents on nodes $n1, $n2, and $n3
$ns rtproto LS $nl $n2 # Run link state routing on specified nodes

If a simulation script does not specify amproto {} command, thennswill run Static routing on all the nodes in the
topology.

1The consideration is that static and session routing giesfrotocols are implemented as agents derived frorolétss Agent/rtProto similar
to how the different dynamic routing protocols are impleteenhence the blurred distinctions.

254

Multiple rtproto {} lines for the same or different routing protocols can ocitua simulation script. However, a simulation
cannot use both centralized routing mechanisms such &s@taession routing and detailed dynamic routing protesath
as DV.

In dynamic routing, each node can be running more than ontngpprotocol. In such situations, more than one routing
protocol can have a route to the same destination. Theredanh protocol affixes a preference value to each of its soute
These values are non-negative integers in the range 0... TA83ower the value, the more preferred the route. Whenipheilt
routing protocol agents have a route to the same destindtiermost preferred route is chosen and installed in the'siode
forwarding tables. If more than one agent has the most pezfeputes, the ones with the lowest metric is chosen. We call
the least cost route from the most preferred protocol thedate” route. If there are multiple candidate routes fithin
same or different protocols, then, currently, one of thentigeoutes is randomly chos&n

Preference Assignment and Control Each protocol agent stores an array of route preferemgeef . There is one
element per destination, indexed by the node handle. Trriligireference values used by each protocol are deriveddro
class variablepreference_ , for that protocol. The current defaults are:

Agent/rtProto set preference_ 200 # global default preference
Agent/rtProto/Direct 3 set preference_ 100
Agent/rtProto/DV set preference_ 120

A simulation script can control routing by altering the mnefnce for routes in one of three ways: alter the prefereorce f
specific route learneda a particular protocol agent, alter the preference for altee learned by the agent, or alter the class
variables for the agent before the agent is created.

Link Cost Assignment and Control In the currently implemented route protocols, the metria @dute to a destination,
at a node, is the cost to reach the destination from that ntide.possible to change the link costs at each of the links.
The instance procedus®st {} is invoked as$ns cost (nodel) (node2) (cost),and sets the cost of the link from
(node? to (node? to (cos}.

$ns cost $nl $n2 10 # set cost of linkrom $nlto $n2 to 10

$ns cost $n2 $n1 5 # set cost of link in reverse direction to 5
[$ns link $n1 $n2] cost? # query cost of link from $n1 to $n2
[$ns link $n2 $n1] cost? i query cost of link in reverse direction

Notice that the procedure sets the cost along one directibn cSimilarly, the procedureost? {} returns the cost of
traversing the specified unidirectional link. The defaolstcof a link is 1.

30.2 Other Configuration Mechanisms for Specialised Routig

It is possible to adjust preference and cost mechanismg twvgespecial types of route configurations: asymmetricinmyt
and multipath routing.

2This really is undesirable, and may be fixed at some point.fikheill probably be to favor the agents in class preferenaieorA user level simulation
relying on this behavior, or getting into this situation pesific topologies is not recommended.

3Direct is a special routing strategy that is used in conjoncivith Dynamic routing. We will describe this in greatettaibas part of the route architec-
ture description.

255

Asymmetric Routing Asymmetric routing occurs when the path from nedeto nodens is different from the path from
no to ny. The following shows a simple topology, and cost configorathat can achieve such a result:

Nodesn; and ny use different
paths to reach each other. All
other pairs of nodes use symmet-
ric paths to reach each other.

$ns cost $nl $r1l 2
$ns cost $n2 $r2 2
$ns cost $r1 $n2 3

Any routing protocol that uses link costs as the metric caseole such asymmetric routing if the link costs are appab@lst
configured.

MultiPath Routing Each node can be individually configured to use multiple sstpgpaths to a particular destination.
The instance variablmultiPath_ determines whether or not that node will use multiple patharty destination. Each
node initialises its instance variable from a class vaealflthe same name. If multiple candidate routes to a destimat
are available, all of which are learned through the sameopobt then that node can use all of the different routes to the
destination simultaneously. A typical configuration is svgn below:

Node set multiPath_ 1 # All new nodes in the simulation use multiPaths where appliea
or alternately
set nl [$ns Node] # only enable $n1 to use multiPaths where applicable

$n1 set multiPath_ 1

Currently, only DV routing can generate multipath routes.

30.3 Protocol Specific Configuration Parameters

Static Routing The static route computation strategy is the default rootputation mechanism ins This strategy
uses the Dijkstra’s all-pairs SPF algorithm []. The routenpaitation algorithm is run exactly once prior to the starthaf
simulation. The routes are computed using an adjacencyxnaa link costs of all the links in the topology.

(Note that static routing is static in the sense that it is potad once when the simulation starts, as opposed to semsibn
DV routing that allow routes to change mid-simulation. Ateahative to static routing is Manual routing where routes a
not computed but instead are set (manually) by the user.)

Session Routing The static routing strategy described earlier only compraetes for the topology once in the course of a
simulation. If the above static routing is used and the togpkchanges while the simulation is in progress, some sewnce
destinations may become temporarily unreachable from ethehr for a short time.

Session routing strategy is almost identical to staticingytin that it runs the Dijkstra all-pairs SPF algorithmasrto the
start of the simulation, using the adjacency matrix and tiokts of the links in the topology. However, it will also ruret
same algorithm to recompute routes in the event that thddgpehanges during the course of a simulation. In other word
route recomputation and recovery is done instantaneouslyteere will not be transient routing outage as in statidingu

Session routing provides complete and instantaneousipcitianges in the presence of topology dynamics. If the toyyas
always connected, there is end-to-end connectivity airatg during the course of the simulation. However, the useulsl

4Link costs can also be used to favour or disregard specifis limorder to achieve particular topology configurations.

256

note that the instantaneous route recomputation of sessitimg does not prevent temporary violations of causaitgh as
packet reordering, around the instant that the topologngés.

DV Routing DV routing is the implementation of Distributed BellmantBo(or Distance Vector) routing ims The
implementation sends periodic route updates eweglyertinterval . This variable is a class variable in tetass
Agent/rtProto/DV . Its default value is 2 seconds.

In addition to periodic updates, each agent also sendsetégigupdates; it does this whenever the forwarding tablésein
node change. This occurs either due to changes in the togalbgecause an agent at the node received a route update, and
recomputed and installed new routes.

Each agent employs the split horizon with poisoned reversehianisms to advertise its routes to adjacent peers. “Split
horizon” is the mechanism by which an agent will not advertfee route to a destination out of the interface that it isgisi

to reach that destination. In a “Split horizon with poisomederse” mechanism, the agent will advertise that routebtitat
interface with a metric of infinity.

Each DV agent uses a defapleference_ of 120. The value is determined by the class variable of theesgame.

Each agent uses the class varidblEINITY (set at 32) to determine the validity of a route.

Manual Routing Manual routing is not a route computation protocol (like titeers), but simply a way for users to
configure the routing table by hand, much as you would witH'tbete” command on a workstation.

To use manual routing, enable it with rtproto, then set eamtes routing tables with the add-route-to-adj-node contman
For example:

$ns rtproto Manual

set nl [$ns node]

set n2 [$ns node]

$ns duplex-link $n1 $n2 10Mb 100ms DropTail
$nl add-route-to-adj-node -default $n2

$n2 add-route-to-adj-node -default $nl

For a more complete example, gekex/many_tcp.tcl

30.4 Internals and Architecture of Routing

We start with a discussion of the classes associated wittashrouting, and the code path used to configure and execute
each of the different routing protocols. We conclude witheaatiption of the interface between unicast routing and/oek
dynamics, and that between unicast and multicast routing.

30.4.1 The classes

There are four main classes, the class RoutelLogic, thet@bgect, the class rtPeer, and the base class Agent/otRnoall
protocols. In addition, the routing architecture extermsdlasses Simulator, Link, Node and Classifier.

257

cl ass RoutelLogi ¢ This class defines two methods to configure unicast routimg) ome method to query it for route
information. It also defines an instance procedure that dicable when the topology is dynamic. We discuss this last
procedure in conjunction with the interface to network dyics.

e The instance proceduregister {} is invoked by Simulator::rtproto {}. It takes the protocol and a list of
nodes as arguments, and constructs an instance varnigdstgps , as an array; the array index is the name of the
protocol, and the value is the list of nodes that will run gistocol.

e Theconfigure {}readsthertprotos_ instance variable, and for each element in the array, irsvodate protocol
methods to perform the appropriate initializations. lngdked by the simulator run procedure.
For each protoca(rt-proto) indexed in thetprotos_ array, this routine invoke&gent/rtProto/ (rt-proto)
init-all rtprotos_((rt-proto).
Ifthere are no elementsitprotos_ , the routine invokes Static routing, Agent/rtProto/Static init-all

e The instance proceduteokup {} takes two node numbersyodeld; andnodelds, as argument; it returns the id of
the neighbor node thatodeld; uses to reachodeld,.

The procedure is used by the static route computation ptwedd query the computed routes and populate the routes
at each of the nodes. Itis also used by the multicast routiogppols to perform the appropriate RPF check.

Note that this procedure overloads an instproc-like of #eesname. The procedure queries the approptiatgect
entities if they exist (which they will if dynamic routingrstegies are used in the simulation); otherwise, the pureed
invokes the instproc-like to obtain the relevant inforroati

class rtnject isused in simulations that use dynamic routing. Each nodahtObject associated with it, that acts
as a co-ordinator for the different routing protocols tha¢i@te at a node. At any node, the rtObject at that node tesakts
of the protocols operating at that node; it computes andlissthe nest route to each destination available via eatheof
protocols. In the event that the routing tables change,etahology changes, the rtObject will alert the protocolsate the
appropriate action.

The class defines the procedumé-all {}; this procedure takes a list of nodes as arguments, anatesea rtObject at
each of the nodes in its argument list. It subsequently iegdlscompute-routes

The assumption is that the constructor for each of the newctbjwill instantiate the “Direct” route protocol at each
of these nodes. This route protocol is responsible for cdimguhe routes to immediately adjacent neighbors. When
compute-routes {} is run by the init-all {} procedure, these direct routes are installed in the nogl¢hle appro-
priate route object.

The other instance procedures in this class are:

e init {} The constructor sets up pointers from itself to the nodheits instance variableode_, and from the node to
itself, through the Node instance procedimi&routing {} and the Node instance variabt€Object . It then
initializes an array ohextHop_ , rtpref_ , metric_ , rtVia_ . The index of each of these arrays is the handle of
the destination node.

ThenextHop_ contains the link that will be used to reach the particulatidation;rtpref_ andmetric_ are the
preference and metric for the route installed in the notdéa_ is the name of the agent whose route is installed in

the node.
The constructor also creates the instance of the Direcerptdtocol, and invokesompute-routes {} for that
protocol.

e add-proto {} creates an instance of the protocol, stores a referendanats array of protocolsttProtos . The

index of the array is the name of the protocol. It also attathe protocol object to the node, and returns the handle of
the protocol object.

258

e lookup {}takes a destination node handle, and returns the id of gighbor node that is used to reach the destination.
If multiple paths are in use, then it returns a list of the héigr nodes that will be used.
If the node does not have a route to the destination, the guveewill return -1.

e compute-routes {}is the core procedure in this class. It first checks to seany§ of the routing protocols at the
node have computed any new routes. If they have, it will deitee the best route to each destination from among
all the protocols. If any routes have changed, the procedilr@otify each of the protocols of the number of such
changes, in case any of these protocols wants to send a fpelslteu Finally, it will also notify any multicast protocol
that new unicast route tables have been computed.

The routine checks the protocol agent’s instance variatdi€hanged_ to see if any of the routes in that protocol
have changed since the protocol was last examined. It thesithe protocol’s instance variable arraysxtHop_
rtpref ., andmetric_ to compute its own arrays. The rtObject will install or mgdény of the routes as the
changes are found.

If any of the routes at the node have changed, the rtObjettinvibke the protocol agent’s instance procedures,
send-updates {} with the number of changes as argument. It will then invake multicast route object, if it
exists.

The next set of routines are used to query the rtObject faowaistate information.

e dump-routes {} takes a output file descriptor as argument, and writes batrbuting table at that node on that file
descriptor.

A typical dump output is:

e rtProto? {} takes a route protocol as argument, and returns a handlegtdnstance of the protocol running at the
node.

e nextHop? {} takes a destination node handle, and returns the linkithased to reach that destination.

o Similarly, rtpref? {} and metric? {} take a destination node handle as argument, and returprtékerence and
metric of the route to the destination installed at the node.

Thecl ass rtPeer isacontainerclass used by the protocol agents. Each dtgges the address of the peer agent, and
the metric and preference for each route advertised by &t A protocol agent will store one object per peer. Thesclas
maintains the instance variakdeldr_ , and the instance variable arraysetric_ andrtpref_ ; the array indices are the
destination node handles.

The class instance proceduresetric {} and preference {}, take one destination and value, and set the respective ar
ray variable. The proceduresietric? {} and preference? {}, take a destination and return the current value for that
destination. The instance procedaddr? {} returns the address of the peer agent.

class Agent/rtProto Thisclass is the base class from which all routing protogelds are derived. Each protocol
agent must define the procedinie-all {}to initialize the complete protocol, and possibly instanproceduremit {3},
compute-routes {}, and send-updates {}. In addition, if the topology is dynamic, and the protocalpports route
computation to react to changes in the topology, then thempobshould define the procedwwempute-all {}, and possi-
bly the instance procedumaf-changed {}. In this section, we will briefly describe the interfacerfthe basic procedures.
We will defer the description ofompute-all {} and intf-changed {} to the section on network dynamics. We also
defer the description of the details of each of the prototmtheir separate section at the end of the chapter.

259

— The procedurénit-all {} is a global initialization procedure for the class. It mag given a list of the nodes as
an argument. This the list of nodes that should run this nguprotocol. However, centralized routing protocols such
as static and session routing will ignore this argumentgitket dynamic routing protocols such as DV will use this
argument list to instantiate protocols agents at each afitldes specified.

Note that derived classes in OTcl do not inherit the proceslaiefined in the base class. Therefore, every derived
routing protocol class must define its own procedures eiXlglic

— The instance proceduirit {} is the constructor for protocol agents that are createdhe Dase class constructor
initializes the default preference for objects in this slasentifies the interfaces incident on the node and their cu
rent status. The interfaces are indexed by the neighborl&éamdl stored in the instance variable ariésy, ; the
corresponding status instance variable arrafstat_

Centralized routing protocols such as static and sessigtingpdo not create separate agents per node, and therefore d
not access any of these instance procedures.

— The instance procedumempute-routes {} computes the actual routes for the protocol. The compateis based
on the routes learned by the protocol, and varies from pabtogrotocol.

This routine is invoked by the rtObject whenever the topglolganges. It is also invoked when the node receives an
update for the protocol.

If the routine computes new routefDbject::compute-routes {} needs to be invoked to recompute and possi-
bly install new routes at the node. The actual invoking ofrt@ject is done by the procedure that invoked this routine
in the first place.

— Theinstance procedusend-updates {} is invoked by the rtObject whenever the node routing taliave changed,
and fresh updates have to be sent to all peers. The rtObjes¢pas argument the number of changes that were done.
This procedure may also be invoked when there are no chaadhe toutes, but the topology incident on the node
changes state. The number of changes is used to determilig thfgpeers to which a route update must be sent.

Other procedures relate to responding to topology chamypbai@ described later (Section 30.4.2).

Other Extensions to the Simulator, Node, Link, and Classifie

— We have discussed the methattgoto {} and cost {} in the class Simulator earlier (Section 30.1). The oneesth
method used internally iget-routelogic {}; this procedure returns the instance of routelogic in giraulation.

The method is used by the class Simulator, and unicast anitasilrouting.

— The class Node contains these additional instance proesttusupport dynamic unicast routingit-routing {3
add-routes {}, delete-routes {}, and rtObject? {}.
The instance proceduist-routing {}is invoked by thertObject atthe node. It stores a pointer to the rtObject,
in its instance variabldObject_ , for later manipulation or retrieval. It also checks itsssl@ariable to see if it should

use multiPath routing, and sets up an instance variableatoeffect. If multiPath routing could be used, the instance
variable arrayoutes_ stores a count of the number of paths installed for eachrdgiin. This is the only array in
unicast routing that is indexed by the node id, rather thamthde handle.

The instance procedurtObject? {} returns the rtObject handle for that node.

The instance procedussld-routes {} takes a node id, and a list of links. It will add the list ohks as the routes
to reach the destination identified by the node id. The ratiin of multiPath routing is done by using a separate
Classifier/multiPath. For any given destinatiordidf this node has multiple paths th then the main classifier points
to this multipath classifier instead of the link to reach thstthation. Each of the multiple paths identified by the
interfaces being used is installed in the multipath classifihe multipath classifier will use each of the links instl

in it for succeeding packets forwarded to it.

260

The instance procedutkelete-routes {} takes a node id, a list of interfaces, and a nullAgent. hm/es each of
the interfaces in the list from the installed list of intexés. If the entry did not previously use a multipath classifie
then it must have had only one route, and the route entry o g&tint to the nullAgent specified.

Q: WHY DOES IT NOT POINT TO NULLAGENT IF THE ENTRIES IN THE MPAHRCLASSIFIER GOES TO
ZERO?

— The main extension to the class Link for unicast routingpistpport the notion of link costs. The instance variable
cost_ contains the cost of the unidirectional link. The instanaepduregost {} and cost? {} setand get the cost
on the link.

Note thatcost {} takes the cost as argument. It is preferable to use the Isitoumethod to set the cost variable,
similar to the simulator instance procedures to set the goedelay on a link.

— Theclass Classifier contains three new procedures, two of which overloads astiegiinstproc-like, and the
other two provide new functionality.

The instance proceduiestall {} overloads the existing instproc-like of the same namee Piocedure stores the
entry being installed in the instance variable aredgments_ , and then invokes the instproc-like.

The instance procedunestallNext {} also overloads the existing instproc-like of the same mariihis instproc-
like simply installs the entry into the next available slot.

The instance proceduegljacents {} returns a list of (key, value pairs of all elements installed in the classifier.

30.4.2 Interface to Network Dynamics and Multicast

This section describes the methods applied in unicastmgtdi respond to changes in the topology. The complete sequen
of actions that cause the changes in the topology, and firagpeopriate actions is described in a different sectione Th
response to topology changes falls into two categorie®orataken by individual agents at each of the nodes, andrectd

be taken globally for the entire protocol.

Detailed routing protocols such as the DV implementatiauies actions to be performed by individual protocol agextts
the affected nodes. Centralized routing protocols suchadis &nd session routing fall into the latter category esiviely.
Detailed routing protocols could use such techniques thagattatistics related to the operation of the routing proito
however, no such code is currently implementedsn

Actions at the individual nodes Following any change in the topology, the network dynamicsieis will first invoke
rtObject::intf-changed {} at each of the affected nodes. For each of the unicast mgytrotocols operating at that
node, rtObject::intf-changed {} will invoke each individual protocol’s instance proced intf-changed {},
followed by that protocol'sompute-routes {}.

After each protocol has computed its individual rout&3bject::intf-changed {} invokes compute-routes {}

to possibly install new routes. If new routes were installethe nodertObject::compute-routes {} will invoke
send-updates {} for each of the protocols operating at the node. The pracedvill also flag the multicast route object of
the route changes at the node, indicating the number of @sthgt have been executetDbject::flag-multicast {
will, in turn, notify the multicast route object to take appriate action.

The one exception to the interface between unicast and easitrouting is the interaction between dynamic dense mode
multicast and detailed unicast routing. This dynamicDM lenpentation imsassumes neighbor nodes will send an implicit
update whenever their routes change, without actuallyisgrttie update. It then uses this implicit information to eom
pute appropriate parent-child relationships for the roaftt spanning trees. Therefore, detailed unicast routithgruoke
rtObject_ flag-multicast 1 whenever it receives a route update as well, even if thatteptlzes not result in any
change in its own routing tables.

261

Global Actions Once the detailed actions at each of the affected nodes ipleted, the network dynamics models will
notify the RouteLogic instanc&putelLogic::notify {}) of changes to topology. This procedure invokes the pchoe
compute-all {} for each of the protocols that were ever installed at anyh@ nodes. Centralized routing protocols such
as session routing use this signal to recompute the routke topology. Finally, th&®outeLogic::notify {} procedure
notifies any instances of centralized multicast that areasjyey at the node.

30.5 Protocol Internals

In this section, we describe any leftover details of eachhefrbuting protocol agents. Note that this is the only plabens
we describe the internal route protocol agent, “Direct’tiogL

Direct Routing This protocol tracks the state of the incident links, andntans routes to immediately adjacent neighbors
only. As with the other protocols, it maintains instanceafale arrays ohextHop_ , rtpref _ , andmetric_ , indexed by
the handle of each of the possible destinations in the tgyolo

The instance procedummpute-routes {} computes routes based on the current state of the link, thedoreviously
known state of the incident links.

No other procedures or instance procedures are defineddqritocol.

Static Routing The procedureompute-routes {}inthe class RoutelLogic first creates the adjacency matrix, and
then invokes the C++ methodpmpute routes () of the shadow object. Finally, the procedure retrievesrésult of the
route computation, and inserts the appropriate routescht@&gahe nodes in the topology.

The class only defines the procedimi¢-all {} that invokescompute-routes {}.

Session Routing The class defines the procedini-all {} to compute the routes at the start of the simulation. lbals
defines the procedumempute-all {} to compute the routes when the topology changes. Eachesfelprocedures directly
invokescompute-routes {}.

DV Routing In a dynamic routing strategy, nodes send and receive messaigd compute the routes in the topology based
on the messages exchanged. The proceuhirell {} takes a list of nodes as the argument; the default is theolis
nodes in the topology. At each of the nodes in the argumeetptbcedure starts thdass rtObject and aclass
Agent/rtProto/DV agents. It then determines the DV peers for each of the nesgyted DV agents, and creates the
relevantrtPeer objects.

The constructor for the DV agent initializes a number ofanse variables; each agent stores an array, indexed by the
destination node handle, of the preference and metricntkeface (or link) to the next hop, and the remote peer intida

the interface, for the best route to each destination coetpby the agent. The agent creates these instance variabtks,
then schedules sending its first update within the first Ccbrsebs of simulation start.

Each agent stores the list of its peers indexed by the hafithe @eer node. Each peer is a separate peer structure that ho
the address of the peer agent, the metric and preference afuke to each destination advertised by that peer. Weskishe
rtPeer structure later when discuss the route architeciure peer structures are initialized by the procedw®-peer {}
invoked byinit-all {}.

262

The routinesend-periodic-update {} invokes send-updates {} to send the actual updates. It then reschedules
sending the next periodic update aféeivertinterval jittered slightly to avoid possible synchronization effec

send-updates {} will send updates to a select set of peers. If any of the esudt that node have changed, or for periodic
updates, the procedure will send updates to all peers. @Wigeerif some incident links have just recovered, the praced
will send updates to the adjacent peers on those incided éinly.

send-updates {} uses the procedursend-to-peer {} to send the actual updates. This procedure packages tiiatep
taking the split-horizon and poison reverse mechanisnasdntount. It invokes the instproc-likeend-update {} (Note

the singular case) to send the actual update. The actua upatate is stored in the class varialvieg_ indexed by a non-
decreasing integer as index. The instproc-like only sehesridex tomsg_ to the remote peer. This eliminates the need to
convert from OTcl strings to alternate formats and back.

When a peer receives a route update it first checks to deteiifrtime update from differs from the previous ones. The agent
will compute new routes if the update contains new infororati

30.6 Unicast routing objects

Routelogic and rtObject are two objects that are signifitantnicast routing ims Routelogic, essentially, represents the
routing table that is created and maintained centrally f@re unicast simulation. rtObject is the object that eveoge
taking part in dynamic unicast routing, has an instance otehat nodes will not have an instance of this object if Bess
routing is done as a detailed routing protocol is not beingu&ited in this case. The methods for RouteLogic and rt@bjec
are described in the next section.

30.7 Commands at a glance

Following is a list of unicast routing related commands usesimulation scripts:

$ns_ rtproto <routing-proto> <args>

where <routing-proto> defines the type of routing protoodd¢ used, like Static, Manual, Session , DV etc. args mayelefin
the list of nodes on which the protocol is to be run. The nostedéfaults to all nodes in the topology.

Internal methods:

$ns_ compute-routes

This command computeext_hop information for all nodes in the topology using the topolagynectivity. This

next_hop info is then used to populate the node classifiers or themgutibles. compute-routes calls compute-flat-routes
or compute-hier-routes depending on the type of addressimy used for the simulation.

$ns_ get-routelogic

This returns a handle to the RouteLogic object (the routitdel), if one has been created. Otherwise a new routing table
object is created.

$ns_ dump-routelogic-nh

263

This dumps next hop information in the routing table.
$ns_ dump-routelogic-distance

This dumps the distance information in the routing table.
$node add-route <dst> <Target>

This is a method used to add routing entries (nexthop infompin the node’s routing table. The nexthop to <dst> from
this node is the <target> object and this info is added to tdeis classifier.

$routelogic lookup <srcid> <destid>
Returns the id of the node that is the next hop from the nodeidisrcid to the node with id destid.
$routelogic dump <nodeid>

Dump the routing tables of all nodes whose id is less thanidotide ids are typically assigned to nodes in ascending
fashion starting from O by their order of creation.

rtobject dump-routes <filelID>

Dump the routing table to the output channel specified bydiléileID must be a file handle returned by the Tcl open
command and it must have been opened for writing.

$rtobject rtProto? <proto>

Returns a handle to the routing protocol agent specified btppf it exists at that node. Returns an empty string othsewi
$rtobject nextHop? <destiD>

Returns the id of the node that is the next hop to the desptinapecified by the node id, <destID>.

$rtobject rtpref? destiD

Returns the preference for the route to destination nodendiy destid.

$rtobject metric? destiD

Returns metric for the route to destid.

264

Chapter 31

Multicast Routing

This section describes the usage and the internals of rasitiouting implementation ins We first describe the user
interface to enable multicast routing (Section 31.1), Bpélee multicast routing protocol to be used and the varimeshods
and configuration parameters specific to the protocols otiyreupported ims We then describe in detail the internals and
the architecture of the multicast routing implementations (Section 31.2).

The procedures and functions described in this chaptereéound in various files in the directoriesgtcl/mcast, -agtcl/ctr-
mcast; additional support routines are immcast_ctrl.{cc,h}, ndtcl/lib/ns-lib.tcl, and wdtcl/lib/ns-node.tcl.

31.1 Multicast API

Multicast forwarding requires enhancements to the node4iaks in the topology. Therefore, the user must specifytivast
requirements to the Simulator class before creating thelogpy. This is done in one of two ways:

set ns [new Simulator -multicast on]
or

set ns [new Simulator]

$ns multicast

When multicast extensions are thus enabled, nodes will éated with additional classifiers and replicators for ncabi
forwarding, and links will contain elements to assign indogrinterface labels to all packets entering a node.

A multicast routing strategy is the mechanism by which thdticast distribution tree is computed in the simulatioms
supports three multiast route computation strategiedraiged, dense mode(DM) or shared tree mode(ST).

The methodnrtproto {} in the Class Simulator specifies either the route compatastrategy, for centralised multicast
routing, or the specific detailed multicast routing protdbat should be used.

The following are examples of valid invocations of multicemuting inns

set cmc [$ns mrtproto CtrMcast] # specify centralized multicast for all nodes
;# cmc is the handle for multicast protocol object
$ns mrtproto DM # specify dense mode multicast for all nodes

265

$ns mrtproto ST ;# specify shared tree mode to run on all nodes

Notice in the above examples that CtrMcast returns a hamhdliedan be used for additional configuration of centralised
multicast routing. The other routing protocols will retamull string. All the nodes in the topology will run instascaf the
same protocol.

Multiple multicast routing protocols can be run at a nodd,ibuhis case the user must specify which protocol owns which
incoming interface. For this finer contnairtproto-iifs {}is used.

New/unused multicast address are allocated using the guoeallocaddr {}.
The agents use the instance procedjoiesgroup {}and leave-group {}, in the class Node to join and leave multicast
groups. These procedures take two mandatory argumentdir§ih@gument identifies the corresponding agent and second

argument specifies the group address.

An example of a relatively simple multicast configuration is

set ns [new Simulator -mul ticast on] ;# enable multicast routing
set group [Node al | ocaddr] ;# allocate a multicast address
set nodeO [$ns node] ;# create multicast capable nodes

set nodel [$ns node]
$ns duplex-link $node0 $nodel 1.5Mb 10ms DropTail

set mproto DM ;# configure multicast protocol
set mrthandle [$ns nrtproto $nproto] # all nodes will contain multicast protocol agents
set udp [new Agent/UDP] ;# create a source agent at node 0

$ns attach-agent $node0 $udp

set src [new Application/Traffic/CBR]
$src attach-agent $udp

$udp set dst_addr__ $group
$udp set dst _port_ O

set rcvr [new Agent/LossMonitor] # create a receiver agent at node 1
$ns attach-agent $nodel $rcvr
$ns at 0.3 " $nodel join-group $rcvr $group” ;# jointhe group at simulation time 0.3 (sec)

31.1.1 Multicast Behavior Monitor Configuration

nssupports a multicast monitor module that can trace usen&fiacket activity. The module counts the number of packets
in transit periodically and prints the results to specifidéesfiattach {} enables a monitor module to print output to a file.
trace-topo {} insets monitor modules into all linksfilter ~ {} allows accounting on specified packet header, field in
the header), and value for the field). Callifiger {} repeatedly will result in an AND effect on the filtering cdition.
print-trace {} notifies the monitor module to begin dumping datatype() is a global arrary that takes a packet type
name (as seen tnace-all {} output) and maps it into the corresponding value. A simpdafiguration to filter cbr packets

on a particular group is:

set mcastmonitor [new McastMonitor]

set chan [open cbr.tr w] # open trace file
$mmonitor attach $chanl # attach trace file to McastMoniotor object
$mcastmonitor set period_ 0.02 ;# default 0.03 (sec)

266

$mmonitor trace-topo

;# trace entire topology

$mmonitor filter Common ptype_ $ptype(cbr) # filter on ptype_ in Common header
$mmonitor filter IP dst_ $group # AND filter on dst_ address in IP header
$mmonitor print-trace # begin dumping periodic traces to specified files

The following sample output illustrates the output file fatn{time, count):

0.16 0

0.17999999999999999
0.19999999999999998
0.21999999999999997 6
0.23999999999999996 11
0.25999999999999995 12
0.27999999999999997 12

[eNe)

31.1.2 Protocol Specific configuration

In this section, we briefly illustrate the protocol specifiméiguration mechanisms for all the protocols implementauki

Centralized Multicast The centralized multicast is a sparse mode implementafiamuéticast similar to PIM-SM [9]. A
Rendezvous Point (RP) rooted shared tree is built for a oagtigroup. The actual sending of prune, join messagescetc. t
set up state at the nodes is not simulated. A centralized eotatipn agent is used to compute the forwarding trees and set
up multicast forwarding statéS, G at the relevant nodes as new receivers join a group. Dataefs=frtbm the senders to a
group are unicast to the RP. Note that data packets from titesgare unicast to the RP even if there are no receiversdor t

group.

The method of enabling centralised multicast routing imausation is:

set mproto CtrMcast
set mrthandle [$ns mrtproto $mproto]

set multicast protocol

The command procedurertproto {} returns a handle to the multicast protocol object. Thisitile can be used to control
the RP and the boot-strap-router (BSR), switch tree-typea fparticular group, from shared trees to source specifasir

and recompute multicast routes.

$mrthandle set ¢ rp $node0 $nodel

setthe RPs

$mrthandle set ¢ _bsr $node0:0 $nodel:l #H set the BSR, specified as list of node:priority
$mrthandle get c_rp $node0 $group # get the current RP ??2?
$mrthandle get_c_bsr $node0 ;# getthe current BSR
$mrthandle switch-treetype $group # to source specific or shared tree
$mrthandle compute-mroutes # recompute routes. usually invoked automatically as needed

Note that whenever network dynamics occur or unicast rgutimangesgcompute-mroutes

{} could be invoked to re-

compute the multicast routes. The instantaneous re-catiputfeature of centralised algorithms may result in chiysa

violations during the transient periods.

267

Dense Mode The Dense Mode protocobM.tcl) is an implementation of a dense—-mode-like protocol. Ddjpgnon
the value of DM class variableacheMissMode it can run in one of two modes. facheMissMode is set topimdm
(default), PIM-DM-like forwarding rules will be used. Alteatively,CacheMissMode can be set tavmrp (loosely based
on DVMRP [31]). The main difference between these two mosléisdat DVMRP maintains parent—child relationships among
nodes to reduce the number of links over which data packetsrandcast. The implementation works on point-to-poidi

as well as LANs and adapts to the network dynamics (linksgajmand down).

Any node that receives data for a particular group for whidtas no downstream receivers, send a prune upstream. A prune
message causes the upstream node to initiate prune sthtd abte. The prune state prevents that node from sendiag dat
for that group downstream to the node that sent the originaigpmessage while the state is active. The time duration for
which a prune state is active is configured through the DMsclasiable PruneTimeout . A typical DM configuration is
shown below:

DM set PruneTimeout 0.3 ;# default 0.5 (sec)
DM set CacheMissMode dvmrp # default pimdm
$ns mrtproto DM

Shared Tree Mode Simplified sparse mod8T.tcl is a version of a shared—tree multicast protocol. Classbbgiarray
RP_indexed by group determines which node is the RP for a péatiguoup. For example:

ST set RP_($group) $node0
$ns mrtproto ST

At the time the multicast simulation is started, the protogitl create and install encapsulator objects at nodes hiast
multicast senders, decapsulator objects at RPs and caeect To join a group, a node sends a graft message towards the
RP of the group. To leave a group, it sends a prune messageardtoeol currently does not support dynamic changes and
LANSs.

Bi-directional Shared Tree Mode BST.tcl is an experimental version of a bi—directional shared tm¢ogol. As in
shared tree mode, RPs must be configured manually by usirdase arrayRP_. The protocol currently does not support
dynamic changes and LANSs.

31.2 Internals of Multicast Routing

We describe the internals in three parts: first the classé@npement and support multicast routing; second, the §ipeci
protocol implementation details; and finally, provide & digthe variables that are used in the implementations.

31.2.1 The classes

The main classes in the implementation aredlass mrtObject and theclass McastProtocol . There are also
extensions to the base classes: Simulator, Node, ClassiiteiVe describe these classes and extensions in this sulysectio
The specific protocol implementations also use adjunctstatatures for specific tasks, such as timer mechanismsthifete
dense mode, encapsulation/decapsulation agents foatisatt multicasetc ; we defer the description of these objects to the
section on the description of the particular protocol ftsel

268

mrtObject class There is one mrtObject (aka Arbiter) object per multicagtadde node. This object supports the ability
for a node to run multiple multicast routing protocols by ntaining an array of multicast protocols indexed by the mow
interface. Thus, if there are several multicast protocbks @ode, each interface is owned by just one protocol. Thezef
this object supports the ability for a node to run multiplelticast routing protocols. The node uses the arbiter toquarf
protocol actions, either to a specific protocol instancevactt that node, or to all protocol instances at that node.

addproto {instance} adds the handle for a protocol instance to itayanf protocols. The second optional
argument is the incoming interface list controlled by thetpcol. If this argument is
an empty list or not specified, the protocol is assumed to ruallinterfaces (just one
protocol).

getType {protocol} returns the handle to the protocol instanceatit that node that matches the specified
type (first and only argument). This function is often usetbt@te a protocol’s peer at
another node. An empty string is returned if the protocohefgiven type could not be
found.

all-mprotos {op, args} internal routine to executep” with “args ” on all protocol instances active at that
node.

start {}
stop {} start/stop execution of all protocols.
notify {dummy} is called when a topology change occurs. The dumngyarent is currently not used.
dump-mroutes {file-handle} dump multicast routes to specified file-handle
join-group {G, S} signals all protocol instances to joii$, G.
leave-group {G, S} signals all protocol instances to lea{®, G.

upcall {code, s, g, iiff signalled by node on forwarding errors imssifier; this routine in turn signals the proto-
col instance that owns the incoming interfaig () by invoking the appropriate handle
function for that particular code.

drop {rep, s, g, iiff Called on packet drop, possibly to prune ateiface.

In addition, the mrtObject class supports the concept of kedwn groupsj.e., those groups that do not require explicit
protocol support. Two well known group&l.L. ROUTER&NJALL_PIM_ROUTERSre predefined ins

Theclass mrtObject defines two class procedures to set and get information dbhese well known groups.

registerWellKnownGroups {name} assignsiame a well known group address.

getWellKnownGroup {name} returnsthe address allocated to well known growgme. If nameis not reg-
istered as a well known group, then it returns the addregsifor ROUTERS

McastProtocol class This is the base class for the implementation of all the madti protocols. It contains basic multicast
functions:

start {}, stop {} Setthestatus_ of execution of this protocol instance.
getStatus {} return the status of execution of this protocol instance.
getType {} returnthe type of protocol executed by this instance.

upcall {code args} invoked when the node classifier signals an egitiner due to a cache-miss or a wrong-iif for
incoming packet. This routine invokes the protocol spedifindle,handle- (code){} with
specifiedargs to handle the signal.

A few words about interfaces. Multicast implementatiomgassumes duplex links i.e. if there is a simplex link from nade
to node 2, there must be a reverse simplex link from node 2de ao To be able to tell from which link a packet was received,
multicast simulator configures links with an interface ligdreat the end of each link, which labels packets with a patér
and unique label (id). Thus, “incoming interface” is reéattto this label and is a number greater or equal to zero. limgpm

269

interface value can be negative (-1) for a special case wieepdcket was sent by a local to the given node agent.

In contrast, an “outgoing interface” refers to an objectdian usually a head of a link which can be installed at a caypdir.
This destinction is importanincoming interface is a numeric label to a packet, while oirig interface is a handler to an
object that is able to receive packets, e.g. head of a link.

31.2.2 Extensions to other classes ims

In the earlier chapter describing nodesis(Chapter 5), we described the internal structure of the mode To briefly recap
that description, the node entry for a multicast node issthigch_ . It looks at the highest bit to decide if the destination is
a multicast or unicast packet. Multicast packets are fosedito a multicast classifier which maintains a list of regfics;
there is one replicator pésource, grouptuple. Replicators copy the incoming packet and forwardltowgoing interfaces.

Class Node Node support for multicast is realized in two primary wayserves as a focal point for access to the multicast
protocols, in the areas of address allocation, control aadagement, and group membership dynamics; and secondly, it
provides primitives to access and control interfaces dsslincident on that node.

270

expandaddr {},
allocaddr {}

start-mcast {},
stop-mcast {}
notify-mcast {}

getArbiter {}
dump-routes {file-handle}

new-group {s g iif code}

join-group {ag}

leave-group {ag}

add-mfc {s g iif oiflist}

del-mfc {s g oiflist}

Class procedures for address managemenexpandaddr {} is now obsoleted.
allocaddr {} allocates the next available multicast address.

To start and stop multicast routing at that node.

notify-mcast {} signals the mrtObject at that node to recompute multicastes fol-
lowing a topology change or unicast route update from a figh

returns a handle to mrtObject operating at that node.
to dump the multicast forwarding tables attthade.

When a multicast data packet is received, arerttulticast classifier cannot find the slot
corresponding to that data packet, it invokéssde nstproc new-group {} to estab-
lish the appropriate entry. The code indicates the reagamofdfinding the slot. Currently
there are two possibilities, cache-miss and wrong-iif.sTgriocedure notifies the arbiter
instance to establish the new group.

An agent at a node that joins a particular group invokasde join-group
<agent> <group> ". The node signals the mrtObject to join the particui@oup |,
and addsgent to its list of agents at thagroup . It then addsagent to all replicators
associated witlgroup .

Node instproc leave-group reverses the process described earlier. It disables
the outgoing interfaces to the receiver agents for all tipdicators of the group, deletes
the receiver agents from the locAgients_ list; it then invokes the arbiter instance’s
leave-group {}.

Node instproc add-mfc adds amulticast forwarding cachentry for a particular
(source, group, ilf. The mechanism is:

e create a new replicator (if one does not already exist),
e update theeplicator_ instance variable array at the node,
e add all outgoing interfaces and local agents to the appatpreplicator,

e invoke the multicast classifieradd-rep {} to create a slot for the replicator in the
multicast classifier.

disables each oif imiflist from the replicator fofs, g.

The list of primitives accessible at the node to controliteifaces are listed below.

271

add-iif ~ {ifid link},
add-oif {linkif} Invoked during link creation to prep the node aboiti$ incoming interface label and outgoing
interface object.
get-all-oifs {} Returns all oifs for this node.
get-all-iifs {} Returns all iifs for this node.
iif2link {ifid} Returns the link object labelled with given interfa¢abel.
link2iif {link} Returns the incoming interface label for the givénk
oif2link {oif} Returns the link object corresponding to the given gaing interface.
link2oif {link} Returns the outgoing interface for tHank (nsobject that is incident to the node).
rpf-nbr {src} Returns a handle to the neighbour node that is its negtto the specifiedrc .
getReps {sg} Returns a handle to the replicator that matcteg). Either argument can be a wildcard (*).
getReps-raw {sg} As above, butreturns a list gkey, handl¢ pairs.
clearReps {sg} Removes all replicators associated wi#) g.

Class Link and SimpleLink This class provides methods to check the type of link, andabel it affixes on individual
packets that traverse it. There is one additional methodttally place the interface objects on this link. These rodsmare:

if-label? {} returns the interface label affixed by this link to packétst traverse it.

Class NetworkInterface This is a simple connector that is placed on each link. It effiits label id to each packet that
traverses it. The packetid is used by the destination nazigent on that link to identify the link by which the packeaohed

it. The label id is configured by the Link constructor. Thigeatt is an internal object, and is not designed to be manipdla
by user level simulation scripts. The object only supparts tnethods:

label {ifid} assignsifid that this object will affix to each packet.
label {} returns the label that this object affixes to each packet.

The global class variabldacenum_ |, specifies the next availabiitdd number.

Class Multicast Classifier Classifier/Multicast maintains amulticast forwarding cacheThere is one multicast
classifier per node. The node stores a reference to thidfidass its instance variablenulticlassifier . When this
classifier receives a packet, it looks at fseurce, groupinformation in the packet headers, and the interface treapétket
arrived from (the incoming interface or iif); does a lookupthe MFC and identifies the slot that should be used to forward
that packet. The slot will point to the appropriate replicat

However, if the classifier does not have an entry for teisurce, group or the iif for this entry is different, it will invoke an
upcallnew-group {} for the classifier, with one of two codes to identify the flem:

e cache-miss indicates that the classifier did not find afspurce, groupentries;

e wrong-iif indicates that the classifier fourigource, groupentries, but none matching the interface that this packet
arrived on.

These upcalls to TCL give it a chance to correct the situatiostall an appropriate MFC—entry (faache-miss) or
change the incoming interface for the existing MFC—entoy\{frong-iif). Thereturn valueof the upcall determines what
classifier will do with the packet. If the return value is “1t'will assume that TCL upcall has appropriately modified MFC

272

will try to classify packet (lookup MFC) for the second timéthe return value is “0”, no further lookups will be done,dan
the packet will be thus dropped.

add-rep {} creates a slot in the classifier and adds a replicatof$ource, group, iifto that slot.

Class Replicator When a replicator receives a packet, it copies the packditabits slots. Each slot points to an outgoing
interface for a particulafsource, group

If no slot is found, the C++ replicator invokes the classanse procedurdrop {} to trigger protocol specific actions. We
will describe the protocol specific actions in the next segtivhen we describe the internal procedures of each of thtecast
routing protocols.

There are instance procedures to control the elements imshatc

insert {oif} inserting a new outgoing interface to the next avaikaslot.
disable {oif} disable the slot pointing to the specified oif.
enable {oif} enable the slot pointing to the specified oif.
is-active {} returns true if the replicator has at least one active.slot
exists {oif} returns true if the slot pointing to the specified oif éstive.
change-iface {source, group, oldiif, newiiff modified the iif entry for #aparticular replicator.

