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Abstract. In this paper, we provide a security analysis of ELmD: a
block cipher based Encrypt-Linear-mix-Decrypt authentication mode.
As being one of the second-round CAESAR candidate, it is claimed
to provide misuse resistant against forgeries and security against block-
wise adaptive adversaries as well as 128-bit security against key recovery
attacks. We scrutinize ElmD in such a way that we provide universal
forgery attacks as well as key recovery attacks. First, based on the colli-
sion attacks on similar structures such as Marble, AEZ, and COPA, we
present universal forgery attacks. Second, by exploiting the structure of
ELmD, we acquire ability to query to the block cipher used in ELmD. Fi-
nally, for one of the proposed versions of ELmD, we mount key recovery
attacks reducing the effective key strength by more than 60 bits.

Key words:Authenticated encryption, CAESAR, ELmD, Forgery at-
tack, Key recovery

1 Introduction

CAESAR competition [1] (Competition for Authenticated Encryption:
Security, Applicability, and Robustness) has been announced in January
2013 aiming at fulfilling the needs of secure, efficient and robust authen-
ticated encryption schemes. In total, 57 candidates are submitted to the
competition. These schemes are released to crypto community for their
security analysis and around 20 of them were eliminated in the first round
of the competition in July 2015. Since then, around 30 candidates com-
pete in the second round, and are being analyzed in terms of their security
and efficiency.

ELmD is amongst the second-round CAESAR candidates designed by
Datta and Nandi [5]. It is an Encrypt-Linear-mix-Decrypt block cipher
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authentication mode accepting associated data, and its structure is simi-
lar to some other authenticated encryption schemes such as AES-COPA
[2], Marble [10], and SHELL [12]. ELmD is fully parallelizable and online,
that is, ith block of ciphertext only depends on the first i blocks of plain-
text. As an optional property, it provides intermediate tag verification in
order to fasten verification process and to be secure against block-wise
adaptive adversaries. Designers of ELmD claim that the scheme provides
nonce misuse resistance against forgery attacks. According to authors’
assertion, ELmD provides 62.8-bit security for integrity (forgery attacks)
and for privacy (distinguishing attacks). Indeed, they claim that ELmD
provides 128-bit security against key recovery attacks that we disprove by
applying partial-sum [7] and Demirci-Selçuk meet-in-the-middle attacks
[6] on ELmD(6,6) where 6-round AES is used as the block cipher.

Previous Results. As far as we know, ELmD has been analyzed only
by Zhang and Wu [13] in terms of both integrity and privacy. Very simi-
lar to our internal state recovery, they first find internal state parameter
of ELmD by birthday attack and then they provide an almost universal
forgery attack with a few queries. For breaking privacy, they propose a
truncated differential analysis of reduced version of ELmD (ELmD(4, 4))
with 2123 time and memory complexities. In [13], the authors consider
the internal parameter L generated by only the encryption of zero with
4-round AES, i.e., L = AES4(0). However, both the usage