31.2.3 Protocol Internals

We now describe the implementation of the different mu#ticauting protocol agents.

Centralized Multicast

CtrMcast is inherits fromMcastProtocol . One CtrMcast agent needs to be created for each node. Ehareen-
tral CtrMcastComp agent to compute and install multicastes for the entire topology. Each CtrMcast agent processes
membership dynamic commands, and redirects the CtrMcagi@gent to recompute the appropriate routes.

join-group {} registers the new member with thétrMCastComp agent, and invokes that agent to re-
compute routes for that member.

leave-group {} isthe inverse ofjoin-group {}.

handle-cache-miss {} called when no proper forwarding entry is found for a padiiar packet source. In case of
centralized multicast, it means a new source has startetimgpdata packets. Thus, the
CtrMcast agent registers this new source with@tevicastComp agent. If there are any
members in that group, compute the new multicast tree. I§thap is in RPT (shared tree)
mode, then

1. create an encapsulation agent at the source;

2. a corresponding decapsulation agent is created at the RP;
3. the two agents are connected by unicast; and
4

. the(S,G entry points its outgoing interface to the encapsulaticenag

273

CtrMcastComp is the centralised multicast route computation agent.

reset-mroutes {} resets all multicast forwarding entries.
compute-mroutes {} (re)computes all multicast forwarding entries.

compute-tree {source, group} computes a multicast tree for one source#zh all the receivers in a

specific group.

compute-branch {source, group, member} is executed when a receiver joinsuliicast group. It could also be
invoked bycompute-tree {} when it itself is recomputing the mul-
ticast tree, and has to reparent all receivers. The algordtarts at the
receiver, recursively finding successive next hops, ungither reaches
the source or RP, or it reaches a node that is already a pdreatte-
vant multicast tree. During the process, several new rafgis and an
outgoing interface will be installed.

prune-branch {source, group, member} is similar mmpute-branch {} except the outgoing interface is dis-
abled; if the outgoing interface list is empty at that nodeyill walk
up the multicast tree, pruning at each of the intermediateespuntil it
reaches a node that has a non-empty outgoing interfacetighé par-
ticular multicast tree.

Dense Mode

join-group {group} sends graft messages upstreaSfG does not contain any ac-
tive outgoing slotsi(e., no downstream receivers). If the next
hop towards the source is a LAN, icrements a counter of recgiv
for a particular group for the LAN

leave-group {group} decrements LAN counters.

handle-cache-miss {srcID group iface} depending on the value of CacheMissMode
calls either handle-cache-miss-pimdm or
handle-cache-miss-dvmrp

handle-cache-miss-pimdm {srcID group iface} if the packet was received on the coriiddfrom the node that
is the next hop towards the source), fan out the packet orifsll o
except the oif that leads back to the next—hop—neighbor dad o
that are LANSs for which this node is not a forwarder. Othepwyis
if the interface was incorrect, send a prune back.

handle-cache-miss-dvmrp {srcID groupiface} fans out the packet only to nodes for whtbis node is a next
hop towards the source (parent).

drop {replicator source group iface} sends a prune message loattletprevious hop.

recv-prune {from source group iface} resetsthe prune timer if the ifdee had been pruned previously;
otherwise, it starts the prune timer and disables the exterffur-
thermore, if the outgoing interface list becomes emptyraipa-
gates the prune message upstream.

recv-graft {from source group iface} cancels any existing prune tinardre-enables the pruned in-
terface. If the outgoing interface list was previously eynjit
forwards the graft upstream.

handle-wrong-iif {srcID group iface} This is invoked when the multicast cldiss drops a
packet because it arrived on the wrong interface, and
invoked new-group {}. This routine is invoked by
mrtObject instproc new-group {}. When invoked, it
sends a prune message back to the source.

274

31.2.4 The internal variables

Class mrtObject
protocols_

mask-wkgroups
wkgroups

McastProtocol
status_
type_
Simulator
multiSim_
MrtHandle

Node
switch_

multiclassifier_
replicator_
Agents_

outLink _
inLink_

Link andSimpleLink
if_

head_

NetworkInterface
ifacenum_

An array of handles of protocol instances active at the nadehéh this protocol operates
indexed by incoming interface.

Class variable—defines the mask used to identify well knovoups.

Class array variable—array of allocated well known grougdrasses, indexed by the group
name.wkgroups (Allocd) is a special variable indicating the highest cathgallocated well
known group.

takes values “up” or “down”, to indicate the status of exe@mubf the protocol instance.
contains the type (class name) of protocol executed byrisiancee.g, DM, or ST.

1 if multicast simulation is enabled, 0 otherwise.
handle to the centralised multicast simulation object.

handle for classifier that looks at the high bit of the destimeaddress in each packet to deter-
mine whether it is a multicast packet (bit = 1) or a unicaskeacbit = 0).

handle to classifier that performs tfe g, iify match.

array indexed bys, g of handles that replicate a multicast packet on to the reduinks.

array indexed by multicast group of the list of agents at twall node that listen to the specific
group.

Cached list of outgoing interfaces at this node.

Cached list of incoming interfaces at this node.

handle for the NetworklInterface object placed on this link.

first object on the link, a no-op connector. However, thiseebgontains the instance variable,
link_ , that points to the container Link object.

Class variable—holds the next available interface number.

31.3 Commands at a glance

Following is a list of commands used for multicast simulasp

set ns [new Simulator -mcast on]
This turns the multicast flag on for the the given simulatatrthe time of creation of the simulator object.

ns_ multicast

This like the command above turns the multicast flag on.

ns_ multicast?

This returns true if multicast flag has been turned on for imeigtion and returns false if multicast is not turned on.

275

$ns_ mrtproto <mproto> <optional:nodelist>

This command specifies the type of multicast protocol <mgrad be used like DM, CtrMcast etc. As an additional
argument, the list of nodes <nodelist> that will run an instof detailed routing protocol (other than centralisedsticcan
also be passed.

$ns_ mrtproto-iifs <mproto> <node> <iifs>
This command allows a finer control than mrtproto. Since ipl@ltmcast protocols can be run at a node, this command
specifies which mcast protocol <mproto> to run at which ofittteming interfaces given by <iifs> in the <node>.

Node allocaddr
This returns a new/unused multicast address that may beasadign a multicast address to a group.

Node expandaddr
THIS COMMAND IS OBSOLETE NOW This command expands the adsisgsce from 16 bits to 30 bits. However this
command has been replaced'bg_ set-address-format-expanded"

$node_ join-group <agent> <grp>
This command is used when the <agent> at the node joins @ylartgroup <grp>.

$node_ leave-group <agent> <grp>
This is used when the <agent> at the nodes decides to leagedhp <grp>.

Internal methods:
$ns_ run-mcast
This command starts multicast routing at all nodes.

$ns_ clear-mcast
This stopd mcast routing at all nodes.

$node_ enable-mcast <sim>
This allows special mcast supporting mechanisms (like astridassifier) to be added to the mcast-enabled node. <sim> is
the a handle to the simulator object.

In addition to the internal methods listed here there areratiethods specific to protocols like centralized mcast\Cast),
dense mode (DM), shared tree mode (ST) or bi-directionakshimee mode (BST), Node and Link class methods and
NetworklInterface and Multicast classifier methods spetifimulticast routing. All mcast related files may be found end
ngtcl/mcast directory.

Centralised Multicast A handle to the CtrMcastComp object is returned when theogrdtis specified as ‘CtrMcast’ in
mrtproto. Ctrmcast methods are:
$ctrmcastcomp switch-treetype group-addr
Switch from the Rendezvous Point rooted shared tree to seapecific trees for the group specified by group-addr.
Note that this method cannot be used to switch from soureeifsptrees back to a shared tree for a multicast group.

$ctrmcastcomp set_c_rp <node-list>
This sets the RPs.

$ctrmcastcomp set_c_bsr <node0:0> <nodel:1>
This sets the BSR, specified as list of node:priority.

$ctrmcastcomp get_c_rp <node> <group>

Returns the RP for the group as seen by the node node for thieastigroup with address group-addr. Note that
different nodes may see different RPs for the group if thevaek is partitioned as the nodes might be in different
partitions.

$ctrmcastcomp get c¢_bsr <node>

276

Returns the current BSR for the group.

$ctrmcastcomp compute-mroutes
This recomputes multicast routes in the event of networlkadyins or a change in unicast routes.

Dense Mode The dense mode (DM) protocol can be run as PIM-DM (defaulD)\@MRP depending on the class variable
CacheMissMode . There are no methods specific to this mcast protocol obj¥ass variables are:

PruneTimeout Timeout value for prune state at nodes. defaults to 0.5sec.
CacheMissMode Used to set PIM-DM or DVMRP type forwarding rules.

Shared Tree There are no methods for this class. Variables are:
RP_ RP_indexed by group determines which node is the RP for &pkmt group.

Bidirectional Shared Tree There are no methods for this class. Variable is same asftiSfiawed Tree described above.

277

Chapter 32

Network Dynamics

This chapter describes the capabilities&to make the simulation topologies dynamic. We start withitiséance procedures
to the class Simulator that are useful to a simulation s¢8pttion 32.1). The next section describes the internhiteture
(Section 32.2), including the different classes and irtavariables and procedures; the following section dessrthe
interaction with unicast routing (Section 32.3). This adpd network dynamics is still somewhat experimentah@& The
last section of this chapter outlines some of the deficienicie¢he current realization (Section 32.4) of network dyitam
some one or which may be fixed in the future.

The procedures and functions described in this chapter eafound in +gftcl/rtglib/dynamics.tcl and rdtcl/lib/route-
proto.tcl.

32.1 The user level API

The user level interface to network dynamics is a collectbinstance procedures in the class Simulator, and one pro-
cedure to trace and log the dynamics activity. Reflectingtiergpoor choice of names, these procedurestanedel
rtmodel-delete ,andrtmodel-at . There is one other proceduranodel-configure , that is used internally by
the class Simulator to configure the rtmodels just prior nougation start. We describe this method later (Section)32.2

— The instance procedurémodel {} defines a model to be applied to the nodes and links in theltmgy. Some
examples of this command as it would be used in a simulatioptsre:

$ns rtmodel Exponential 0.8 1.0 1.0 $nl
$ns rtmodel Trace dynamics.trc $n2 $n3
$ns rtmodel Deterministic 20.0 20.0 $node(1) $node(5)

The procedure requires at least three arguments:

e The first two arguments define the model that will be used, haghairameters to configure the model.

The currently implemented models s are Exponential (On/Off), Deterministic (On/Off), Traadrigen), or
Manual (one-shot) models.

e The number, format, and interpretation of the configuratiarameters is specific to the particular model.

1. The exponential on/off model takes four parametéegart time], up interval, down interval, [finish time]
(start time defaults td).5s. from the start of the simulatiorfinish time) defaults to the end of the simulation.
(up interva} and(down interval specify the mean of the exponential distribution definingtime that the

278

node or link will be up and down respectively. The default ma @own interval values art)s. and1s.
respectively. Any of these values can be specified-ds6 default to the original value.
The following are example specifications of parametersitortiodel:

0.8 1.0 1.0 # start at0.8s., up/down =1.0s., finish is default
5.0 0.5 # startis default, up/down 5.0s, 0.5s., finish is default
- 0.7 # start, up interval are default, down 6.7s., finish is default
---10 # start, up, down are default, finish &0s.

2. The deterministic on/off model is similar to the exporn@nhodel above, and takes four parametéfstart
time], up interval, down interval, [finish timg] (start time defaults to the start of the simulatioffinish time
defaults to the end of the simulation. Only the interpretaf the up and down interval is differenyp
interva) and(down interva) specify the exact duration that the node or link will be up dodn respectively.
The default values for these parameters &tart time is 0.5s. from start of simulation{up interva} is 2.0s.,
(down interva] is 1.0s., and(finish time) is the duration of the simulation.

3. The trace driven model takes one parameter: the name tfttefile. The format of the input trace file is
identical to that output by the dynamics trace modulés, v (time) link- (operation) (nodel)
(node2). Lines that do not correspond to the node or link specifiedgarered.

v 0.8123 link-up 3 5
v 3.5124 link-down 3 5

4. The manual one-shot model takes two parameters: thetapet@be performed, and the time that it is to be

performed.

e The rest of the arguments to thtenodel {} procedure define the node or link that the model will be apglo.
If only one node is specified, it is assumed that the node willl This is modeled by making the links incident
on the node fail. If two nodes are specified, then the commasdnaes that the two are adjacent to each other,
and the model is applied to the link incident on the two nodfarore than two nodes are specified, only the first
is considered, the subsequent arguments are ignored.

e instance variablaraceAllFile_ is set.

The command returns the handle to the model that was creathiticall.
Internally,rtmodel {} stores the list of route models created in the class Sitwulastance variabletModel_

— The instance procedurémodel-delete {} takes the handle of a route model as argument, remove®iih fthe
rtModel_ list, and deletes the route model.

— The instance procedurgmodel-at {} is a special interface to the Manual model of network dyriesn

The command takes the time, operation, and node or link asragts, and applies the operation to the node or link at
the specified time. Example uses of this command are:

$ns rtmodel-at 3.5 up $n0

$ns rtmodel-at 3.9 up $n(3) $n(5)
$ns rtmodel-at 40 down $n4

Finally, the instance procedutece-dynamics {} of the class rtModel enables tracing of the dynamics eféelcby this

model. Itis used as:

set fh [open "dyn.tr" w]
$rtmodell trace-dynamics $fh
$rtmodel2 trace-dynamics $fh
$rtmodell trace-dynamics stdout

In this example$rtmodell writes out trace entries to both dyn.tr and std@uttnodel2 only writes out trace entries to
dyn.tr. A typical sequence of trace entries written out liiexsimodel might be:

279

0.8123 link-up 3 5
0.8123 link-up 5 3
3.5124 link-down 3 5
3.5124 link-down 5 3

< < < <

These lines above indicate that LiKi, 5) failed at0.8123s., and recovered at tim&5124s.

32.2 The Internal Architecture

Each model of network dynamics is implemented as a sepdess, derived from the bastass rtModel . We begin
by describing the base class rtModel and the derived clg¢Ssesion 32.2.1). The network dynamics models use an iatern
queuing structure to ensure that simultaneous events eectdy handled, thelass rtQueue . The next subsection (Sec-
tion 32.2.2) describes the internals of this structurealiyinwe describe the extensions to the existing classesi(®e32.3.1):
the Node, Link, and others.

32.2.1 The class rtModel

To use a new route model, the routirimodel {} creates an instance of the appropriate type, defines tlie oo link that
the model will operate upon, configures the model, and plyssifiables tracing; The individual instance procedures tha
accomplish this in pieces are:

The constructor for the base class stores a reference torthiaor in its instance variables_ . It also initializes the
startTime_ andfinishTime_ from the class variables of the same name.

The instance procedure set-elements identifies the nodlekahkt the model will operate upon. The command stores
two arraysilinks_ , of the links that the model will act uponpdes_ , of the incident nodes that will be affected by
the link failure or recovery caused by the model.

The default procedure in the base class to set the model coaign parameters is set-parms. It assumes a well defined
start time, up interval, down interval, and a finish time, aats up configuration parameters for some class of models.

It stores these values in the instance variabdeatTime_ , upinterval_ ,downinterval_ , finishTime_
The exponential and deterministic models use this defautime, the trace based and manual models define their own
procedures.

The instance proceduteace {} enablestrace-dynamics {} on each of the links that it affects. Additional details
ontrace-dynamics {}is discussed in the section on extensions to the class [(8dction 32.3.1).

The next sequence of configuration steps are taken justtpiiioe start of the simulatonsinvokesrtmodel-configure {3
just before starting the simulation. This instance procediust acquires an instance of the class rtQueue, and thekdn
configure {} for each route model in its listrttModel_

The instance proceduoenfigure {} makes each link that is is applied to dynamic; this is theadinks stored in
its instance variable arralnks_ . Then the procedure schedules its first event.

The default instance proceduwset-first-event {} schedules the first event to take all the links “down” at
$startTime_ +uplinterval_ . Individual types of route models derived from this basesishould redefine tihs
function.

280

Two instance procedures in the base classt;event {} and set-event-exact {}, can be used to schedule
events in the route queue.

set-event {interval, operation} schedulegperation afterinterval seconds from the current time; it uses the
procedureset-event-exact {} below.

set-event-exact {fireTime, operation} schedulesperation to execute afireTime
If the time for execution is greater than thieishTime_ , then the only possible action is to take a failed link “up”.

Finally, the base class provides the methods to take the lipk} or down{}. Each method invokes the appropriate
procedure on each of the links in the instance varidiviks

Exponential The model schedules its first event to take the links dovataatTime_ + E(upinterval_);

It also defines the procedurag{} and down{}; each procedure invokes the base class procedure to perioe actual
operation. This routine then reschedules the next everfugtiiterval) or E[downlinterval_) respectively.

Deterministic The model defines the procedurap{} and down{}; each procedure invokes the base class procedure to
perform the actual operation. This routine then reschediie next event aipinterval or downlinterval_ respec-
tively.

Trace The model redefines the instance procedieteparms {} to operan a trace file, and set events based on that input.

The instance proceduget-next-event {} returns the next valid event from the trace file. A valid exés an event that
is applicable to one of the links in this objediiisks_ variable.

The instance proceduset-trace-events {} uses get-next-event {} to schedule the next valid event.

The model redefineset-first-event {}, up{}, and down{} to use set-trace-events {3

Manual The model is designed to fire exactly once. The instance droeset-parms {} takes an operation and the
time to execute that operation as argumeses-first-event {} will schedule the event at the appropriate moment.

This routine also redefinemtify {} to delete the object instance when the operation is cotepleThis notion of the object
deleting itself is fragile code.

Since the object only fires once and does nto have to be rasietkit does not overload the proceduueg} or down{}.

32.2.2 cl ass rt Queue

The simulator needs to co-ordinate multiple simultaneat&/ork dynamics events, especially to ensure the right restie
behaviour. Hence, the network dynamics models use theiriotemal route queue to schedule dynamics events. There is
one instance of this object in the simulator, in the classufitor instance variableq_ .

The queue object stores an array of queued operations irstice variabletq_ . The index is the time at which the event
will execute. Each element is the list of operations thak @xecute at that time.

The instance procedureésqg {} and insg-i {} can insert an element into the queue.

281

The first argument is the time at which this operation will @¢e. insq {} takes the exact time as argument;
insg-i {} takes the interval as argument, and schedules the operetierval ~ seconds after the current time.

The following arguments specify the objeggbj , the instance procedure of that objekigroc , and the arguments
to that procedurefargs .

These arguments are placed into the route queue for exa@itihe appropriate time.

The instance proceduranq {} executeseval $obj $iproc $args at the appropriate instant. After all the events for
that instance are executedng {} will notify {} each object about the execution.

Finally, the instance procedudelq {} can remove a queued action with the time and the name of ject.

32.3 Interaction with Unicast Routing

In an earlier section, we had described how unicast rouiagts (Section 30.4.2) to changes to the topology. Thisosect
details the steps by which the network dynamics code wilfyttie nodes and routing about the changes to the topology.

1. rtQueue:rung {} will invoke the procedures specified by each of the routedaldnstances. After all of the actions
are completedung {} will notify each of the models.

2. notify {} will then invoke instance procedures at all of the nodesttivere incident to the affected links. Each route
model stores the list of nodes in its instance variable amages_ .
It will then notify the RouteLogic instance of topology clugs.

3. The rtModel object invokes the class Node instance puoregdif-changed {} for each of the affected nodes.

4. Node::intf-changed {} will notify any rtObject atthe node of the possible changes to the topology.
Recall that these route objects are created when the sionulates detailed dynamic unicast routing.

32.3.1 Extensions to Other Classes

The existing classes assume that the topology is staticflaylileln this section, we document the necessary changesse
classes to support dynamic topologies.

We have already described the instance procedures idldse Simulator to create or manipulate route modsels,,
rtmodel {}, rtmodel-at {}, rtmodel-delete {}, and rtmodel-configure {} in earlier sections (Section 32.2.1).
Similarly, theclass Node contains the instance procedumé-changed {} that we described in the previous section
(Section 32.3).

The network dynamics code operates on individual links hEaodel currently translates its specification into operetion
the appropriate links. The following paragraphs desctigectass Link and related classes.

cl ass Dynam cLi nk Thisclassis the only TclObject in the network dynamics cdde shadow class is callethss
DynaLink . The class supports one bound variaBlatus_ . status_ is 1 when the link is up, and O when the link is
down. The shadow objecti®cv () method checks thetatus_ variable, to decide whether or not a packet should be
forwarded.

282

cl ass Link This class supports the primitives: up and down, and up?ttarséquerystatus_ . These primitives are
instance procedures of the class.

The instance procedurep{} and down{} set status_ to 1 and O respectively.

In addition, when the link failsdown{} will reset all connectors that make up the link. Each coctee, including all
queues and the delay object will flush and drop any packetsttbarrently stores. This emulates the packet drop due
to link failure.

Both procedures then write trace entries to each file handlesilist,dynT _.

The instance procedutp? {} returns the current value aftatus_

In addition, the class contains the instance procedilH@nnectors {}. This procedure takes an operation as argument,
and applies the operation uniformly to all of the class instavariables that are handles for TclObjects.

cl ass Sinpl eLi nk The class supports two instance procedwgsamic {} and trace-dynamics {}. We have
already described the latter procedure when describintgabe {} procedure in the class rtModel.

The instance procedudynamic {} inserts a DynamicLink object (Section 6.2) at the headh# tueue. It points the down-
target of the object to the drop target of the lidkpT_, if the object is defined, or to theullAgent_ in the simulator. It
also signals each connector in the link that the link is nowadyic.

Most connectors ignore this signal to be become dynamicetiception isDelayLink object. This object will normally
schedule each packet it receives for reception by the d@istmnode at the appropriate time. When the link is dynamic,
the object will queue each packet internally; it scheduldg one event for the next packet that will be delivered,aast of
one event per packet normally. If the link fails, the routedmlowill signal areset , at which point, the shadow object will
execute its reset instproc-like, and flush all packets imteynal queue. Additional details about the DelayLink barfound

in another chapter (Chapter 8).

32.4 Deficencies in the Current Network Dynamics API

There are a number of deficencies in the current API that shmeithanged in the next iteration:

1. There is no way to specify a cluster of nodes or links thaglse in lock-step dynamic synchrony.

2. Node failure should be dealt with as its own mechanisrhgrahan a second grade citizen of link failure. This shows
up in a number of situations, such as:

(a) The method of emulating node failure as the failure ofitlséent links is broken. Ideally, node failure should
cause all agents incident on the node to be reset.

(b) There is no tracing associated with node failure.

3. If two distinct route models are applied to two separatidiincident on a common node, and the two links experience
a topology change at the same instant, then the node will tiiieiclamore than once.

32.5 Commands at a glance

Following is a list of commands used to simulate dynamic ades inns

283

$ns_ rtmodel <model> <model-params> <args>

This command defines the dynamic model (currently implestntodels are: Deterministic, Exponential, Manual or
Trace) to be applied to nodes and links in the topology. Tisetiivo arguments consists of the rtmodel and the parameter to
configure the model. <args> stands for different type of arguts expected with different dynamic model types. This
returns a handle to a model object corresponding to the fsgeonodel.

¢ In the Deterministic model <model-params> is <start-tipreap-interval>, <down-interval>, <finish-time>. Stagin
from start-time the link is made up for up-interval and downdown-interval till finish-time is reached. The default
values for start-time, up-interval, downinterval are Q&8s, 1.0s respectively. finishtime defaults to the enthef t
simulation. The start-time defaults to 0.5s in order tohettouting protocol computation quiesce.

¢ If the Exponential model is used model-params is of the foup-iterval>, <down-interval> where the link up-time
is an exponential distribution around the mean upintemeltae link down-time is an exponential distribution around
the mean down-interval. Default values for up-interval dodn-interval are 10s and 1s respectively.

o If the Manual distribution is used model-params is <at> <aywere at specifies the time at which the operation op
should occur. op is one of up, down. The Manual distributionld be specified alternately using the rtmodel-at
method described later in the section.

o If Trace is specified as the model the link/node dynamicsad feom a Tracefile. The model-params argument would
in this case be the file-handle of the Tracefile that has thamyes information. The tracefile format is identical to the
trace output generated by the trace-dynamics link methesl TRACE AND MONITORING METHODS SECTION).

$ns_ rtmodel-delete <model>
This command takes the handle of the routemodel <model> asgaiment, removes it from the list of tmodels maintained
by simulator and deletes the model.

$ns_ rtmodel-at <at> <op> <args>

This command is a special interface to the Manual model afoid dynamics. It takes the time <at>, type of operation
<op> and node or link on which to apply the operation <argsthasirguments. At time <at>, the operation <op> which
maybe up or down is applied to a node or link.

$rtmodel trace <ns> <f> <optional:op>

This enables tracing of dynamics effected by this model élithks. <ns> is an instance of the simulator, <f> the outpet fi
to write the traces to and <op> is an optional argument thatlmaused to define a type of operation (like nam). This is a
wrapper for the class Link procedurace-dynamics

$link trace-dynamics <ns> <f> <optional:op>
This is a class link instance procedure that is used to sedemt of dynamics in that particular link. The arguments ar
same as that of class rtModel’s procedirexe described above.

$link dynamic
This command inserts a DynamicLink object at the head of theaig and signals to all connectors in the link that the link is
now dynamic.

Internal procedures:

$ns_ rtmodel-configure

This is an internal procedure that configures all dynamicelthat are present in the list of models maintained by the
simulator.

284

Chapter 33

Hierarchical Routing

This chapter describes the internals of hierarchical nguitnplemented ims This chapter consists of two sections. In the
first section we give an overview of hierarchical routing.tte second section we walk through the API's used for setting
hierarchical routing and describe the architecture, mgtlsrand code path for hier rtg in the process.

The functions and procedures described in this chapter eafound in ndtcl/lib/ns-hiernode.tcl, tcl/lib/ns-address.tcl,
tcl/lib/ns-route.tcl and route.cc.

33.1 Overview of Hierarchical Routing

Hierarchical routing was mainly devised, among other thjiig reduce memory requirements of simulations over vegela
topologies. A topology is broken down into several layersiefarchy, thus downsizing the routing table. The table &z
reduced fromn?, for flat routing, to aboutog n for hierarchical routing. However some overhead costslteas number
of hierarchy levels are increased. Optimum results weraddor 3 levels of hierarchy and the current ns implementatio
supports upto a maximum of 3 levels of hierarchical routing.

To be able to use hierarchical routing for the simulationsneged to define the hierarchy of the topology as well as peovid
the nodes with hierarchical addressing. In flat routingremede knows about every other node in the topology, thudtieg

in routing table size to the order af. For hierarchical routing, each node knows only about thustes in its level. For
all other destinations outside its level it forwards thekeds to the border router of its level. Thus the routing tai#e gets
downsized to the order of about log n.

33.2 Usage of Hierarchical routing

Hierarchical routing requires some additional featured mechanisms for the simualtion. For example, a new nodebbje
calledHierNodeis been defined for hier rtg. Therefore the user must spefialchical routing requirements before creating
topology. This is done as shown below:

First, the address format () or the address space used feraratiport address, needs to be set in the hierarchical miode. |
may be done in one of the two ways:

set ns [new Simulator]

285

$ns set-address-format hierarchical

This sets the node address space to a 3 level hierarchy mgshits in each level.

or,

$ns set-address-format hierarchical <n hierarchy levels> <# bits in
level 1> ...<# bits in nth level>

which creates a node address space for n levels of hierassignéng bits as specified for every level.

This other than creating a hierarchical address spaceetisa flag calle@EnableHierRt and sets the Simulator class variable
node_factory to HierNode. Therefore when nodes are atéstealling Simulator method “node” as in :

$ns node 0.0.1, a HierNode is created with an address of,0.0.1

Class AddrParams is used to store the topology hierarchynlikmber of levels of hierarchy, number of areas in each level
like number of domains, number of clusters and number of sgdeach cluster.

The API for supplying these information to AddrParams isvatbelow:

AddrParams set domain_num_ 2

lappend cluster_num 2 2

AddrParams set cluster_num_ $cluster_num
lappend eilastlevel 2 3 2 3

AddrParams set nodes_num_ $eilastlevel

This defines a topology with 2 domains, say D1 and D2 with 2tehgseach (C11 & C12 in D1 and C21 & C22in D2). Then
number of nodes in each of these 4 clusters is specified &ah@d,3 respectively.

The default values used by AddrParams provide a topolodyavitingle domain with 4 clusters, with each cluster comgjsti
of 5 nodes.

Appropriate mask and shift values are generated by Addnfafer the hierarchical node address space.

Each HierNode at the time of its creation calls the method-tiefault-classifier ” to setup n numbers of address classifie
for n levels of hierarchy defined in the topology.

HierNode instproc mk-default-classifier

$self instvar np_ id_ classifiers_ agents_ dmux_ neighbor_ address_

puts "id=$id_"

set levels [AddrParams set hlevel_]

for set n 1 $n <= $levels incr n
set classifiers_($n) [new Classifier/Addr]
$classifiers_($n) set mask_ [AddrParams set NodeMask ($n)]
$classifiers_($n) set shift [AddrParams set NodeShift ($n)]

At the time of route computation, a call is made to add-roatgd-route populates classifiers as shown in the otcl method
below:

286

i To HierNode
/ Port Demux
Lf 1

HierNode . 3
Entry
> 2 Level 3
3
< Level 2
Level 1

3-Level classifiers for HierNode (hier-addr:0.2.1)

Figure 33.1: Hierarchical classifiers

Node instproc add-route dst target

$self instvar rtnotif
Notify every module that is interested about this
route installation

if $rtnotif_ 1= "™
$rtnotif_ add-route $dst $target

$self incr-rtgtable-size

For an example of 3 level of hierarchy, the level 1 classifemdxes for domains, level 2 for all clusters inside the nede’
domain and finally classifier 3 demuxes for all nodes in théi@dar cluster that the node itself resides. For such altpo
a HierNode with address of 0.1.2 looks like the figure below:

Thus the size of the routing tables are considerably redfroed»? as seen for flat routing where each node had to store
the next_hop info of all other nodes in the topology. Instdad hierarchical routing, a given node needs to know about
its neighbours in its own cluster, about the all clustersténdomain and about all the domains. This saves on memory
consumption as well as run-time for the simulations usingisd thousands of nodes in their topology.

33.3 Creating large Hierarchical topologies

The previous section describes methods to create hiecatdopologies by hand. However, there is a script available
in ns that converts Georgia-tech’s SGB-graphs into ns ctibipahierarchical topologies. Please referhtip://www-
mash.CS.Berkeley.EDU/ns/ns-topogen.fidmilownloading as well as instructions on using the hidrimal converter pack-
age.

See hier-rtg-10.tcl and hier-rtg-100.tcl imgtcl/ex for example scripts of hier routing on small and &tgpologies respec-
tively.

287

33.4 Hierarchical Routing with SessionSim

Hierarchical routing may be used in conjunction with Sessimulations (see Chapter 45). Session-level simulatidrish
are used for running multicast simulations over very laggtogies, gains additionally in terms of memory savingssiéd
with hierarchical routing. See simulation scripigicl/ex/newmcast/session-hier.tcl for an example ofisesgm over hier

rtg.

33.5 Commands at a glance

Following is a list of hierarchical routing/addressingateld commands used in simulation scripts:

$ns_ set-address-format hierarchical

This command was used to setup hierarchical addressimg However with the recent changes in node APIs, this
command has been replaced by

ns_ node-config -addressType hierarchical

This creates a default topology of 3 levels of hierarchyigessg 8 bits to each level.

$ns_ set-address-format hierarchical <nlevels> <#bits in levell>....<#bits in level
n>
This command creates a hierarchy of <nlevels> and assigstthin each level as specified in the arguments.

AddrParams set domain_num_ <n_domains>
AddrParams set cluster_num_ <n_clusters>
AddrParams set nodes_num_ <n_nodes>

The above APIs are used to specify the hierarchical topelagthe number of domains, clusters and nodes present in the
topology. Default values used by AddrParams (i.e if nothiéngpecified) provide a topology with a single domain with 4
clusters, with each cluster consisting of 5 nodes.

Internal procedures:
$Node add-route <dst> <target>
This procedure is used to add next-hop entries of a desiimatist> for a given <target>.

$hiernode_ split-addrstr <str>
This splits up a hierarchical adrress string (say a.b.o)aritst of the addresses at each level (i.e, a,b and c).

288

Part V

Transport

289

Chapter 34

UDP Agents

34.1 UDP Agents

UDP agents are implementedup.{cc, h} . A UDP agent accepts data in variable size chunks from aricapioln,

and segments the data if needed. UDP packets also contain@anaally increasing sequence number and an RTP times-
tamp. Although real UDP packets do not contain sequence arsw timestamps, this sequence number does not incur any
simulated overhead, and can be useful for tracefile analy$t simulating UDP-based applications.

The default maximum segment size (MSS) for UDP agents is byag
Agent/UDP set packetSize_ 1000 # max segment size

This OTcl instvar is bound to the C++ agent variabilee .

Applications can access UDP agents viaghadmsg () function in C++, or via thesend or sendmsg methods in OTcl, as
described in section 40.2.3.

The following is a simple example of how a UDP agent may be usadrogram. In the example, the CBR traffic generator
is started at time 1.0, at which time the generator begingtmgically call the UDP agersendmsg () function.

set ns [new Simulator]

set n0 [$ns node]

set nl [$ns node]

$ns duplex-link $n0 $n1l 5Mb 2ms DropTail

set udp0 [new Agent/UDP]

$ns attach-agent $n0 $udpO

set cbrO [new Application/Traffic/CBR]

$cbr0 attach-agent $udpO

$udp0 set packetSize 536 # set MSS to 536 bytes

set null0 [new Agent/Null]
$ns attach-agent $n1 $null0
$ns connect $udpO $nullo
$ns at 1.0 "$cbr0O start”

290

34.2 Commands at a glance

The following commands are used to setup UDP agents in stionlscripts:

set udpO [new Agent/UDP]
This creates an instance of the UDP agent.

$ns_ attach-agent <node> <agent>
This is a common command used to attach any <agent> to a givehess.

$traffic-gen attach-agent <agent>
This a class Application/Traffic/<traffictype> method wiiconnects the traffic generator to the given <agent>. For
example, if we want to setup a CBR traffic flow for the udp agedpl, we given the following commands

set cbrl [new Application/Traffic/CBR]
$cbrl attach-agent $udpl

$ns_ connect <src-agent> <dst-agent>
This command sets up an end-to-end connection between ®visa@t the transport layer).

$udp set packetSize <pktsize>
$udp set dst_addr_ <address>
$udp set dst_port_ <portnum>
$udp set class_ <class-type>
$udp set ttl_ <time-to-live>

..... etc

The above are different parameter values that may be sebasmsbove for udp agents. The default values can be found in
ngtcl/lib/ns-default.tcl.

For a typical example of setting up an UDP agent used in a sitioul, see the above section 34.1.

201

Chapter 35

TCP Agents

This section describes the operation of the TCP agents ifihere are two major types of TCP agents: one-way agents and a
two-way agent. One-way agents are further subdivided irsiet @f TCP senders (which obey different congestion and erro
control techniques) and receivers (“sinks”). The two-wggrat is symmetric in the sense that it represents both a sande
receiver. It is still under development.

The files described in this section are too numerous to eratméere. Basically it covers most files matching the regular
expression rdtcp*.{cc, h}.

The one-way TCP sending agents currently supported are:

e Agent/TCP - a “tahoe” TCP sender

Agent/TCP/Reno - a “Reno” TCP sender

Agent/TCP/Newreno - Reno with a modification

Agent/TCP/Sackl - TCP with selective repeat (follows RFGP0

Agent/TCP/Vegas - TCP Vegas

Agent/TCP/Fack - Reno TCP with “forward acknowledgment”

e Agent/TCP/Linux - a TCP sender with SACK support that rungTg@ngestion control modules from Linux kernel

The one-way TCP receiving agents currently supported are:

e Agent/TCPSink - TCP sink with one ACK per packet

o Agent/TCPSink/DelAck - TCP sink with configurable delay p&K
e Agent/TCPSink/Sackl - selective ACK sink (follows RFC2p18

e Agent/TCPSink/Sack1/DelAck - Sackl with DelAck

The two-way experimental sender currently supports onlgad<orm of TCP:
e Agent/TCP/FullTcp

The section comprises three parts: the first part is a simyevaew and example of configuring the base TCP send/sink
agents (the sink requires no configuration). The seconddeadribes the internals of the base send agent, and lass jpart
description of the extensions for the other types of agéatishiave been included in the simulator.

292

35.1 One-Way TCP Senders

The simulator supports several versions of an abstract&isE@der. These objects attempt to capture the essencel@fhe
congestion and error control behaviors, but are not intémal&e faithful replicas of real-world TCP implementatiofiey

do not contain a dynamic window advertisement, they do sayymember and ACK number computations entirely in packet
units, there is no SYN/FIN connection establishment/teard and no data is ever transferred (e.g. no checksums enurg
data).

35.1.1 The Base TCP Sender (Tahoe TCP)

The “Tahoe” TCP agenAgent/TCP performs congestion control and round-trip-time estiorain a way similar to the
version of TCP released with the 4.3BSD “Tahoe” UN’X systestease from UC Berkeley. The congestion window is
increased by one packet per new ACK received during slow{stdencuwnd_ < ssthresh_) and is increased % for
each new ACK received during congestion avoidance (wheni_ > ssthresh_). -

Responses to CongestionTahoe TCP assumes a packet has been lost (due to congedtiemjtwbserveBlUMDUPACKS
(defined intcp.h , currently 3) duplicate ACKs, or when a retransmission tieires. In either case, Tahoe TCP reacts by
settingssthresh_ to half of the current window size (the minimumaofind_ andwindow_) or 2, whichever is larger. It
then initializescwnd_ back to the value ofvindowlnit_ . This will typically cause the TCP to enter slow-start.

Round-Trip Time Estimation and RTO Timeout Selection Four variables are used to estimate the round-trip time
and set the retransmission timett_, srtt_, rttvar_, tcpTick _, and backoff_ . TCP initializes rttvar

to 3/tepTick_ and backoff to 1. When any future retransmission timer isigg timeout is set to the current time plus
max(bt(a + 4v + 1), 64) seconds, wherkis the current backoff value,is the value of tcpTicke is the value of srtt, and

is the value of rttvar.

Round-trip time samples arrive with new ACKs. The RTT sanipleomputed as the difference between the current time and
a “time echo” field in the ACK packet. When the first sample lsetg its value is used as the initial value fott_ . Half
the first sample is used as the initial valueffitvar . For subsequent samples, the values are updated as follows:

7 1
srtt = 3 x srtt + 3 X sample

3 1
rttvar = e rttvar + 1% |sample — srtt|

35.1.2 Configuration

Running an TCP simulation requires creating and configutiegagent, attaching an application-level data sourceatfictr
generator), and starting the agent and the traffic generator

35.1.3 Simple Configuration

Creating the Agent

293

set ns [new Simulator]
set nodel [$ns node]
set node2 [$ns node]

;# preamble initialization
;# agent to reside on this node
;# agent to reside on this node

set tcpl [$ns create-connection TCP $nodel TCPSi nk $node2 42]
$tcp set window_ 50 ;# configure the TCP agent
set ftpl [new Application/FTP]

$ftpl attach-agent $tcpil

$ns at 0.0 "$ftp start”

This example illustrates the use of the simulator builttindtioncreate-connection . The arguments to this function
are: the source agent to create, the source node, the tgegstta create, the target node, and the flow ID to be used on the
connection. The function operates by creating the two ageaetting the flow ID fields in the agents, attaching the sourc
and target agents to their respective nodes, and finallyemiimy the agents (i.e. setting appropriate source anthdéen
addresses and ports). The return value of the function isdahe of the source agent created.

TCP Data Source The TCP agent does not generate any application data on its iogtead, the simulation user can
connect any traffic generation module to the TCP agent torgémdata. Two applications are commonly used for TCP: FTP
and Telnet. FTP represents a bulk data transfer of large @mktelnet chooses its transfer sizes randomly from t¢péle

the filetcplib-telnet.cc . Details on configuring these application source objeasraBection 40.4.

35.1.4 Other Configuration Parameters

In addition to thewindow__ parameter listed above, the TCP agent supports additionfigciration variables. Each of the
variables described in this subsection is both a classhlarand an instance variable. Changing the class varialleges
the default value for all agents that are created subselgu@htanging the instance variable of a particular ageny affects

the values used by that agent. For example,

Agent/TCP set window_ 100
$tcp set window_ 2.0

The default parameters for each TCP agent are:

;# Changes the class variable
;# Changes window__ for the $tcp object only

Agent/TCP set window_ 20 ;# max bound on window size
Agent/TCP set windowlnit_ 1 # initial/reset value of cwnd
Agent/TCP set windowOption_ 1 ;# cong avoid algorithm (1: standard)
Agent/TCP set windowConstant_ 4 # used only when windowOption =1
Agent/TCP set windowThresh_ 0.002 H used in computing averaged window
Agent/TCP set overhead_ 0 ;# 1=0 adds random time between sends
Agent/TCP set ecn_ 0 ;# TCP should react to ecn bit
Agent/TCP set packetSize_ 1000 # packet size used by sender (bytes)
Agent/TCP set bugFix_ true # see explanation
Agent/TCP set slow_start_restart_ true # see explanation
Agent/TCP set tcpTick_ 0.1 #H timer granulatiry in sec (.1 is NONSTANDARD)
Agent/TCP set maxrto_ 64 ;# bound on RTO (seconds)
Agent/TCP set dupacks_ O ;# duplicate ACK counter
Agent/TCP set ack_ 0 # highest ACK received

294

Agent/TCP set cwnd_ O ;# congestion window (packets)

Agent/TCP set awnd_ 0 # averaged cwnd (experimental)
Agent/TCP set ssthresh_ 0 # slow-stat threshold (packets)
Agent/TCP set rtt_ O # rtt sample

Agent/TCP set srtt_ 0 ;# smoothed (averaged) rtt
Agent/TCP set rttvar_ 0 ;# mean deviation of rtt samples
Agent/TCP set backoff_ 0 # current RTO backoff factor
Agent/TCP set maxseq_ 0O ;# max (packet) seq number sent

For many simulations, few of the configuration parametezdi&ely to require modification. The more commonly modified
parameters includevindow_ andpacketSize_ . The first of these bounds the window TCP uses, and is corsider
play the role of the receiver’s advertised window in reae/d@ CP (although it remains constant). The packet sizentisdly
functions like the MSS size in real-world TCP. Changes ta¢hgarameters can have a profound effect on the behavior of
TCP. Generally, those TCPs with larger packet sizes, bigigatows, and smaller round trip times (a result of the togglo
and congestion) are more agressive in acquiring networ&vgiith.

35.1.5 Other One-Way TCP Senders

Reno TCP The Reno TCP agent is very similar to the Tahoe TCP agentpéxcalso includedast recoverywhere the
current congestion window is “inflated” by the number of deatie ACKs the TCP sender has received before receiving a
new ACK. A “new ACK" refers to any ACK with a value higher thame higest seen so far. In addition, the Reno TCP agent
does not return to slow-start during a fast retransmit. &athreduces sets the congestion window to half the cumwardow

and resetssthresh_ to match this value.

Newreno TCP This agentis based on the Reno TCP agent, but which modiéextion taken when receiving new ACKS.
In order to exit fast recovery, the sender must receive an A@Khe highest sequence number sent. Thus, new “partial
ACKSs" (those which represent new ACKs but do not represera@H for all outstanding data) do not deflate the window
(and possibly lead to a stall, characteristic of Reno).

Vegas TCP This agent implements “Vegas” TCP ([4, 5]). It was contrémiby Ted Kuo.

Sack TCP This agent implements selective repeat, based on selédfis provided by the receiver. It follows the ACK
scheme described in [23], and was developed with Matt MathdisJamshid Mahdavi.

Fack TCP This agent implements “forward ACK” TCP, a modification oftcBa& CP described in [22].

Linux TCP This agent runs TCP congestion control modules imported frmmux kernel. The agent generates simulation
results that are consistent, in congestion window trajgdavel, with the behavior of Linux hosts.

Simulation users can update or import new congestion cbmtodules from Linux kernel source code for this agent. The
Linux congestion control modules are compiled into the NSr2ry. Users can select different congestion controlritlgms,
different congestion control module parameters, andmiffeLinux TCP parameters for different instances of thisragThis
agent supports SACK. A receiver that supports SACK is recended to work with this agent. There is a tutorial for using
this agentin [32].

295

The implementation of this agent loosely follows the LinuH packet processing routine and calls the congestionalontr
source codes from Linux kernel to change congestion cordtated parameters (e.g. congestion window, slow stastiold
and etc). The design and implementation details are destii]33].

To achieve simulation results close to Linux performaniais, agent changes the default values of the following patarse
according to the Linux parameters:

Agent/TCP/Linux set maxrto_ 120
Agent/TCP/Linux set ts_resetRTO_ true
Agent/TCP/Linux set delay growth_ false

35.2 TCP Receivers (sinks)

The TCP senders described above represent one-way datasenkdey must peer with a “TCP sink” object.

35.2.1 The Base TCP Sink

The base TCP sink objecAgent/TCPSink) is responsible for returning ACKs to a peer TCP source dbjégenerates
one ACK per packet received. The size of the ACKs may be cord@juThe creation and configuration of the TCP sink
object is generally performed automatically by a librarl (seecreate-connection above).

configuration parameters

Agent/TCPSink set packetSize 40

35.2.2 Delayed-ACK TCP Sink

A delayed-ACK sink objectAgent/Agent/TCPSink/DelAck) is available for simulating a TCP receiver that ACKs
less than once per packet received. This object containarsdbariablénterval_ which gives the number of seconds to
wait between ACKs. The delayed ACK sink implements an agre#8CK policy whereby only ACKs for in-order packets
are delayed. Out-of-order packets cause immediate ACKrg&an.

configuration parameters

Agent/TCPSink/DelAck set interval_ 100ms

35.2.3 Sack TCP Sink

The selective-acknowledgment TCP siflgént/TCPSink/Sackl) implements SACK generation modeled after the de-
scription of SACK in RFC 2018. This object includes a boundalzle maxSackBlocks_ which gives the maximum
number of blocks of information in an ACK available for haldiSACK information. The default value for this variable js 3

296

in accordance with the expected use of SACK with RTTM (see RBTB, section 3). Delayed and selective ACKs together
are implemented by an object of typgent/TCPSink/Sackl1/DelAck

configuration parameters

Agent/TCPSink set maxSackBlocks_ 3

35.3 Two-Way TCP Agents (FullTcp)

The Agent/TCP/FullTcp object is a new addition to the suite of TCP agents suppontétel simulator and is still under
development. It is different from (and incompatible withgtother agents, but does use some of the same architedture. |
differs from these agents in the following ways: followingys:

e connections may be establised and town down (SYN/FIN packetexchanged)
e bidirectional data transfer is supported
e sequence numbers are in bytes rather than packets

The generation of SYN packets (and their ACKs) can be ofoaiiimportance in trying to model real-world behavior when
using many very short data transfers. This version of TCRectlly defaults to sending data on the 3rd segment of ai3iti
way handshake, a behavior somewhat different than comnadwarld TCP implementations. A “typical” TCP connection
proceeds with an active opener sending a SYN, the passiveopesponding with a SYN+ACK, the active opener responding
with an ACK, and then some time later sending the first segmightdata (corresponding to the first application write) ush

this version of TCP sends data at a time somewhat earliertyipécal implementations. This TCP can also be configured to
send data on the initial SYN segment. Future changes to ERllihay include a modification to send the first data segment
later, and possibly to implement T/TCP functionality.

Currently FUllTCP is only implemented with Reno congestiontrol, but ultimately it should be available with the ftdhge
of congestion control algorithms (e.g., Tahoe, SACK, Veg#ts).

35.3.1 Simple Configuration

Running an Full TCP simulation requires creating and comiiiguthe agent, attaching an application-level data so(ace
traffic generator), and starting the agent and the traffieggor.

Creating the Agent

setup connection (do not use "create-connection" methoduse
we need a handle on the sink object)

set src [new Agent/TCP/FullTcp] # create agent
set sink [new Agent/TCP/FullTcp] # create agent
$ns_ attach-agent $node_(s1) $src ;# bind src to node
$ns_ attach-agent $node_(k1) $sink ;# bind sink to node
$src set fid_ 0 # setflow ID field
$sink set fid_ 0 # setflow ID field

297

$ns_ connect $src $sink ;# active connection src to sink

setup TCP-level connections
$sink listen ;# will figure out who its peer is
$src set window_ 100;

The creation of the FullTcp agent is similar to the other agelout the sink is placed in a listening state by likeen
method. Because a handle to the receiving side is requiredigr to make this call, thereate-connection call used
above cannot be used.

Configuration Parameters The following configuration parameters are available tgfoticl for the FullTcp agent:

Agent/TCP/FullTcp set segsperack 1 # segs received before generating ACK
Agent/TCP/FullTcp set segsize_ 536 # segment size (MSS size for bulk xfers)
Agent/TCP/FullTcp set tcprexmtthresh_ 3 # dupACKs thresh to trigger fast rexmt
Agent/TCP/FullTcp set iss_ 0 ;# initial send sequence number
Agent/TCP/FullTcp set nodelay false H disable sender-side Nagle algorithm
Agent/TCP/FullTcp set data_on_syn_ false # send data on initial SYN?
Agent/TCP/FullTcp set dupseg_fix_ true # avoid fast rxt due to dup segs+acks
Agent/TCP/FullTcp set dupack_reset_ false ;# reset dupACK ctr on !0 len data segs containing dup ACKs
Agent/TCP/FullTcp set interval_ 0.1 # as in TCP above, (100ms is non-std)

35.3.2 BayFullTcp

A different implementation of two-way TCP has been ported ims from Kathy Nicholes/Van Jacobson’s group. It is called
BayFullTcp. The basic difference between BayFullTcp antiiTiep (the two-way tcp version already present in ns) are as
follows:

e BayTcp supports a client-server application model whildTep makes no assumption about its application layer.

The tcp-application interface is different for both;

FullTcp supports partial ack (BayTcp doesn't).

FullTcp supports different flavors of tcp (tahoe, reno eth)ol is not the case for baytcp.

Both implementations have different set of API’s .

There might be other finer differences between the two as Welé of our future plans is to redefine the APIs to allow fulltc
to use baytcp’s client-server model.

35.4 Architecture and Internals

The base TCP agent (cladgent/TCP) is constructed as a collection of routines for sending ptsskprocessing ACKs,
managing the send window, and handling timeouts. Geneesbh of these routines may be over-ridden by a function with
the same name in a derived class (this is how many of the TGiesgariants are implemented).

298

The TCP header The TCP header is defined by thdr_tcp structure in the file rgtcp.h. The base agent only makes
use of the following subset of the fields:

ts_ / = current time packet was sent from sourde
ts_echo_ / = for ACKs: timestamp field from packet associated with thi&AC
seqno_ / = sequence number for this data segment or ACK (Note: overig8d /
reason_ | = set by sender when (re)transmitting to trace reason for s¢nd

Functions for Sending Data Note that generally the sending TCP never actually sends(danly sets the packet size).

send_much(force, reason, maxburst) this function attempts to send as many packets as the ¢wseahwindow allows. It
also keeps track of how many packets it has sent, and limftesttotal tomaxburst

The functionoutput(segno, reason) sends one packet with the given sequence number and updatesgkimum
sent sequence number varialieaikseq_) to hold the given sequence number if it is the greatest sefdrs This function
also assigns the various fields in the TCP header (sequendeemutimestamp, reason for transmission). This functlea a
sets a retransmission timer if one is not already pending.

Functions for Window Management The usable send window at any time is given by the functdow(). It returns
the minimum of the congestion window and the varialsted_, which represents the receiver’s advertised window.

opencwnd() - this function opens the congestion window. It is invokedewlta new ACK arrives. When in slow-start,
the function merely incrementsvnd_ by each ACK received. When in congestion avoidance, thelatanconfiguration
incrementwnd_ by its reciprocal. Other window growth options are suppbraring congestion avoidance, but they are
experimental (and not documented; contact Sally Floyd é&aits).

closecwnd(int how)- this function reduces the congestion window. It may be kegbin several ways: when entering fast
retransmit, due to a timer expiration, or due to a congestatification (ECN bit set). Its argumehbw indicates how the
congestion window should be reduced. The vdlug used for retransmission timeouts and fast retransmiaho@ TCP. It
typically causes the TCP to enter slow-start and redgtieesh_ to half the current window. The valdes used by Reno
TCP for implementing fast recovery (which avoids returniaglow-start). The valu@ is used for reducing the window
due to an ECN indication. It resets the congestion windowstinitial value (usually causing slow-start), but does alter
ssthresh

Functions for Processing ACKs recv(} this function is the main reception path for ACKs. Note thatause only one
direction of data flow is in use, this function should only elve invoked with a pure ACK packet (i.e. no data). The funttio
stores the timestamp from the ACK ia_peer_ , and checks for the presence of the ECN bit (reducing the wé&mtbw

if appropriate). If the ACK is a new ACK, it callsewack(), and otherwise checks to see if it is a duplicate of the laK AC
seen. If so, it enters fast retransmit by closing the windesgetting the retransmission timer, and sending a packesliigg
send_much.

newack()- this function processes a “new” ACK (one that contains aiKA@mber higher than any seen so far). The function
sets a new retransmission timer by callimgwtimer(), updates the RTT estimation by callint)_update, and updates the
highest and last ACK variables.

Functions for Managing the Retransmission Timer These functions serve two purposes: estimating the rotpdrne
and setting the actual retransmission timet. init - this function initializessrtt_ andrtt_ to zero, setsttvar_ to
3/tep_tick_, and sets the backoff multiplier to one.

299

rtt_timeout - this function gives the timeout value in seconds that sthbel used to schedule the next retransmission timer.
It computes this based on the current estimates of the mehdeuiation of the round-trip time. In addition, it implenten
Karn’s exponential timer backoff for multiple consecutietransmission timeouts.

rtt_update - this function takes as argument the measured RTT and aitdg to the running mean and deviation estimators
according to the description above. Note thartt ~ andt_rttvar are both stored in fixed-point (integers). They have
3 and 2 bits, respectively, to the right of the binary point.

reset_rtx_timer - This function is invoked during fast retransmit or durintiaeout. It sets a retransmission timer by calling
set_rtx_timer and if invoked by a timeout also calig_backoff

rtt_backoff - this function backs off the retransmission timer (by ddndpit).

newtimer - this function called only when a new ACK arrives. If the serisl left window edge is beyond the ACK, then
set_rtx_timer is called, otherwise if a retransmission timer is pending @ancelled.

35.5 Tracing TCP Dynamics

The behavior of TCP is often observed by constructing a sespieumber-vs-time plot. Typically, a trace is performed by
enabling tracing on a link over which the TCP packets willgpdBvo trace methods are supported: the default one (used for
tracing TCP agents), and an extension used only for FullTcP.

35.6 One-Way TCP Trace Dynamics

TCP packets generated by one of the one-way TCP agents atinedd®r a TCP sink agent passing over a traced link (see
section 26) will generate a trace file lines of the form:

+ 0.94176 2 3 tcp 1000 ------ 0 0.0 3.0 25 40
+ 0.94276 2 3 tcp 1000 ------ 0 0.0 3.0 26 41
d 0.94276 2 3 tcp 1000 ------ 0 0.0 3.0 26 41
+ 0.95072 2 0 ack 40 ------ 0 3.0 0.0 14 29

- 0.95072 2 0 ack 40 ------ 0 3.0 0.0 14 29

- 0.95176 2 3 tcp 1000 ------ 0 0.0 3.0 21 36
+ 0.95176 2 3 tcp 1000 ------ 0 0.0 3.0 27 42

The exact format of this trace file is given in section 26.4.eWkracing TCP, packets of typep or ack are relevant. Their
type, size, sequence number (ack number for ack packetsgramal/depart/drop time are given by field positions 5186,
and 2, respectively. The indicates a packet arrivatl a drop, and a departure. A number of scripts process this file to
produce graphical output or statistical summaries (seexXample, agtest-suite.tcl, théinish procedure.

35.7 Two-Way TCP Trace Dynamics

TCP packets generated by FullTcp and passing over a trageddintain additional information not displayed by default
using the regular trace object. By enabling the #&gw_tcphdr_ on the trace object (see section refsec:traceformat),
three additional header fields are written to the trace fite:rmimber, tcp-specific flags, and header length.

300

35.8 Commands at a glance

The following is a list of commands used to setup/manipul&® flows for simulations:

set tcp0 [new Agent/TCP]

This creates an instance of a TCP agent. There are sevemkflal/T CP-sender and TCP-receiver (or sink) agent cugrentl
implemented in ns. TCP-senders currently available arenéidCP, Agent/TCP/Reno, Agent/TCP/Newreno,
Agent/TCP/Sackl, Agent/TCP/Vegas, Agent/TCP/Fack.

TCP-receivers currently available are: Agent/TCPSinke#gr CPSink/DelAck, Agent/TCPSink/Sack1,
Agent/TCPSink/Sack1/DelAck.

There is also a two-way implementation of tcp called Age@®TFullTcp. For details on the different TCP flavors seeiearl
sections of this chapter.

Configuration parameters for TCP flows maybe set as follows:

$tcp set window_ <wnd-size>

For all possible configuration parameters available for E€E® section 35.1.4. The default configuration values canbas
found inng/tcl/lib/ns-default.tcl.

Following is an example of a simple TCP connection setup:

set tcp [new Agent/TCP] # create tcp agent
$ns_ attach-agent $node_(s1) $tcp ;# bind src to node
$tcp set fid_ 0 ;# setflow ID field
set ftp [new Application/FTP] # create ftp traffic
$ftp attach-agent $tcp ;# bind ftp traffic to tcp agent
set sink [new Agent/TCPSink] ;# create tcpsink agent
$ns_ attach-agent $node_(k1) $sink ;# bind sink to node
$sink set fid_ 0 # setflow ID field
$ns_ connect $ftp $sink ;# active connection src to sink
$ns_ at S$start-time "$ftp start" # start ftp flow

For an example of setting up a full-tcp connection see se&®03.1.

301

Chapter 36

SCTP Agents

This chapter describes the SCTP agents developedsfby the Protocol Engineering Lab at the University of Delaavar
The SCTP agents are all two-way agents, which means theyameatric in the sense that they represent both a sender and
receiver. However, bi-directional data has not yet beedeémpnted. Each instance of an SCTP agent is either a sender or
receiver.

The SCTP agents are implemented in files matching the regufaession rgsctp/sctp*.{cc, h}

The SCTP agents currently supported are:

Agent/SCTP - RFC2960 + draft-ietf-tsvwg-sctpimpguidet@o+ draft-ietf-tsvwg-usctp-01.txt
Agent/SCTP/HbAfterRto - experimental extension (HEARTPSEafter RTO)
Agent/SCTP/MultipleFastRtx - experimental extension (BEL's Multiple Fast Retransmit algorithm)
Agent/SCTP/Timestamp - experimental extension (TIMESTAShunk)

Agent/SCTP/MfrHbAfterRto - experimental extension thatrbines MultipleFastRtx and HbAfterRto
Agent/SCTP/MfrTimestamp - experimental extension thatlsmes MultipleFastRtx and Timestamp

Section 36.1 provides a simple overview of the base SCTPtag#n details of configuration parameters and commands.
Section 36.2 describes the SCTP extensions available. @tadglof the SCTP trace format used in packet trace files are
explained in Section 36.3. Section 36.4 explains how to egady applications with SCTP and how to write SCTP-aware ap-
plications which exploit all SCTP’s features. Section 3&.6vides examples scripts for both singled homed and nuuttid
endpoints.

36.1 The Base SCTP Agent

The base SCTP ageAgent/SCTP supports the features in the following sections of RFC2@&fluding modifications up
to draft-ietf-tsvwg-sctpimpguide-13.txt.

5.1 Normal Establishment of an Association (rudimentanydstake)
6.1 Transmission of DATA Chunks

302

6.2 Acknowledgment on Reception of DATA Chunks
6.3 Management Retransmission Timer

6.4 Multihomed SCTP Endpoints

6.5 Stream Ildentifier and Stream Sequence Number
6.6 Ordered and Unordered Delivery

6.7 Report Gaps in Received DATA TSNs

7.2 SCTP Slow-Start and Congestion Avoidance

8.1 Endpoint Failure Detection

8.2 Path Failure Detection

8.3 Path Heartbeat (without upper layer control)

This agent also supports the Partial Reliability extensioof draft-ietf-tsvwg-usctp-01.txt.

Association Establishment The SCTP agent establishes an association using a four-avaishake, but the handshake is
kept simple and does not strictly conform to RFC2960. Thalbhake does not exchange tags, and the INIT and COOKIE-
ECHO chunks are not used to update the RTT. Instead, RTT &stimbegin with the first DATA chunk.

Association Shutdown Currently, the SCTP agent does not perform a proper shutdéaassociation is abruptly termi-
nated when the simulated connection ends. A shutdown puoeaday be added in a future release.

Multihoming The underlying infrastructure of ns-2 does not support iplelinterfaces for a single node. To get around
this limitation, our approach allows the general supportiégically multihoming nodes that have a multihomed trarsp
layer, such as SCTP. Each multihomed node is actually madémpre than one node. As shown in Figure 36.1, a logically
multihomed node is made up of a single "core node" and maltipiterface nodes", one for each simulated interface. The
core node is connected to each interface node via a unitidinat link towards the interface node, but traffic nevevérses
these links. These links are only in place for the core nodeake routing decisions. An SCTP agent simultaneously essid
on all these nodes (i.e., the core and interface nodes) chusildraffic only goes to/from the interface nodes. Whenéve
SCTP agent needs to send data to a destination and does motkrich outgoing interface to use, the agent firsts consults
with the core node for a route lookup. Then, the SCTP agefipas the send from the appropriate interface node. Incgmin
data is received at one of the interface nodes directly asdgohup to the SCTP agent. This solution is applicable to any
transport protocol that requires multihoming functiotyain ns-2. Note: the user must configure multihomed nodesgusi
commands in Section 36.1.2 (an example is shown in Sectidn236

Packet Number vs TSN Numbering While nsstarts numbering packets at 0, the SCTP module starts nimgdeATA
chunk TSNs at 1 and assigns undefined TSN values (-1) to dahwoks (ie, INIT, SACK, HEARTBEAT, etc). The four
packets exchanged during the association establishnmenbanted in the packet enumeration, but do not show up irhgrap
This information is important when doing things like spgiify a drop list for theerrorModel object. For example, packet
2 actually refers to the first SCTP packet with DATA chunk(s).

36.1.1 Configuration Parameters

SCTP supports several configuration variables which are BiGtlable. Each of the variables described in this subseio
both a class variable and an instance variable. Changingake variable changes the default value for all agentsatteat

303

Sctp Agent

-

£

Send

Route
’ Lecabeip

an

eore MNode

-,

Foonive

Interface Mode,

Intarface Mode

\kh'lullihnrr!ec Node

~
L

el
bl

-

-
o -

Intermace Nade T

1 A

2

Figure 36.1: Example of a Multihomed Node

created subsequently. Changing the instance variable aftegar agent only affects the values used by that ageoit. F

example,

Agent/SCTP set pathMaxRetrans_ 5

$sctp set pathMaxRetrans_

5

The default parameters for each SCTP agent are:

Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP
Agent/SCTP

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

debugMask_ 0
debugFileindex_ -1
associationMaxRetrans_
pathMaxRetrans_ 5
changePrimaryThresh_

maxInitRetransmits_ 8
oneHeartbeatTimer_ 1
heartbeatinterval _ 30

mtu_ 1500
initialRwnd_ 65536
initialSsthresh_ 65536
initialCwnd_ 2
initialRto_ 3.0
minRto_ 1.0
maxRto_ 60.0
fastRtxTrigger_ 4
numOutStreams_ 1
numUnrelStreams_ 0 ;#
reliability 0
unordered_ 0
ipHeaderSize_ 20
dataChunkSize_ 1468

;# Changes the class variable
Changes pathMaxRetrans_ for the $sctp object only

ask for modular toggle debugging control (see axalin)
specifies debugging output file (see explanation)
RFC2960’s Association.Max.Retrans
RFC2960’s Path.Max.Retrans

change primary if error count exeeds thresh (default indinit

RFC2960’s Max.Init.Retransmits

toggle HB timer for each dest vs one for all dests
H# RFC2960’s HB.interval in seconds
MTU in bytes including IP header

initial receiver window in bytes (set on receiver side)
initial ssthresh value in bytes
initial cwnd in multiple of (MTU - SCTP/IP headers)
default initial RTO = 3 secs
default min RTO =1 sec
default max RTO = 60 secs
4 missing reports trigger fast rtx
;# number of outgoing streams

#

#

number of partially reliable streams (all grouped startiagstream 0)

#
H 32-bitm
10
-1 #
#
#
#

304

k-rtx value of all partially reliable streams
toggle all chunks are ordered/unordered

IP header size

#H

includes data chunk header and restricted to 4 byte bouedari

Agent/SCTP set useDelayedSacks 1 # toggle on/off delayed sack algorithm (set on receiver side)

Agent/SCTP set sackDelay_ 0.200 # rfc2960 recommends 200 ms
Agent/SCTP set useMaxBurst_ 1 ;# toggle on/off max burst
Agent/SCTP set rtxToAlt_ 1 H rtxs to which dest? 0 =same, 1 = alt, 2 = fast rtx to same + timisdo alt
Agent/SCTP set dormantAction_ 0 # 0 = change dest, 1 = use primary, 2 = use last dest before dotman
Agent/SCTP set routeCalcDelay_ 0 # time to calculate a route (see explanation)
Agent/SCTP set routeCachelLifetime_ 1.2 # how long a route remains cached (see explanation)
Agent/SCTP set trace_all_ 0 H toggle on/off print all variables on a trace event

ThedebugMask_ parameter is a 32-bit mask to turn on/off debugging for paldir functions. Seengsctp/sctpDebug.h
for the mappings of the bitmask. A -1 may be used to clear #| bind O is used to turn off all debugging.débug_ (the
standarchsdebug flag) is set to 1, then all the bitsdebugMask_ are set. Notensmust be compiled withDDEBUGfor
this option to work.

The debugFilelndex_ parameter is an integer to specify the file used for debuggirigut by an SCTP agent. Each
instance of an SCTP agent can independently output debgiggimto a separate file. For example, the data sender can log
debugging output to one file, while the receiver logs to aeofie. If debugFilelndex is set to 0, the file used will be
nameddebug.SctpAgent.Of -1 is used, the debug output is sentstderr. To avoid confusion, two SCTP agents should not
send debug output to the same file. The defaultis -1. Neeust be compiled withDDEBUGor this option to work.

The configuration parameters that deal with ordering andlyiity options may be overridden by an SCTP-aware apptica
(see Section 36.4).

The routeCalcDelay androuteCachelifetime_ parameters are only used to optionally simulate overhefds o
reactive routing protocols in MANETSs without actually sitating a MANET. (Do not use this feature if you are actually
simulating a MANET!) The default setting faputeCalcDelay is 0 seconds, which means that this feature is turned
off. The default setting farouteCacheLifetime_ is 1.2 seconds (ignored if this feature is turned off), whégbhurposely

set slightly larger than the default min RTO to avoid a “castiss” after a single timeout event.

36.1.2 Commands

SCTP provides certain commands that can be used within T@htsc

trace Tracks given variables. The variable (and associatednmtion) is printed every time the value changes. Takes 1
argument:

cwnd_ Used to trace the cwnds of all paths.

rto_ Used to trace the RTOs of all paths.

errorCount_ Used to trace the error counters of all paths.

frCount_ Used to trace the number of times a fast retransmit is invoked

mfrCount_ Used to trace the number of times the multiple fast retranalgorithm is invoked. This trace variable
can only be used with the MultipleFastRtx extension ag&#e(Section 36.2.2)

timeoutCount_ Used to trace the total number of times a timeout has occomed| paths.

rcdCount_ Used to trace the total number of times a route calculatidaydsee Section 36.1.1) has occurred on all
paths.

305

Note: the actual value of these trace variables have no mgaiihey are simply used to trace corresponding variables fo
potentially multihomed endpoints. For example, if a seisdeeer endpoint has two destinations, the sender will raaint
two cwnds. Thewnd_ trace variable will trace both of these cwnds together.

print Provides the sampling method of tracing. This command simpphts a given variable (and associated information)
per call. Takes 1 argument: one of the trace variables predatove.

set-multihome-core Sets the core node for multihomed endpoints. Takes 1 argusfhi¢ype node. Mandatory for multi-
homed endpoints and must not be set more than once per ehdpoin

multihome-add-interface Adds an interface to a multihomed endpoint. Takes 2 argusraditype node. Argument 1 is the
core node of the multihomed endpoint. Argument 2 is the faternode to be added. Mandatory for multihomed endpoints.
All interfaces must be added after set-multihome-coreliedand before multihome-attach-agent s called.

multihome-attach-agent Attaches an SCTP agent to a multihomed endpoint. Takes 2rengts. Argument 1 is the core
node. Argument 2 is the SCTP agent. Mandatory for multihoeretpoints.

set-primary-destination Sets the interface node of the peer endpoint as the primatind&on. Takes 1 argument of type
node. Optional and may be set more than once per endpoirtt lfsed, a primary destination is chosen automatically.

force-source Sets the interface node that packets will be sent from. Talegument of type node. Optional and may be
set more than once per endpoint. If not used, routing wilbenattically choose the source on a per packet basis.

36.2 Extensions

36.2.1 HbAfterRto SCTP

The HbAfterRto SCTP agent extends the current retransomgsilicy. In addition to SCTP’s current policy of retransimig
to an alternate destination on a timeout, a heartbeat isreemtdiately to the destination on which a timeout occuriedra
heartbeats provide a mechanism for a sender to update amatdtelestination’s RTT estimate more frequently, thusltieg
in a better RTT estimate on which to base the RTO value.

For example, suppose a packet is lost in transit to the pyihestination, and later gets retransmitted to an alterhegéna-
tion. Also suppose that the retransmission times out. Téteplacket is retransmitted again to yet another alternatindion
(if one exists; otherwise, the primary). More importanéljeartbeat is also sent to the alternate destination winigdtout.
If the heartbeat is successfully acked, that destinatiguiaes an additional RTT measurement to help reduce itatigce
doubled RTO P].

36.2.2 MultipleFastRtx SCTP

The MultipleFastRtx SCTP agent attempts to minimize the lmemof timeouts which occur. Without the Multiple Fast Re-
transmit algorithm, SCTP may only Fast Retransmit a TSN otli@eFast Retransmitted TSN is lost, a timeout is necessary

306

to retransmit the TSN again. The Multiple Fast Retransngibdathm allows the same TSN to be Fast Retransmitted several
times if needed. Without the Multiple Fast Retransmit ailfpon, a large window of outstanding data may generate enough
SACKs to incorrectly trigger more than one Fast Retransiit® same TSN in a single RTT. To avoid these spurious Fast
Retransmits, the Multiple Fast Retransmit algorithm idtroes &astRtxRecovestate variable for each TSN Fast Retrans-
mitted. This variable stores the highest outstanding TStReatime a TSN is Fast Retransmitted. Then, only SACKs which
newly ack TSNs beyonéastRtxRecovetan increment the missing report for the Fast Retransmittad. If the missing
report threshold for the Fast Retransmitted TSN is reachathathe sender has enough evidence that this TSN was ldst an
can be Fast Retransmitted agath [

36.2.3 Timestamp SCTP

The Timestamp SCTP agent introduces timestamps into eadtefpahus allowing a sender to disambiguate original trans
missions from retransmissions. By removing retransmisaiobiguity, Karn’s algorithm can be eliminated, and susfids
retransmissions on the alternate path can be used to upealIT estimate and keep the RTO value more accurate. With
timestamps, the sender has more samples for updating the&ifiate of alternate destination(8).[

36.2.4 MfrHbAfterRto SCTP

The MfrHbAfterRto SCTP agent combines the functionalitytef HbAfterRto and MultipleFastRtx SCTP agents.

36.2.5 MfrHbAfterRto SCTP

The MfrTimestamp SCTP agent combines the functionalitheftimestamp and MultipleFastRtx SCTP agents.

36.3 Tracing SCTP Dynamics

SCTP packets generated by one of the SCTP agents and ddstireedeer SCTP agent over a traced link (see section 26)
will generate a trace file with lines of the form:

+ 051 4 sctp 56 ------- I 0 1.0 40 1 -1 4 65535 65535

- 051 4 sctp 56 ------- I 0 1.0 40 1 -1 4 65535 65535

r 0.700896 1 4 sctp 56 ------- I 0 1.0 40 1 -1 4 65535 65535
+ 0.700896 4 1 sctp 56 ------- I 040 1.0 1 -1 5 65535 65535
- 0.700896 4 1 sctp 56 ------- I 0 4010 1 -15 65535 65535
r 0.901792 4 1 sctp 56 ------- I 040 1.0 1 -1 5 65535 65535
+ 0.901792 1 4 sctp 36 ------- I 0 1.0 40 1 -1 6 65535 65535
- 0.901792 1 4 sctp 36 --—----- I 0 1.0 40 1 -1 6 65535 65535
r 1.102368 1 4 sctp 36 ------- I 0 1.0 40 1 -1 6 65535 65535
+ 1.102368 4 1 sctp 36 ------- I 040 1.0 1 -1 7 65535 65535
- 1.102368 4 1 sctp 36 ------- I 040 1.0 1 -1 7 65535 65535
r 1.302944 4 1 sctp 36 ------- I 040 1.0 1 -1 7 65535 65535
+ 1.302944 1 4 sctp 1500 ------- D0104011800

- 1.302944 1 4 sctp 1500 ------- D0104011800

+ 1.302944 1 4 sctp 1500 ------- D0104012901

- 1.326624 1 4 sctp 1500 ------- D0104012901

r 1.526624 1 4 sctp 1500 ------- D0104011800

r 1.550304 1 4 sctp 1500 ------- D0104012901

+ 1550304 4 1 sctp 48 ------- S 040 1.0 1 2 11 65535 65535

- 1.550304 4 1 sctp 48 ------- S 040 1.0 1 2 11 65535 65535

r 1.751072 4 1 sctp 48 ------- S 040 1.0 1 2 11 65535 65535

+ 19.302944 4 1 sctp 56 ------- H 0 20 5.0 1 -1 336 65535 65535
- 19.302944 4 1 sctp 56 ------- H 0 2.0 5.0 1 -1 336 65535 65535
r 19.303264 4 1 sctp 56 ------- H 0 40 1.0 1 -1 322 65535 65535
+ 19.303264 1 4 sctp 56 ------- B 0 1.0 40 1 -1 337 65535 65535
- 19.327584 1 4 sctp 56 ------- B O 10 40 1 -1 337 65535 65535
r 19.52848 1 4 sctp 56 ------- B O 10 40 1 -1 337 65535 65535

When tracing SCTP, packets of typetp are relevant. Their packet type, chunk type, packet siz&| ([TumAck point for
SACK chunks), stream ID, SSN, and arrival/depart/drop tireegiven by field positions 5, 7 (flag position 8), 6, 12, 14, 15
and 2, respectively. If a packet has more than one chunkeddiprinted for each chunk. A future release should include a
field to indicate which chunk of the packet a line refers tg(€2:3 could identify the 2nd chunk of a packet which corg&n
chunks). Since control chunks do not use TSNs, stream IC8SBIs, the trace lines for these chunks use undefined numbers
(-1 or 65535) for these fields. Theindicates a packet arrivad,a drop, and a departure.

Flag position 8 of field 7 indicate the chunk type as followkeTflag indicates an association initiation control chunk {TNI
INIT-ACK, COOKIE-ECHO, COOKIE-ACK). A future release shiouusel for the INIT and INIT-ACK chunks, and for
the COOKIE-ECHO and COOKIE-ACK chunks. The S, H, andB flags indicate a DATA chunk, a SACK, a HEARTBEAT
chunk, and a HEARTBEAT-ACK chunk.

A number of scripts process this file to produce graphicapoubr statistical summaries (for example, see fthish
procedure in Adtcl/test/test-suite-sctp.icl

36.4 SCTP Applications

SCTP supports legaays applications, but they obviously cannot completely expddi SCTP’s features. For these appli-
cations, the TCL-bound SCTP configuration parameters carseé to set reliability and ordering options. However, ¢hes
options cannot be controlled per message using these pa@am©nly SCTP-aware application can be written to do so.
nsapplications wishing to become SCTP-aware can use the sendrl as follows (seengapps/sctp_appl.{cc, lgs an
example).

1. Create and fill an instance of tigpData_S structure (see rgsctp/sctp.h The AppData_S structure has the
following fields:

usNumsStreams is the number of outgoing streams to setup during negotiathdthough this field is passed
with every sendmsg call, it is only used during associatetngs. Once the association is established, this field is
ignored.

usNumUnreliable is the number of outgoing streams which are unreliable (redled partially reliable). The
sender simply sets the lowest outgoing stream to unreligdigally-reliable; the remaining ones are reliable.
This field is also only used during association establishimen

usStreamld is the stream ID of a message.

usReliability is the reliability level (k-rtx value) of a message. Thisdiéd ignored if the message is sent
on a reliable stream.

308

eUnordered is the unordered boolean flag for a message.
uiNumBytes is the number of bytes in a message.

2. Pass this object as the second parameter in SCTP’s sendmsg

sctpAgent->sendmsg(numBytes, (char

36.5 Example Scripts

36.5.1 Singled Homed Example

Trace set show_sctphdr_ 1

set ns [new Simulator]
set allchan [open all.tr w]
$ns trace-all $allchan

proc finish {
exit O
}

set n0 [$ns node]
set nl [$ns node]
$ns duplex-link $n0 $n1l .5Mb 200ms DropTail

*)appData);

this needs to be set for tracing SCTP packets

NOTE: The debug files (in this example, they would be debug. SctpAgent.0

and debug.SctpAgent.1) contain a lot of useful info. They ¢ an be

used to trace every packet sent, received, and processed.

#

set sctpO [new Agent/SCTP]

$ns attach-agent $n0 $sctp0

$sctp0 set debugMask_ 0x00303000 # refer to sctpDebug.h for mask mappings

$sctp0 set debugFilelndex_ 0

set trace_ch [open trace.sctp w]
$sctp0 set trace_all 0

$sctp0 trace cwnd_

$sctp0 attach $trace ch

set sctpl [new Agent/SCTP]
$ns attach-agent $nl S$sctpl
$sctpl set debugMask -1
$sctpl set debugFilelndex_ 1
$ns connect $sctp0 $sctpl

set ftp0 [new Application/FTP]
$ftp0 attach-agent $sctpO

$ns at 0.5 "$ftp0 start”
$ns at 4.5 "$ftp0 stop"

309

do not trace all variables on one line
:# trace cwnd for all destinations

;# use -1to turn on all debugging

$ns at 5.0 “finish"

$ns run

36.5.2 Multihomed Example

This example demonstrates multihoming. Two SCTP endpoint
with 2 interfaces, are directly connected between each pai
interfaces. In the middle of the association, a change prim
is done. Running nam helps to visualize the multihomed

architecture.

#

host0_if0 O===========0 host1_if0

/ \

hostO_core O O hostl_core

\ /

host0_ifl O===========0 hostl_ifl

Trace set show_sctphdr_ 1

set ns [new Simulator]
set nf [open sctp.nam w]
$ns namtrace-all $nf

set allchan [open all.tr w]
$ns trace-all $allchan

proc finish {
exec nam sctp.nam &
exit 0

}

set host0 _core [$ns node]

set host0_if0 [$ns node]

set host0_ifl [$ns node]

$host0_core color Red

$host0_if0 color Red

$host0_ifl color Red

$ns multihome-add-interface $host0_core $host0_if0
$ns multihome-add-interface $host0_core $host0_ifl

set hostl core [$ns node]

set hostl if0 [$ns node]

set hostl ifl [$ns node]

$hostl _core color Blue

$hostl _if0 color Blue

$hostl _ifl color Blue

$ns multihome-add-interface $hostl_core $hostl_if0
$ns multihome-add-interface $hostl_core $hostl_ifl

$ns duplex-link $host0_if0 $hostl_if0 .5Mb 200ms DropTail

310

s, each
r of
ary

$ns duplex-link $host0_if1 $hostl_ifl .5Mb 200ms DropTalil

set sctpO [new Agent/SCTP]
$ns multihome-attach-agent $host0_core $sctp0

set trace_ch [open trace.sctp w]

$sctp0 set trace all 1 ;# printall on a single trace event
$sctp0 trace rto_

$sctp0 trace errorCount_

$sctp0 attach $trace_ch

set sctpl [new Agent/SCTP]
$ns multihome-attach-agent $hostl_core $sctpl

$ns connect $sctp0 $sctpl

set ftp0 [new Application/FTP]
$ftp0 attach-agent $sctpO

$sctp0 set-primary-destination $hostl_if0 H# set primary before association starts
$ns at 7.5 "$sctp0 set-primary-destination $hostl_ifl" # change primary
$ns at 7.5 "$sctp0 print cwnd_" # print all dests’ cwnds at time 7.5

$ns at 0.5 "$ftp0 start”
$ns at 9.5 "$ftp0 stop"
$ns at 10.0 “finish"

$ns run

311

Chapter 37

Agent/SRM

This chapter describes the internals of the SRM implememat ns The chapter is in three parts: the first part is an overview
of a minimal SRM configuration, and a “complete” descriptairthe configuration parameters of the base SRM agent. The
second part describes the architecture, internals, ancottie path of the base SRM agent. The last part of the chaper is

description of the extensions for other types of SRM agdrastiave been attempted to date.

The procedures and functions described in this chapter edound in -ngtcl/mcast/srm.tcl, rdtcl/mcast/srm-adaptive.tcl,
~ndtcl/mcast/srm-nam.tcl,ngtcl/mcast/srm-debug.tcl, andhg'srm.{cc, h}.

37.1 Configuration

Running an SRM simulation requires creating and configuttiegagent, attaching an application-level data sourceffictr
generator), and starting the agent and the traffic generator

37.1.1 Trivial Configuration

Creating the Agent
set ns [new Simulator] # preamble initialization
$ns enableMcast
set node [$ns node] ;# agent to reside on this node
set group [$ns allocaddr] ;# multicast group for this agent

set srm[new Agent/SRM
$srm set dst_ $group ;# configure the SRM agent
$ns attach-agent $node $srm

$srm set fid_ 1 ;# optional configuration
$srm log [open srmStats.tr w] ;# log statistics in this file
$srm trace [open srmEvents.tr w] # trace events for this agent

The key steps in configuring a virgin SRM agent are to assgmiilticast group, and attach it to a node.

312

Other useful configuration parameters are to assign a seglow id to traffic originating from this agent, to open a log fi
for statistics, and a trace file for trace data

The file tcl/mcast/srm-nam.tcl contains definitions that overload the agesefnd methods; this separates control
traffic originating from the agent by type. Each type is &gl a separate flowID. The traffic is separated into session
messages (flowid = 40), requests (flowid = 41), and repair agess(flowid = 42). The base flowid can be changed by setting
global variablectrlFid ~ to one less than the desired flowid before soursimg-nam.tcl . To do this, the simulation script
must sourcesrm-nam.tcl before creating any SRM agents. This is useful for analyfdisaffic traces, or for visualization

in nam.

Application Data Handling The agent does not generate any application data on its ostead, the simulation user can
connect any traffic generation module to any SRM agent torgémelata. The following code demonstrates how a traffic
generation agent can be attached to an SRM agent:

set packetSize 210

set exp0 [new Application/Traffic/Exponential] # configure traffic generator
$exp0 set packetSize $packetSize

$exp0 set burst time_ 500ms

$exp0 set idle_time_ 500ms

$exp0 set rate_ 100k

$exp0 attach-agent $srnD ;# attach application to SRM agent
$srnD set packet Size_ $packet Si ze ;# to generate repair packets of appropriate size
$srm0 set tg_ $expO ;# pointer to traffic generator object
$srm0 set app_fid_ 0 # fid value for packets generated by traffic generator

The user can attach any traffic generator to an SRM agent. R &ent will add the SRM headers, set the destination
address to the multicast group, and deliver the packet taiitet. The SRM header contains the type of the message, the
identity of the sender, the sequence number of the messagéfaa control messages), the round for which this message i
being sent. Each data unitin SRM is identifiedssnder’s id, message sequence nuiber

The SRM agent does not generate its own data; it does not a&gptkack of the data sent, except to record the sequence
numbers of messages received in the event that it has to diorecovery. Since the agent has no actual record of past data
it needs to know what packet size to use for each repair messtance, the instance varialplacketSize_ specifies the

size of repair messages generated by the agent.

Starting the Agent and Traffic Generator The agent and the traffic generator must be started separatel

$srmstart
$exp0 start

Alternatively, the traffic generator can be started from3RM Agent:

$srnD start-source

At start , the agent joins the multicast group, and starts generaiegion messages. Thart-source triggers the
traffic generator to start sending data.

INote that the trace data can also be used to gather certais &frirace data. We will illustrate this later.

313

37.1.2 Other Configuration Parameters

In addition to the above parameters, the SRM agent suppadif@al configuration variables. Each of the variables de
scribed in this section is both an OTcl class variable and &al @Gbject’s instance variable. Changing the class vagiabl
changes the default value for all agents that are createzbguintly. Changing the instance variable of a particigant
only affects the values used by that agent. For example,

Agent/SRM set D1_ 2.0 # Changes the class variable
$srm set D1_ 2.0 # Changes D1_ for the particular $srm object only

The default request and repair timer parameters [11] fon &M agent are:

Agent/SRM set C1_ 2.0 # request parameters
Agent/SRM set C2_ 2.0
Agent/SRM set D1 _ 1.0 # repair parameters
Agent/SRM set D2_ 1.0

It is thus possible to trivially obtain two flavors of SRM agebased on whether the agents use probabilistic or detistiin
suppression by using the following definitions:

Class Agent/SRM/Deterministic -superclass Agent/SRM
Agent/SRM/Deterministic set C2_ 0.0
Agent/SRM/Deterministic set D2_ 0.0

Class Agent/SRM/Probabilistic -superclass Agent/SRM
Agent/SRM/Probabilistic set C1_ 0.0
Agent/SRM/Probabilistic set D1_ 0.0

In a later section (Section 37.7), we will discuss other waysxtending the SRM agent.

Timer related functions are handled by separate objeatsmpelg to the class SRM. Timers are required for loss regoaed
sending periodic session messages. There are loss reabjecys to send request and repair messages. The ageesaeat
separate request or repair object to handle each loss. trastirthe agent only creates one session object to serabljEeri
session messages. The default classes the express eaebedfithctions are:

Agent/SRM set requestFunction_ "SRM/request"
Agent/SRM set repairFunction_ "SRM/repair"
Agent/SRM set sessionFunction_ "SRM/session”

Agent/SRM set requestBackoffLimit_ 5 # parameter to requestFunction_
Agent/SRM set sessionDelay 1.0 # parameter to sessionFunction_

The instance proceduresquestFunction {}, repairFunction {}, and sessionFunction {} can be used to
change the default function for individual agents. The ta&t lines are specific parameters used by the request and ses-
sion objects. The following section (Section 37.2) dessithe implementation of theses objects in greater detail.

314

37.1.3 Statistics

Each agent tracks two sets of statistics: statistics to umeabe response to data loss, and overall statistics fdr eac
quest/repair. In addition, there are methods to access iofleemation from the agent.

Data Loss The statistics to measure the response to data losses thactaplicate requests (and repairs), and the average
request (and repair) delay. The algorithm used is docurdent&loyd etal[11]. In this algorithm, each new request (or
repair) starts a new request (or repair) period. During gugiest (or repair) period, the agent measures the numbesbof fi
round duplicate requests (or repairs) until the round teateis either due to receiving a request (or repair), or dthetagent
sending one. The following code illustrates how the usersiiauple retrieve the current values in an agent:

set statsList [$srm array get statistics_]
array set statsArray [$srm array get statistics_]

The first form returns a list of key-value pairs. The secormrthfbads the list into thetatsArray for further manipula-
tion. The keys of the array atup-req , ave-dup-req ,req-delay ,ave-reg-delay ,dup-rep ,ave-dup-rep ,
rep-delay , andave-rep-delay

Overall Statistics In addition, each loss recovery and session object keegs ¢fgimes and statistics. In particular, each
object records itstartTime , serviceTime , distance , as are relevant to that object; startTime is the time that th
object was created, serviceTime is the time for this obgcbimplete its task, and the distance is the one-way timesichre
the remote peer.

For request objects, startTime is the time a packet losstecthal, serviceTime is the time to finally receive that packe
and distance is the distance to the original sender of thkgpa&or repair objects, startTime is the time that a reqfeest
retransmission is received, serviceTime is the time seregair, and the distance is the distance to the original igque-or
both types of objects, the serviceTime is hormalized by iktadce. For the session object, startTime is the time Heat t
agent joins the multicast group. serviceTime and distane@at relevant.

Each object also maintains statistics particular to thae t9f object. Request objects track the number of duplieajaests
and repairs received, the number of requests sent, and thieamof times this object had to backoff before finally reteiv
the data. Repair objects track the number of duplicate @q@ad repairs, as well as whether or not this object foratiésnt
sent the repair. Session objects simply record the numtsssion messages sent.

The values of the timers and the statistics for each objectvaitten to the log file every time an object completes thererr
recovery function it was tasked to do. The format of thisdrfile is:

(prefix) (id) (times) (stats)

wher e
(prefix) is (time) n (node id) m (msg id) r (round)
(msg id) is expressed as (source id:sequence number)
(id) is type (of object)
(times) is list of key-value pairs of startTime, serviceTime, dista nce
(stats) is list of key-value pairs of per object statistics
dupRQST, dupREPR, #sent, backoff for request objects
dupRQST, dupREPR, #sent for repair objects
#sent for session objects

The following sample output illustrates the output file fatnithe lines have been folded to fit on the page):

315

3.6274 n 0 m <1:1> r 1 type repair serviceTime 0.500222 \

startTime 3.5853553333333332 distance 0.0105 #sent 1 dupR EPR 0 dupRQST O
3.6417 n 1 m <1:1> r 2 type request serviceTime 2.66406 \

startTime 3.5542666666666665 distance 0.0105 backoff 1 #s ent 1 dupREPR 0 dupRQST 0
3.6876 n 2 m <1:1> r 2 type request serviceTime 1.33406 \

startTime 3.5685333333333333 distance 0.021 backoff 1 #se nt 0 dupREPR 0 dupRQST O
3.7349 n 3 m <1:1> r 2 type request serviceTime 0.876812 \

startTime 3.5828000000000002 distance 0.032 backoff 1 #se nt 0 dupREPR 0 dupRQST 0
3.7793 n 5 m <1:1> r 2 type request serviceTime 0.669063 \

startTime 3.5970666666666671 distance 0.042 backoff 1 #se nt 0 dupREPR 0 dupRQST 0
3.7808 n 4 m <1:1> r 2 type request serviceTime 0.661192 \

startTime 3.5970666666666671 distance 0.0425 backoff 1 #s ent 0 dupREPR 0 dupRQST 0

Miscellaneous Information Finally, the user can use the following methods to gatheitiaaél! information about the
agent:

e groupSize? {}returnsthe agent’s current estimate of the multicastugrsize.

e distances? {} returns a list of key-value pairs of distances; the keyhe taddress of the agent, the value is the
estimate of the distance to that agent. The first elemeneiadidress of this agent, and the distance of 0.

e distance? {}returns the distance to the particular agent specifiedrgaraent.
The default distance at the start of any simulation is 1.

$srm(i) groupSize? # returns $srm(i)’s estimate of the group size
$srm(i) distances? ;# returns list of(address, distang¢euples
$srm(i) distance? 257 # returns the distance to agent at address 257

37.1.4 Tracing

Each object writes out trace information that can be usethttktthe progress of the object in its error recovery. Eaatetr
entry is of the form:

(prefix) (tag) (type of entry) (values)

The prefix is as describe in the previous section for stasisfrhe tag i€Q for request objects? for repair objects, an8 for
session objects. The following types of trace entries amdrpaters are written by each object:

316

Type of

Tag Object Other values Comments

Q DETECT

Q INTERVALS C1(C1) C2(C2) dist(distancé i (backoff)

Q NTIMER at(time) Time the request timer will fire

Q SENDNACK

Q NACK IGNORE-BACKOFF(time) Receive NACK, ignore other NACKs
until (time)

Q REPAIR IGNORES(time) Receive REPAIR, ignore NACKs until
(time)

Q DATA Agent receives data instead of repair.
Possibly indicates out of order arrival of
data.

P NACK from (requester Receive NACK, initiate repair

P INTERVALS D1(D1_) D2 (D2_) dist(distancé

P RTIMER at(time) Time the repair timer will fire

P SENDREP

P REPAIR IGNOREStime) Receive REPAIR, ignore NACKSs until
(time)

P DATA Agent receives data instead of repair. In-

dicates premature request by an agent.

S SESSION logs session message sent

The following illustrates a typical trace for a single losslaecovery.

35543 n 1 m <1:1> r 0 Q DETECT

35543 n 1 m <1:1>r 1 Q INTERVALS C1 2.0 C2 0.0 d 0.0105 i 1
35543 n 1 m <1:1> r 1 Q NTIMER at 3.57527

35685 n 2 m <1:1> r 0 Q DETECT

35685 n 2 m <1:1>r 1 Q INTERVALS C1 20 C2 0.0 d 0.021 i 1
35685 n 2 m <1:1> r 1 Q NTIMER at 3.61053

35753 n 1 m <1:1> r 1 Q SENDNACK

35753 n 1 m <1:1>r 2 Q INTERVALS C1 2.0 C2 0.0 d 0.0105 i 2
35753 n 1 m <1:1> r 2 Q NTIMER at 3.61727

35753 n 1 m <1:1> r 2 Q NACK IGNORE-BACKOFF 3.59627
35828 n 3 m <1:1> r 0 Q DETECT

35828 n 3 m <1:1>r 1 Q INTERVALS C1 20 C2 0.0 d 0.032 i 1
3.5828 n 3 m <1:1>r 1 Q NTIMER at 3.6468

35854 n 0 m <1:1>r 0 P NACK from 257

3.5854 n 0 m <1:1>r 1 P INTERVALS D1 1.0 D2 0.0 d 0.0105
35854 n 0m <1:1>r 1 P RTIMER at 3.59586

35886 n 2 m <1:1> r 2 Q INTERVALS C1 2.0 C2 0.0 d 0.021 i 2
35886 n 2 m <1:1> r 2 Q NTIMER at 3.67262

3.5886 n 2 m <1:1> r 2 Q NACK IGNORE-BACKOFF 3.63062
35959 n 0 m <1:1>r 1 P SENDREP

3.5959 n 0 m <1:1> r 1 P REPAIR IGNORES 3.62736

35971 n 4 m <1:1> r 0 Q DETECT

35971 n 4 m <1:1> r 1 Q INTERVALS C1 2.0 C2 0.0 d 0.0425 i 1
35971 n 4 m <1:1> r 1 Q NTIMER at 3.68207

3.5971 n 5 m <1:1> r 0 Q DETECT

35971 n 5 m <1:1>r 1 Q INTERVALS C1 2.0 C2 0.0 d 0.042 i 1
35971 n 5 m <1:1> r 1 Q NTIMER at 3.68107

3.6029 n 3 m <1:1>r 2 Q INTERVALS C1 2.0 C2 0.0 d 0.032 i 2

317

3.6029 n 3 m <1:1> r 2 Q NTIMER at 3.73089

3.6029 n 3 m <1:1> r 2 Q NACK IGNORE-BACKOFF 3.66689
3.6102 n 1 m <1:1> r 2 Q REPAIR IGNORES 3.64171

3.6172 n 4 m <1:1>r 2 Q INTERVALS C1 2.0 C2 0.0 d 0.0425 i 2
3.6172 n 4 m <1:1> r 2 Q NTIMER at 3.78715

3.6172 n 4 m <1:1> r 2 Q NACK IGNORE-BACKOFF 3.70215
3.6172 n 5 m <1:1>r 2 Q INTERVALS C1 2.0 C2 0.0 d 0.042 i 2
3.6172 n 5 m <1:1> r 2 Q NTIMER at 3.78515

3.6172 n 5 m <1:1> r 2 Q NACK IGNORE-BACKOFF 3.70115
3.6246 n 2 m <1:1> r 2 Q REPAIR IGNORES 3.68756

3.6389 n 3 m <1:1> r 2 Q REPAIR IGNORES 3.73492

3.6533 n 4 m <1:1> r 2 Q REPAIR IGNORES 3.78077

3.6533 n 5 m <1:1> r 2 Q REPAIR IGNORES 3.77927

The logging of request and repair traces is don8B::evTrace {}. However, the routinesSRM/Session::evTrace {},
overrides the base class definitionsom::evTrace {}, and writes out nothing. Individual simulation scriptarm override
these methods for greater flexibility in logging options.eQpossible reason to override these methods might to retece t
amount of data generated; the new procedure could thenajereempressed and processed output.

Notice that the trace filoe contains sufficient information aetails to derive most of the statistics written out inltgefile,
or is stored in the statistics arrays.

37.2 Architecture and Internals

The SRM agentimplementation splits the protocol functiotspacket handling, loss recovery, and session mességigyac

Packet handling consists of forwarding application dat@sages, sending and receipt of control messages. These
activities are executed by C++ methods.

Error detection is done in C++ due to receipt of messages.edexythe loss recovery is entirely done through instance
proceduresin OTcl.

The sending and processing of messages is accomplishedHrti@Hpolicy about when these messages should be sent
is decided by instance procedures in OTcl.

We first describe the C++ processing due to receipt of mesg@geztion 37.3). Loss recovery and the sending of session
messages involves timer based processing. The agent usgsrateelass SRM to perform the timer based functions. For
each loss, an agent may do either request or repair progegsiich agent will instantiate a separate loss recoverycbfue
every loss, as is appropriate for the processing that ittva@®1 In the following section we describe the basic timerbas
functions and the loss recovery mechanisms (Section 3FiBally, each agent uses one timer based function for sgndin
periodic session messages (Section 37.6).

37.3 Packet Handling: Processing received messages

Therecv () method can receive four type of messages: data, reqeesiyrand session messages.

Data Packets The agent does not generate any data messages. The usespesifpan external agent to generate traffic.
The recv () method must distinguish between locally originated dhtt must be sent to the multicast group, and data

318

received from multicast group that must be processed. Tdrerethe application agent must set the packet's destinati
address to zero.

For locally originated data, the agent adds the approp8Riel headers, sets the destination address to the multicagh,g
and forwards the packet to its target.

On receiving a data message from the graepy_data (sender, msgid) will update its state marking mess@gader,
msgid received, and possibly trigger requests if it detects mskeaddition, if the message was an older message received
out of order, then there must be a pending request or reinthst be cleared. In that case, the compiled object inviblees
OTcl instance proceduregcv-data {sender, msgid.

Currently, there is no provision for the receivers to adyuaceive any application data. The agent does not alse sty of
the user data. It only generates repair messages of thef@aiesize, defined by the instance varigideketSize . How-
ever, the agent assumes that any application data is plateeldata portion of the packet, pointed todacket->accessdata()

Request Packets On receiving arequestecv_rgst (sender, msgid) will check whether it needs to scheduleastgifor
other missing data. If it has received this request befonag aware that the source had generated this data message (
the sequence number of the request is higher than the lastksequence number of data from this source), then the agent
can infer that it is missing this, as well as data from the kastwn sequence number onwards; it schedules requests édr al
the missing data and returns. On the other hand, if the sequarmber of the request is less than the last known sequence
number from the source, then the agent can be in one of thaess(1) it does not have this data, and has a request pending
for it, (2) it has the data, and has seen an earlier requesh which it has a repair pending for it, or (3) it has the datal a

it should instantiate a repair. All of these error recovemlcimnisms are done in OTececv_rgst () invokes the instance
procedurgecv-rgst {sender, msgid, requester} for further processing.

Repair Packets On receiving a repaimecv_repr (sender, msgid) will check whether it needs to scheduleestgufor
other missing data. If it has received this repair beforesis wware that the source had generated this data messadgbd
sequence number of the repair is higher than the last knoguesee number of data from this source), then the agent can
infer that it is missing all data between the last known seqa@umber and that on the repair; it schedules requestt &ir a
this data, marks this message as received, and returns.ehtér hand, if the sequence number of the request is less tha
the last known sequence number from the source, then th¢ egeibe in one of three states: (1) it does not have this data,
and has a request pending for it, (2) it has the data, and kasaseearlier request, upon which it has a repair pending,for i
or (3) it has the data, and probably scheduled a repair fdrsibae time; after error recovery, its hold down timer (eduoal
three times its distance to some requester) expired, atwihiee the pending object was cleared. In this last situatioa
agent will simply ignore the repair, for lack of being abledimanything meaningful. All of these error recovery mechars

are done in OTclrecv_repr () invokes the instance proceduszv-repr {sender, msgid} to complete the loss recovery
phase for the particular message.

Session Packets On receiving a session message, the agent updates its sequenbers for all active sources, and com-
putes its instantaneous distance to the sending agentsigp@sThe agent will ignore earlier session messages frgroap
member, if it has received a later one out of order.

Session message processing is domedn_sess (). The format of the session message caunt of tuples in this message,
list of tuples, where each tuple indicates tfgender id, last sequence number from the source, time theelssion message
was received from this sender, time that that message wés 3@ first tuple is the information about the local agent

2Technically,recv_data () invokes the instance procedurecv data (sender) (msgid), that then invokesecv-data {}. The indirection
allows individual simulation scripts to override thecv {} as needed.

3Note that this implementation of session message handlisgitly different from that used b or described in [11]. In principle, an agent disseminates
a list of the data it has actually received. Our implemeataton the other hand, only disseminates a count of the las$ae sequence number per source
that the agent knows that that the source has sent. This isseramt when studying aspects of loss recovery duringtigariand healing. It is reasonable to
expect that the maintainer of this code will fix this problearidg one of his numerous intervals of copious spare time.

319

37.4 Loss Detection—The Class SRMinfo

A very small encapsulating class, entirely in C++, tracksimber of assorted state information. Each member of thepgrou
n;, uses one SRMinfo block for every other member of the group.

An SRMinfo object about group membey atn;, contains information about the session messages redgyvedfrom n ;.
n,; can use this information to compute its distance fo

If n; sends is active in sending data traffic, then the SRMinfoaihjéll also contain information about the received data,
including a bit vector indicating all packets received fram

The agent keeps a list of SRMinfo objects, one per group menmkies member variablesip_ . Its methodget_state (int
sender) will return the object corresponding to that semmtessibly creating that object, if it did not already exiBbeclass
SRMinfo has two methods to access and set the bit veictar,

ifReceived (intid) indicates whether the particular message from th@@epriate sender, with i@l was received
atn;,
setReceived (intid) to set the bit to indicate that the particular megsfigm the appropriate sender, withict was
received atn;.

The session message variables to access timing informetopublic; no encapsulating methods are provided. These ar

int Isess_; / = # of last session msg received
int sendTime_; [= Time sess. msg. # seaft
int recvTime_; / = Time sess. msg. # received

double distance_;

[+ Data messages /
int ldata_; [= # of last data msg sent/

37.5 Loss Recovery Objects

In the last section, we described the agent behavior whendives a message. Timers are used to control when anyubartic
control message is to be sent. The SRM agent uses a seplassteSRM to do the timer based processing. In this section,
we describe the basics if the class SRM, and the loss recolgegts. The following section will describe how the class
SRM is used for sending periodic session messages. An SRM atjkinstantiate one object to recover from one lost data
packet. Agents that detect the loss will instantiate anatlijetheclass SRM/request ; agents that receive a request and
have the required data will instantiate an object indlass SRM/repair

Request Mechanisms SRM agents detect loss when they receive a message, andhaféoss based on the sequence
number on the message received. Since packet receptiondteldeentirely by the compiled object, loss detection osdnr
the C++ methods. Loss recovery, however, is handled eptiseinstance procedures of the corresponding interpretgstb

in OTcl.

When any of the methods detects new losses, it invélgent/SRM::request {} with a list of the message sequence
numbers that are missingiequest {} will create a new requestFunction_ object for each message that is miss-
ing. The agent stores the object handle in its arrapeafding _ objects. The key to the array is the message identifier
(sendey:(msgid).

320

The defaultrequestFunction_ is class SRM/request The constructor for the class SRM/request calls the
base class constructor to initialize the simulator instans_), the SRM agentggent_), trace file race_), and
thetimes_ array. It then initializes itstatistics_ array with the pertinent elements.

A separate call tset-params {} sets thesender_ ,msgid_ ,round_ instance variables for the request object. The
objectdetermine€1_andC2_ by queryingitsagent_ . It sets its distance to the sendémes_(distance))and
fixes other scheduling parameters: the backoff constatiff_), the current number of backoffegckoffCtr_),
and the limit packoffLimit_) fixed by the agentset-params {} writes the trace entry DETECT".

The final step inrequest {} is to schedule the timer to send the actual request at thagriate moment. The
instance procedur8RM/request::schedule {} uses compute-delay {} and its current backoff constant to
determine the delay. The object schedwdend-request {} to be executed aftedelay seconds. The instance
variableeventID_ stores a handle to the scheduled event. The detamitpute-delay {} function returns a
value uniformly distributed in the interva1d;, (C1 + C2)ds], whered, is twice $times_(distance) . The
schedule {} schedules an event to send a request after the computey.ddhe routine writes a trace entrg*“
NTIMER at(time)”.

When the scheduled timer fires, the routsend-request {} sends the appropriate message. It invok&agent_ send
requestargs” to send the request. Note thexind {} is an instproc-like, executed by treommand)) method of the compiled
object. However, it is possible to overload the instprde-hvith a specific instance procedwend {} for specific configu-
rations. As an example, recall that the tit¥mcast/srm-nam.tcl overloads thesend {} command to set the flowid
based on type of message that is seahd-request {} updates the statistics, and writes the trace entpySENDNACK’".

When the agent receives a control message for a packet fohwtpending object exists, the agent will hand the messdige of
to the object for processing.

When arequest for a particular packet is received, the st@igect can be in one of two states: it is ignoring requests,
considering them to be duplicates, or it will cancel its semeint and re-schedule another one, after having backed off
its timer. If ignoring requests it will update its statiticand write the trace entryQ“NACK dup”. Otherwise, set a
time based on its current estimate of thelay , until which to ignore further requests. This interval isrked by

the instance variablgnore_ . If the object reschedules its timer, it will write the tragetry “ Q NACK IGNORE-
BACKOFF (ignore”. Note that this re-scheduling relies on the fact that thersidnas joined the multicast group, and
will therefore receive a copy of every message it sends out.

When the request object receives a repair for the partipaleket, it can be in one of two states: either it is still wagti
for the repair, or it has already received an earlier reghit.is the former, there will be an event pending to send a
request, aneéventID_ will point to that event. The object will compute its servigme, cancel that event, and set a
hold-down period during which it will ignore other requesis the end of the hold-down period, the object will ask its
agent to clear it. It will write the trace entrnR"REPAIR IGNORES (ignore”. On the other hand, if this is a duplicate
repair, the object will update its statistics, and write tifaee entry & REPAIR dup”.

When the loss recovery phase is completed by the objeEnt/SRM::clear {} will remove the object from its array
of pending_ objects, and place it in its list afone_ objects. Periodically, the agent will cleanup and deletediine
objects.

Repair Mechanisms The agent will initiate a repair if it receives a request fpagket, and it does not have a request object
pending_ for that packet. The default repair object belongs todlass SRM/repair . Barring minor differences, the
sequence of events and the instance procedures in thisactagtentical to those for SRM/request. Rather than oudirezy
single procedure, we only outline the differences from éhdascribed earlier for a request object.

The repair object uses the repair parametefs, D2_. A repair object does not repeatedly reschedule is timeesefore, it
does not use any of the backoff variables such as that useddmuast object. The repair object ignores all requestdfor t

321

same packet. The repair objet does not uséghere_ variable that request objects use. The trace entries whifeepair

objects are marginally different; they are NAck from (requestéer’, “P RTIMER at (fireTime)”, “P SENDREP, “ P REPAIR
IGNORES (holddown)”.

Apart from these differences, the calling sequence for &viara repair object is similar to that of a request object.

Mechanisms for Statistics The agent, in concert with the request and repair objecttgatcstatistics about their re-
sponse to data loss [11]. Each call to the agequest {} procedure marks a new period. At the start of a new period,
mark-period {} computes the moving average of the number of duplicatdbénlast period. Whenever the agent receives
a first round request from another agent, and it had sent @seauthat round, then it considers the request as a duplieat
quest, and increments the appropriate counters. A reqbgsttaloes not consider duplicate requests if it did noffitand a
request in the first round. If the agent has a repair objedlipgnthen it does not consider the arrival of duplicate esgsifor
that packet. The object metho8&M/request::dup-request? {} and SRM/repair::dup-request? {} encode
these policies, and return 0 or 1 as required.

A request object also computes the elapsed time between tivbdoss is detected to when it receives the first request. The
agent computes a moving average of this elapsed time. Tleetatgmputes the elapsed time (or delay) when it cancels its
scheduled event for the first round. The object invokes A& :update-ave to compute the moving average of the delay

The agent keeps similar statistics of the duplicate repaird the repair delay.

The agent stores the number of rounds taken for one losseBgde ensure that subsequent loss recovery phases for that
packet that are not definitely not due to data loss do not atdou these statistics. The agent stores the number ofsoute
taken for a phase in the arrayd_ . When a new loss recovery object is instantiated, the objélctise the agent’s instance
procedurgound? {} to determine the number of rounds in a previous loss recppdase for that packet.

37.6 Session Objects

Session objects, like the loss recovery objects (Sectids) 3are derived from the bastass SRM Unlike the loss recovery
objects though, the agent only creates one session objettiddifetime of the agent. The constructor invokes the base
class constructor as before; it then sets its instanceblagassionDelay . The agent creates the session object when it
start {}s. Atthattime, it also invokes SRM/session::schedubesénd a session message adessionDelay seconds.

When the object sends a session message, it will scheduéntbtee next one after some interval. It will also update its
statistics.send-session {} writes out the trace entry$ SESSION.

The class overrides thevTrace {} routine that writes out the trace entries. SRM/sessievitrace disable writing out the
trace entry for session messages.

Two types of session message scheduling strategies aentiyravailable: The function in the base class scheduledisg
session messages at fixed intervalsedsionDelay_ jittered around a small value to avoid synchronization agredhthe
agents at all the nodeslass SRM/session/logScaled chedules sending messages at intervalsegsionDelay
timeslog,(groupSize_) so that the frequency of session messages is inverselpgiiapal to the size of the group.

The base class that sends messages at fixed intervals iSfaiodt dessionFunction_ for the agent.

322

37.7 Extending the Base Class Agent

In the earlier section on configuration parameters (Se@ibf.2), we had shown how to trivially extend the agent to get
deterministic and probabilistic protocol behavior. InstBection, we describe how to derive more complex extensmtie
protocol for fixed and adaptive timer mechanisms.

37.7.1 Fixed Timers

The fixed timer mechanism are done in the derigleds Agent/SRM/Fixed The main difference with fixed timers is
that the repair parameters are setdg(groupSize_). Therefore, the repair procedure of a fixed timer agent seitlD,
and D to be proportional to the group size before scheduling tpairebject.

37.7.2 Adaptive Timers

Agents using adaptive timer mechanisms modify their retared repair parameters under three conditions (1) every ém
new loss object is created; (2) when sending a message; pnthéd they receive a duplicate, if their relative distarcthe
loss is less than that of the agent that sends the dupliclitidwrde changes require extensions to the agent and thelijests.
Theclass Agent/SRM/Adaptive useslass SRM/request/Adaptive andclass SRM/repair/Adaptive

as the request and repair functions respectively. In amdithe last item requires extending the packet headersiviertise
their distances to the loss. The corresponding compilessdtar the agent is thelass ASRMAgent .

Recompute for Each New Loss Object Each time a new request object is created, SRM/requesttidapet-params
invokes$agent_ recompute-request-params . The agent methotkcompute-request-params (). uses the
statistics about duplicates and delay to modifyandC, for the current and future requests.

Similarly, SRM/request/Adaptive::set-params for a nepaieobject invoke$agent _ recompute-repair-params
The agent methotecompute-repair-params (). uses the statistics objects to modify and D, for the current and
future repairs.

Sending a Message If aloss object sends a requestinits ficaind_ , then the agent, in the instance procedgneding-request
will lower C1, and set its instance varialiosest (requestor) to 1.

Similarly, aloss object that sends a repair inits fiostnd_ will invoke the agent’s instance procedusending-repair {},
to lower D; and setlosest_(repairor) to 1.

Advertising the Distance Each agent must add additional information to each reqeestif that it sends out. The base
class SRMAgent invokes the virtual methodddExtendedHeaders () for each SRM packet that it sends out. The
method is invoked after adding the SRM packet headers, aftilebthe packet is transmitted. The adaptive SRM agent
overloadsaddExtendedHeaders () to specify its distances in the additional headers. Wieendisig a request, that agent
unequivocally knows the identity of the sender. As an exantpk definition ohddExtendedHeaders () for the adaptive
SRM agent is:

void addExtendedHeaders(Packet * p) {
SRMinfo * sp;
hdr_srm * sh = (hdr_srm =*) p->access(off_srm_);

323

hdr_asrm * seh = (hdr_asrm =) p->access(off_asrm_);
switch (sh->type()) {
case SRM_RQST:

sp = get_state(sh->sender());

seh->distance() = sp->distance_;

break;

Similarly, the methoarseExtendedHeaders () is invoked every time an SRM packet is received. It setsathent
member variabl@distance_ to the distance advertised by the peer that sent the mesEagenember variable is bound

to an instance variable of the same name, so that the peandéstan be accessed by the appropriate instance procedures
The correspondingarseExtendedHeaders () method for the Adaptive SRM agent is simply:

void parseExtendedHeaders(Packet * p) {
hdr_asrm * seh = (hdr_asrm =) p->access(off_asrm_);
pdistance_ = seh->distance();

Finally, the adaptive SRM agent’s extended headers areadbdisstruct hdr_asrm . The header declaration is identical
to declaring other packet headersim Unlike most other packet headers, these are not autoriitieailable in the packet.
The interpreted constructor for the first adaptive ageritaditl the header to the packet format. For example, the dttreo
constructor for théAgent/SRM/Adaptive agentis:

Agent/SRM/Adaptive set done_ 0
Agent/SRM/Adaptive instproc init args {
if ![$class set done_] {
set pm [[Simulator instance] set packetManager_]
TclObject set off_asrm_ [$pm allochdr aSRM]
$class set done_ 1

}

eval $self next $args

37.8 SRM objects

SRM objects are a subclass of agent objects that impleme®RM reliable multicast transport protocol. They inheltibh
the generic agent functionalities. The methods for thigctds described in the next section 37.9. Configurationrpatars
for this object are:

packetSize_The data packet size that will be used for repair messagesdéfault value is 1024.

requestFunction_ The algorithm used to produce a retransmission requestsetting request timers. The default value is
SRM/request. Other possible request functions are SRMéstAdaptive, used by the Adaptive SRM code.

repairFunction_ The algorithm used to produce a repair, e.g., compute répaars. The default value is SRM/repair. Other
possible request functions are SRM/repair/Adaptive, isetthe Adaptive SRM code.

324

sessionFunction_The algorithm used to generate session messages. Defa@iMgsession

sessionDelay The basic interval of session messages. Slight randomtiearies added to this interval to avoid global
synchronization of session messages. User may want totdtjass/ariable according to their specific simulation.
Default value is 1.0.

C1_, C2_The parameters which control the request timer. Refer tfof8iletail. The default valueis C1_=C2_=2.0.
D1_, D2_ The parameters which control the repair timer. Refer to¢8letail. The default valueis D1_=D2_=1.0.

requestBackoffLimit_ The maximum number of exponential backoffs. Default vatug. i
State Variables are:

stats_ An array containing multiple statistics needed by adapfi®M agent. Including: duplicate requests and repairs in
current request/repair period, average number of duplicequests and repairs, request and repair delay in current
request/repair period, average request and repair delay.

SRM/ADAPTIVE OBJECTS SRM/Adaptive objects are a subclass of the SRM objects thpteiment the adaptive SRM
reliable multicast transport protocol. They inherit alithé SRM object functionalities. State Variables are:

(Refer to the SRM paper by Sally et al [Fall, K., Floyd, S., &tehderson, T., Ns Simulator Tests for Reno FullTCP. URL
ftp://ftp.ee.Ibl.gov/papers/fulltcp.ps. July 1997.F foore detail.)

pdistance_ This variable is used to pass the distance estimate probigitte remote agent in a request or repair message.

D1 ,D2_The same as that in SRM agents, except that they are ingiatiz log10(group size) when generating the first
repair.

MIinC1_, MaxC1_, MinC2_, MaxC2_ The minimum/maximum values of C1_ and C2_. Default initialues are defined
in [8]. These values define the dynamic range of C1_and C2_.

MinD1_, MaxD1_, MinD2_, MaxD2_ The minimum/maximum values of D1_ and D2_. Default initialues are defined
in [8]. These values define the dynamic range of D1_and D2_.

AveDups Higher bound for average duplicates.
AveDelay Higher bound for average delay.

eps AveDups-dups determines the lower bound of the number of duplicateen we should adjust parameters to decrease
delay.

37.9 Commands at a glance

The following is a list of commands to create/manipulate agants in simulations:

set srm0 [new Agent/SRM]
This creates an instance of the SRM agent. In addition todise blass, two extensions of the srm agent have been
implemented. They are Agent/SRM/Fixed and Agent/SRM/Aidap See section 37.7 for details about these extensions.

ns_ attach-agent <node> <srm-agent>
This attaches the srm agent instance to the given <node>.

325

set grp [Node allocaddr]
$srm set dst_ $grp

This assigns the srm agent to a multicast group represenptie:mcast address <grp>.

Configuration parameters for srm agent may be set as follows:

$srm set fid_ <flow-id>
$srm set tg_ <traffic-generator-instance>
. etc

For all possible parameters and their default values plea&&ipndtcl/mcast/srm.tcl andgtcl/mcast/srm-adaptive.tcl.

set exp [new Application/Traffic/Exponential]
$exp attach-agent $srm

This command attaches a traffic generator (an exponengsihothis example), to the srm agent.

$srm start; $exp start

These commands start the srm agent and traffic generata.tiNaitthe srm agent and traffic generator have to be started
separately. Alternatively, the traffic generator may betstbthrough the agent as follows:

$srm start-source

Seendtcl/ex/srm.tcl for a simple example of setting up a SRM agen

326

Chapter 38

PLM

This chapter describes the ns implementation of the PLMpypr{19]. The code of the PLM protocol is written in both C++
and OTcl. The PLM Packet Pair generator is written in C++ dredRLM core machinery is written in OTcl. The chapter
has simply three parts: the first part shows how to create anfigure a PLM session; the second part describes the Packet
Pair source generator; the third part describes the aothieeand internals of the PLM protocol. In this last parthea than
giving a list of procedures and functions, we introduce tla@mprocedures per functionality (instantiation of a PLMis,
instantiation of a PLM receiver, reception of a packet, diébe of a loss, etc.).

The procedures, functions, and variables described irctiapter can be found in:ngplm/cbr-traffic-PP.cc, rgplm/loss-
monitor-plm.cc, adtcl/plm/plm.tcl, ~ndtcl/plm/plm-ns.tcl, adtcl/plm/plm-topo.tcl, Agtcl/lib/ns-default.tcl.

38.1 Configuration

Creating a simple scenario with one PLM flow (only one receivg
This simple example can be run as is (several complex seenaain be found in the filengtcl/ex/simple-pim.tcl).

set packetSize 500 ;# Packet size (in bytes)
set plm_debug_flag 2 ;# Debugging output
set rates "50e3 50e3 50e3 50e3 50e3" ;# Rate of each layer
set rates_cum [calc_cum $rates] # Cumulated rate of the layers (mandatory)
set level [llength $rates] ;# Number of layers (mandatory)
set Queue_sched_ FQ ;# Scheduling of the queues
set PP_burst length 2 ;# PP burst length (in packets)
set PP_estimation_length 3 # Minimum number of PP required to make an estimate

Class Scenario0 -superclass PLMTopology
Scenario0 instproc init args {

eval $self next $args

$self instvar ns node

$self build_link 1 2 100ms 256Khb ;# Build a link
set addr(1) [$self place source 1 3] ;# Seta PLM source
$self place_receiver 2 $addr(1) 5 1 # Seta PLM receiver

327

#set up the multicast routing
DM set PruneTimeout 1000 # Alarge PruneTimeout value is required
set mproto DM
set mrthandle [$ns mrtproto $mproto {}]

}

set ns [new Simulator -multicast on] H PLM needs multicast routing
$ns multicast

$ns namtrace-all [open out.nam w] ;# Nam output
set scn [new Scenario0 $ns] ;# Call of the scenario
$ns at 20 "exit 0"

$ns run

Several variables are introduced in this example. Theyesdtrto be set in the simulation script (there is no defaultevébr
these variables). In particular the two following lines arandatory and must not be omitted:

set rates_cum [calc_cum $rates]
set level [llength $rates]

We describe now in detail each variable:

packetSize represents the size of the packets in bytes sent by the PLMeou

plm_debug_flag represents the verbose level of debugging output: from O apubd to 3 full output. For
plm_debug_flag set to 3 (full output), long lines output are generated whichot compatible with ham visu-
alization.

rates is a list specifying the bandwidth of each layer (this is et tumulated bandwidth!).

rates_cum s a list specifying the cumulated bandwidth of the layeh® first element ofates_cum is the bandwidth
a layer 1, the second element ates_cum is the sum of the bandwidth of layer 1 and layer 2, etc. The proc
calc_cum {} computes the cumulated rates.

level isthe number of layers.

Queue_sched represents the scheduling of the queues. This is used by t&dpology instprodouild_link . PLM
requires FQ scheduling or a variation.

PP_burst_length represents the size of the Packet Pair bursts in packets.

PP_estimation_length represents the minimum number of Packet Pair required togpatenan estimate (see sec-
tion 38.3.3).

All the simulations for PLM should be setup using the PLMTimgy environment (as in the example script where we define
a PLMTopology superclass called Scenario0). The useffateis (all the instproc can be found ingtcl/plm/plm-topo.tcl):

build_link a b d bw creates a duplex link between noal@ndb with a delayd and a bandwidtibw. If either node
does not existhuild_link creates it.

place_source n t creates and places a PLM source at noagd starts it at timé . place_source returnsaddr
which allows to attach receivers to this source.

328

place_receiver n addr C nb creates and places a PLM receiver at no@ad attached it to the source which return
the addresaddr . The check value for this PLM receiver @ An optional parametenb allows to get an instance
of the PLM receiver calledPLMrcvr($nb) . This instance is only useful to get some specific statisthosut this
receiver (mainly the number of packets received or lost).

38.2 The Packet Pair Source Generator

This section describes the Packet Pair source genera®rietavant files are: ngplm/cbr-traffic-PP.cc, rdtcl/lib/ns-
default.tcl. The OTcl class name of the PP source is: AptitinaTraffic/CBR_PP. The Packet Pair (PP) source generator
is in the file -ngplm/cbr-traffic-PP.cc. This source generator is a varatf the CBR source generator ingcbr_traffic.cc.

We just describe the salient differences between the cotfe@BR source and the code of the PP source. The defaulsvalue
in ~ndtcl/lib/ns-default.tcl for the PP source generator are ¢hme than for the CBR source. We need for the PP source
generator a new paramefeBM

Application/Traffic/CBR_PP set PBM_ 2 ;# Default value

The OTcl instvar bounded variabRBM_(same name in C++ and in OTcl) specifies the number of badlatd-packets to

be sent. FOPBM =1 we have a CBR source, f&BM =2 we have a Packet Pair source (a source which sends twotpacke
back-to-back), etc. The mean rate of the PP souraés , but the packets are sent in bursRBM_packets. Note that we
also use the terminology Packet Pair source and PacketiRatrforPBM_>2. We compute tha@ext_interval as:

double CBR_PP_Traffic::next_interval(int& size)

[*(PP_- 1) is the number of packets in the current burst.*/
if (PP_ >= (PBM_ - 1))

interval_ = PBM_ *(double)(size_ << 3)/(double)rate_;
PP_ = 0;

else
interval 1e-100; //zero

PP += 1 ;

Thetimeout {} method puts theNEW_BURSTIag in the first packet of a burst. This is useful for the PLMtpoml to
identify the beginning of a PP burst.

void CBR_PP_Traffic::timeout()

if (PP_ == 0)
agent_->sendmsg(size , "NEW_BURST");
else

agent_->sendmsg(size_);

329

38.3 Architecture of the PLM Protocol

The code of the PLM protocol is divided in three filesngtcl/plm/plm.tcl, which contains the PLM protocol machige
without any specific interface withs ~ng'tcl/plm/plm-ns.tcl, which contains the specific ns inted. However, we do not
guarantee the strict validity of this ns interfacingigitcl/plm/plm-topo.tcl, which contains a user interfacdtald simulation
scenarios with PLM flows.

In the following we do not discuss the various procedure®pggct (for instance all the instproc of the PLM class) btihea
per functionality (for instance which instproc among theimas classes are involved in the instantiation of a PLM ireszg.
For a given functionality, we do not describe in detailsladl tode involved, but we give the principal steps.

38.3.1 Instantiation of a PLM Source

To create a PLM source, place it at nadeand start it at o, we call the PLMTopology instproplace_source n t .
This instproc returraddr , the address required to attach a receiver to this sowlaze source calls the Simulator
instprocPLMbuild_source_set that creates as many Application/Traffic/CBR_PP instaiasethere are layers (in the
following we call an instance of the class Application/TidiCBR_PP a layer). Each layer corresponds to a differefticast

group.

To speed up the simulations when the PLM sources start wenedeltowing trick: At¢ = 0, PLMbuild_source_set
restricts each layer to send only one packedXpkts_ setto 1). That allows to build the multicast trees — one roadi tree
per layer — without flooding the whole network. Indeed, eagtet only sends one packet to build the corresponding ragttic
tree.

The multicast trees take at most the maximum RTT of the né&twmbe established and must be established bdfgre
the PLM source starting time. Therefote, must be carrefully chosen, otherwise the source sends @ tangber of use-
less packets. However, as we just need to start the PLM saifiterethe multicast trees are estabishieglcan be largely
overestimated. At time, we setmaxpkts to 268435456 for all the layers.

It is fundamental, in order to have persistent multicastdréhat the prune timeout is set to a large value. For instamith
DM routing:

DM set PruneTimeout 1000

Each layer of a same PLM source has the same fldidid . Consequently, each PLM source is considered as a single flow
for a Fair Queueing scheduler. The PLM code manages autmatiptihefid_ to prevent different sources to have the same
fid_ . Thefid_ starts at 1 for the first source and is increased by one formeashsource. Be careful to avoid other flows
(for instance concurrent TCP flows) to have the séiche than the PLM sources. Additionally, If you considier_ larger

than 32, do not forget to increase thAXFLOW ~ngfg.cc MAXFLOWhust be set to the highelitl_ considered in the
simulation).

38.3.2 Instantiation of a PLM Receiver

All'the PLM machinery is implemented at the receiver. In ggstion we decribe the instantiation process of a recelearre-
ate, place at node, attach to sourc8, and start at ; a PLM receiver we call the PLMTopology instprbuaild_receiver

n addr t ; Cwhereaddr isthe address returned place_source whenSwas created, an@is the check value. The
receiver created bpuild_receiver is an instance of the class PLM/ns, the ns interface to the Riddhinery. At
the initialisation of the receiver, the PLM instpradt is called due to inheritanceinit calls the PLM/ns instproc

330

User

. Inherit
v PLMTopology
¢ Instantiate - PLM
PLM/ns
PLMLayer « _ /\ _- PLMLayer
N -
PLMLayer/ns PLMLayer/ns
Agent/LossMonitor/PLM. _ ‘ ’ _. Agent/LossMonitor/PLM
o L
PLMLossTrace PLMLossTrace

Number of layers

Figure 38.1: Inheritance and instantiation when we creaéeaiver.

create-layer and, by this way, creates as many instances of the class Py&iins (the ns interface to the PLMLayer
class) as there are layers. Each instance of PLMLayer/rdéesr@n instance of the class PLMLossTrace which is repon-
sible for monitoring the received and lost packets thankthéofact that the class PLMLossTrace inherits from the class
Agent/LossMonitor/PLM. Fig. 38.1 schematically descsiltiee process of a PLM receiver instantiation. In the foltogwve
describe the behavior of a PLM receiver when it receives &giand when it detects a loss.

38.3.3 Reception of a Packet

We create a new c++ class PLMLossMoniton§plm/loss-monitor-plm.cc) that inherits from LossMonitdhe OTcl class
name of the c++ PLMLossMonitor class is Agent/LossMonRam.

class PLMLossMonitor : public LossMonitor
public:

PLMLossMonitor();

virtual void recv(Packet * pkt, Handler =*);
protected:

/[PLM only

int flag PP_;

double packet_time_PP_;

int fid_PP_;

static class PLMLossMonitorClass : public TclClass
public:
PLMLossMonitorClass() : TclClass("Agent/LossMonitor/P LM")
TclObject =+ create(int, const char *Cconst *)
return (new PLMLossMonitor());

class_loss_mon_pim;

331

We add invoid PLMLossMonitor::recv(Packet * pkt, Handler) aTcl call to the Agent/LossMonitor/PLM
instproclog-PP each time a packet is received :

void LossMonitor::recv(Packet * pkt, Handler =)
if (expected_ >= 0)

Tcl::instance().evalf("%s log-PP", name());

The Agent/LossMonitor/PLM instprotog-PP is empty. In fact, we define théog-PP instproc for the class

PLMLossTrace. log-PP computes an estimate of the available bandwidth based omgdesPP burst (of length

PP_burst_length in packets). Oncéog-PP has received thBP_burst_length packets of the burst, it computes
the estimate and calls the PLM instpnoake_estimate with the computed estimate as argument.

make_estimate puts the estimate based on a single PP_(value) in an array of estimate sampleRK_estimate).

If PP_value is lower than the current subscription level (i.e. lowerrththe throughput achieved according to the
current number of layers subscribedhake_estimate calls the PLM instprocstability-drop which simply
drops layers until the current subscription level beconmget thanPP_value . make_estimate makes an es-
timate PP_estimate_value by taking the minimumPP_value received during the lastheck_estimate pe-

riod (if there are at leasPP_estimation_length single PP estimate received). Onowke estimate has a
PP_estimate_value it calls the PLM instproachoose_layer which joins or drops layer(s) according to the cur-
rent subscription level and to tiP_estimate_value . For details about the PLM instpraogake_estimate |, refer to

its code in adtcl/plm/pim.tcl.

38.3.4 Detection of a Loss

Each time a loss is detected by an instance of the class PL8Masitor, a call to the Agent/LossMonitor/PLM instproc
log-loss s triggered. The Agent/LossMonitor/PLM instprtag-loss is empty. In fact, we define thieg-loss
instproc for the class PLMLossTrace. The PLMLossTracepiostlog-loss simply calls the PLM instprotog-loss

which contains the PLM machinery in case of loss. In summagyoss only drops a layer when the loss rate exceeds
10% (this test is executed by the PLM instpeo®ed_loss_thresh). After alayer drogog-loss precludes any other
layer drop due to loss for 500ms. For details about the PLMpmoslog-loss , refer to its code in rg'tcl/plm/plm.tcl.

38.3.5 Joining or Leaving a Layer

To join a layer the PLM instproadd-layer is called. This instproc calls the PLMLayer instpjoin-group ~ which
calls the PLMLayer/ns instprgoin-group . To leave a layer the PLM instpratrop-layer s called. This instproc
calls the PLMLayer instproleave-group which calls the PLMLayer/ns instprdeave-group

38.4 Commands at a Glance

Note: This section is a copy paste of the end of section 38eladid this section to preserve homogeneity with the ns manual

332

All the simulations for PLM should be set using the PLMTompi@nvironment (as in the example script where we define a
PLMTopology superclass called Scenario0). The user iterfs (all the instproc can be found ingtcl/plm/plm-topo.tcl):

build_link a b d bw creates a duplex link between nogl@ndb with a delayd and a bandwidtlbw. If either node
does not existhuild_link creates it.

place_source n t creates and places a PLM source at noagmd starts it at timé . place_source returnsaddr
which allows to attach receivers to this source.

place_receiver n addr C nb creates and places a PLM receiver at no@ad attached it to the source which return
the addresaddr . The check value for this PLM receiver @ An optional parametenb allows to get an instance
of the PLM receiver calledLMrcvr($nb) . This instance is only useful to get some specific statigtlosut this
receiver (mainly the number of packets received or lost).

333

Chapter 39

DCCP Agents

39.1 DCCP Agents

This section describes the operation of the DCCP agenmts iAt currentnamplementation, there are two major congestion
control of DCCP agents: CCID2 and CCID3. It is a symmetric-tmayy agent in the sense that it represents both a sender
and receiver. DCCP fards still under development.

The files described in this section are too numerous to eratméere. Basically it covers most files matching the regular
expression rddccp*.{cc, h}.

Applications can access DCCP agents viadbedmsg () function in C++, or via thesend or sendmsg methods in OTcl,
as described in section 40.2.3.

The following is a simple example of how a DCCP CCID2 agent tn@ysed in a program. In the example, the CBR traffic
generator is started at time 1.0, at which time the geneb&gins to periodically call the DCCP agesgndmsg () function.

set ns [new Simulator]
set sender [$ns node]
set receiver [$ns node]
$ns duplex-link $sender $receiver 5Mb 2ms DropTalil

set dccpO [new Agent/DCCP/TCPIike]
$dcep0 set window_ 7000

set dccpsinkO [new Agent/DCCP/TCPIlike]
$ns attach-agent $sender $dccpO

$ns attach-agent $receiver $dccpsinkO

set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $dccpO

$cbr0 set packetSize_ 160

$cbr0 set rate_ 80Kb

$ns connect $dccp0 $dccpsinkO
$ns at 1.0 "$cbr0 start"

334

The following example uses DCCP CCID3.

set ns [new Simulator]
set sender [$ns node]
set receiver [$ns node]
$ns duplex-link $sender $receiver 5Mb 2ms DropTalil

set dccpO [new Agent/DCCP/]

set dccpsinkO [new Agent/DCCP/TFRC]
$ns attach-agent $sender $dccpO

$ns attach-agent $receiver $dccpsink0

set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $dccpO

$cbr0 set packetSize_ 160

$cbr0 set rate_ 80Kb

$ns connect $dccpO $dccpsinkO
$ns at 1.0 "$cbr0 start"

39.2 Commands at a glance

The following commands are used to setup DCDP agents in atioalscripts:

set dccpO [new Agent/DCCP/TCPIike]
This creates an instance of the DCCP CCID2 agent.

set dccpO [new Agent/DCCP/TFRC]
This creates an instance of the DCCP CCID3 agent.

$ns_ attach-agent <node> <agent>
This is a common command used to attach any <agent> to a givehess.

$traffic-gen attach-agent <agent>
This a class Application/Traffic/<traffictype> method wiconnects the traffic generator to the given <agent>. For
example, if we want to setup a CBR traffic flow for the dccp agéotpO, we given the following commands

set cbrl [new Application/Traffic/CBR]
$cbrl attach-agent $dccpO

For a more complex example of setting up an DCCP agent usesiinudation, see the example code in tcl/ex folder.

335

Part VI

Application

336

Chapter 40

Applications and transport agent API

Applications sit on top of transport agentsia There are two basic types of applications: traffic genesatnd simulated ap-
plications. Figure 40.1 illustrates two examples of howl@ations are composed and attached to transport agemtssgort
agents are described in Part V (Transport).

This chapter first describes the badass Application . Next, the transport API, through which applications resjue

services from underlying transport agents, is describexllly, the current implementations of traffic generatord aources
are explained.

40.1 The class Application

Application is a C++ class defined as follows:

class Application : public TclObject {

public:
Application();
virtual void send(int nbytes);
virtual void recv(int nbytes);
virtual void resume();
protected:
int command(int argc, const char *const * argv);
virtual void start();
virtual void stop();
Agent =*agent_;
int enableRecv_; /I call OTcl recv or not
int enableResume_; /I call OTcl resume or not
h
Although objects ofclass Application are not meant to be instantiated, we do not make it an abdieset class
so that it is visible from OTcl level. The class provides bgsiototypes for application behavissghd(), recv(),
resume(), start(), stop()), a pointer to the transport agent to which it is connected fiags that indicate whether

a OTcl-level upcall should be made faacv() andresume() events.

337

Traffic generators Simulated applications

S | S |

Application/ | nati |

: Traffic/ | : Application/FTP |

, Exponential | | |

\ o ___ ' \ '
API API

T s s s s = = = l I/ __________ I

| I |

Agent/UDP I . Agent/TCP/FullTcp !

| I |

| \ !

Figure 40.1: Example of Application Composition

40.2 The transport agent API

In real-world systems, applications typically access oekvgervices through an applications programming interf@d®l).
The most popular of these APIs is known as “sockets.”ngnwe mimic the behavior of the sockets API through a set
of well-defined API functions. These functions are then negpio the appropriate internal agent functions (e.g., atoall
send(numBytes) causes TCP to increment its “send buffer” by a corresponalimber of bytes).

This section describes how agents and applications areskddolgether and communicate with one another via the API.

40.2.1 Attaching transport agents to nodes

This step is typically done at OTcl level. Agent managemeas ®lso briefly discussed in Section 5.2.

set src [new Agent/TCP/FullTcp]
set sink [new Agent/TCP/FullTcp]
$ns_ attach-agent $node_(s1) $src
$ns_ attach-agent $node_(k1) $sink
$ns_ connect $src $sink

The above code illustrates thatrig agents are first attached to a nodeatitach-agent . Next, theconnect instproc

sets each agent’s destination target to the other. Notgithag connect() has different semantics than in regular sockets.
In ns connect() simply establishes the destination address for an agentildas not set up the connection. As a result,
the overlying application does not need to know its peertresks. For TCPs that exchange SYN segments, the first call to
send() will trigger the SYN exchange.

To detach an agent from a node, the instpietach-agent can be used; this resets the target for the agent to a nult.agen

338

40.2.2 Attaching applications to agents

After applications are instantiated, they must be conmct@ transport agent. Tlattach-agent method can be used to
attach an application to an agent, as follows:

set ftpl [new Application/FTP]
$ftpl attach-agent $src

The following shortcut accomplishes the same result:
set ftpl [$src attach-app FTP]

The attach-agent method, which is also used by attach-apmplemented in C++. It sets tlegent_ pointer inclass
Application to point to the transport agent, and then it caltsachApp() in agent.cc to set theapp_ pointer

to point back to the application. By maintaining this birglionly in C++, OTcl-level instvars pointers are avoided and
consistency between OTcl and C++ is guaranteed. The OVelt®mmand$ftpl agent] can be used by applications
to obtain the handler for the transport agent.

40.2.3 Using transport agents via system calls

Once transport agents have been configured and applicatiaebed, applications can use transport services vialiogfng
system calls. These calls can be invoked at either OTcl orl€vet, thereby allowing applications to be coded in eithe#C
or OTcl. These functions have been implemented as virtuadtfons in the baselass Agent , and can be redefined as
needed by derived Agents.

e send(int nbytes) —Send nbytes of data to peer. For TCP agentabiftes == -1 , this corresponds to an
“infinite” send; i.e., the TCP agent will act as if its sendfenis continually replenished by the application.

e sendmsg(int nbytes, const char * flags = 0) —ldenticaltosend(int nbytes) , exceptthatit passes
an additional strindlags . Currently one flag value, “MSG_EOF,” is defined; MSG_ EOFcsipes that this is the last
batch of data that the application will submit, and serveagraisnplied close (so that TCP can send FIN with data).

e close() —Requeststhe agentto close the connection (only appéidabIl CP).
e listen() = —Requests the agent to listen for new connections (onlyiegdge for Full TCP).
e set pkttype(int pkttype) —This function sets théype_ variable in the agent tpkttype . Packet types

are defined irpacket.h . This function is used to override the transport layer pagjee for tracing purposes.

Note that certain calls are not applicable for certain ageaiy., a call taclose () a UDP connection results in a no-op.
Additional calls can be implemented in specialized agemts/ided that they are magheiblic member functions.

40.2.4 Agent upcalls to applications

Since presently imsthere is no actual data being passed between applicatigestsacan instead announce to applications
the occurrence of certain events at the transport layeutfirGupcalls.” For example, applications can be notifiedhaf t
arrival of a number of bytes of data; this information may #id application in modelling real-world application betoav
more closely. Two basic “upcalls” have been implementediseblass Application and in the transport agents:

339

e recv(int nbytes) —Announces thahbytes of data have been received by the agent. For UDP agents, this
signifies the arrival of a single packet. For TCP agents, digisifies the “delivery” of an amount of in-sequence data,
which may be larger than that contained in a single packed {dthe possibility of network reordering).

e resume() —This indicates to the application that the transport agastsent out all of the data submitted to it up to
that point in time. For TCP, it does not indicate whether tamdas been ACKed yet, only that it has been sent out for
the first time.

The default behavior is as follows: Depending on whetherty@ication has been implemented in C++ or OTcl, these C++
functions call a similarly nameddcv, resume) function in the application, if such methods have been éefin

Although strictly not a callback to applications, certaigefts have implemented a callback from C++ to OTcl-level tha
has been used by applications such as HTTP simulators. @timck methoddone{} , is used in TCP agents. In TCP,
done{} is called when a TCP sender has received ACKs for all of ita dad is now closed; it therefore can be used to
simulate a blocked TCP connection. Téhene{} method was primarily used before this APl was completedniay still

be useful for applications that do not want to ussume()

To usedone{} for FullTcp, for example, you can try:

set myagent [new Agent/TCP/FullTcp]
$myagent proc done
. code you want ...

If you want all the FullTCP’s to have the same code you cowdd db:

Agent/TCP/FullTcp instproc done
. code you want ...

By default,done{} does nothing.

40.2.5 Anexample
Here is an example of how the API is used to implement a simmdiGation (FTP) on top of a FullTCP connection.

set src [new Agent/TCP/FullTcp]
set sink [new Agent/TCP/FullTcp]
$ns_ attach-agent $node_(s1) $src
$ns_ attach-agent $node_(k1) $sink
$ns_ connect $src $sink

set up TCP-level connections
$sink listen;
$src set window_ 100

set ftpl [new Application/FTP]
$ftpl attach-agent $src

$ns_ at 0.0 "$ftpl start"

340

In the configuration script, the first five lines of code allesatwo new FullTcp agents, attaches them to the correctspode
and "connects" them together (assigns the correct dastinatidresses to each agent). The next two lines configure the
TCP agents further, placing one of them in LISTEN mode. Néptl is defined as a new FTP Application, and the
attach-agent method is called in C++app.cc).

The ftp1 application is started at time 0:

Application/FTP instproc start {} {
[$self agent] send -1; # Send indefinitely
}

Alternatively, the FTP application could have been implated in C++ as follows:

void FTP::start()
{

}

agent_->send(-1); /I Send indefinitely

Since the FTP application does not make use of callbackse ttvections are null in C++ and no OTcl callbacks are made.

40.3 The class TrafficGenerator

TrafficGenerator is an abstract C++ class defined as follows:

class TrafficGenerator : public Application {
public:
TrafficGenerator();
virtual double next_interval(int &) = 0;
virtual void init() {}
virtual double interval() { return O; }
virtual int on() { return 0; }
virtual void timeout();
virtual void recv() {}
virtual void resume() {}
protected:
virtual void start();
virtual void stop();
double nextPkttime_;

int size_;
int running_;
TrafficTimer timer_;
h
The pure virtual functiomext_interval () returns the time until the next packet is created and @tothe size in bytes

of the next packet. The functistart () callsinit (void) and starts the timer. The functibmeout () sends a packet and
reschedules the next timeout. The functi&iop () cancels any pending transmissions. Callbacks are tiyivat used for
traffic generators, so these functionsdgv, resume) are null.

Currently, there are four C++ classes derived from the claafficGenerator:

341

1. EXPOO_Traffic —generates traffic according to an Exponential On/Off dtigtion. Packets are sent at a fixed rate
during on periods, and no packets are sent during off periBdgh on and off periods are taken from an exponential
distribution. Packets are constant size.

2. POO_Traffic —generates traffic according to a Pareto On/Off distribbutid his is identical to the Exponential
On/Off distribution, except the on and off periods are takem a pareto distribution. These sources can be used to
generate aggregate traffic that exhibits long range demeyde

3. CBR_Traffic —generates traffic according to a deterministic rate. Rac#ee constant size. Optionally, some
randomizing dither can be enabled on the interpacket defqgarttervals.

4. TrafficTrace —generates traffic according to a trace file. Each recordarrtce file consists of 2 32-bit fields in
network (big-endian) byte order. The first contains the timenicroseconds until the next packet is generated. The
second contains the length in bytes of the next packet.

These classes can be created from OTcl. The OTcl classesm@a@ssociated parameters are given below:

Exponential On/Off An Exponential On/Off object is embodied in the OTcl clasgphgation/Traffic/Exponential. The
member variables that parameterize this object are:

packetSize the constant size of the packets generated
burst_time_ the average “on” time for the generator
idle_time_ the average “off” time for the generator
rate the sending rate during “on” times

Hence a new Exponential On/Off traffic generator can be eteand parameterized as follows:

set e [new Application/Traffic/Exponential]
$e set packetSize_ 210

$e set burst_time_ 500ms

$e set idle_time_ 500ms

$e set rate_ 100k

NOTE: The Exponential On/Off generator can be configured to beaseBoisson procesby setting the variablburst_time_
to 0 and the variableate_ to a very large value. The C++ code guarantees that even Hitrst time is zero, at least one
packet is sent. Additionally, the next interarrival timeth& sum of the assumed packet transmission time (govern#teby
variablerate_) and the random variate correspondingdie_time_ . Therefore, to make the first term in the sum very
small, make the burst rate very large so that the transnnissie is negligible compared to the typical idle times.

Pareto On/Off A Pareto On/Off object is embodied in the OTcl class ApplaafTraffic/Pareto. The member variables
that parameterize this object are:

packetSize the constant size of the packets generated
burst_time_ the average "on" time for the generator
idle_time_ the average "off" time for the generator
rate_ the sending rate during "on" times

shape_ the "shape" parameter used by the pareto distribution

A new Pareto On/Off traffic generator can be created as fatiow

342

set p [new Application/Traffic/Pareto]
$p set packetSize 210

$p set burst_time_ 500ms

$p set idle_time_ 500ms

$p set rate_ 200k

$p set shape 1.5

CBR A CBR object is embodied in the OTcl class Application/Ti@fiiBR. The member variables that parameterize this
object are:

rate_ the sending rate
interval_ (Optional) interval between packets
packetSize the constant size of the packets generated
random_ flag indicating whether or not to introduce random “noisethia scheduled departure times (default is
off)

maxpkts_ the maximum number of packets to send (defaul2is)

Hence a new CBR traffic generator can be created and parareetas follows:

set e [new Application/Traffic/CBR]
$e set packetSize_ 48

$e set rate_ 64Kb

$e set random_ 1

The setting of a CBR objectisate_ andinterval_ are mutually exclusive (the interval between packets istaaied
as an interval variable in C++, and some exampdscripts specify an interval rather than a rate). In a sinmateither a
rate or an interval (but not both) should be specified for a @BJect.

Traffic Trace A Traffic Trace object is instantiated by the OTcl class Apation/Traffic/Trace. The associated class Trace-
file is used to enable multiple Traffic/Trace objects to benaisted with a single trace file. The Traffic/Trace class uses
the method attach-tracefile to associate a Traffic/Tracecblyith a particular Tracefile object. The method filename of
the Tracefile class associates a trace file with the Tracdfijiech The following example shows how to create two Ap-
plication/Traffic/Trace objects, each associated withshme trace file (called "example-trace" in this example) avaid
synchronization of the traffic generated, random startinggs within the trace file are chosen for each Traffic/Trdjeat.

set tfile [new Tracefile]
$tfile filename example-trace

set t1 [new Application/Traffic/Trace]
$t1 attach-tracefile $tfile

set t2 [new Application/Traffic/Trace]
$t2 attach-tracefile $tfile

40.3.1 Anexample

The following code illustrates the basic steps to configur&aponential traffic source over a UDP agent, for traffic flogvi
from nodesl to nodekl:

343

set src [new Agent/UDP]
set sink [new Agent/UDP]
$ns_ attach-agent $node_(s1) $src
$ns_ attach-agent $node_(k1) $sink
$ns_ connect $src $sink

set e [new Application/Traffic/Exponential]
$e attach-agent $src

$e set packetSize_ 210

$e set burst_time_ 500ms

$e set idle_time_ 500ms

$e set rate_ 100k

$ns_ at 0.0 "$e start"

40.4 Simulated applications: Telnet and FTP

There are currently two “simulate application” classeswaer from Application: Application/FTP and Applicatiorglhet.
These classes work by advancing the count of packets aleattabe sent by a TCP transport agent. The actual transmissio
of available packets is still controlled by TCP’s flow and geation control algorithm.

Application/FTP Application/FTP, implemented in OTcl, simulates bulk da&nsfer. The following are methods of the
Application/FTP class:

attach-agent attaches an Application/FTP object to an agent.

start start the Application/FTP by calling the TCP agerg&nd(-1) function, which causes TCP to
behave as if the application were continuously sending rege. d

stop stop sending.
produce n set the counter of packets to be sentto
producemore n increase the counter of packets to be sentby
send n similar toproducemore , but sends: bytes instead of packets.

Application/Telnet Application/Telnet objects generate packets in one of tegsv If the member variablaterval

is non-zero, then inter-packet times are chosen from anreeqi@l distribution with average equal iaterval_ . If
interval_ is zero, then inter-arrival times are chosen according édac¢plib distribution (see tcplib-telnet.cc). The start
method starts the packet generation process.

40.5 Applications objects

An application object may be of two types, a traffic generatoa simulated application. Traffic generator objects gateer
traffic and can be of four types, namely, exponential, pa@BR and traffic trace.

Application/Traffic/Exponential objects Exponential traffic objects generate On/Off traffic. Durliog" periods, packets
are generated at a constant burst rate. During "off" perioal$raffic is generated. Burst times and idle times are taken
from exponential distributions. Configuration parametees

344

PacketSize_constant size of packets generated.

burst_time_ average on time for generator.

idle_time_ average off time for generator.

rate_ sending rate during on time.
Application/Traffic/Pareto Application/Traffic/Pareto objects generate On/Off taffiith burst times and idle times taken

from pareto distributions. Configuration parameters are:

PacketSize_constant size of packets generated.

burst_time_ average on time for generator.

idle_time_ average off time for generator.

rate_ sending rate during on time.

shape_the shape parameter used by pareto distribution.

Application/Traffic/CBR CBR objects generate packets at a constant bit rate.

$cbr start
Causes the source to start generating packets.

$cbr stop
Causes the source to stop generating packets.

Configuration parameters are:

PacketSize_constant size of packets generated.

rate_ sending rate.

interval_ (optional) interval between packets.

random_ whether or not to introduce random noise in the scheduledrtieqe times. defualt is off.
maxpkts_ maximum number of packets to send.

Application/Traffic/Trace Application/Traffic/Trace objects are used to generaféidriaom a trace file $trace attach-tracefile
tfile

Attach the Tracefile object tfile to this trace. The Tracefligeat specifies the trace file from which the traffic data is
to be read. Multiple Application/Traffic/Trace objects damattached to the same Tracefile object. A random starting
place within the Tracefile is chosen for each Applicatioaffic/Trace object.

There are no configuration parameters for this object.
A simulated application object can be of two types, Telnet BRP.

Application/Telnet TELNET objects produce individual packets with inter-eafitimes as follows. If interval_is non-zero,
then inter-arrival times are chosen from an exponentidtibigion with average interval_. If interval_ is zero, the
inter-arrival times are chosen using the "tcplib” telnetidbution.

$telnet start
Causes the Application/Telnet object to start producirgkpts.

$telnet stop
Causes the Application/Telnet object to stop producindetsc

$telnet attach <agent>
Attaches a Telnet object to agent.

Configuration Parameters are:

interval_ The average inter-arrival time in seconds for packets gaadiby the Telnet object.

345

Application FTP FTP objects produce bulk data for a TCP object to send.

$ftp start
Causes the source to produce maxpkts_ packets.

$ftp produce <n>
Causes the FTP object to produce n packets instantaneously.

$ftp stop
Causes the attached TCP object to stop sending data.

$ftp attach agent
Attaches a Application/FTP object to agent.

$ftp producemore <count>
Causes the Application/FTP object to produce count morkgiac

Configuration Parameters are:

maxpkts The maximum number of packets generated by the source.

TRACEFILE OBJECTSTracefile objects are used to specify the trace file that i®toded for generating traffic (see Applica-
tion/Traffic/Trace objects described earlier in this satti $tracefile is an instance of the Tracefile Objegtracefile
filename <trace-input>

Set the filename from which the traffic trace data is to be reddhte-input.

There are no configuration parameters for this object. Aetfiée consists of any number of fixed length records. Eachrdeco
consists of 2 32 bit fields. The first indicates the intervdilithe next packet is generated in microseconds. The second
indicates the length of the next packet in bytes.

40.6 Commands at a glance

Following are some transport agent and application reled@imands commonly used in simulation scripts:

set tcpl [new Agent/TCP]

$ns_ attach-agent $node_(src) $tcpl
set sinkl [new Agent/TCPSink]

$ns_ attach-agent $node_(snk) $sinkl
$ns_ connect $tcpl $sinkl

This creates a source tcp agent and a destination sink @&yhtthe transport agents are attached to their resoecivem
Finally an end-to-end connection is setup between the stciak.

set ftpl [new Application/FTP]
$ftpl attach-agent $agent

orset ftpl [$agent attach-app FTP] Both the above commands achieve the same. An applicatpim(this
example) is created and attached to the source agent. Aicaigh can be of two types, a traffic generator or a simulated
application. Types of Traffic generators currently presaeat Application/Traffic/Exponential, Application/Tfaf/Pareto,
Application/Traffic/CBR, and Application/Traffic/Trac8ee section 40.3 for details. Types of simulated applinatio
currently implemented are: Application/FTP and ApplioatiTelnet. See section 40.4 for details.

346

Chapter 41

Web cache as an application

All applications described above are “virtual” applicat® in the sense that they do not actually transfer their oata d

in the simulator; all that matter is tt@zeand thetime when data are transferred. Sometimes we may want applsatio
to transfer their own data in simulations. One such exangpleeb caching, where we want HTTP servers to send HTTP
headers to caches and clients. These headers contain pdgeation time information and other caching directivesjeh

are important for some cache consistency algorithms.

In the following, we first describe general issues regarttiagsmitting application-level data ims, then we discuss special
issues, as well as APIs, related to transmitting applicatiata using TCP as transport. We will then proceed to distigss
internal design of HTTP client, server, and proxy cache.

41.1 Using application-level data ims

In order to transmit application-level data s, we provide a uniform structure to pass data among appicstiand to
pass data from applications to transport agents (Figurb) 4lt.has three major components: a representation of aumif
application-level data unit (ADU), a common interface tepdata between applications, and two mechanisms to pass dat
between applications and transport agents.

41.1.1 ADU

The functionality of an ADU is similar to that of a Packet. #eds to pack user data into an array, which is then included in
the user data area of aigpacket by an Agent (this is not supported by current Agenserthust derive new agents to accept
user data from applications, or use an wrapper like TcpAppll\discuss this later).

Compared with Packet, ADU provides this functionality iniffedent way. In Packet, a common area is allocated for all
packet headers; an offset is used to access different reeiadiinis area. In ADU this is not applicable, because some ADU
allocates their space dynamically according the the aviéithaof user data. For example, if we want to deliver an OTcl
script between applications, the size of the script is werieined beforehand. Therefore, we choose a less efficiembre
flexible method. Each ADU defines its own data members, andgee methods to serialize them (i.e., pack data into an
array and extract them from an array). For example, in theatidase class of all ADU, AppData, we have:

class AppData {

347

Application
(HttpApp, ...)
A

|
|
|
|
(Agent Wrappe) ! send_data(ADU) process_data(ADU)
|
|
|
|
|
|

Application
send_data(ADU) process_data(ADU) (HttpApp, ..)
(TcpApp, ...) i
Y
Agents supporting user dat;
send(bytes) recv(bytes) ((HttpinvalAgent, ...)

Agent (TCP, ...)

I packets

packets

Figure 41.1: Examples of application-level data flow

private:
AppDataType type ; // ADU type
public:
struct hdr {
AppDataType type_;
%
public:
AppData(char * b) {
assert(b '= NULL);
type_ = ((hdr *)b)->type_;
}
virtual void pack(char * buf) const;
}

Herepack(char * buf) is used to write an AppData object into an array, apgData(char * b) is used to build a
new AppData from a “serialized” copy of the object in an array

When deriving new ADU from the base class, users may add naieg Hut at the same time a npack(char *b) and
a new constructor should be provided to write and read thesedata members from an array. For an example as how to
derive from an ADU, look ahgwebcache/http-aux.h.

41.1.2 Passing data between applications

The base class of Application, Process, allows applicatiorpass data or request data between each other. It is daned
follows:

class Process {
public:
Process() : target (0) {}
inline Process & target() { return target_; }

348

virtual void process_data(int size, char * data) = 0O;
virtual void send_data(int size, char * data = 0);

protected:
Process * target_;

k

Process enables Application to link together.

41.1.3 Transmitting user data over UDP

Currently there is no support in class Agent to transmit ds¢a. There are two ways to transmit a serialized ADU through
transport agents. First, for UDP agent (and all agents eérikom there), we can derive from class UDP and add a new
methodsend(int nbytes, char +xuserdata) to pass user data from Application to Agent. To pass data iom
Agent to an Application is somewhat trickier: each agentdasinter to its attached application, we dynamically chaist t
pointer to an AppConnector and then cafipConnector::process_data()

As an example, we illustrate how class HttplnvalAgent islengented. It is based on UDP, and is intended to deliver web
cache invalidation messagewsf{vebcache/inval-agent.h). It is defined as:

class HttplnvalAgent : public Agent {

public:

HttplnvalAgent();

virtual void recv(Packet * Handler =*);

virtual void send(int realsize, AppData * data);
protected:

int off _inv_;
%

Hererecv(Packet =+, Handler =*) overridden to extract user data, and a resmd(int, AppData *) is provided
to include user data in packetes. An application (HttpAp@ttached to an HttplnvalAgent usiAgent::attachApp()
(adynamic cast is needed).dend() , the following code is used to write user data from AppDatéhouser data area in a
packet:

Packet +pkt = allocpkt(data->size());

hdr_inval *ih = (hdr_inval +)pkt->access(off_inv_);
ih->size() = data->size();

char *p = (char =)pkt->accessdata();

data->pack(p);

Inrecv() , the following code is used to read user data from packet@deéltver to the attached application:

hdr_inval *ih = (hdr_inval *)pkt->access(off_inv_);
((HttpApp *)app_)->process_data(ih->size(), (char *)pkt->accessdata());
Packet::free(pkt);

349

41.1.4 Transmitting user data over TCP

Transmitting user data using TCP is trickier than doing thadr UDP, mainly because of TCP’s reassembly queue is only
available for FullTcp. We deal with this problem by abstiagta TCP connection as a FIFO pipe.

As indicated in section 40.2.4, transmission of applicatiata can be implemented via agent upcalls. Assuming wesarg u
TCP agents, all data are delivered in sequence, which mearamview the TCP connection as a FIFO pipe. We emulate
user data transmission over TCP as follows. We first providiebfor application data at the sender. Then we count thesy
received at the receiver. When the receiver has got all lpftibe current data transmission, it then gets the datattiireom

the sender. Class Application/TcpApp is used to implent@atftinctionality.

A TcpApp object contains a pointer to a transport agent,prebly either a FullTcp or a SimpleTcp.(Currently TcpApp
doesn’t support asymmetric TCP agents, i.e., sender isaepdrom receiver). It provides the following OTcl intacks:

e connect : Connecting another TcpApp to this one. This connection-diftectional, i.e., only one call toonnect
is needed, and data can be sent in either direction.

e send: It takes two argumentgnbytes, str) . nbytes is the “nominal” size of application datatr is appli-
cation data in string form.

In order to send application data in binary form, TcpApp pdeg a virtual C++ methodend(int nbytes, int

dsize, const char xdata) . In fact, this is the method used to implement the OTcl metbend . Because it's
difficult to deal with binary data in Tcl, no OTcl interfacepsovided to handle binary databytes is the number of bytes
to be transmitteddsize is the actual size of the arralata .

TcpApp provides a C++ virtual methqutocess_data(int size, char +xdata) to handle the received data. The
default handling is to treat the data as a tcl script and ewalthe script. But it's easy to derive a class to providerofyjees
of handling.

Here is an example of using Application/TcpApp. A similammple isTest/TcpApp-2node in ndtcl/test/test-suite-
webcache.tcl. First, we create FullTcp agents and conheunt:t

set tcpl [new Agent/TCP/FullTcp]
set tcp2 [new Agent/TCP/FullTcp]
Set TCP parameters here, e.g., window_, iss_, ...

$ns attach-agent $n1 S$tcpl
$ns attach-agent $n2 S$tcp2
$ns connect $tcpl $tcp2
$tcp2 listen

Then we create TcpApps and connect them:

set appl [new Application/TcpApp $tcpl]
set app2 [new Application/TcpApp $tcp2]
$appl connect $app2

1A SimpleTcp agent is used solely for web caching simulatidh&s actually an UDP agent. It has neither error recovenyfluwv/congestion control.
It doesn't do packet segmentation. Assuming a loss-fre@arktand in-order packet delivery, SimpleTcp agent simgsifihe trace files and hence aids the
debugging of application protocols, which, in our casehé&web cache consistency protocol.

350

(TclObject)
Process

Application

CHttpApp,) (Application/TcpAp;D

Figure 41.2: Hierarchy of classes related to applicatewell data handling

Application/FTP
Application/Telnet
Application/Traffic/*

Now we let$appl be sender anflapp2 be receiver:
$ns at 1.0 "$appl send 100 \"$app2 app-recv 100 \™
Whereapp-recv is defined as:

Application/TcpApp instproc app-recv { size } {
global ns
puts "[$ns now] app2 receives data $size from appl"

41.1.5 Class hierarchy related to user data handling

We conclude this section by providing a hierarchy of clagsesived in this section (Figure 41.2).

41.2 Overview of web cache classes

There are three major classes related to web cache, as iths ireal world: client (browser), server, and cache. Bexaus
they share a common feature, i.e., the HTTP protocol, theydarived from the same base cla#tp (Name of OTcl
class, it's calledHttpApp in C++). For the following reasons, it's not a real Applicati First, an HTTP object (i.e.,
client/cache/server) may want to maintain multiple conenr HTTP connections, but an Application contains only one
agent_ . Also, an HTTP object needs to transmit real data (e.g., Hi@&der) and that’s provided by TcpApp instead of
any Agent. Therefore, we choose to use a standalone classdi&om TclObject for common features of all HTTP objects,
which are managing HTTP connections and a set of pages. lreshef the section, we'll discuss these functionalities of
Http. In the next three sections, we'll in turn describe HTEliént, cache and server.

41.2.1 Managing HTTP connections

Every HTTP connection is embodied as a TcpApp object. Httphtams a hash of TcpApp objects, which are all of its
active connections. It assumes that to any other Http, ibhisone HTTP connection. It also allows dynamic establishin

351

and teardown of connections. Only OTcl interface is prodifte establishing, tearing down a connection and senditg da
through a connection.

OTcl methods Following is a list of OTcl interfaces related to connectinanagement in Http objects:

id return the id of the Http object, which is the id of the notde bbject is attached to.
get-cnc(client)y return the TCP agent associated with $client (Http object).
is-connectedservel return O if not connected to $server, 1 otherwise.
send(client) (bytes (callback send $bytes of data to $client. When it's done, executel$azell (a OTcl command).

connect{client) (TCP) associate a TCP agent with $client (Http object). That agidhibe used to send packets
to $client.

disconnectclient) delete the association of a TCP agent with $client. Noteribaher the TCP agent nor
$client is not deleted, only the association is deleted.

Configuration parameter By default, Http objects use Agent/SimpleTcp as transpgenss (section 41.1.4). They can
also use Agent/FullTcp agents, which allows Http objectsperate in a lossy network. Class variable codeTRANSPORT_
is used for this purpose. E.ddttp set TRANSPORT_FullTcp tells all Http objects use FullTcp agents.

This configuration should be dormeforesimulation starts, and it should not change during simomgtbecause FullTcp
agents do not inter-operate with SimpleTcp agents.

41.2.2 Managing web pages

Http also provides OTcl interfaces to manage a set of padesrdal management of pages are handled by ElagePool

and its subclasses. Because different HTTP objects haferatit requirements for page management, we allow differen
PagePool subclasses to be attached to different subclafskiétp class. Meanwhile, we export a common set of PagePool
interfaces to OTcl through Hitp. For example, a browser nsgyaiPagePool only to generate a request stream, so its PhgePo
only needs to contain a list of URLs. But a cache may want teegtage size, last modification time of every page instead of
a list of URLs. However, this separation is not clearcut i ¢airrent implementation.

Page URLs are represented in the form{&erverName): (SequenceNumber) where theServerName is the name of
OTcl object, and every page in every server should have aiaidgquenceNumber . Page contents are ignored. Instead,
every page contains sevegdtributes which are represented in OTcl as a list of the followifiggme (value) pairs: “mod-
time (val)” (page madification time), “sizéval)” (page size), and “agéval)”} The ordering of these pairs is not significant.

Following is a list of related OTcl methods.

set-pagepoalpagepodl set page pool
enter-pag€pageid (attribute$ add a page with id $pageid into pool. $attributes is thelatteis of $pageid, as described
above.

get-paggpageid return page attributes in the format described above.
get-modtime/pageid return the last modification time of the page $pageid.
exist-pagepageid return O if $pageid doesn't exist in this Http object, 1 othise.
get-size(pageid return the size of $pageid.
get-cachetimépageid return the time when page $pageid is entered into the cache.

352

41.2.3 Debugging

HttpApp provides two debugging methodsg registers a file handle as the trace file for all HttpApp-sii@tiaces. Its
trace format is described in section 41e%Trace logs a particular event into trace file. It concatenates time the id of
the HttpApp to the given string, and writes it out. Details &g found ingwebcache/http.cc.

41.3 Representing web pages

We represent web pages as the abstract class Page. It isddegifalows:

class Page {

public:

Page(int size) : size_(size) {}

int size() const { return size_; }

int& id() { return id_; }

virtual WebPageType type() const = 0;
protected:

int size_;

int id_;
h

It represents the basic properties of a web page: size and Ugtn it we derive two classes of web pages: ServerPage and
ClientPage. The former contains a list of page modificatio®es$, and is supposed to by used by servers. It was originally
designed to work with a special web server trace; currently/not widely used ims The latter, ClientPage, is the default
web page for all page pools below.

A ClientPage has the following major properties (we omit soariables used by web cache with invalidation, which has to
many details to be covered here):

e HttpApp * server_ - Pointer to the original server of this page.
e double age - Lifetime of the page.

e int status_ - Status of the page. Its contents are explained below.

The status (32-bit) of a ClientPage is separated into twbitparts. The first part (with mask OX00FF) is used to stoigepa
status, the second part (with mask OxFF00) is used to staected page actions to be performed by cache. Available page
status are (again, we omit those closely related to web dachkdation):

HTTP_VALID_PAGE Page is valid.
HTTP_UNCACHEABLE Page is uncacheable. This option can leel s simulate CGI pages or dynamic server pages.

CilentPage has the following major C++ methods:

e type() - Returns the type of the page. Assuming pages of the sameshgeéd have identical operations, we let
all ClientPage to be of type “HTML". If later on other types wEb pages are needed, a class may be derived from
ClientPage (or Page) with the desired type.

353

TclObject

PagePool

GagePoollCompM@ (PagePool/Math) (PagePooI/ClienD GagePooI/ProxyTre}

Figure 41.3: Class hierarchy of page pools

e name(char =*buf) -Printthe page’s name into the given buffer. A page’s nametise format of:(ServerNamg (PagelD.

e split_name(const char *name, PagelD& id) - Split a given page name into its two components. This is
a static method.

e mtime() - Returns the last modification time of the page.

e age() - Returns the lifetime of the page.

41.4 Page pools

PagePool and its derived classes are used by servers tatepage information (name, size, modification time, Iifegj
etc.), by caches to describe which pages are in storage,yaclights to generate a request stream. Figure 41.3 proaides
overview of the class hierarchy here.

Among these, class PagePool/Client is mostly used by cdotstare pages and other cache-related information; dtinee t
classes are used by servers and clients. In the followingeseribe these classes one by one.

41.4.1 PagePool/Math

This is the simplest type of page pool. It has only one pag®selsize can be generated by a given random variable. Page
modification sequence and request sequence are generaigdws given random variables. It has the following OTcl
methods:

gen-pageid Returns the page ID which will be requested B®edause it has only one page, it always
returns 0.

gen-size Returns the size of the page. It can be generatedibgrarandom variable.

gen-modtimgpagelD (mt) Returns the next modification time of the pagent) gives the last modification time. It
uses the lifetime random variable.

ranvar-agerv) Set the file lifetime random variable &aw).
ranvar-sizgrv) Set the file size random variable to b&).

NOTE There are two ways to generate a request sequence. Withgalgools except PagePool/ProxyTrace, request sequence
is generated with a random variable which describes theastdnterval, and thgen-pageid method of other page pools

354

gives the page ID of the next request. PagePool/ProxyToackslthe request stream during initialization phase, sweis dhot
need a random variable for request interval; see its damipelow.

An example of using PagePool/Math is at Section 41.8. Thaitss also available atgtcl/ex/simple-webcache.tcl.

41.4.2 PagePool/CompMath

It improves over PagePool/Math by introducing a compoungepaodel. By a compound page we mean a page which
consists of a main text page and a number of embedded obgegtsGIFs. We model a compound page as a main page
and several component objects. The main page is alwaysnasisigith ID 0. All component pages have the same size;
both the main page size and component object size is fixeddpustable through OTcl-bound variablagin_size_ and
comp_size , respectively. The number of component objects can be s thee OTcl-bound variableum_pages_ .

PagePool/CompMath has the following major OTcl methods:

gen-size(pagelD If (pagelD is 0, returnmain_size_ , otherwise returcomp_size_ .
ranvar-main-agérv) Set random variable for main page lifetime. Another aaayar-obj-age , set that for
component objects.

gen-pageid Always returns 0, which is the main page ID.

gen-modtimgpagelD (mt) Returns the next modification time of the given pdgagelD. If the given ID is O, it uses
the main page lifetime random variable; otherwise it usesctimponent object lifetime
random variable.

An example of using PagePool/CompMath is availablesitl/ex/simple-webcache-comp.tcl.

41.4.3 PagePool/ProxyTrace

The above two page pool synthesize request stream to a sietplpage by two random variables: one for request interval,
another for requested page ID. Sometimes users may want eoamplicated request stream, which consists of multiple
pages and exhibits spatial locality and temporal localifhere exists one proposal (SURGE [3]) which generates such
request streams, we choose to provide an alternative solutse real web proxy cache trace (or server trace).

The class PagePool/ProxyTrace uses real traces to drivdation. Because there exist many web traces with different
formats, they should be converted into a intermediate fotme#ore fed into this page pool. The converter is available
at http://mash.cs.berkeley.edu/dist/vint/webcacheeconv.tar.gz. It accepts four trace formats: DEC proaget (1996),

UCB Home-IP trace, NLANR proxy trace, and EPA web serverdrakt converts a given trace into two files: pglog and
reglog. Each line in pglog has the following format:

[<serverID> <URL_ID> <PageSize> <AccessCount>]

Each line, except the last line, in reglog has the followioignfat:

[<time> <clientID> <serverID> <URL_ID>]

The last line in reqlog records the duration of the entiredrand the total number of unique URLS:
i <Duration> <Number_of URL>

355

PagePool/ProxyTrace takes these two file as input, and asetthdrive simulation. Because most existing web proxyesac
do not contain complete page modification information, wease to use a bimodal page modification model [7]. We allow
user to select% of the pages to have one random page modification intervargéor, and the rest of the pages to have
another generator. In this way, it's possible to4t pages to be dynamic, i.e., modified frequently, and the tasts Hot
pages are evenly distributed among all pages. For exangderrse 10% pages are dynamic, then if we sort pages into a list
according to their popularity, then pages 0, 10, .20are dynamic, rest are static. Because of this selection amésin, we

only allow bimodal ratio to change in the unit of 10%.

In order to distribute requests to different requestorbésimulator, PagePool/ProxyTrace maps the client ID inrdees to
requestors in the simulator using a modulo operation.

PagePool/ProxyTrace has the following major OTcl methods:

get-poolsize Returns the total number of pages.
get-duration Returns the duration of the trace.
bimodal-ratio Returns the bimodal ratio.
set-client-numnum) Set the number of requestors in the simulation.
gen-reques{ClientlD) Generate the next request for the given requestor.
gen-sizePagelD Returns the size of the given page.

bimodal-ratio{ratio) Set the dynamic pages to brtio)*10 percent. Note that this ratio changes in
unit of 10%.

ranvar-dp(ranval Set page modification interval generator for dynamic pagésilarly, ranvar-
sp (ranval sets the generator for static pages.

set-reqfile(file) Set request stream file, as discussed above.
set-pdfile(file) Set page information file, as discussed above.
gen-modtimgPagelD (LastModTime Generate next modification time for the given page.

An example of using PagePool/ProxyTrace is availablesatl/ex/simple-webcache-trace.tcl.

41.4.4 PagePool/Client

The class PagePool/Client helps caches to keep track o pagident in cache, and to store various cache-relatechiataon
about pages. It is mostly implemented in C++, because it islgnased internally and little functionality is needed bgeus.
It has the following major C++ methods:

e get_page(const char * name) - Returns a pointer to the page with the given name.
e add_page(const char *name, int size, double mt, double et, double age) - Add a page
with given size, last modification time (mt), cache entrydifet), and page lifetime (age).

e remove_page(const char * name) - Remove a page from cache.

This page pool should support various cache replacememntiddms, however, it has not been implemented yet.

41.4.5 PagePool/WebTraf

The class PagePool/WebTraf is a standalone Web traffic nbdteutilizes PagePool framework. However, this class has
nothing to do with the HttpApp classes. Because we are omdyasted in using it to study Web traffic pattern here, and do

356

not want to be bothered with the burden of transmitting HT €Rders, etc. It has the following two major data structures.
Details can be found in ns/webcache/webtraf.cc and ns/agttedwebtraf.h, the architecture WebTraf model is alssdto
described in [10], Section 2.4, paragraph 3-4 and the appénd.

e WebTrafSession - a class that models Web user session. It is defined as follows

class WebTrafSession : public TimerHandler {

public:
WebTrafSession(WebTrafPool *mgr, Node =*src, int np, int id) : rvinterPage_(NULL),
rvPageSize (NULL), rvinterObj_(NULL), rvObjSize (NULL), mgr_(mgr), src_(src),
nPage (np), curPage (0), donePage (0), id_(id), interPa geOption_(1) {}
virtual ~WebTrafSession();

/I Queried by individual pages/objects

inline RandomVariable *& interPage() { return rvinterPage_; }
inline RandomVariable *& pageSize() { return rvPageSize_; }
inline RandomVariable * & interObj() { return rvinterObj_; }
inline RandomVariable *& objSize() { return rvObjSize ; }

void donePage(void * CintData); // all the pages within this
/I session have been sent
void launchReq(void + ClIntData, int obj, int size);
inline int id() const { return id_; }
inline WebTrafPool * mgr() { return mgr_; }
private:
virtual void expire(Event xe = 0); // Lanuch request for a page
virtual void handle(Event +xe); [/l schedule the timer for next page

RandomVariable *rvinterPage_, *rvPageSize_, *rvinterObj_, *rvObjSize_;
WebTrafPool * mgr_;

Node* src_; // One Web client (source of request) per session

nt nPage_; // number of pages per session

int curPage_; // number of pages that have been sent

int id_; // page ID

int interPageOption_;

}

e WebPage- a class that models Web Page. It is defined as follows:

class WebPage : public TimerHandler {

public:
WebPage(int id, WebTrafSession * sess, int nObj, Node * dst) :
id_(id), sess_(sess), nObj_(nObj), curObj_(0),
doneObj_(0), dst_(dst) {}
virtual ~WebPage() {}
inline void start() { // Call expire() and schedule the next o ne if needed
void doneObject() { // All the objects within this page have b een sent
inline int id() const { return id_; }
Node* dst() { return dst_; }
inline int curObj() const { return curObj_; }
inline int doneObj() const { return doneObj_; }
private:
virtual void expire(Event * = 0) { // Launch request for an object
virtual void handle(Event +xe) { /| schedule the timer for the next object

357

int id_; // object ID

WebTrafSession * sess_; // the session that requested this page
int nObj_; // number of object in this page

int curObj_ ; // number of object that have been sent

Node* dst_; // server that this page has been requested from

Following is a list of related OTcl methods to the WebTrafksla

set-num-sessionumber-of-sessign set the total number of sessions in the WebTraf pool.
set-num-servenumber-of-server set the total number of servers.
set-num-clientnumber-of-client set the total number clients.

set-interPageOptiofoption) There are two ways to interpraiter-pagetime: One is the time be-
tween the start of two consecutive page downloads by the seere
and the other is the time between the end of previous pageldadn
and the start of the following page by the same user. $optonbe
set to either 0 or 1 (default is 1). When $option is set to 1 seeond
interpretation is used for "“inter-page"” time. The first ipm@tation is
adopted when $option is set to 0. Note the resulted traffisrel using
the first interpretation is much higher than the second jm&gation.

doneObj(webpagé all the objects in $webpage have been sent.
set-servefid) (node set $node as server $id.
set-client(id) (node set $node as client $id.
recycle(tcp) (sink) Recycle a TCP source/sink pair.
create-sessiofsession-index(pages-per-sess
(launch-time (inter-page-ry (page-size-ry
(inter-obj-rv) (obj-size-ry Create a Web session. $session-index is the sesson indegessper-
sess is the total number of pages per session. $launchgisession
starting time. $inter-page-rv is the random variable tleategates page
inter-arrival time. $page-size-rv is the random variablat tgenerates
number of objects per page. S$inter-obj-rv is the randomatéei that
generates object inter-arrival time. $obj-size-rv is thedom variable
that generates object size.

The example script is available at ns/tcl/ex/web-traffi¢also see ns/tcl/ex/large-scale-web-traffic.tcl fox na large-scale
web traffic simulation)

41.5 Web client

Class Http/Client models behavior of a simple web browgeyeherates a sequence of page requests, where requestlinter
and page IDs are randomized. It's a pure OTcl class inhefiited Http. Next we’ll walk through its functionalities and
usage.

Creating a client First of all, we create a client and connect it to a cache anela server. Currently a client is only
allowed to connect to a single cache, but it's allowed to emhimo multiple servers. Note that this has to be cahéd@ER
the simulation starts (i.e., aft§ns run is called). This remains true for all of the following metiscghd code examples of
Http and its derived classes, unless explicitly said.

358

Assuming $server is a configured Http/Server.
set client [new Http/Client $ns $node] # client resides on this node
$client connect $server ;# connecting client to server

Configuring request generation For every request, Http/Client uses PagePool to generatedom page ID, and use a
random variable to generate intervals between two coniseaeijuests?

$client set-page-generator $pgp # attach a configured PagePool
$client set-interval-generator $ranvar # attach a random variable

Here we assume that PagePools of Http/Client share the stré pages as PagePools of the server. Usually we simplify
our simulation by letting all clients and servers share treesPagePool, i.e., they have the same set of pages. Wheratker
multiple servers, or servers’ PagePools are separatedtfrose of clients’, care must be taken to make sure that elientc
sees the same set of pages as the servers to which they ahedita

Starting After the above setup, starting requests is very simple:

$client start-session $cache $server # assuming $cache is a configured Http/Cache

OTcl interfaces Following is a list of its OTcl methods (in addition to thoseerited from Http). This is not a complete
list. More details can be found mg'tcl/webcache/http-agent.tcl.

send-requegservej (type) (pageid (args send a request of page $pageid and type $type to $server.nfheequest
type allowed for a client is GET. $args has a format identioathat of
$attributes described idttp::enter-page

start-sessioficache (servej start sending requests of a random page to $server via $cache

start(caché (servej before sending requests, populate $cache with all pagks tlient's Page-
Pool. This method is useful when assuming infinite-sizechea@nd we
want to observe behaviors of cache consistency algorithreteady state.

set-page-generatgpagepodl attach a PagePool to generate random page IDs.
set-interval-generatdranval attach a random variable to generate random request ifgerva

41.6 Web server

Class Http/Server models behavior of a HTTP server. Its gardition is very simple. All that a user needs to do is to ereat
a server, attach a PagePool and wait:

set server [new Http/Server $ns $node] H attach $server to $node
$server set-page-generator $pgp ;# attach a page pool

2Some PagePool, e.g., PagePool/Math, has only one pageaatbtie it always returns the same page. Some other PageRpdPagePool/Trace, has
multiple pages and needs a random variable to pick out a randge.

359

An Http/Server object waits for incoming requests afteriudation starts. Usually clients and caches initiates cotioe to
an Http/Server. But it still has its owebnnect method, which allows an Http/Server object to actively aeetrio a certain
cache (or client). Sometimes this is useful, as explaind@at/TLC1::set-groups{} img'tcl/test/test-suite-webcache.tcl.

An Http/Server object accepts two types of requests: GETIBI®I GET request models normal client requests. For every
GET request, it returns the attributes of the requested. dddfe request models If-Modified-Since used by TTL algorithm
for cache consistency. For every IMS (If-Modified-Since&uest, it compares the page modification time given in theesty
and that of the page in its PagePool. If the time indicateti@réquest is older, it sends back a response with very sin@|l s
otherwise it returns all of the page attributes with respmise equal the real page size.

41.7 Web cache

Currently 6 types of web caches are implemented, includiedise class Http/Cache. Its five derived subclasses ireptem
5 types of cache consistency algorithms: Plain old TTL, édead TL, Omniscient TTL, Hierarchical multicast invalitian,
and hierarchical multicast invalidation plus direct resjue

In the following we'll only describe the base class Http/@acbecause all the subclasses involves discussion of cache
sistency algorithms and it does not seem to be appropriate he

41.7.1 Http/Cache

Class Http/Cache models behavior of a simple HTTP cache iwithite size. It doesn’t contain removal algorithm, nor
consistency algorithm. It is not intended to be used byfitdehther, it is meant to be a base class for experimentinig wit
various cache consistency algorithms and other cacheitilgu.

Creation and startup Creating an Http/Cache requires the same set of parametéi@Client and Http/Server. After
creation, a cache needs to connect to a certain server. Nadtéhis creation can also be done dynamically, when a réques
comes in and the cache finds that it's not connected to thesddowever, we do not model this behavior in current code.
Following code is an example:

set cache [new HttpCache $ns $node] # attach cache to $node
$cache connect $server ;# connect to $server

Like Http/Server, an Http/Cache object waits for requeatsd(packets from server) after it’s initialized as above. ewh
hierarchical caching is used, the following can be usedeaterthe hierarchy:

$cache set-parent $parent ;# set parent cache

Currently all TTL and multicast invalidation caches suggoerarchical caching. However, only the two multicastilda-
tion caches allows multiple cache hierarchies to interraige

OTcl methods Although Http/Cache is a SplitObject, all of its methods ar@®Tcl. Most of them are used to process an
incoming request. Their relations can be illustrated whit flowchart below, followed by explainations:

360

send cached page
/
cache-hit() —— is-consistent() ignore the request
get-request() \ refetch-pending()
cache-miss() ——» send-request() \ refetch()

Figure 41.4: Handling of incoming request in Hitp/Cache

get-requestclient) (type) (pageid The entry point of processing any request. It checks if tqgested page $pageid
exists in the cache’s page pool, then call eitteche-hit or cache-miss

cache-misgclient) (type) (pageid This cache doesn’t have the page. Send a request to serveargnt cache) to
refetch the page if it hasn't already done so. Register §cirea list so that when
the cache gets the page, it'll forward the page to all cligrite have requested the
page.

cache-hit(client) (type) (pageid Checks the validatity of the cached page. If it's valid, s§olient the cached page,
otherwise refetch the page.
is-consistentclient) (type) (pageid Returns 1 if $pageid is valid. This is intended to be ovemwiuby subclasses.

refetch(client) (type) (pageid Refetch an invalid page from server. This is intended to berridden by sub-
classes.

41.8 Putting together: a simple example

We have seen all the pieces, now we present a script whichda®a complete view of all pieces together. First, we build
topology and other usual initializations:

set ns [new Simulator]

Create topology/routing

set node(c) [$ns node]

set node(e) [$ns node]

set node(s) [$ns node]

$ns duplex-link $node(s) $node(e) 1.5Mb 50ms DropTail
$ns duplex-link $node(e) $node(c) 10Mb 2ms DropTail
$ns rtproto Session

Next we create the Http objects:

HTTP logs

set log [open "http.log" w]

Create page pool as a central page generator. Use PagePool/ Math

set pgp [new PagePool/Math]

set tmp [new RandomVariable/Constant] H # Page size generator
$tmp set val_ 1024 # # average page size

$pgp ranvar-size $tmp

361

set tmp [new RandomVariable/Exponential]
$tmp set avg_ 5
$pgp ranvar-age $tmp

set server [new Http/Server $ns $node(s)]

tral page pool

Then we define a procedure which will be called after simafastarts.

objects.

$server set-page-generator $pgp
$server log $log

set cache [new Http/Cache $ns $node(e)]
$cache log $log

set client [new Http/Client $ns $node(c)]
set tmp [new RandomVariable/Exponential]
$tmp set avg_ 5

$client set-interval-generator $tmp

$client set-page-generator $pgp

$client log $log

set startTime 1

set finishTime 50

$ns at $startTime "start-connection”
$ns at $finishTime “finish"

proc start-connection {} {
global ns server cache client
$client connect $cache
$cache connect $server

$client start-session $cache $server

At the end, the usual closing:

This script is also available atgtcl/ex/simple-webcache.tcl. Examining its outpditp.log

proc finish {3 {
global ns log
$ns flush-trace

flush $log
close $log
exit 0

}

$ns run

Page age generator
average page age

Create a server and link it to the cen-

H# # Create a cache

H # Create a client
Poisson process as request sequence
;# # average request interval

simulation start time
simulation end time

The procedure will setup connections among gl Ht

, one will find that the result

of the absense cache consistency algorithm results in & lstate hits. This can be easily remedied by replacing “new

Http/Cache” line with:set cache [new Http/Cache/TTL $ns $node(e)]
sistency algorithm examples, segtcl/test/test-suite-webcache.tcl.

362

. For more complicated cache con-

41.9 Hittp trace format
The trace file of Http agents are constructed in a similar veatha SRM trace files. It consists of multiple entries, each of
which occupies one line. The format of each entry is:

Time | ObjectID | Object Values

There are three types of objects: clie@)(cache E) and server$). Following is a complete enumeration of all possible
events and value types associated with these three typégeuts

Object Type| Event Type| Values

E HIT (Prefix)

E MISS (PrefiX) z (RequestSize

E IMS (Prefix) z (Size) t (CacheEntryTimge

E REF p (PagelD s (ServerlD z (Size

E UPD p (PagelD m (LastModifiedTime z (PageSize
s (ServerlD

E GUPD | z (PageSizg

E SINV p (PagelD m (LastModTime z (PageSize

E GINV p (PagelD m (LastModTime

E SPF p (PagelD c (DestCachg

E RPF p (PagelD c (SrcCachg

E ENT p (PagelD m (LastModifiedTimé z (PageSizg
s (ServerlD

C GET p (PagelD s (PageServerlpz (RequestSize

C STA p (PagelD s (OrigServerlD | (StaleTime

C RCV p (PagelD s (PageServerlPDl (ResponseTimez (PageSize

S INV p (PagelD m (LastModifiedTime z (Sizé

S UPD p (PagelD m (LastModifiedTime z (Sizé

S SND p (PagelD m (LastModifiedTime z (PageSize
t (Requesttype

S MOD p (PagelD n (NextModifyTime)

(Prefix) is the information common to all trace entries. Itincludes:

p (PagelD ‘ c<RequestCIientID‘ s (PageServerlp

Short Explaination of event operatians

363

Object Type| Event Type| Explaination
E HIT Cache hit. PageSererID is the id of the “owner” of the page.
E MISS Cache miss. In this case the cache will send a request totver e fetch the page.
E IMS If-Modified-Since. Used by TTL procotols to validate an exgpi page.
E REF Page refetch. Used by invalidation protocols to refetchaalidated page.
E UPD Page update. Used by invalidation protocols to “push” upslat
from parent cache to children caches.
E SINV Send invalidation.
E GINV Get invalidation.
E SPF Send a pro forma
E RPF Receive a pro forma
E ENT Enter a page into local page cache.
C GET Client sends a request for a page.
C STA Client gets a stale hit. OrigModTime is the modification time
in the web server, CurrModTime is the local page’s modifaratime.
C RCV Client receives a page.
S SND Server send a response.
S UPD Server pushes a page update to its “primary cache”. Usedvalidation protocol only.
S INV Server sends an invalidation message. Used by invalidatimocol only.
S MOD Server modified a page. The page will be modified nexNaixtModifyTime).

41.10 Commands at a glance

Following are the web cache related commands:

set server [new Http/Server <sim> <s-node>]
This creates an instance of an Http server at the specifiembge>. An instance of the simulator <sim> needs to be passed
as an argument.

set client [new Http/Client <sim> <c-node>]
This creates an instance of a Http client at the given <c-node

set cache [new Http/Cache <sim> <e-node>
This command creates a cache.

set pgp [new PagePool/<type-of-pagepool>]

This creates a pagepool of the type specified. The diffeygpeistof pagepool currently implemented are:
PagePool/Math, PagePool/CompMath, PagePool/Proxy arat@agePool/Client. See section 41.4 for details on Otcl
interface for each type of Pagepool.

$server set-page-generator <pgp>

$server log <handle-to-log-file>

The above commands consist of server configuration. Fiestéhver is attached to a central page pool <pgp>. Next it is
attached to a log file.

client set-page-generator <pgp>
$client set-interval-generator <ranvar>

364

$client log <handle-to-log-file>

These consist configuration of the Http client. It is attatteea central page pool <pgp>. Next a random variable <ranvar
is attached to the client that is used by it (client) to geteeirgtervals between two consecutive requests. Lastlyltbitds
attached to a log file for logging its events.

$cache log <log-file>
This is part of cache configuration that allows the cacheddtkevents in a log-file.

$client connect <cache>
$cache connect <server>
Once the client, cache, and server are configured, they ndegldonnected as shown in above commands.

$client start-session <cache> <server>
This starts sending request for a random page from the ¢bahe <server> via <cache>.

365

Chapter 42

Worm Model

In this chapter, we describe a scalable worm propagatiorehiiods namely the detailed-network and abstract-network (DN-
AN) model. It combines packet-level simulations with atialyvorm spreading model. As shown in Figure 42.1, we model
the Internet with two parts: detailed, and abstract part.efaided-network could be an enterprise-network or the agtw
run by an ISP. It simulates network connectivity and packaigmission. Users can evaluate worm detection algorithms
the detailed network. On the other hand, we abstract thefdise Internet with a mathematical model, namely suscsptib
infectious-removal (SIR) model (refer to [13] for detailddscriptions). Compared to the detailed network, we oragkr
several state variables in the abstract world, such as timbeuof infected hosts. The interaction between DN and AN is
through actual packet transmissions, that is, the probaffid generated by compromised hosts in both parts.

For detailed description on DN-AN model, please refer to dnaft paper. We implement the worm propagation model as
applications. The source code can be foundred/apps/worm.{cc,h}. There is also a sample script to itatt the DN-AN
model under ng/tcl/ex/worm.tcl.

42.1 Overview

We implement the worm propagation model with three classass WormApp, DnhWormApp, and AnWormApp .
class WormApp ndclass DnhWormApp re used in the detailed network, representing invulneradevulnerable hosts
respectivelyclass AnWormApp s the abstract network. Currently, our model only suppoB$tbhased worms.

An vulnerable host is compromised upon receiving a probaxkpt. Then, it chooses a target host (randomly or with certa
preference to local neighbors) to scan. Probing packets haweffect on invulnerable hosts. When the abstract network
receives probing packets, it updates its current states.

probing
traffic .-~

the rest
unprotected
Internet

the protected network

Figure 42.1:The DN-AN model.

366

42.2 Configuration

To set up simulation scenario, we first build the detailedvoelt. We also need to create one extra node to represent the
abstract network, and connect it to the detailed network.

For nodes in the detailed network, we first attadiessagePassing agent to each node:

set a [new Agent/MessagePassing]
$n attach $a $probing_port

If the node represents a vulnerable host, wealass DnhWormApp

set w [new Application/Worm/Dnh]
$w attach-agent $a

Otherwise, we configure the node as invulnerable:

set w [new Application/Worm]
$w attach-agent $a

We configure the abstract network as:

set a [new Agent/MessagePassing]
$na attach $a $probing_port

set w [new Application/Worm/An]
$w attach-agent $a

In order for the abstract network to receive probing pacgetserated by nodes within the detailed networks, we needdo u
manual routing. There are some extra configuration for tiseratt-network node:

set p [$na set dmux_]
$p defaulttarget $a
[$na entry] defaulttarget $p

42.3 Commands at a glance

Some common parameters can be configured through TCL script:

ScanRate # the rate that a compromised host sends probing pac kets
ScanPort # the vulnerable service port number
ScanPacketSize # the size of worm probing packets

By default, compromised hosts scan the Internet randoméycevi also simulate local-scanning worm by setting the {ocal
scanning probability:

367

$w local-p 0.5

Following are some commands to configure parameters forttesact network:

$w beta 0.1 # infection parameter
$w gamma O # removal parameter

$w addr-range 2000 200000 # the address space of the abstract network
$w dn-range 0 1999 # the address space of the detailed network
$w v_percent 0.01 # the percentage of vulnerable hosts in the abstract network

368

Chapter 43

PackMime-HTTP: Web Traffic Generation

The PackMime Internet traffic model was developed by re$easdn the Internet Traffic Research group at Bell Labs,dase
on recent Internet traffic traces. PackMime includes a moflEITTP traffic, called PackMime-HTTP. The traffic intensity
generated by PackMime-HTTP is controlled by th&e parameter, which is the average number of new HTTP conmectio
started each second. The PackMime-HTTP implementatios-@, developed at UNC-Chapel Hill, is capable of generating
HTTP/1.0 and HTTP/1.1 (persistent, non-pipelined) cotinas.

The goal of PackMime-HTTP is not to simulate the interactietween a single web client and web server, but to simulate
the TCP-level traffic generated on a link shared by many wielntd and servers.

A typical PackMime-HTTP instance consists of two ns nodeseraer node and a client node. It is important to note that
these nodedo notcorrespond to a single web server or web client. A single Magle-HTTP client node generates HTTP
connections coming from a “cloud” of web clients. Likewiasesingle PackMime-HTTP server node accepts and serves HTTP
connections destined for a “cloud” of web servers. A sing&bwlient is represented by a single PackMime-HTTP client
application, and a single web server is represented by #esitackMime-HTTP server application. There are many client
applications assigned to a single client ns node, and mamgrsgpplications assigned to a single server ns node.

In order to simulate different RTTs, bottleneck links, ardbss rates for each connection, PackMime-HTTP is oftedus

in conjunction with DelayBox (see Chapter 22). DelayBox im@dule developed at UNC-Chapel Hill for delaying and/or
dropping packets in a flow according to a given distributi®ae Section 43.3 for more information on using PackMime-PTT
and DelayBox together.

The PackMime HTTP traffic model is described in detail in thkofving paper: J. Cao, W.S. Cleveland, Y. Gao, K. Jeffay,
F.D. Smith, and M.C. Weigle , “Stochastic Models for GeniegaiSynthetic HTTP Source TrafficRroceedings of IEEE
INFOCOM, Hong Kong, March 2004.

43.1 Implementation Details

PackMimeHTTP is an ns object that drives the generation dfMiraffic. Each PackMimeHTTP object controls the opera-
tion of two types of Applications, a PackMimeHTTP server Apgtion and a PackMimeHTTP client Application. Each of
these Applications is connected to a TCP Agent (Full-TGR}te: PackMime-HTTP only supports Full-TCP agents.

Each web server or web client cloud is represented by a simgleode that can produce and consume multiple HTTP

connections at a time (Figure 43.1). For each HTTP conmecBackMimeHTTP creates (or allocates from the inactive
pool, as described below) server and client Applicatiortstarir associated TCP Agents. After setting up and stagaain

369

PackMime

client cloud server cloud
(ns node) (ns node)

(0]
i

server Applications
and Agent

client Applications
and Agents

Figure 43.1: PackMimeHTTP Architecture. Each PackMimeRTobject controls a server and a client cloud. Each cloud
can represent multiple client or server Applications. EApplication represents either a single web server or a singlb
client.

connection, PackMimeHTTP sets a timer to expire when thé new connection should begin. The time between new
connections is governed by the connection rate parametgtisd by the user. New connections are started accordititeto
connection arrival times without regard to the completibprevious requests, but a new request between the sameantién
server pair (as with HTTP 1.1) begins only after the previmagiest-response pair has been completed.

PackMimeHTTP handles the re-use of Applications and Agiiatishave completed their data transfer. There are 5 poets us
to maintain Applications and Agents — one pool for inacti@PTAgents and one pool each for active and inactive client and
server Applications. The pools for active Applicationswnesthat all active Applications are destroyed when the Kitran

is finished. Active TCP Agents do not need to be placed in a pecause each active Application contains a pointer to its
associated TCP Agent. New objects are only created whea #nemo Agents or Applications available in the inactivelpoo

43.1.1 PackMimeHTTP Client Application

Each PackMimeHTTP client controls the HTTP request sizat dhe transferred. Each PackMimeHTTP client takes the
following steps:

o if the connection is persistent and consists of more tharremqaest, then the client samples all request sizes, respons
sizes, and inter-request times for the connection

¢ if the connection only consists of one request, then thetciamples the request size and the response size
e send the first HTTP request to the server
e listen for the HTTP response

e when the entire HTTP response has been received, the ditnadimer to expire when the next request should be
made, if applicable

e when the timer expires, the next HTTP request is sent, andlibee process is repeated until all requests have been
completed

370

43.1.2 PackMimeHTTP Server Application

Each web server controls the response sizes that are tnatsfelhe server is started by when a new TCP connection is
started. Each PackMimeHTTP client takes the following step

e listen for an HTTP request from the associated client

e when the entire request arrives, the server samples thergalay time from the server delay distribution

e set a timer to expire when the server delay has passed

e when the timer expires, the server sends response (thefsidgah was sampled by the client and passed to the server)

o this process is repeated until the requests are exhaustes setver is told how many requests will be sent in the
connection

e send a FIN to close the connection

43.2 PackMimeHTTP Random Variables

This implementation of PackMimeHTTP provides several ned®anVariable objects for specifying distributions of Pack
MimeHTTP connection variables. The implementations waken from source code provided by Bell Labs and modified to
fit into the ns RandomVariable framework. This allows PackldHT TP connection variables to be specified by any type of
ns RandomVariable, which now include PackMimeHTTP-speci#hdom variables. If no RandomVariables are specified in
the TCL script, PackMimeHTTP will set these automatically.

The PackMimeHTTP-specific random variable syntax for TOlipgs is as follows:

e $ns [new RandomVariable/PackMimeHTTPFlowArrive <rate>] , Whererate is the specified Pack-
MimeHTTP connection rate (number of new connections pesrsgc

e $ns [new RandomVariable/PackMimeHTTPReqgSize <rate>] , Whererate is the specified PackMime-
HTTP connection rate

e $ns [new RandomVariable/PackMimeHTTPRspSize <rate>] , Whererate is the specified PackMime-
HTTP connection rate

e $ns [new RandomVariable/PackMimeHTTPPersistRspSize]

e $ns [new RandomVariable/PackMimeHTTPPersistent <probab ility>] , whereprobability is
the probability that the connection is persistent

e $ns [new RandomVariable/PackMimeHTTPNumPages <probabil ity> <shape> <scale>] , Where
probability is the probability that there is a single page in the conoeaindshape andscale are parameters

to the Weibull distribution to determine the number of paigebe connection.

e $ns [new RandomVariable/PackMimeHTTPSingleObjPages <pr obability>] , Whereprobability
is the probability that there is a single object on the curpage.

e $ns [new RandomVariable/PackMimeHTTPObjsPerPage <shape > <scale>] ,whereshape andscale
are parameters to the Gamma distribution to determine th#euof objects on a single page.

e $ns [new RandomVariable/PackMimeHTTPTimeBtwnObjs]

e $ns [new RandomVariable/PackMimeHTTPTimeBtwnPages]

371

HTTP responses

“------
web 1] web
' — 1 Ee—m
clients DelayBox DelayBox Servers

HTTP requests

Figure 43.2: Example Topology Using PackMimeHTTP and DBtay The cloud of web clients is a single ns node, and the
cloud of web servers is a single ns node. Each of the DelayBdesis a single ns node.

e $ns [new RandomVariable/PackMimeHTTPServerDelay <shape > <scale>] ,whereshape andscale
are paramters to the Weibull distribution to determine sedelay.

e $ns [RandomVariable/PackMimeHTTPXmit <rate> <type>] , Wheretype is O for client-side delays
and 1 for server-side delayslote: This random variable is only used in conjunction with DelayBlt returns 1/2 of
the actual delay because it is meant to be used with 2 DelapBdgs, each of which should delay the packets for 1/2
of the actual delay.

43.3 Use of DelayBox with PackMime-HTTP

PackMimeHTTP uses ns to model the TCP-level interactiowéen web clients and servers on the simulated link. To
simulate network-level effects of HTTP transfer through tihouds, use DelayBox (see 22). DelayBox is an ns analog to
dummynet, often used in network testbeds to delay and drokeg The delay times model the propagation and queuing
delay incurred from the source to the edge of the cloud (oeedghe cloud to destination). Since all HTTP connections in
PackMimeHTTP take place between only two ns nodes, theréIneusn ns object to delay packets in each flow, rather than
just having a static delay on the link between the two nodedayBox also models bottleneck links and packet loss on an
individual connection basis. Two DelayBox nodes are useshawn in Figure 43.3. One node is placed in front of the web
client cloud ns node to handle client-side delays, loss,katleneck links. The other DelayBox node is placed in froint
the web server cloud ns node to handle the server-side dédagsand bottleneck links.

43.4 Example

More examples (including those that demonstrate the uselafyBox with PackMime) are available in tte/ex/packmime/
directory of the ns source code. The validation scmst-suite-packmime.tcl is in tcl/test/ and can be run
with the commandest-all-packmime from that directory.

Note: The only PackMime-HTTP parameters tinatistbe set areate , client , server ,flow_arrive ,req_size

andrsp_size . The example below shows the minimal parameters that nekd set, but other parameters can be set to
change the default behavior (see “Commands at a Glance”).

test-packmime.tcl
useful constants

set CLIENT O
set SERVER 1

372

remove-all-packet-headers; # removes all packet headers

add-packet-header IP TCP; # adds TCP/IP headers
set ns [new Simulator]; # instantiate the Simulator
$ns use-scheduler Heap; # use the Heap scheduler

SETUP TOPOLOGY

create nodes

set n(0) [$ns node]

set n(1) [$ns node]

create link

$ns duplex-link $n(0) $n(1) 10Mb Oms DropTalil

SETUP PACKMIME

set rate 15

set pm [new PackMimeHTTP]

$pm set-client $n(0); # name $n(0) as client

$pm set-server $n(1); # name $n(1l) as server

$pm set-rate $rate; # new connections per second
$pm set-http-1.1; # use HTTP/1.1

SETUP PACKMIME RANDOM VARIABLES
global defaultRNG

create RNGs (appropriate RNG seeds are assigned automatic
set flowRNG [new RNG]

set reqsizeRNG [new RNG]

set rspsizeRNG [new RNG]

create RandomVariables

set flow_arrive [new RandomVariable/PackMimeHTTPFlowAr rive $rate]
set req_size [new RandomVariable/PackMimeHTTPFileSize $ rate $CLIENT]
set rsp_size [new RandomVariable/PackMimeHTTPFileSize $ rate $SERVER]

assign RNGs to RandomVariables
$flow_arrive use-rng $flowRNG
$req_size use-rng $reqsizeRNG
$rsp_size use-rng $rspsizeRNG

set PackMime variables
$pm set-flow_arrive $flow_arrive
$pm set-req_size $req_size
$pm set-rsp_size $rsp_size

record HTTP statistics
$pm set-outfile "data-test-packmime.dat"

$ns at 0.0 "$pm start"
$ns at 30.0 "$pm stop"

$ns run

373

43,5 Commands at a Glance

The following commands on the PackMimeHTTP class can besaedefrom OTcl:

[new PackMimeHTTP]
Creates a new PackMimeHTTP object.

$packmime start
Start generating connections

$packmime stop
Stop generating new connections

$packmime set-client <node>
Associates the node with the PackMimeHTTP client cloud

$packmime set-server <node>
Associates the node with the PackMimeHTTP server cloud

$packmime set-rate <float>
Set the average number of new connections started per second

$packmime set-req_size <RandomVariable>
Set the HTTP request size distribution

$packmime set-rsp_size <RandomVariable>
Set the HTTP response size distribution

$packmime set-flow_arrive <RandomVariable>
Set the time between two consecutive connections starting

$packmime set-server_delay <RandomVariable>
Set the web server delay for fetching pages

$packmime set-run <int>
Set the run number so that the RNGs used for the random vesialill use the same substream (see Chapter 25 on RNG for
more details).

$packmime get-pairs
Return the number of completed HTTP request-response pa@stcl/ex/packmime/pm-end-pairs.tcl for an
example of usinget-pairs to end the simulation after a certain number of pairs havepteiad.

$packmime set-TCP <protocol>
Sets the TCP type (Reno, Newreno, or Sack) for all connestiothe client and server clouds - Reno is the default

HTTP/1.1-Specific Commands

$packmime set-http-1.1
Use HTTP/1.1 distributions for persistent connectionteiad of HTTP/1.0.

$packmime no-pm-persistent-reqsz

By default, PackMime-HTTP sets all request sizes in a persi€onnection to be the same. This option turns that behavi
off and samples a new request size from the request sizédistn for each request in a persistent connection.

374

$packmime no-pm-persistent-rspsz

By default, PackMime-HTTP uses an algorithm (FeekMimeHTTPPersistRspSizeRandomVariable::value()

in packmime_ranvar.h for details) for setting the response sizes in a persistamection. This option turns that behav-
ior off and samples a new response size from the responsdisteution for each response in a persistent connection.

$packmime set-prob_persistent <RandomVariable>
Set the probability that the connection is persistent

$packmime set-num_pages <RandomVariable>
Set the number of pages per connection

$packmime set-prob_single obj <RandomVariable>
Set the probability that the page contains a single object

$packmime set-objs_per_page <RandomVariable>
Set the number of objects per page

$packmime set-time_btwn_pages <RandomVariable>
Set the time between page requests, (think time)

$packmime set-time_btwn_objs <RandomVariable>
Set the time between object requests

Output-Specific Commands

$packmime active-connections
Output the current number of active HTTP connections todstesherror

$packmime total-connections
Output the total number of completed HTTP connections tadsed error

$packmime set-warmup <int>
Sets what time output should start. Only used \gith outfile

$packmime set-outfile <filename>
Output the following fields (one line per HTTP request-regmpair) tdfilename

e time HTTP response completed

e HTTP request size (bytes)

e HTTP response size (bytes)

e HTTP response time (ms) — time between client sending HTTBast and client receiving complete HTTP response
e source node and port identifier

e number of active connections at the time this HTTP requespanse pair completed

$packmime set-filesz-outfile <filename>
Right after sending a response, output the following fietalee(line per HTTP request-reponse pairjitename

e time HTTP response sent

e HTTP request size (bytes)

375

e HTTP response size (bytes)

e server node and port address

$packmime set-samples-outfile <filename>
Right before sending a request, output the following fietite(line per HTTP request-reponse pairjilename

e time HTTP request sent
e HTTP request size (bytes)
e HTTP response size (bytes)

e server node and port address

$packmime set-debug <int>
Set the debugging level:

e 1: Output the total number of connections created at the &ticesimulation

e 2:Levell+
output creation/management of TCP agents and applications
output on start of new connection
number of bytes sent by the client and expected response size
number of bytes sent by server

e 3: Level2 +
output when TCP agents and applications are moved to the pool

e 4: Level 3+
output number of bytes received each time client or senagive a packet

376

Chapter 44

Tmix: Internet Traffic Generation

In order to perform realistic network simulations, one reeadraffic generator that is capable of generating reagtithetic
traffic that “looks like” traffic found on an actual networkmix takes as input a packet header trace taken from a network
link of interest. The trace is “reverse compiled” into a smstevel characterization, calleccannection vectqrof each TCP
connection present in the trace. This set of connectiorovedt what drives the Tmix traffic generation in ns-2.

Connection vectors are represented through a pattern bEappn data units (ADUs) which are based on #éib-tmodel ?].
Modeling TCP connections as a pattern of ADU transmissioogiges a unified view of connections that does not depend on
the specific applications driving each TCP connection. Tise $tep in the modeling process is to acquire a trace of FCP/I
headers and process the trace to produce a set of conneetitmis] one vector for each TCP connection in the trace.

The Tmix module in ns-2 takes a set of connection vectors andates the socket-level behavior of the source applinaiiat
created the corresponding connection in the trace. Thidaion faithfully reproduces the essential pattern of sdckads
and writes that the original application performed withkobwledge of what the original application actually was. éith
combined with Tmix_DelayBox (Section 44.4), the resultiraffic generated in the simulation is statistically repraative
of the traffic measured on the real link. All a user needs ttasepaffic from a certain link is the file ad-b-tstyle connection
vectors obtained from a trace of that link and this Tmix gatmr This approach to synthetic traffic generation allows
automatically reproduce in ns-2 the full range of TCP cotinas found on an arbitrary link.

Tmix supports both Full-TCP and one-way TCP agents (sesdtiagent-type command).

The remainder of this chapter describes the implementatidruse of Tmix in ns-2. For more details on #b-tmodel and
validation of the Tmix generator, se@]

Citation Request: If you use Tmix traffic generation in your work, please cit¢ (M.C. Weigle, P. Adurthi, F. Hernandez-
Campos, K. Jeffay, and F.D. Smith, “Tmix: A Tool for GenenagtRealistic Application Workloads in ns-2ACM SIGCOMM
Computer Communication Revigduly 2006, Vol 36, No 3, pp. 67-76.).

Note: For more information on Tmix and to obtain Tmix tools and cection vectors, see http://netlab.cs.unc.edu/Tmix or
http://www.cs.odu.edu/inets/Tmix.

44.1 Network Setup

The implementation of Tmix in ns-2 is based on PackMime-HTCPRapter 43), so it has a similar structure. A typical Tmix
instance consists of four ns nodes: two initiator nodes adacceptor nodes (Figure 44.1). It is important to note tinete

377

O initiator C> acceptor |:| Tmix_DelayBox

Figure 44.1: Tmix Architecture. Each Tmix object contratdmitiator cloud and an acceptor cloud. Each cloud can sgme
multiple initiator or acceptor Applications. For realistivo-way traffic, two sets of acceptors and initiators arpineed.

nodesdo notcorrespond to a single initiator or acceptor. A single Trmitiator node generates TCP connections coming
from a “cloud” of connection initiators. Likewise, a singlenix acceptor node accepts and serves TCP connectionaelisti
for a “cloud” of connection acceptors.

In order to simulate different RTTs, bottleneck links, ardéss rates for each connection, Tmix should be used inuoatipn
with Tmix_DelayBox (see Section 44.4), derived from DelaxEBChapter 22).

We use the termimboundandoutboundo represent the directions of data flow. As in Figure 44d4iffitr initiated outside of
the circle (which could be thought of as a campus) is desgghatinbound and traffic initiated inside the circle is designated
asoutbound

44.2 Connection Vectors

A connection vector is a representation of an observed T@Reaxiion. Each connection vector has several fields which
specify the type of connection (sequential or concurreminection start time, loss rate, window size, etc. Eaclmeotion
vector also contains an arbitrary number of applicatiora datits (ADUs). Each ADU represents data to be sent over the
network by either the initiator or the acceptor of the TCPraxtion. ADUs also specify when data should be sent relative
to either the reception of an ADU or the completed sending pfewious ADU. A file containing an arbitrary number of
connection vectors must be supplied to Tmix in order for aaffit to be generated.

Connection vectors are eitheequentiabr concurrent Sequential connection vectors are the most common andsepir

a request-reply type connection, where a new ADU is sent afibr the previous ADU has been received. Concurrent
connection vectors allow for deviation from the sequemntétern. For a concurrent connection, new ADUs are senttaioer
amount of time after the previous ADU was sent and do not dépeon when ADUs were received. Examples of this type
of application protocol include HTTP/1.1 (pipelining) athe: BitTorrent file-sharing protocol.

Tmix in ns-2 can handle two different connection vector fatspwhich we term agriginal andalternate We have provided
a Perl script fs/tmix/cvec-orig2alt.pl) to convert from the original format to the alternate formahe Tmix
module in ns-2 can automatically detect the format of thewgizonnection vector file.

44.2.1 Original Connection Vector Format

Examples of the original format of connection vectors agdesd in [?] are shown in Figure 44.2. Sequential and concurrent

378

SEQ 6851 1 21217 555382 # starts at 6.851 ms and contains 1 exch ange (epoch)

w 64800 6432 # win sz (bytes): init acc

r 1176194 # min RTT (microseconds)

| 0.000000 0.000000 # loss: init->acc acc->init

> 245 # init sends 245 bytes

t 51257 # acc waits 51 ms after recv

< 510 # acc sends 510 bytes

t 6304943 # init waits 6.3 sec after send and then sends FIN
CONC 1429381 2 2 26876 793318 # starts at 1.4 s, init sends 2 ADU s and acc sends 2 ADUs
w 65535 5840 # win sz (bytes)

r 36556 # min RTT (microseconds)

| 0.000000 0.000000 # loss rate

c> 222 # init sends 222 bytes

t> 62436302 # init waits 62 sec

c< 726 # acc sends 726 bytes

t< 62400173 # acc waits 62 sec

c> 16 # init sends 16 bytes

t> 725 # init waits 725 us and then sends FIN

c< 84 # acc sends 84 bytes

t< 130 # acc waits 130 us and then sends FIN

Figure 44.2: Original Connection Vector Format Example tHe comments, we abbreviate the initiatorigis and the
acceptor ascc .

connection vectors are differentiated by the startingngtin the first line:SEQfor a sequential connection a@DNCor a
concurrent connection. The second field in the first line gthe starting time for the connection in microseconds friome t
0 (the start of the simulation). For sequential connectitiresthird field indicates the number of ADU exchangegmochs
present in the connection. For concurrent connectionghihe field indicates the number of ADUs that the initiatonds,
and the fourth field indicates the number of ADUs that the pmesends. The final two fields in the first line are identifimat
numbers, of which only the final ID is used in ns-2.

The second line in each, starting withgives the window sizes of the initiator and acceptor, retpaly, in bytes. The third
line, starting withr , gives the minimum RTT in microseconds between the initiatad acceptor. The fourth line, starting
with | , provides the loss rates involved in each direction of theneation. The remaining lines in the connection vector
show the ADU exchanges.

In a sequential connection vector, the ADUs are shown ireimsing order by the times at which they are sent. The lines
starting with> show the sizes of the ADUs sent by the initiator to the acaeptal the lines starting witk show the sizes of
the ADUs sent by the acceptor to the initiator. Note thateahigma time dependency in case of sequential connectionrgecto
One side of the connection is dependent on the other sideafathnection sending it an ADU.

In case of sequential connections, the line contaihign appear in any of the following four scenarios:

1. After a line beginning with> and before a line beginning witk.
2. After a line beginning with< and before a line beginning with.
3. Atthe end of the connection vector, after a line beginmiitg >.

4. Atthe end of the connection vector, after a line beginmiith <.

Depending on its placement, the semantics associated lwgth value change. In case tl,denotes the amount of time the

379

acceptor has to wait after receiving an ADU from initiatofdye it can send its next ADU. In case 2, thedenotes the
amount of time the initiator has to wait after receiving anlAbom acceptor before it can send its next ADU. In case 3,
thet denotes the time the initiator has to wait after sendingaiss ADU and before closing the connection. In case 4f the
denotes the time that the acceptor has to wait after seniditast ADU and before closing the connection.

For a concurrent connection vector, lines starting withindicate the bytes sent by the initiator, and lines stantiith ¢ <
indicate the bytes sent by the acceptor. Lines starting tithindicate the time the initiator waits before sending thetnex
ADU (or sending the FIN, if the last ADU has been sent). Likssvvith lines beginning with < and the acceptor. Note that
there is no time dependence between the initiator and amcieptase of a concurrent connection vector. The waiting$im
are between consecutive sends and are not dependent uparingan ADU from the other side.

44.2.2 Alternate Connection Vector Format

To disambiguate the multiple possible interpretationsheftt value with sequential connections, we have modified the
connection vector format into an alternate format. Thedmga is that in the case of sequential connection vectoeset
really exist two times associated with the initiator or gatoe while sending an ADU to the other side:

1. The amount of time the initiator/acceptor has to wait befending the next ADU after sending its previous ADU
(send_wait_time

2. The amount of time the initiator/acceptor has to wait befending the next ADU after receiving an ADU from the
other side fecv_wait_timg

Note that only one of the above two values is used by an initi@tceptor while sending its ADU to the other side, the
initiator/acceptor schedules sending its next ADU wittpees to the event of receiving a ADU from the other side or with
respect to the event of sending a previous ADU. The initlatmeptor does not use both of these values at the same time, s
in the new format one of these values is always set to 0. Alse that at the beginning of the connection, the side sending
the first ADU will have bothsend_wait_timendrecv_wait_timeset to 0. In case of thie values appearing at the end of a
connection vector in the original format, we introduce a dwADU with size O to represent the FIN that will be sent by the
initiator/acceptor that sends the last ADU.

This same alternate representation can be used for contaeoenection vectors also. But because there is no timendepe
dence between the sides of the connection, each side sekexuiding its next ADU with respect to time at which it sest it

last ADU. Therefore, in case of concurrent connection wagtecv_wait_timeas not applicable and is always set to 0. Also,

in case of concurrent connection vectors, both the sidessetading their messages at the same time.

We keep the header lines of the connection vectors (thosmioorg the start time, window size, RTT, and loss rates) in
the same format as the original, except that we repBE®with S and CONCwith C. Lines beginning withl denote
actions for the initiator, and lines beginning wighshow actions for the acceptor. The remaining format of thiess is
send_wait_time recv_wait_time bytes . Figure 44.3 shows the alternate connection vector forora¢sponding

to the sequential and concurrent connections shown in Eigdi2.

44.3 Implementation Details

Tmix is an ns object that drives the generation of TCP traffiach Tmix object controls the operation of two applications
a Tmix Application used to simulate a TCP connection acaegtd a Tmix Application used to simulate a TCP connection
initiator. Each of these applications is connected to a T@erm. Tmix supports both Full-TCP and one-way TCP agents
(see theset-agent-type command).

380

S 6851 1 21217 555382 # starts at 6.851 ms and contains 1 exchan ge (epoch)

w 64800 6432 # win sz (bytes)

r 1176194 # min RTT

| 0.000000 0.000000 # loss rate

I 0 0 245 # init sends 245 bytes

A 0 51257 510 # acc waits 51.257 ms after recv then sends 510 byt es
A 6304943 0 0 # acc waits 6.3 sec after send then sends FIN

C 1429381 2 2 26876 793318 # starts at 1.4 s, init sends 2 ADUs an d acc sends 2 ADUs
w 65535 5840 # win sz (bytes)

r 36556 # min RTT

| 0.000000 0.000000 # loss rate

I 0 0 222 # init sends 222 bytes

A 00 726 # acc sends 726 bytes

| 62436302 0 16 # init waits 62 sec and then sends 16 bytes

A 62400173 0 84 # acc waits 62 sec and then sends 84 bytes

| 725 0 0 # init waits 725 us and then sends FIN

A 13000 # acc waits 130 us and then sends FIN

Figure 44.3: Alternate Connection Vector Example. In thengtents, we abbreviate the initiatoriagé and the acceptor
asacc .

Each initiator or acceptor cloud is represented by a singleaule that can produce and consume multiple TCP conneetions
atime (Figure 44.1). For each TCP connection, Tmix createallpocates from the inactive pool, as described belowipitur

and acceptor applications and their associated TCP Agafits. setting up and starting each connection, Tmix setmartti

to expire when the next new connection should begin. Thestimevhich connections begin are governed by the connection
vectors supplied by the user. Connection vectors may befegakby the user by setting a connection vector file for Tmix to
read from. New connections are started according to theemtium arrival times found in the connection vector file heit
regard to the completion of previous connections.

Tmix handles the re-use of applications and Agents that bawgpleted their data transfer. Each Tmix instance maigtain
3 pools to manage applications and Agents — one pool foriima@CP Agents and one pool each for active and inactive
Tmix applications. The pool for active applications ensutteat all active applications are destroyed when the sitonla

is finished. Active TCP Agents do not need to be placed in a peochuse each active application contains a pointer to its
associated TCP Agent. New objects are only created whee #iemo Agents or applications available in the inactivdgo0
(TCP Agents are required to be in the inactive pool for 1 sddmfore they can be re-used.)

44.3.1 Tmix Application

The Tmix Application classTmixApp) is responsible for handling both the initiator and accepites. Different instances
of this class are used for each rdle,, one object does not handle both the initiator and acceptes at the same time.

The behavior of the Tmix Application class is in large pamizolled by the connection vectors found in the connectiecter

file set by the user. Each connection vector specifies thetddta sent by the initiator and acceptor applications aneéund
what conditions that data should be sent.

381

44.3.2 Sequential Connections

The first ADU that has a 0 value for botacv_wait_timeandsend_wait_timés sent as soon as the connection is initiated.
All following sends only occur after the initiator or acceppplication has received the expected amount of data ifiom
peer (.e. the initiator or acceptor application to which it is contezt) and after some delay specified by the next ADU to be
sent. The expected amount of data to be received from thagpdetermined by looking at the size of the current ADU that
should be being sent by the peer application.

44.3.3 Concurrent Connections

Both sides begin sending their data after the delay spedifjeitheir ADUs. Later sends are scheduled to occur after the
current send has finished and after some delay specified me#iADU to be sent.

44.3.4 Acceptor-Sending-First Connections

There are some connections where the acceptor sends tiAdfstin reality, the initiator always sets up the TCP conimtt
but in ns-2 the connection is not setup until the first dat@d®wre sent. In these cases, the acceptor will send the SYN to
setup the connection and then will send its ADU.

44.3.5 Sending FINs

Some of the connection vectors have an explicit FIN ADU ideld (bytes == 0). If a connection vector does not have an
explicit FIN, Tmix will add one upon reading in the conneaticector. The default is that the last side (initiator or gto€) to
send an ADU will send the FIN 1 second after sending its last/ADhis time can be configured using thet-fin-time
command. Changing this parameter will affect the TCP dyeammumber of active connections, memory, and running time,
but will not affect the throughput or offered load of the siation.

44.4 Tmix_DelayBox

Tmix uses ns-2 to model the TCP-level interaction betweem tades on the simulated link. To simulate network-level
effects of TCP transfer through the clouds, use Tmix_DetayBImix_DelayBox is derived from DelayBox (Chapter 22).
Tmix_DelayBox simply adds the ability to specify delays é&&kes for each connection using a connection vector fileads

of setting up rules for each source-destination pair. Adtepnnection vector file is specified, Tmix_DelayBox parsehe
connection vector to obtain the loss rate and delay, whiehaaitten into the DelayBox flow table. Note that the current
version of Tmix_DelayBox does not allow bandwidth limitats as does DelayBox, but that future versions may support
this.

445 Example

The following is an example of using Tmix and Tmix_DelayB#xother example can be foundtal/ex/tmix/test-tmix.tcl
An example using one-way TCP instead of Full-TCP agents edodnd atcl/ex/tmix/test-tmix-oneway.tcl

382

The validation scriptest-suite-tmix.tcl is in tcl/test/ and can be run with the commatekt-all-tmix
from that directory.

Simulation script to simulate the tmix-ns component

#:::0 Useful Variables i

set end 3600; # length of traced simulation (s)
set INBOUND "inbound.cvec"

set OUTBOUND "outbound.cvec"

#mm Setup Simulator i

remove-all-packet-headers; # removes all packet headers
add-packet-header IP TCP; # adds TCP/IP headers
set ns [new Simulator]; # instantiate the Simulator

$ns use-scheduler Heap

#0000 Setup Topology
create nodes

set n(0) [$ns node]

set n(1) [$ns node]

set n(2) [$ns node]

set n(3) [$ns node]

create Tmix_DelayBox nodes

set tmixNet(0) [$ns Tmix_DelayBox]

$tmixNet(0) set-cvfile "$INBOUND" [$n(0) id] [$n(1) id]
$tmixNet(0) set-lossless

set tmixNet(1) [$ns Tmix_DelayBox]
$tmixNet(1l) set-cvfile "SOUTBOUND" [$n(3) id] [$n(2) id]
$tmixNet(1l) set-lossless

create links

$ns duplex-link $n(0) $tmixNet(0) 1000Mb 0.1ms DropTalil

$ns duplex-link $n(2) $tmixNet(0) 1000Mb 0.1ms DropTail

$ns duplex-link $tmixNet(0) $tmixNet(1) 1000Mb 0.1ms Drop Tail
$ns duplex-link $tmixNet(1) $n(1) 1000Mb 0.1ms DropTail

$ns duplex-link $tmixNet(1) $n(3) 1000Mb 0.1ms DropTail

set queue buffer sizes (in packets) (default is 20 packets)
$ns queue-limit $n(0) $tmixNet(0) 500

$ns queue-limit $tmixNet(0) $n(0) 500

$ns queue-limit $n(2) $tmixNet(0) 500

$ns queue-limit $tmixNet(0) $n(2) 500

$ns queue-limit $tmixNet(0) $tmixNet(1) 500
$ns queue-limit $tmixNet(1) $tmixNet(0) 500
$ns queue-limit $tmixNet(1) $n(1) 500

$ns queue-limit $n(1) $tmixNet(1) 500

$ns queue-limit $tmixNet(1) $n(3) 500

$ns queue-limit $n(3) StmixNet(1) 500

#oonnn Setup TCP o
Agent/TCP/FullTcp set segsize_ 1460; # set MSS to 1460 bytes

383

Agent/TCP/FullTcp set nodelay true;
Agent/TCP/FullTcp set segsperack 2;

Agent/TCP/FullTcp set interval_ 0.1; # 100 ms

Setup Tle
set tmix(0) [new Tmix]

$tmix(0) set-init $n(0);

$tmix(0) set-acc $n(1);

$tmix(0) set-ID 7

$tmix(0) set-cvfile "SINBOUND"

set tmix(1l) [new Tmix]

$tmix(1) set-init $n(3);

$tmix(1) set-acc $n(2);

$tmix(1) set-ID 8

$tmix(1) set-cvfile "$SOUTBOUND"
Setup Schedule
at 0.0 "$tmix(0) start"

at 0.0 "$tmix(1) start"

at $end "$tmix(0) stop”

at $end "$tmix(1) stop”

at [expr $end + 1] "$ns halt"

run

44.6 Commands at a Glance

The following commands on the Tmix class can be accessed@ooh

[new Tmix]
Creates a new Tmix instance.

$tmix start
Start Tmix

$tmix stop
Stop Tmix

$tmix set-init <node>
Set the initiator node on which the connection initiator lagggions will be run

$tmix set-acc <node>
Set the acceptor node on which the connection acceptorcafiplis will be run

$tmix set-outfile <filename>
Outputs the results of thective-connections
standard error

andtotal-connections

$tmix set-cvfile <filename>
Set the connection vector file from which to start and run eations

384

disabling nagle
delayed ACKs

name $n(0) as initiator
name $n(1) as acceptor

name $n(3) as initiator
name $n(2) as acceptor

commands to the specified file instead of

$tmix set-ID <int>
Set the NS id for this object

$tmix set-run <int>
Set the run number so that the RNGs used for the random vesialill use the same substream (see Chapter 25 on RNG for
more details).

$tmix set-warmup <int>
Sets at what time output should start. Only used wéh outfile

$tmix set-TCP <protocol>

Sets the TCP type for all connections in the client and sesherds. In one-way mode, Tahoe is the default; for Full-TCP,
Reno is the default. When this is set, the actual agent clssg is “Agent/TCP/FullTcp/<protocol>”" for Full-TCP, and
“Agent/TCP/<protocol>" for one-way TCP.

$tmix set-sink <name>
Sets the type of TCPSink used. The default value is “defamiBaning Agent/TCPSink. When this is set, the actual class
used is "“Agent/TCPSink/<name>". This setting is for oneyW&P; it has no effect in Full-TCP mode.

$tmix set-agent-type <name>
Possible values are “full” and “one-way”. The default mogl€&ull-TCP. This affects the types of the TCP agents used: see
the set-TCP and set-sink commands.

$tmix set-pkt-size <int>
Size of packets to construct and send (TCP MSS)

$tmix set-step-size
Number of connection vectors to read at a time from the sagmlonnection vector file

$tmix set-fin-time <int>
Tmix adds a FIN to any connection vector that does not have Dimis parameter sets when the FIN is sent. The default is 1
second (1000000 us) after the last send.

$tmix active-connections
Output the number of currently active connections to steshderor or the oultfile if it has been set.

$tmix total-connections
Output the total number of completed connections to stahelaor or the outfile if it has been set.

$tmix check-oneway-closed
Check to see if the final ACK has returned before recyclingome-way TCP agent.

$tmix set-prefill-t <int>
Accelerate the start of connections that begin in [0, préfill(s)

$tmix set-prefill-si <int>
Prefill start interval. Connections starting between [€fjir t_] instead start [(prefill_t_-prefill_si_), prefili_]

$tmix set-scale <int>
Scale rate for arrival rate adjustment.

$tmix set-debug <int>
Set the debugging level:

385

1 - Connection vector level
Output: cvecs read in, total connections at end

2 - level 1 + connections
Output: new connections starting, connections ending

3 -level 2 + App actions
Output: stopped, listening, closing, sending FIN, nextremrtion starting in, CVEC-NODE-PORT

4 - level 3 + ADU actions
Output: sent last ADU, sent ADU, recv ADU, send next ADU delay

e 5-level 4 + packet actions
Output: recwx bytes (partial ADU)

6 - level 5 + pool actions
Output: TCPAgent/App moved to pool, created new, got froml porecycle

Tmix_DelayBox Commands

The following commands on the Tmix_DelayBox class can bessed from OTcl (note that Tmix_DelayBox inherits com-
mands available for DelayBox):

[$ns Tmix_DelayBox]
Creates a new Tmix_DelayBox node.

$tmix_db set-cvfile <filename>
Set the connection vector file from which to read the delayklass rates for each flow

$tmix_db set-lossless
Do not induce any losses

$tmix_db set-debug <int>
Set the debugging level

386

Part VIl

Scale

387

Chapter 45

Session-level Packet Distribution

This section describes the internals of the Session-lexekd? Distribution implementation ins The section is in two
parts: the first part is an overview of Session configurat®ec(ion 45.1), and a “complete” description of the configjara
parameters of a Session. The second part describes theeatgte, internals, and the code path of the Session-laag?
distribution.

The procedures and functions described in this chapteredound in -ngtcl/session/session.tcl.

Session-level Packet Distribution is oriented toward$quering multicast simulations over large topologies. Thenmory
requirements for some topologies using session level sitionls are:

2048 nodes, degree of connectivity =8 40MB
2049-4096 nodes~ 167 MB
4097-8194 nodes~ 671 MB

Note however, that session level simulations ignore qeuéélays. Therefore, the accuracy of simulations that useces
with a high data rate, or those that use multiple sourcegytadggregated at points within the network is suspect.

45.1 Configuration

Configuration of a session level simulation consists of tadg configuration of the session level details thems€[Ses-
tion 45.1.1) and adding loss and error models to the sessihabstraction to model specific behaviours (Section.2h.1

45.1.1 Basic Configuration

The basic configuration consists of creating and configuingulticast session. Each Sessioa.(a multicast tree) must be
configured strictly in this order: (1) create and configuee dession source, (2) create the session helper and attadhét
session source, and finally, (3) have the session membarthpeession.

set ns [new SessionSim] ;# preamble initialization
set node [$ns node]
set group [$ns allocaddr]

388

Lossy Li,n'i'<
'Lo'ssy Links

/

Figure 45.1: Comparison of Multicast Trees for Detailed$sssion Routing

set udp [new Agent/UDP] ;# create and configure the source
$udp set dst_ $group

set src [new Application/Traffic/CBR]

$src attach-agent $udp
$ns attach-agent $node $udp

$ns create-session $node $udp # create attach session helper to src
set rcvr [new Agent/NULL] ;# configure the receiver

$ns attach-agent $node S$rcvr

$ns at 0.0 "$node join-group $rcvr $group” # joining the session

$ns at 0.1 "$src start"

A session level simulation scales by translating the togplato a virtual mesh topology. The steps involved in doinig t
are:

1. All of the classifiers and replicators are eliminated. iEaode only stores instance variables to track its node id, an
port ids.

2. Links do not consist of multiple components. Each linkysibres instance variables to track the bandwidth and delay
attributes.

3. The topology, consisting of links is translated into dauat mesh.

Figure 45.1 shows the difference between a multicast traelgtailed simulation and one in a session level simulahlmtice
that the translation process results in a session levellation ignoring queuing delays. For most simulationsalready
ignores processing delays at all of the nodes.

389

45.1.2 Inserting a Loss Module

When studying a protocok(g, SRM error recovery mechanism), it might be useful to studytqrol behavior over lossy
links. However, since a session level simulation scaleshisyracting out the internal topology, we need additionatinae
nisms to insert a loss module appropriately. This subsed@scribes how one can create these loss modules to moalel err
scenarios.

Creating a Loss Module Before we can insert a loss module in between a source-exqehir, we have to create the loss
module. Basically, a loss module compares two values taldeghether to drop a packet. The first value is obtained every
time when the loss module receives a packet from a randorablariThe second value is fixed and configured when the loss
module is created.

The following code gives an example to create a uniform 0s$ fate.

creating the uniform distribution random variable

set loss_random_variable [new RandomVariable/Uniform]

$loss_random_variable set min_ 0 H set the range of the random variable
$loss_random_variable set max_ 100

set loss_module [new ErrorModel] # create the error model
$loss_module drop-target [new Agent/Null]

$loss_module set rate_ 10 H set error rate ta0.1 = 10/ (100 — 0)
$loss_module ranvar $loss_random_variable # attach random var. to loss module

A catalogue of the random variable distributions was descriearlier (Chapter 25). A more detailed discussion ofrerro
models was also described earlier in a different chapteai@n 13).

Inserting a Loss Module A loss module can only be inserted after the correspondicgiver has joined the group. The
example code below illustrates how a simulation script c&mduce a loss module.

set sessionhelper [$ns create-session $node $src] # keep a handle to the loss module
$ns at 0.1 "$sessionhelper insert-depended-loss $loss_mo dule $revr"

45.2 Architecture

The purpose of Session-level packet distribution is to dpgesimulations and reduce memory consumption while main-
taining reasonable accuracy. The first bottleneck obseds/éte memory consumption by heavy-weight links and nodes.
Therefore, in SessionSim (Simulator for Session-levekpadistribution), we keep only minimal amount of statesliioks

and nodes, and connect the higher level source and rec@pkcaions with appropriate delay and loss modules. Aipart
ular source in a group sends its data packets to a replidabistresponsible for replicating the packets for all treeieers.
Intermediate loss and delay modules between this reptieatbthe receivers will guarantee the appropriate enditbebar-
acteristics. To put it another way, a session level simutadibstracts out the topology, routing and queueing deRgskets

in SessionSim do not get routed. They only follow the esshiglil Session.

390

45.3 Internals

This section describes the internals of Session-level@®daistribution. We first describe the OTcl primitives to fignre a
session level simulation (Section 45.3.1); we concludh eibrief note on hos packet forwarding is achieved (Sectto8.2).

45.3.1 Object Linkage

We describe three aspects of constructing a session lewealagion inns the modified topology routines that permit the
creation of abstract nodes and links, establish the sesstper for each active source, add receivers to the sesgion b
inserting the appropriate loss and delay models when thatwer joins the appropriate group.

Nodes and Links The node contains only its node id and the port number foréxeagent. A link only contains the values
of its bandwidth and delay.

SessionNode instproc init {} {
$self instvar id_ np_
set id_ [Node getid]
set np_ O

}

SessionSim instproc simplex-link { n1 n2 bw delay type } {
$self instvar bw_ delay
set sid [$nl id]
set did [$n2 id]

set bw_($sid:$did) [expr [string trimright $bw Mb] * 1000000]
set delay_($sid:$did) [expr [string trimright $delay ms] * 0.001]

Session Helper Each active source in a session requires a “session helpbg.session helper insis realised through

a replicator. This session helper is created when the useessacreate-session {} to identify the source agent. The
simulator itself keeps a reference to the session helpés instance variable arragession_ , indexed by the source and
destination address of the source.

Note that the destination of source agent must be set bedidiregecreate-session {3
SessionSim instproc create-session { node agent } {
$self instvar session_

set nid [$node id]
set dst [$agent set dst]

set session_($nid:$dst) [new Classifier/Replicator/Dem uxer]
$agent target $session_($nid:$dst) # attach the replicator to the source
return $session_($nid:$dst) ;# keep the replicator in the SessionSim instance variablaysessi on_

391

Delay and Loss Modules Each receiver in a group requires a delay module that reflectdelay with respect to the
particular source. When the receiver joins a grgop)-group {} identifies all session helpers isession_ . If the
destination index matches the group address the recewuiaing, then the following actions are performed.

1. A new slot of the session helper is created and assignée teteiver.

2. The routine computes the accumulated bandwidth and deltwyeen the source and receiver using the SessionSim
instance proceduregt-bw {} and get-delay {}.

3. A constant random variable is created; it will generatedoan delivery times using the accumulative delay as an
estimate of the average delay.

4. A new delay module is created with the end-to-end bandwitaracteristics, and the random variable generator pro-
vides the delay estimates.

5. The delay module in inserted into the session helper aediosed between the helper and the receiver.

See Section 45.1.2 for similarly inserting a loss modulefogceiver.

SessionSim instproc join-group { agent group } {
$self instvar session_

foreach index [array names session_] {
set pair [split $index :]
if {[lindex $pair 1] == $group} {
Note: must insert the chain of loss, delay,
and destination agent in this order:

$session_($index) insert $agent # insert destination agent into session replicator
set src [lindex $pair 0] ;# find accum. b/w and delay
set dst [[$agent set node] id]

set accu_bw [$self get-bw $dst $src]

set delay [$self get-delay $dst $src]

set random_variable [new RandomVariable/Constant] # set delay variable
$random_variable set avg_ $delay

set delay_module [new DelayModel] # configure the delay module
$delay_module bandwidth $accu_bw
$delay_module ranvar $random_variable

$session_($index) insert-module $delay_module $agent ;# insert the delay module

45.3.2 Packet Forwarding

Packet forwarding activities are executed in C++. A soupg@ieation generates a packet and forwards to its targettwhi
must be a replicator (session helper). The replicator sofhie packet and forwards to targets in the active slots wduieh
either delay modules or loss modules. If loss modules, ssttecis made whether to drop the packet. If yes, the packet is

392

Figure 45.2: Architectural Realization of a Session Leveii8ation Session

forwarded to the loss modules drop target. If not, the losduteforwards it to its target which must be a delay modulee Th
delay module will forward the packet with a delay to its tanglich must be a receiver application.

45.4 Commands at a glance

Following is a list of session-level related commands:

set ns [new SessionSim]
This command creates an instance of the sessionmode simulat

$ns_ create-session <node> <agent>

This command creates and attaches a session-helper, whiakitally a replicator, for the source <agent> createlteat t
<node>.

393

Chapter 46

Asim: approximate analytical simulation

This chapter describes a fast approximate network simylasim. Asim solves the steady state of the network using
approximate fixed points. The overall structure is shownigufe 46.1. The user feeds a regular ns script and turns on the
asim flag. Asim would do a fast approximate simulation of teénork scenario and would present to the user the drop

probabilities of the routers, the delays and the approxraggregate throughput of the links and the flows.

In particular, we the following links/traffic are supported

e Drop Tail Queues

e RED Queues

e Bulk TCP flows with FTP traffic
e Short lived TCP flows

The data structures of Asim are populated by a module withénTicl space of ns from the user supplied script.

executing Asim, the results can be accessed using Tcl esutifo use the Asim within a script the user has to use

Simulator set useasim_ 1

Flow state
computation

NS 1 Initial)
SCript ———— " parser ™ ¢onditions Terminal

conditions ? Yes . Network
state

Router state
computations

Figure 46.1: The structure of Asim

394

Upon

By default, this flag is setto 0

A simple script is given below

proc addsrc { s } {
global ns
set t [$ns set src_]
lappend t $s
$ns set src_ $t

proc adddst { src } {
global ns
set t [$ns set dst_]
lappend t $src
$ns set dst_ $t

proc finish {} {
global ns fmon
set drops [$fmon set pdrops_]

set pkts [$fmon set parrivals_]
set notDroped [$fmon set pdepartures_]

set overflow_prob [expr 1.0 * $drops / $pkts]
puts [format "tdrops $drops tpkts $pkts o prob. %7.4f" $ove rflow_prob]
exit 0

}

set N_ 100000
set arrival 0

set available $N_
set endTime_ 200

set ns [new Simulator]
$ns set useasim_ 1
$ns at $endTime_ "finish"

set src_ "™
set dst_ "™

$ns set src_ $src_
$ns set dst_ $dst_

set n(0) [$ns node]

395

set n(1) [$ns node]
set link(0:1) [$ns duplex-link $n(0) $n(1) 1Mbps 50ms RED]

for {set i 0} { $i < 4} {incr i} {

set Itcp($i) [new Agent/TCP]

set Itcpsink($i) [new Agent/TCPSinkK]
$ns attach-agent $n(0) $ltcp($i)
$ns attach-agent $n(1) $ltcpsink($i)
$ns connect $ltcp($i) $ltcpsink($i)

set Iftp($i) [new Application/FTP]
$Iftp($i) attach-agent $ltcp($i)
$ns at 0 "$lftp($i) start"

}

Short term flows
addsrc 1
adddst O

set pool [new PagePool/WebTraf]

Set up server and client nodes
$pool set-num-client [llength [$ns set src_]]
$pool set-num-server [llength [$ns set dst_]]
global n
set i 0
foreach s [$ns set src_] {
$pool set-client $i $n($s)
incr i
}
set i O
foreach s [$ns set dst_] {
$pool set-server $i $n($s)
incr i

}

Number of Pages per Session
set numPage 100000

$pool set-num-session 1

set interPage [new RandomVariable/Exponential]
$interPage set avg_ 0.5

set pageSize [new RandomVariable/Constant]
$pageSize set val_ 1

set interObj [new RandomVariable/Exponential]
$interObj set avg_ 1

set objSize [new RandomVariable/Constant]
$objSize set val_ 20

396

This is needed
$pool use-asim

$pool create-session 0 $numPage 0 $interPage $pageSize $in terObj $objSize

Dumps internal data structures to this dumpfile
$ns asim-dump dumpfile

Calls asim-run
$ns asim-run

Access asim statistics

set | [$ns link $n(0) $n(1)]
puts "after asim run, link bw
puts "after asim run, flow bw

[$ns asim-getLinkTput $I] pac kets"
[$ns asim-getFlowTput $ltcp(0)] packets"

397

Part VIII

Emulation

398

Chapter 47

Emulation

This chapter describes th@mulationfacility of ns Emulation refers to the ability to introduce the simulaitmio a live
network. Special objects within the simulator are capabliatooducing live traffic into the simulator and injectinaffic
from the simulator into the live network.

Emulator caveats:

e While the interfaces described below are not expected togahdrastically, this facility is still under developmenta
should be considered experimental and subject to change.

e The facility described here has been developed under FI2@BE5, and use on other systems has not been tested by
the author.

e Because of the currently limited portability of emulatidinis only compiled intonse(build it with “make nse”), not
standard ns.

47.1 Introduction

The emulation facility can be subdivided into two modes:

1. opaque mode — live data treated as opaque data packets

2. protocol mode — live data may be interpreted/generated by simulator

In opaque mode, the simulator treats network data as uphetedd packets. In particular, real-world protocol fields ot
directly manipulated by the simulator. In opaque mode, digta packets may be dropped, delayed, re-ordered, or dtgaic
but because no protocol processing is performed, protgpetific traffic manipulation scenarios (e.g. “drop the T€gnsent
containing a retransmission of sequence number 23045")moape performed. In protocol mode, the simulator is able to
interpret and/or generate live network traffic containirtgjtaary field assignmentdo date (Mar 1998), only Opaque Mode

is currently implemented.

The interface between the simulator and live network is jged by a collection of objects includingp agentandnetwork

objects Tap agents embed live network data into simulated packetsiae-versa. Network objects are installed in tap agents
and provide an entrypoint for the sending and receipt ofdigt. Both objects are described in the following sections.

399

When using the emulation mode, a special version of thesystteduler is used: tiRealTime scheduler. This scheduler
uses the same underlying structure as the standard calgudae based scheduler, but ties the execution of evenesko r
time. It is described below.

47.2 Real-Time Scheduler

The real-time scheduler implements a soft real-time sdeedvhich ties event execution within the simulator to rée.
Provided sufficient CPU horsepower is available to keep up ®iriving packets, the simulator virtual time should ellys
track real-time. If the simulator becomes too slow to keepvitp elapsing real time, a warning is continually produdetié
skew exceeds a pre-specified constant “slop factor” (ctirédms).

The main dispatch loop is found in the routiRealTimeScheduler::run() , in the filescheduler.cc . It follows
essentially the following algorithm:

e While simulator is not halted

— get current real time (“now”)
— dispatch all pending simulator events prior to now
— fetch next (future) event if there is one

delay until the next simulator event is ready or a Tcl evectios

if a tcl event occured, re-insert next event in simulatomgegieue and continue

otherwise, dispatch simulator event, continue
if there was no future even, check for Tcl events and continue

The real-time scheduler should always be used with the dioalacility. Failure to do so may easily result in the siztiolr
running faster than real-time. In such cases, traffic pggbirough the simulated network will not be delayed by theppro
amount of time. Enabling the real-time scheduler requinedallowing specification at the beginning of a simulationjst:

set ns [new Simulator]
$ns use-scheduler RealTime

47.3 Tap Agents

The classTapAgent is a simple class derived from the basgent class. As such, it is able to generate simulator packets
containing arbitrarily-assigned values within thecommon header. The tap agent handles the setting of the comeaaler
packet size field and the type field. It uses the packet B/peLIVE for packets injected into the simulator. Each tap agent
can have at most one associated network object, although than one tap agent may be instantiated on a single simulator
node.

Configuration Tap agents are able to send and receive packets to/froma@riatssiNetwork object. Assuming a network
object$netobj refers to a network object, a tap agent is configured usingét@ork method:

set a0 [new Agent/Tap]

400

$a0 network $netobj
$a0 set fid_ 26
$a0 set prio_ 2
$ns connect $a0 $al

Note that the configuration of the flow ID and priority are higadthrough theAgent base class. The purpose of setting
the flow id field in the common header is to label packets betantp particular flows of live data. Such packets can be
differentially treated with respect to drops, reorderirggs. Theconnect method instructs age®a0 to send its live traffic

to the$al agent via the current route through the simulated topology.

47.4 Network Objects

Network objects provide access to a live network. There aversl forms of network objects, depending on the protocol
layer specified for access to the underlying network, intialdio the facilities provided by the host operating systéise

of some network objects requires special access priviledese noted. Generally, network objects provide an entntpo
into the live network at a particular protocol layer (e.aqkliraw IP, UDP, etc) and with a particular access mode (ozdyg-
write-only, or read-write). Some network objects provigedalized facilities such as filtering or promiscuous asdg.e.
the pcap/bpf network object) or group membership (i.e. UPRulticast). The C++ claddetwork is provided as a base
class from which specific network objects are derived. Timetevork objects are currently supported: pcap/bpf, ravarie,
UDP/IP. Each are described below.

47.4.1 Pcap/BPF Network Objects

These objects provide an extended interface to the LBNLgtazepture library (libpcap). (Ség://ftp.ee.lbl.gov/libpcap.tar.Z
for more info). This library provides the ability to captuiek-layer frames in a promiscuous fashion from networleiface
drivers (i.e. a copy is made for those programs making usibpéap). It also provides the ability to read and write packe
trace files in the “tcpdump” format. The extended interfaca/jwled bynsalso allows for writing frames out to the network
interface driver, provided the driver itself allows thigian. Use of the library to capture or create live traffic maygdyo-
tected; one generally requires at least read access tostensy packet filter facility which may need to be arrangeduligh

a system administrator.

The packet capture library works on several UNIX-based@ilats. It is optimized for use with the Berkeley Packet Filte
(BPF) [25], and provides a filter compiler for the BPF pseudohine machine code. On most systems supporting it, a kernel
resident BPF implementation processes the filter code, ppliea the resulting pattern matching instructions to irese
frames. Those frames matching the patterns are receivedghrthe BPF machinery; those not matching the pattern are
otherwise unaffected. BPF also supports sending linkrl&penes. This is generally not suggested, as an entire gdyepe
formatted frame must be created prior to handing it off to BHis may be problematic with respect to assigning proper
link-layer headers for next-hop destinations. Itis gelemeferable to use the raw IP network object for sendingdekets,

as the system’s routing function will be used to determirappr link-layer encapsulating headers.

Configuration Pcap network objects may be configured as either associatldaviive network or with a trace file. If
associated with a live network, the particular networkiifatee to be used may be specified, as well as an optional pcamis
flag. As with all network objects, they may be opened for regdir writing. Here is an example:

set me [exec hostname]
set pfl [new Network/Pcap/Live]
$pfl set promisc_ true

401

set intf [$pfl open readonly]

puts "pfl configured on interface $intf"

set filt "(ip src host foobar) and (not ether broadcast)"
set nbytes [$pfl filter $filt]

puts “filter compiled to $nbytes bytes"

puts “drops: [$pfl pdrops], pkts: [$pfl pkts]"

This example first determines the name of the local systenshwhill be used in constructing a BPF/libpcap filter predi-
cate. Thenew Network/Pcap/Live call creates an instance of the pcap network object for cagtlive traffic. The
promisc_ flag tells the packet filter whether it should configure theelyithg interface in promiscuous mode (if it is sup-
ported). Theopen call activates the packet filter, and may be specifieteagonly , writeonly , orreadwrite . It
returns the name of the network interface the filter is asg¢ediwith. Theopen call takes an optional extra parameter (not
illustrated) indicating the name of the interface to usedsas where a particular interface should be used on a nauted
host. Théfilter method is used to create a BPF-compatible packet filter progvhich is loaded into the underlying BPF
machinery. Thdilter method returns the number of bytes used by the filter pregliddiepdrops andpkts methods
are available for statistics collection. They report thenber of packets dropped by the filter due to buffer exhausti@hthe
total number of packets that arrived at the filter, respebtitnotthe number of packets accepted by the filter).

47.4.2 IP Network Objects

These objects provide raw access to the IP protocol, and &ile complete specification of IP packets (including hepder
The implementation makes use aofeav socket In most UNIX systems, access to such sockets requires-siggeprivileges.
In addition, the interface to raw sockets is somewhat lesmsdstrd than other types of sockets. The cldesvork/IP
provides raw IP functionality plus a base class from whidieothetwork objects implementing higher-layer protocaots a
derived.

Configuration The configuration of a raw IP network object is comparativa@iyple. The object is not associated with
any particular physical network interface; the system’sd&ting capability will be used to emit the specified datag@ut
whichever interface is required to reach the destinatiaess contained in the header. Here is an example of confgan
IP object:

set ipnet [new Network/IP]
$ipnet open writeonly

$ipnet close

The IP network object supports only tbpen andclose methods.

47.4.3 1P/UDP Network Objects

These objects provide access to the system’s UDP impleti@mtdong with support for IP multicast group membership
operationsIN PROGRESS

402

47.5 An Example

The following code illustrates a small but complete simiolascript for setting up an emulation test using BPF and ok
objects. It was run on a multi-homed machine, and the simukgsentially provides routing capability by reading femm
from one interface, passing them through the simulatedarétvand writing them out via the raw IP network object:

set me "10.0.1.1"
set ns [new Simulator]

$ns use-scheduler RealTime
#

we want the test machine to have ip forwarding disabled, so
check this (this is how to do so under FreeBSD at least)

#

set ipforw [exec sysctl -n net.inet.ip.forwarding]

if $ipforw
puts "can not run with ip forwarding enabled"
exit 1

#

allocate a BPF type network object and a raw-IP object

#

set bpfO [new Network/Pcap/Live]
set bpfl [new Network/Pcap/Live]
$bpfO set promisc_ true
$bpfl set promisc_ true

set ipnet [new Network/IP]
set nd0 [$bpfO open readonly fxpO]

set ndl [$bpfl open readonly fxpl]
$ipnet open writeonly

#

try to filter out weird stuff like netbios pkts, arp request s, dns,
also, don't catch stuff to/from myself or broadcasted

#

set notme "(not ip host $me)"

set notbcast "(not ether broadcast)"

set ftp "and port ftp-data"

set fOlen [$bpfO filter "(ip dst host bit) and $notme and $not bcast"]
set fllen [$bpfl filter "(ip src host bit) and $notme and $not bcast"]

puts "filter lengths: $fOlen (bpf0), $fllen (bpfl)"
puts "dev $nd0 has address [$bpfO linkaddr]"
puts "dev $ndl has address [$bpfl linkaddr]"

set a0 [new Agent/Tap]

set al [new Agent/Tap]
set a2 [new Agent/Tap]

403

puts "install nets into taps..."
$a0 network $bpf0
$al network $bpfi
$a2 network $ipnet

set nodeO [$ns node]
set nodel [$ns node]
set node2 [$ns node]

$ns simplex-link $node0 $node2 10Mb 10ms DropTalil
$ns simplex-link $nodel $node2 10Mb 10ms DropTail

$ns attach-agent $nodeO $a0l
$ns attach-agent $nodel $al
$ns attach-agent $node2 $a2

$ns connect $a0 $a2
$ns connect $al $a2

puts "okey"
$ns run

47.6 Commands at a glance

Following is a list of emulation related commands:

$ns_ use-scheduler RealTime
This command sets up the real-time scheduler. Note that-déimeascheduler should be used with any emulation facility
Otherwise it may result the simulated network running fatften real-time.

set netob [new Network/<network-object-type>]

This command creates an instance of a network object. Nktalgects are used to access a live network. Currently the
types of network objects available are Network/Pcap/LNetwork/IP and Network/IP/UDP. See section 47.4 for detai
network objects.

404

Part IX

Visualization with Nam - The Network
Animator

405

Chapter 48

Nam

48.1 Introduction

Nam is a Tcl/TK based animation tool for viewing network slation traces and real world packet tracedata. The design
theory behind nam was to create an animator that is able tbl@ege animation data sets and be extensible enough sa that i
could be used indifferent network visualization situasiobnder this constraint nam was designed to read simpleadioim
event commands from a large trace file. In order to handlelanjmtion data sets a minimum amount of information is kept
in memory. Event commands are kept in the file and reread fherfile whenever necessary.

The first step to use nam is to produce the trace file. The trigceditains topology information, e.g., nodes, links, a#i we
as packet traces. The detailed format is described in the®eet9.1. Usually, the trace file is generated by ns. During a
ns simulation, user can produce topology configurationguainformation, and packet traces using tracing eventssin
However any application can generate a nam trace file.

When the trace file is generated, it is ready to be animatedby pon startup, nam will read the tracefile, create topglog
pop up a window, do layout if necessary, and then pause attimbrough its user interface, nam provides control overyman
aspects of animation. These functionalities will be déxtiin detail in the USER INTERFACE section.

There are bugs in nam however each successive has becomenmouetstable than the previous one. Please mail ns-
users@isi.edu if you encounter any bugs, or have suggegtioaddiotional desired functionality.

48.2 Nam Command Line Options

nam [-g <geometry>] [-t <graphlnput>] [-i <interval>] [-j < startup time>]
[-k <intial socket port number>] [-N <application name>] [- ¢ <cache size>]
[-f <configuration file>] [-r initial animation rate]

[-all-p]l[-S]

[<tracefile(s)>]

Command Line Options

406

-g Specify geometry of the window upon startup.

-t Instruct nam to use tkgraph, and specify input file namKgraph.

-i [Information for this option may not be accurate] Speaiye (real) milliseconds as the screenupdate rate. Theilte
-N Specify the application name of this nam instance. Thigiegtion name may later be used in peer synchronizatic
-C The maximum size of the cache used to store 'active’ obj@ben doing animating in reverse.

-f Name of the initialization files to be loaded during startin this file, user can define functions which will be calla
-a Create a separate instance of nam.

-p Print out nam trace file format.

-S Enable synchronous X behavior so it is easier for grapgtebsigging. For UNIX system running X only.

<tracefile> is the name of the file containing the trace datsetanimated. If <tracefile> cannot be read, nam will try toropeac

48.3 User Interface

Starting up nam will first create the nam console window. Yan bave multiple animations running under the same nam
instance. At the top of all nam windows is a menu bar. For thma nansole there are 'File’ and 'Help’ menus. Under the
'File’ there is a 'New’ command for creating a ns topologyngsthe nam editor (under construction) , an 'Open’ command
which allows you to open existing tracefiles, a 'WinList’ corand that popup a window will the names of all currently
opened tracefiles, and a 'Quit’ command which exits nam. He#g’ menu contains a very limited popup help screen and a
command to show version and copyright information.

Once a tracefile has been loaded into nam (either by usingtheri’” menu command or by specifying the tracefile on the
command line) an animation window will appear. It has a 'Sayeut’ command which will save the current network layout
to a file and a 'Print’ command which will print the current werk layout.

The 'Views' menu has 4 buttons:

o New view button: Creates a new view of the same animationt teescroll and zoom on the newview. All views will
be animated synchronously.

e Show monitors checkbox: If checked, will show a pane at tiekchalf of window, where moni-tors will be displayed.

e Show autolayout checkbox: If checked, will show a pane atdiver half of window, which con-tains input boxes and
a button for automatic layout adjustments. This box will hetenabled when using link orientain layouts.

e Show annotation checkbox: If checked, will show a listboxhat lower half of window, which will be used to list
annotations in the ascending order of time.

Below the menu bar, there is a control bar containing 6 bsttariabel, and a small scrollbar(scale). They can be cligked
any order. We will explain them from left to right.

e Button 1 («) - Rewind. When clicked, animation time will godaat the rate of 25 times the current screen update rate.
e Button 2 (<) - Backward play. When clicked, animation will played backward with time decreasing.

e Button 3 (square) - Stop. When clicked, animation will pause

e Button 4 (>) - Forward play. When clicked, animation will blayed forward with time increasing.

e Button 5 (») - Fast Forward. When clicked, animation timd @i forward at the rate of 25 times the current screen
update rate.

407

e Button 6 (Chevron logo) - Close current animation window.

Time label - Show the current animation time (i.e., simwlattime as in the trace file). Rate Slider - Controls the screen
update rate (animation granularity). The current ratespldiyed in the label above the slider.

Below the first control bar, there is Main Display, which cains a tool bar and a main view pane with two panning scroll
bars. All new views created by menu command 'Views/New viexilf have these three components. The tool bar contains
two zoom buttons. The button with an up arrow zooms in, th&obutith a down arrrow zooms out. The two scroll bars are
used to pan the main animation view.

Clicking the left button on any of the objects in the main vigane will pop up a information window. For packet and agent
objects, there is a 'monitor’ button in the popup window. dking that button will bring out the monitor pane (if it is not
already there), and add a monitor to the object. For link @bjehere will be a 'Graph’ button. Clicking on that buttoiilw
bring up another popup window, where users can select batdrasving a bandwidth utilization graph or drawing a linkdos
graph of one simplex edge of the duplex link.

Below the user interface objects we have discussed so &g thay or may not be a Monitor pane, depending on whether
the checkbox 'Views/Show monitors’ is set. (The defaultnset). All monitors will be shown in this pane. A monitor laok
like a big button in the pane. Currently only packets and garay have monitors.

A packet monitor shows the size, id, and sent time. When tokgtaeaches its destination, the monitor will still be ther
but will say that the packet is invisible. An agent monitooais the name of the agent, and if there are any variable traces
associated with this agent, they will be shown there as well.

Below the monitor pane (or in its place if the monitor panétidrere), there is a Time Slider. It looks likea scaled ruleith

a tag 'TIME’ which can be dragged along the ruler. It is useddbthe current animation time. As you drag the "TIME’ tag,
current animation time will be displayed in the time labettie control bar above. The left edge of the slider repredaets
earliest event time in the trace file and the right edge remtsghe last event time. Clicking left button on the rulest(on
the tag) has the same effect as Rewind or Fast Forward, deygemdthe clicking position.

The Automatic Layout Pane may be visible or hidden. If visjbt is below the time slider. It has three inputboxes and one
relayout button. The labeled input boxes let user adjustautomatic layout constants, and the number of iteratiomsigu
next layout. When user press ENTER in any of the input boxeslick the'relayout’ button, that number of iterations il
be performed. Refer to the AUTOMATIC LAYOUT section for digeof usage.

The bottom component of the nam window is a Annotation Listhehere annotations are displayed. Anannotation is a
(time, string) pair, which describes a event occuring attinge. Refer to ns(1) for functions to generate annotati@uible-
clicking on an annotation in the listbox will bring nam to ttime when that annotation is recorded. When the pointer is
within the listbox, clicking the right button will stop thenamation and bring up a popup menu with 3 options: Add, Delete
Info. "Add’ will bring up a dialog box with a text input to addrsew annotation entry which has the current animation time.
The user can type an annotation string in the dialog box. é@éwill delete the annotation entry pointed by the pointer
‘Info’ will bring out a pane which shows both the annotationé and the annotation string.

48.4 Keyboard Commands
Most of the buttons have keyboard equivalents. Note they fomiction when the mouse cursor is inside the nam window.

e <return> - Typing a <return> will pause nam if it's not alrgapdaused. If nam is paused, <return> will step the
animation one simulated clock tick. (If your keyboard aefmrats, holding down <return> is a goodway to slow-step
through the animation.)

408

e 'p’or 'P’ - Pause but not step if paused.

e 'Cc’ or 'C’ - Continue after a pause.

e 'b’ or 'B’ - Decrease animation time for one screen updaterival.
e T'or 'R’ - Rewind.

e 'f'or'F - Fast Forward.

e 'n’or 'N' - Jump to time of next event in the tracefile.
e X' or’X' - Undo the last rate change.

e ‘U’ or’U’ - Undo the last time slider drag.

e >’ or '’ Increase the granularity (speed up) by 5%.

e '<’or’; Decrease the granularity (slow down) by 5%.
e <space bar> - Toggle the pause state of nam.

e 'q’,'Q’ or <control-c> - Quit.

48.5 Generating External Animations from Nam

Nam animations can be saved and converted to animated g®BG movies.

To save the frames of your movie, first start nam with yourdrand set it up where you want it to start and adjust other
parameters (step rate, size, etc.) Select 'Record Animatiom the File menu to start saving frames. Each animation
step will be saved in a X-window dump file called “nam%d.xwdiave %d is the frame number. These files can then be
assembled into animated GIFs or MPEGs with the approprizeprocessing tools.

The following shell script (sh, not csh) converts these fifes an animated gif:

for i in * xwd; do
xwdtoppm <$i |

ppmtogif -interlace -transparent'#e5e5e5’ >‘basename $i xwd".gif;
done
gifmerge -0 -2 -229,229,229 * gif >movie.qgif

Please note that the programs xwdtoppm, ppmtogif, and gifien@renot part of ns. You can get the first two frohttp:
//download.sourceforge.net/netpbm/ and gifmerge fronhttp://www.the-labs.com/GIFMerge/

48.6 Network Layout

In nam, a topology is specified by alternating node objectls edge objects. But to display the topology in a compretasi
way, a layout mechanism is needed. Currently nam providee tayout methods. First, user may specify layout by tHédin
orientation. A link orientation is the angle between theeedgd a horizontal line, in the interval [0OxR During layout,
nam will honor the given link orientation. Generally, it Wilrst choose a reference node, then place other nodes using |
orientations and link length. The link length is determibgdink delay and connecting node sizes. This works well foal
and manually generated topologies.

409

Second, when dealing with randomly generated topologiesmay want to do layout automatically. An automatic graph
layout algorithm has been adapted and implemented. The lasi of the algorithm is to model the graph as balls (nodes)
connected by springs (links). Balls will repulse each athdrile springs pull them together. This system will (hoplsfu
converge after some number of iterations. In practicer atsmall number of iterations (tens or hundreds), most small
to medium sized graphs will converge to a visually compreitga structure. Larger graphs may take a combination of
automatic layout and hand placement to achieve an accepésfolut.

There are 3 parameters to tune the automatic layout pro@ssdittractive force constant, which controls springs'séor
between balls. Cr Repulsive force constant, which contitsrepulsive force between balls. Number of iterations How
many times to run the autolayout procedure.

For small topologies with tens of nodes, using the defauthipeters (perhaps with 20 to 30 more iterations) will sufface
produce a nice layout. But for larger topology, careful paeter tuning is necessary. Following is a empirical mettwod t
layout a 100 node random transit stub topologygenerateddoydia Tech’s ITM internet topology modeler. First, set @d a
Crto 0.2, do about 30 iterations, then set Cr to 1.0, Ca to 01, then do about 10 iterations, then set Ca to 0.5, Ci0to 1.
do about 6 iterations.

Third, there is a X,y coordinate style layout. This was depetl for use in displaying a wireless topologies in whichvparent
links don'’t exist. Using this style, nodes events are givama y coordinate values indicating where those nodes shuld
placed in a cartesian world.

48.7 Animation Objects
Nam does animation using the following building blocks whire defined below:

Node Nodes are created from 'n’ trace event in trace file. It repmésa source, host, or router. Nam will skip over any
duplicate definitions for the same node. A node may have ghrapes, (circle, square, and hexagon), but once created
it cannot change its shape. Nodes can change its color damingation. Nodes can be labeled.

Link Links are created between nodes to form a network topolaggrmally nam links are consist of 2 simplex links. The
trace event 'l creates two simplex links and does other s&my setup. Therefore, for a users perspective all links ar
duplex links. Links can be labeled and also can change caildnglthe animation. Links cab be labeled as well.

Queue Queues need to be constructed in nam between two nodes. Aurure ¢s associated to only one edge of a duplex
link. Queues are visualized as stacked packets. Packetdamieed along a line, the angle between the line and the
horizontal line can be specified in the queue trace event.

Packet Packets are visualized as a block with an arrow. The dineatfahe arrow shows the flow direction of the packet.
Queued packets are shown as little squares. A packet mayopeett from a queue or a link. Dropped packets are
shown as falling rotating squares, and disappear at the fetheé gcreen. Unfortunately, due to nam’s design dropped
packets are not visible during backward animation.

Agent Agents are used to separate protocol states from nodes.aréejways associated with nodes. An agent has a name,
which is a unique identifier of the agent. It is shown as a sgjuéth its name inside, and is drawn next to its associated
node.

410

Chapter 49

Nam Trace

Nam is a Tcl/Tk based animation tool that is used to visudheens simulations and real world packet trace data. The first
step to use nam is to produce a nam trace file. The nam tracén@ilddscontain topology information like nodes, links,
queues, node connectivity etc as well as packet trace iftiom In this chapter we shall describe the nam trace foamdt
simple ns commands/APIs that can be used to produce topotgigurations and control animation in nam.

The underlying design constraints for nam were that it i® ablhandle large amounts of trace data and that its animation
primitives be adaptable so that it may be used in differepésyof network visualization. As a result, internally narade
information from a file and keeps only a minimum amount of aation event information in memory. Its animation event
has a fairly simple and consistent structure so that it camymiéferent visualization situations.

49.1 Nam Trace Format

The C++ class Trace used for ns tracing is used for nam trasingell. Description of this class may be found under section
26.3. The method Trace::format() defines nam format usediin tnace files which are used by nam for visualization of ns
simulations. Trace class method Trace::format() is dbedrin section 26.4 of chapter 26. If the macro NAM_TRACE has
been defined (by default it is defined in trace.h), then tHeviehg code is executed as part of the Trace::format() fianct

if (namChan_ != 0)

sprintf(nwrk_,

"%c -t "TIME_FORMAT" -s %d -d %d -p %s -e %d -c %d
-i %d -a %d -x %s.%s %s.%s %d %s %s",

tt,
Scheduler::instance().clock(),
S,
d,
name,
th->size(),
iph->flowid(),
th->uid(),
iph->flowid(),
src_nodeaddr,
src_portaddr,
dst_nodeaddr,

411

dst_portaddr,
seqno,flags,sname);

A nam trace file has a basic format to it. Each line is a nam evidrd first character on the line defines the type of event and
is followed by several flags to set options on that event. EEaelnt is terminated by a newline character.

<event-type> -t <time> <more flags>...

Depending on the event type, there are different flags fatiguhe time flag.

There are 2 sections in that file, static intial configuratments and animation events. All events with -t * in them are
configuration events and should be at the beginning of theQife thing to note is that nam can also be fed the trace file from
a stream which enables it to be used with realtime applinatiSee the sectiddsing Streams with Realtime Applications

for more information.

Following we describe nam trace file format for differentsslas events and animation objects.

49.1.1 Initialization Events

The first section of a trace file must contain initializatiaformation. All initialization events will have the flay *. This
tells nam that this event needs to be parsed before any aoimtets started.

Version The following line define the nam version as required to Vigedhe given trace:
V -t <time> -v <version> -a <attr>

Normally there is only one version string in a given tracefiled it is usually the first line of the file. An example is the
following:

V -t » -v 1.0ab -a 0

The flag-v 1.0a5 tells nam that this script requires a version of nam > 1.0aB.nkore information on this event
look at the file tcl/stats.tcl under the procedure nam_asisly

Wireless If you want to use wireless nodes in nam you need the wirefgiggization event.
W -t * -x 600 -y 600

This gives nam the size of the layout for the wireless worldhe Fx value is the width and -y is height. For more
information look at the file animator.tcl in the procedurtemnetwork-model.

Hierarchy Hierarchical address information is defined by:

A -t <time> -n <levels> -0 <address-space size> -c <mcastshi ft> -a <mcastmask> -h
<nth level> -m <mask in nth level> -s <shift in nth level>

This trace gives the details of hierarchy, if hierarchicd@ssing is being used for simulation. Flag <levels>
indicate the total number of hierarchical tiers, which isot flat addressing, 2 for a 2-level hierarchy etc. Hag
<address-space size> denotes the total number of bits used for addressing.fhlagnth level> specifies
the level of the address hierarchy. Flag <mask> and-s <shift> describes the address mask and the bit shift
of a given level in the address hierarchy, respectivelyeHeran example of a trace for topology with 3 level hierachy:

412

1
—
*

-n 3 -p 0 -0 Oxffffffff -c 31 -a 1
-h 1 -m 1023 -s 22
* -h 2 -m 2047 -s 11
-t * -h 3 -m 2047 -s O

>>>>
*

Look at tcl/netModel.tcl under the nam_addressing prooethr more information.

Color Table Entry A table of color entries can be built using:
c -t <time> -i <color id> -n <color name>
Nam allows one to associate color names with integers. $hisry useful in coloring packets. The flow id of a packet
is used to color the packet using the corresponding colde &iitry color. Notice the color name should be one of the
names listed in color database in X11 (/usr/X11/lib/rgi.tx

In addition to the above node and link layout events are alslided in the initialization section.

49.1.2 Nodes

The nam trace format defining node state is:

n -t <time> -a <src-addr> -s <src-id> -S <state> -v <shape> -c <color> -i <l-color> -0
<color>

"n" denotes the node state.

Flags "-t" indicates time and "-a" and "-s" denotes the nattiress and id.

"-S" gives the node state transition. The possible statssitian values are:

e UP, DOWN indicates node recovery and failure.

e COLOR indicates node color change. If COLOR is given, a feif@ -c <color> is expected which gives the new
color value. Also, flago is expected so that backtracing can restore the old colonofie.

o DLABEL indicates addition of label to node. If DLABEL is give a following -I <old-label> -L <new-label> is
expected that gives the old-label, if any (for backtracig) current label. Shape gives the node shape. The color of a
node label can be specified via the flag.

"-v" is the shape of the node. The possible values are:

e circle
e box

e hexagon

As an example, the line
n-t x -a4-s4-S UP -vcircle -c tan -i tan
defines a node with address and id of 4 that has the shape afe, eind color of tan and label-color (-i) of tan.

49.1.3 Links

The nam trace for link states is given by:

| -t <time> -s <src> -d <dst> -S <state> -c <color> -0 orientat ion -r <bw> -D <delay>
where<state> and<color> indicate the same attributes (and the same format) as ded@bove in the node state traces.
Flag-o gives the link orientation (angle between link and the hamjz Valid orientation values are:

413

e up

e down

e right

o left

e up-right

e down-right
o up-left

e down-left

e angle between 0 and 2pi
Flags-r and-D give the bandwidth (in Mb) and delay (in ms), respectivelg. é&xample of a link trace is:

| t * -s0-d1-S UP -r 1500000 -D 0.01 -c black -o right

49.1.4 Queues

The nam trace queue states is given by:

gq -t <time> -s <src> -d <dst> -a <attr>

Queues are visualized in nam as a straight line along whickgta (small squares) are packed. In queue trace evenfiadhe
-a specifies the orientation of the line of the queue (angle eetvithe queue line and the horizontal line, counter-closéi
For example, the following line specifies a queue that grosr§ically upwards with respect to the screen (h&f& means
the angle of the queue line is pi/2):

qg-t »-s0-d1-a05

49.1.5 Packets

When a trace line describes a packet, the event type may begti€ae), - (dequeue), r (receive), d (drop), or h (hop).

<type> -t <time> -e <extent> -s <source id> -d <destination i d> -c <conv> -i <id>

<type> is one of:

h Hop: The packet started to be transmitted on the link fromuxs®id> to <destination id> and is forwarded to the next
hop.

r Receive: The packet finished transmission and started teds@ved at the destination.

d Drop: The packet was dropped from the queue or link from <s®ig> to <destination id>. Drop here doesn’t distinguish
between dropping from queue or link. This is decided by tlogpdime.

+ Enter queue: The packet entered the queue from <source iddefgtination id>.

414

- Leave queue: The packet left the queue from <source id> tetiddion id>.
The other flags have the following meaning:

-t <time> is the time the event occurred.
-s <source id> is the originating node.
-d <destination id> is the destination node.

-p <pkt-type> is the descriptive name of the type of packet seen. See &b for the different types of packets supported
inns

-e <extent> is the size (in bytes) of the packet.

-c <conv> is the conversation id or flow-id of that session.

-i <id> is the packet id in the conversation.

-a <attr> is the packet attribute, which is currently used as color id.

-X <src-na.pa> <dst-sa.na> <seq> <flags> <snames taken from ns-traces and it gives the source and destmiatide and
port addresses, sequence number, flags (if any) and theftypessage. For examplex {0.1 -2147483648.0
-1 - SRM_SESS} denotes an SRM message being sent from node 0 (port 1).

Additional flags may be added for some protocols.

-P <packet type> gives an ASCII string specifying a comma separated list ckpatypes. Some values are:

TCP A tcp data packet.

ACK Generic acknowledgement.

NACK Generic negative acknowledgement.
SRM SRM data packet.

-n <sequence number>gives the packet sequence number.

49.1.6 Node Marking

Node marks are colored concentric circles, boxes, or hexagmund nodes. They are created by:

m -t <time> -n <mark name> -s <node> -c <color> -h <shape> -0 <c olor>

and can be deleted by:

m -t <time> -n <mark name> -s <node> -X

Note that once created, a node mark cannot change its shapgogsible choices for shapes are, circle, box, and hexagon
They are defined as lowercase strings exactly as above. Amamghowing a node mark is:

m -t 4 -s 0 -nml -c blue -h circle

indicating node 0 is marked with a blue circle at time 4.0. fihee of the mark is m1.

415

49.1.7 Agent Tracing

Agent trace events are used to visualize protocol statey @teealways associated with nodes. An agent event has a name,
which is auniqueidentifier of the agent. An agent is shown as a square withaitseninside, and a line link the square to its
associated node

Agent events are constructed using the following format:

a -t <time> -n <agent name> -s <src>

Because ims agents may be detached from nodes, an agent may be deletach iwith:

a -t <time> -n <agent name> -s <src> -X

For example, the following nam trace line creates an agenedarm(5) associated with node 5 at time 0O:

a -t 0.00000000000000000 -s 5 -n srm(5)

49.1.8 Variable Tracing

To visualize state variables associated with a protocohiagee use feature trace events. Currently we allow a fedature
display a simple variable, i.e., a variable with a singlarealNotice that the value is simple treated as a string (withdnite
space). Every feature is required to be associated with emtaghen, it can be added or modified at any time after itstagen
is created. The trace line to create a feature is:

f -t <time> -s <src> -a <agentname> -T <type> -n <varname> -v < value> -0 <prev value>
Flag<type> is

v for a simple variable

| foralist

s for a stopped timer

u for an up-counting timer

d for a down-counting timer.

However, onlyv is implemented ims. Flag-v <value> gives the new value of the variable. Variable values are le§mp
ASCII strings obeying the TCL string quoting conventiongstlvalues obey the TCL list conventions. Timer values are
ASCII numeric. Flago <prev value> gives the previous value of the variable. This is used in bacl animation.
Here is an example of a simple feature event:

f -t 0.00000000000000000 -s 1 -n C1_ -a srm(1) -v 2.25000 -T v

Features may be deleted using:
f -t <time> -a <agent name> -n <var name> -0 <prev value> -X

49.1.9 Executing Tcl Procedures and External Code from witim Nam

There is a special event that can be put in a nam tracefile wdiliotvs us to run different tcl procedures. This event is
represented by event type
v -t <time> -e <nam tcl procedure call>

416

This event is very generic, in that it may execute severdéifit procedures at a given time, as long as it is in one line
(no more than 256 characters). There may be white spaces sirthg which are passed as arguments to the tcl procedure.
Unlike other events, the order of flags and the tcl procedaltéscimportant.

Here are some examples of this event in use:

Setting playback speed

Normally the user chooses a playback rate via the rate shdée animation window. A trace file may set the playback rate
via theset_rate_ext command:

v -t <time> -e set rate_ext <time> <update-peers?>

For example:
v -t 2.5 -e set_rate_ext 20ms 1

For compatibility with earlier versions of nam, tset_rate command is also supported. Instead of specifying the step
size directly, you us&0 x log;, <time-in-seconds>For example:

v -t 2.5 -16.9897000433602 1

In order to have more readable filsgt_rate_ext is preferred.

Annotation

This procedure is used for displaying text annotation atfpémes:

v -t <time> -e sim_annotation <time> <unigque sequence id> <t ext to display>

For example:
v -t 4 -e sim_annotation 4 3 node 0 added one mark

This line calls a special tcl functiosim_annotation in nam, which inserts the given strimpde 0 added one
mark into nam’s annotation pane. Look Ahimator instproc sim_annotation in tcl/annotation.tcl for the im-
plementation details.

Node Exec Button

In nam releases, version 1.0a10 and later there is suppattriaing external userdefinable scripts or programs from hg
clicking on a node button.

v -t 1.0 -e node_tclscript <node_id> <button label> <tcl scr ipt>

This line when read in a tracefile will add an extra button tdenobjects that will execute a tcl script when clicked.

For example:

417

v -t 1.0 -e node_tclscript 2 "Echo Hello" {puts [exec echo hel lo]}

The above line adds a button to node 2’s info window with theeldEcho Hello" and when this button is pressed the shell
command "echo hello" will be run and it's output will be rated to nam and then output to the terminal via the tcl procedur
puts.

The functions that implement the different nam trace fosaiscribed above may be found in the following filestrace.cc,
ndtrace.hndtcl/lib/ns-namsupp.tcl.

49.1.10 Using Streams for Realtime Applications

In addtion to reading from files nam can also read from a sti®ach as STDIN. Here is a little tutorial on how to send a nam
trace stream to nam to make it operate with real-time datat §6me background on how nam works internally. Basicilly,
thinks it is reading from a nam tracefile. The file has a forroat.tEach line is a nam event. The first character on the line
defines the type of event and is followed by several flags tosgbns on that event. Each event is terminated by a newline
character. A nam tracefile has 2 sections, static configura&vents and animation events. All events with -t * in them ar
configuration events and should be sent to nam in one burstsitieginning with a # are comment lines. Currently comments
should only be place in the animation section of the file dfterfirst animation event.

First of all you need to pipe your data to nam'’s stdin and add-tllag to the nam command.

For example:
% cat wireless.nam | nam -

nam will read the information from stdin

Following is a short wireless animation example. The first p&the script has line with -t * which tells nam that these ar
initial configuration information.

V -t x -v 1.0a5 -a 0
W -t * -x 600 -y 600

The first 2 lines are used in the nam initialization. They nieele the first 2 lines sent to nam from your program. V is the
minimum nam version needed to correctly run this script. Vnsghis is script contains wireless nodes which will be imith
the canvas size of width x and height y.

n-t * -s0-x00-y 00 -z 20 -v circle -c black -w
n-t * -s1-x 0.0 -y 200.0 -z 20 -v box -c black -w

Next is the network layout information. The first line n cesat wireless (-w) circular (-v circle) node with id 0 (-s 0) at
position 0.0,0.0 (-x 0.0 -y 0.0). It’s size (-z) is 20 and it&lor (-c) is black. The second is a wireless square (-v boxlen
with id 1 (-s 1) at 0.0,200.0. Each node has to have a uniqueritber given by the -s flag.

A-t * -n1l-p 0 -0 OXxffffffff -c 31 -a 1
A -t * -h 1 -m 2147483647 -s O

418

The A event line has to do with setting up hierarchical adgirgsin nam. It is necessary in wireless nam because paakets a
treated as broadcast to every node.

Now we are done with the configuration part of the nam file. Negtthe animation events. In order for nam to operate in a
close to real-time mode it needs to constantly receive @sdats it is playing it will keeps reading lines from the na@ce

and playing them back. The sequence of events must be inalogical order. For example the following lines change the
color of node 1 from black to green back to black and then tolbéeyain.

n -t 00 -s1-S COLOR -c green -0 black
n -t 0.01 -s 1 -S COLOR -c black -o green
n -t 0.02 -s 1 -S COLOR -c black -0 black

Notice that the "-t <time>" flags are always increasing. Yauarmwt issue one event at -t 0.2 and then another later on at -t
0.1. Nam has an internal counter of time and it executes am enee it’s time counter passes that event time. It will exec
events in chronological order but only if they are given tmithronological order. So the following WILL NOT work.

n -t 0.0 -s1-S COLOR -c black -0 black
n -t 0.02 -s 1 -S COLOR -c green -0 black
n -t 0.01 -s 1 -S COLOR -c black -o green

Since nam has its own internal representation of time wtsddlifferent than current real world time you have to try and
synchronize them. There is no explicit and totally accuvedg to do this but you can have a rough synchronization of time
by having you application periodically send nam events éfeathing has happened. We have created a dummy or "no-op"
event (T) for this purpose.

T -t 05

As described above, you MUST feed events to nam in non-dsiagtmestamp order. Successive events at the same time
are OK. Before animating to a given time, nam needs to knowithaot all the events for that time, and so it actually has
to read an event AFTER that time. Therefore if you're drivitgm from an external process in real-time it will refuse to
animate time t until it sees an event at time t+i (for any i >T). make nam play out events smoothly, you may therefore need
to generate dummy events with intermediate timestamp$iémam knows it can advance). Events of type "T" are dummy
events, so this stream would produce jerky animatation:

n-t 10 -s 1 -S COLOR -c green -0 black
n -t 20 -s1-S COLOR -c black -0 green
n-t30-s1-S COLOR -c black -0 black

while this would be animatated much smoother:

-t 0.0
-t 0.5
-t 1.0 -s 1 -S COLOR -c green -o black
-t 1.5
2.0 -s 1 -S COLOR -c black -o green
-t 25
-t 3.0 -s 1 -S COLOR -c black -0 black
-t 3.5
-t 4.0

4 =45 4543544

419

If nam ever gets to the end of an event stream it will block dredgrogram will appear as if it has frozen. The screen will
not be updated until it can read another event so you mustrhegsidieed events to nam faster than or as fast as it can read
them. This technique works pretty well and allows nam to laslkf it is running in real-time although in reality there Wik

a slight delay which is usually acceptable.

One other thing to remember is that your application shoaitdighese events based on it's representation of time froemwh
the application started. Also, when sending events to naynghould be unbuffered so you will want to fflush(stdoutleaf
each event.

Another event which you can keep sending to nam would be anwloich will show a the bottom of the nam window.

v -t 0.08 -e sim_annotation 0.08 1 Time is 0.08
v -t 0.09 -e sim_annotation 0.09 2 Time is 0.09
v -t 0.10 -e sim_annotation 0.08 3 Time is 0.10

The v’ event means that you will execute a tcl script at timeeverything after -e is the script to execute. sim_animmtat
writes a note at the bottom of the screen. The numbers aftgeithe time to write and a unique note id. Notice how |
incremented the note id with each successive note. The néamyas what is written to the screen. For example "Time i80.0
followed by "Time is 0.09", etc...

That is the basic idea behind making nam work in a real-tinsbitm. Following are two examples on how to generate
wireless packet animations when using nam. To make a wirdlexadcast which is shown as quickly expanding circle you
can use the following.

+ -t 016 -s 0 -d -1 -p AODV -e 100 -c 2 -a 0 -i 0 -k MAC
--t016 -s 0 -d -1 -p AODV -e 100 -c 2 -a 0 -i 0 -k MAC
h -t016 -s 0 -d -1 -p AODV -e 100 -c 2 -a 0 -i 0 -k MAC

'+’ event puts the packet onto the transmission queue '-hevemove the packet from the queue and makes it ready to
broadcast 'h’ send the packet to the next hop which actuallses the animation Here are the meanings of the flags -t time
-s transmitting node id -d destination node id (-1 indicdtexadcast to world) -e size of transmission -c ultimateidasbn

of the packet

To show a packet being send from one particular node to anosieethe following

r-t0255-s1-d-1-p MAC -e 512 -c 0 -a 0 -i 0 -k MAC
+ -t 025 -s1-d0-p AODV -e 512 -c 0 -a 0 -i 0 -k MAC
--t0255 -s1-d0 -p AODV -e 512 -c 0 -a 0 -i 0 -k MAC
h -t 0255 -s1-d0 -p AODV -e 512 -c 0 -a 0 -i 0 -k MAC
r-t0255-s0-d1l1-pAODV -e 512 -c 0 -a 0 -i 0 -k MAC

First the packet is received ('r’) from the wireless broastda node 1. It is then added to the outgoing queue ('+’) orerthd
Next, it is removed from the queue(’-’) and ready to be semtdde 0. Then the packet is sent to the next hop ('h’) node 0.
This will trigger an animation of a line the length of the patkize moving from node 1 to node 0. Finally it is received ('r
by node 0 from node 1.

For more nam events you can look at the nam section in the ngahan

Also, you can save a copy of the trace from a realtime souricg) tise unix 'tee’ command. For example:

420

% cat wireless.nam | tee saved_tracefile.nam | nam -

Sometimes itis a bug in nam and sometimes it is a problem Wwélway your tracefile is formatted. You may expect nam to
do something that it won't do. Part of the philosophy in theige of nam is that the detail of an animation is handled by the
tracefile which makes nam more flexible but pushes some ofrtineagion complexity on to the programmer generating the
tracefile.

49.1.11 Nam Trace File Format Lookup Table

This is a listing of all possible nam trace event codes andlalgs associated with them. It was taken from the source code i
the file parser.cc. You can generate your own table by runméamg -p .

#: comment - this line is ignored

T: Dummy eventto be used in time synchronization

-t <time> time
n: node

-t <time> time

-S <int> node id

-V <shape> shape (circle, box, hexagon)

-C <color> color

-z <double> size of node

-a <int> address

-X <double> xlocation

-y <double> y location

i <color> label color

-b <string> label

-l <string> label

-0 <color> previous color

-S <string> state (UP, DOWN, COLOR)
-L <string> previous label

-p <string> label location

-P <string> previous label location

-i <color> inside label color

-l <color> previous inside label color

-e <color> label color
-E <color> previous label color
-u <string> x velocity

-U <string> x velocity

-V <string> v velocity

-T <double> node stop time
-w <flag> wireless node

421

-t <time>

-S <int>

-d <int>

-r <double>

-D <double>

-h <double>

-O <orientation>

-b <string>
-C <color>
-0 <color>
-S <string>
-l <string I>
-L <string>
-e <color>
-E <color>

enqueue packet

time

source id
destination id
transmission rate
delay

length

orientation

label

color

previous color
state (UP, DOWN)
label

previous label
label color
previous label color

-t <time> time

-S <int> source id

-d <int> destination id
-e <int> extent

-a <int> packet color attribute id
-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment

-p <string> packet type
-k <string> packet type
dequeue packet

-t <time> time

-S <int> source id

-d <int> destination id
-e <int> extent

-a <int> attribute

-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment

-p <string> packet type
-k <string> packet type

422

-t <time>
-S <int>
-d <int>
-e <int>
-a <int>
-i <int>
-l <int>

-C <string>

-X <comment>
-p <string>

-k <string>

-R <double>
-D <double>

time

source id

destination id

extent

attribute
id
energy

conversation

comment

packet type

packet type

wireless broadcast radius
wireless broadcast duration

receive

-t <time> time

-S <int> source id

-d <int> destination id
-e <int> extent

-a <int> attribute

i <int> id

| <int> energy

-C <string> conversation
-X <comment> comment

-p <string> packet type

-k <string> packet type

-R <double> wireless broadcast radius
-D <double> wireless broadcast duration
drop line

-t <time> time

-S <int> source id

-d <int> destination id
-e <int> extent

-a <int> attribute

-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment

-p <string> packet type
-k <string> packet type

423

session enqueue

-t <time> time

-S <int> source id

-d <int> destination id
-e <int> extent

-a <int> attribute

-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment
-p <string> packet type
-k <string> packet type
session dequeue

-t <time> time

-S <int> source id

-d <int> destination id
-e <int> extent

-a <int> attribute

-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment
-p <string> packet type
-k <string> packet type
session drop

-t <time> time

-S <int> source id

-d <int> destination id
-e <int> extent

-a <int> attribute

-i <int> id

-l <int> energy

-C <string> conversation
-X <comment> comment

-p <string> packet type

-k <string> packet type
agent

-t <time> time

-S <int> source id

-d <int> destination id

-X <flag> remove agent

-n <string> agent name

424

feature

-t <time> time

-S <int> source id

-d <int> destination id

-X <flag> remove feature

-T <char> type

-n <string> name

-a <string> agent

-V <string> value

-0 <string> previous value
group

-t <time> time

-n <string> name

-i <int> node id

-a <int> group id

-X <flag> remove from group
lan link

-t <time> time

-S <int> source id

-d <int> destination id
-0 <orientation> orientation
-0 <orientation> orientation
mark node

-t <time> time

-n <string> name

-S <int> node id

-C <string> color

-h <string> shape (circle, square, hexagon)
-X <flag> remove mark

routing event

-t <time> time

-S <int> source id

-d <int> destination id

-g <int> multicast group

-p <packet source> packet source id or *
-n <flag> negative cache

-X <flag> this route timed out
-T <double> timeout

-m <string> mode (iif or oif)

425

execute tcl expression
-t <time> time
-e <tcl expression> tcl script

set trace file version

-t <time> time
-V <string> time
-a <int> time

use nam graph

wireless range

-t <time> time
-X <int> X
-y <int> Y

energy status — for future use
-t <time> time

hierarchical address space configuration — initilizatmly

-t <time> time

-n <int> hierarchy

-p <int> port shift

-0 <hex> port mask

-C <int> mulitcast shift
-a <int> multicast mask
-h <int> hierarchy

-m <int> node shift

-S <int> node mask
color table configuration — initialization only

-t <time> time

i <int> id

-n <string> color

create packet queue — initialization only

-t <time> time

-S <int> source id

-d <int> destination id

-a <orientation> orientaion

426

X: layoutlan

-t <time> time

-n <string> name

-r <double> rate

-D <double> delay

-0 <orientation> orientation
-0 <orientation> orientation

49.2 Ns commands for creating and controlling nam animatios

This section describes different APIsrighat may be used to manipulate nam animations for obje@slikies, links, queues
and agents. The implementation of most of these APIs is gwdan ndtcl/lib/ns-namsupp.tcl. Demonstration of nam APIs
may be found imgtcl/ex/nam-example.tcl.

49.2.1 Node

Nodes are created from the "n” trace event in trace file. Eaterrepresents a host or a router. Nam terminates if there
are duplicate definitions of the same node. Attributes $igetci node are color, shape, label, label-color, positiotabgl

and adding/deleting mark on the node. Each node can havg@sharcle (default), square, or hexagon. But once created
the shape of a node cannot be changed during the simulatiiffierdit node may have different colors, and its color may
be changed during animation. The following OTcl procedamesused to set node attributes, they are methods of the class
Node:

$node color [color] # sets color of node
$node shape [shape] # sets shape of node
$node label [label] # sets label on node

$node label-color [lcolor] ;# sets color of label

$node label-at [ldirection] ;# sets position of label

$node add-mark [name] [color] [shape] # adds a mark to node
$node delete-mark [name] # deletes mark from node

49.2.2 Link/Queue

Links are created between nodes to form a network topologgylinks are internally simplex, but it is invisible to the user
The trace event "I” creates two simplex links and other neagssetups, hence it looks to users identical to a dupléx lin
Link may have many colors and it can change its color duringnation. Queues are constructed in nam between two nodes.
Unlike link, nam queue is associated to a simplex link. Tlhedrevent “q” only creates a queue for a simplex link. In nam,
queues are visualized as stacked packets. Packets aredstdokg a line, and the angle between the line and the haaizon
line can be specified in the trace event “q”. Commands to sdiftgrent animation attributes of a link are as follows:

$ns duplex-link-op <attribute> <value>

The <attribute> may be one of the following: orient, colanggePos, label. Orient or the link orientation defines thgean
between the link and horizontal. The optional orientatialues may be difined in degrees or by text like right (0), Figpt
(45), right-down (-45), left (180), left-up (135), left-dm (-135), up (90), down (-90). The queuePos or position @&feis
defined as the angle of the queue line with horizontal. Exaefar each attribute are given as following :

427

$ns duplex-link-op orient right ;# orientation is set as rig ht. The order
in which links are created in nam
;# depends on calling order of this function.
$ns duplex-link-op color "green"
$ns duplex-link-op queuePos 0.5
$ns duplex-link-op label "A"

49.2.3 Agent and Features

Agents are used to separate protocol states from nodes.arb@ways associated with nodes. An agent has a name, which
is a unique identifier of the agent. It is shown as a square itgithame inside, and a line link the square to its associated
node. The following are commands that support agent tracing

$ns add-agent-trace <agent> <name> <optional:tracefile>
$ns delete-agent-trace <agent>
$ns monitor-agent-trace <agent>

Once the above command is used to create an agent in nantiretacevar method of thensagent can be used to create
feature traces of a given variable in the agent. For exarttipepllowing code segment creates traces of the vari@tlein
an SRM agen$srm(0) :

$ns attach-agent $n($i) $srm(0)

$ns add-agent-trace $srm($i) srm(0)

$ns monitor-agent-trace $srm(0) ;# turn nam monitor on from the start
$srm(0) tracevar C1_

49.2.4 Some Generic Commands

$ns color <color-id> defines color index for nam. Once specified)or-id can be used in place of the color
name in nam traces.

$ns trace-annotate <annotation> inserts an annotation in nam. Notice thatd&nnotation> contains white
spaces, it must be quoted using the double quote. An exarfiplis aould bebns at $time "$ns trace-annotate
"Event A happened™ This annotation appears in the nam window and is used toamitrying of nam by events.

$ns set-animation-rate <timestep> causes nam to set the animation playout rate to the giverstipesalue.
Time is in seconds, with optional prefixes (for example, 1 $2&ond, or 2ms is 0.002 seconds).

428

Part X

Other

429

Chapter 50

Educational use of NS and NAM

This chapter is about usimgsand nam for educational purposess a discrete event simulator and supports various flavors
of TCP, many different models of unicast and multicast mgtalongwith different multicast protocols. It supportshiie
networking including local and satellite networks. It alsgpports applications like web caching. Aneuses nam, an
animation tool, developed in Tcl/Tk, to visualize the siatidn packet traces which is created by runmisgcripts. Thus
nsand nam could be used together to easily demonstrate diffastworking issues in a classroom environment. In this
chapter we’'ll talk mostly about an educational scriptsathase that we have developed. We'll also talk about how toase

to run namtrace files.

50.1 Using NS for educational purposes

We have developed a web-based interface specifically to tathe above mentioned educational need of usisg the
classrooms. This web-interface is serviced by a database sfripts that could be used for classroom demonstratitdisia
other educational purposes. It can be foundtgi://www.isi.edu/nsnam/script_in¥his page also serves as an interface for
uploading or submitting similar scripts to the inventorg.&en though we currently have only a few scripts in the itmgn

to start with, we hope that the inventory will eventuallygrim size with script contributions from all of you. In the folving
paragraphs we shall talk more about this educational stiftex webpage.

50.1.1 Installing/building/running ns

In order to run the educational scripts mentioned in theiptesssection, you would need to have a running versiarsofyour
machine. The homepage fiosis located ahttp://www.isi.edu/nsnam/nSee ns-build page http://www.isi.edu/nsnam/ns/ns-
build.htmlfor downloading and buildingsn your machine. If you want to know about usingo write/run scripts, visit
ngutorial for beginners atttp://www.isi.edu/nsnam/ns/tutorial/index.html

50.1.2 The educational scripts’ inventory page:

The educational script inventory page is locatedhtsp://www.isi.edu/nsnam/script_inMt may be used either to search,
browse and download one or more simulation scripts (anélated files like the namtrace, screenshot, webpage deggrib
whatever is being demonstrated through the simulatiom fitee inventory or to submit simulation scripts to the inzept
We discuss both the options in the following paragraphs:

430

SEARCH/VIEW/DOWNLOAD NS SCRIPTS: You could search the database using keywords by going toSkarth
database” page. You could also browse through the entieddst by going to the “View database” page. The search
function is very basic at the present and we hope to extergtiie@database begins to grow in size. Each script entry
in the database has the following information:

Name of the script

Name of the author, author’s email-id and webpage(if provickd)
Description of what the simulation does.

nsversion required to run the script

Any other comments about script and

The category of the script Currently we have categories of Application, TransportPTad others), Routing (unicast
and multicast), Multicast protocols, Queue managemerneldis and Others (to include any other category).

Other related files At the right hand down corner of each entry there might beslittka NamTracefile, a screenshot
and a webpage for the simulation script, if these files/imfation have been submitted by the author along with
the script.

In order to download any script or any of the related files pdynheft-click on the filename and a download dialog box
will appear where you can provide the path to download thedile

SUBMIT NS SCRIPTS TO INVENTORY: Incase you have simulation scripts suitable for classroemahstrations, you
could submit them to the inventory. You haveAGLEAST submit the following in order to successfully upload your
script:

Name of author

Author’s E-mailid

Name of script (and path to the location of your script) to conribute
Brief description of script

Version of NS script uses

Category for the script

You mayOPTIONALLY provide the following along with the above required fields:

Author’'s WebPage

Namtrace file (namdump for your script simulation)
Screenshot (an image of your nam screen)

Webpage (pointer to webpage you may have for the script)
Other comments, if any

Important: We suggest that you provide the namtracefile alongwith yotipssince many users might want to use the
namtrace only, for visualization, and download script omhen they want to make any changes to the simulation.

50.2 Using NAM for educational purposes

Inorder to visualize an ns simulation, you need to have th&IN@ol installed. You could either simply download the nam
binary for your platform or download the nam distributiorddsuild in your machine. The link for getting nam binaries as
well as nam source isttp://www.isi.edu/nsnam/nawhich also happens to be the nam homepage.

Steps to use nam in powerpoidtfter opening powerpoint, go to “Slide Show” (visible on ttogp menu) and click on “action
buttons”. Select the type of button you prefer. This woulgiate a button for your slide. Clicking on your button will pop
up an “Action Setting" window. Inside the window, there islage called “Run Program” where you can define your nam
program to run.

431

Bibliography

[1] C. Alaettindlu, A.U. Shankar, K. Dussa-Zeiger, and |. Matta. Designiamglementation of MaRS: A routing testbed.
Internetworking: Research and Experienbel 7—-41, 1994.

[2] Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin F2ally Floyd, Padma Haldar, Mark Handley, Ahmed Helmy,
John Heidemann, Polly Huang, Satish Kumar, Steven McCdewg Rejaie, Puneet Sharma, Kannan Varadhan, Ya Xu,
Haobo Yu, and Daniel Zappala. Improving simulation for natwresearch. Technical Report 99-702b, University of
Southern California, March 1999. (revised September 1999)

[3] Paul Barford and Mark Crovella. Generating represéveateb workloads for network and server peformance evalua-
tion. In Proceedings of the ACM SIGMETRIG#ges 151-160, June 1998.

[4] L.S. Brakmo, S. O'Malley, and L.L. Peterson. TCP vegaswNechniques for congestion detection and avoidance. In
Proceedings of the ACM SIGCOMMages 24-35, October 1994.

[5] L.S. Brakmo, S. O’'Malley, and L.L. Peterson. TCP vegagwNechniques for congestion detection and avoidance.
Technical Report TR 94 04, Department of Computer Scienlee University of Arizona, Tucson, AZ 85721, February
1994.

[6] R. Brown. Calendar queues: A fast O(1) priority queuelienpentation for the simulation event set proble@ammu-
nications of the ACM31(10):1220-1227, October 1988.

[7] Pei Cao and Chengjie Liu. Maintaining strong cache cstesicy in the World-Wide Web. IRroceedings of the IEEE
ICDCS pages 12-21, May 1997.

[8] N. Christin, J. Liebeherr, and T. Abdelzaher. A quaniit assured forwarding service. Rroceedings of IEEE
INFOCOM 2002 volume 2, pages 864—873, New York, NY, June 2002.

[9] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, Chiaigag Liu, and L. Wei. An architecture for wise-area multicas
routing. Technical Report USC-SC-94-565, Computer Sa@dbepartment, University of Southern California, Los
Angeles, CA 90089., 1994.

[10] Anja Feldmann, Anna C. Gilbert, Polly Huang, and Waléitlinger. Dynamics of IP traffic: A study of the role of
variability and the impact of control. pages 301-313, Cadg®, MA, USA, August 1999.

[11] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhangelfble multicast framework for light-weight sessionslan
application level framing. IfProceedings of the ACM SIGCOMMages 342—-356, August 1995.

[12] H. T. Friis. A note on a simple transmission formuRroc. IRE 34, 1946.

[13] H. W. Hethcote. The mathematics of infectious diseaSé&M Review42(4):599—-653, October 2000.
[14] A. Heybey.Netsim Manual MIT, 1989.

[15] R. Jain.The Art of Computer Systems Performance Analyikibn Wiley and Sons, Inc., 1996.

[16] Pierre LEcuyer. Good parameters and implementatfionsombined multiple recursive random number generators.
Operations Resear¢d7(1):159-164, 1999.

432

[17] Pierre L'Ecuyer. Software for uniform random numbenggation: Distinguishing the good and the badPhceedings
of the 2001 Winter Simulation Conferenpages 95-105, December 2001.

[18] Pierre LEcuyer, Richard Simard, E. Jack Chen, and WidKelton. An object-oriented random number package with
many long streams and substrea@perations Researc2001.

[19] A. Legout and E.W. Biersack. PLM: Fast convergence femalative layered multicast transmission schemes. In
Proceedings of the ACM SIGMETRICEanta Clara, CA, U.S.A., June 2000.

[20] J. Liebeherr and N. Christin. JoBS: Joint buffer mamaget and scheduling for differentiated servicesPtaceedings
of IWQoS 200]1pages 404-418, Karlsruhe, Germany, June 2001.

[21] J. Liebeherr and N. Christin. Rate allocation and huff@nagement for differentiated servic&omputer Networks
40(1):89-110, September 2002.

[22] M. Mathis and J. Mahdavi. Forward acknowledgement: iitef§j TCP congestion control. Rroceedings of the ACM
SIGCOMM August 1996.

[23] M. Mathis, J. Mahdavi, S. Floyd, and A. Roman@CP Selective Acknowledgement OptidREC 2018 edition, 1996.
[24] S. McCanne and S. Floyd. ns—Network Simulatatp://www-mash.cs.berkeley.edu/ns/

[25] S. McCanne and V. Jacobson. The bsd packet filter: A newitacture for user-level packet capture. pages 259-269,
January 1993.

[26] John Ousterhout. Scripting: Higher-level programgfior the 21st centurf)EEE Computer31(3):23-30, March 1998.

[27] S.K. Park and R.W. Miller. Random number generationo@Gones are hard to findCommunications of the ACM
31(10):1192-1201, October 1988.

[28] Peter Pieda, Jeremy Ethridge, Mandeep Baines, andiiré&hallwani. A Network Simulator, Differentiated Services
ImplementationOpen IP, Nortel Networks, 2000.

[29] T. S. RappaportWireless communications, principles and practiBeentice Hall, 1996.

[30] Kah Leong Tan and Li-Jin Thng. Snoopy calendar queué&rtateedings of the 32nd conference on Winter simulation
Orlando, Florida pages 487—495, 2000.

[31] D. Waitzman, C. Partridge, and S.E. Deerimgstance Vector Multicast Routing Proto¢c&FC 1075 edition, 1988.
[32] Xiaoliang (David) Wei. A mini-tutorial for TCP-Linuxi NS-2.http://netlab.caltech.edu/projects/ns2tcplinux/

[33] Xiaoliang (David) Wei and Pei Cao. NS-2 TCP-Linux: and83 CP implementation with congestion control algorithms
from Linux. In WNS2 '06: Proceeding from the 2006 workshop on ns-2: the t®Rar simulator page 9, New York,
NY, USA, 2006. ACM Press.

433

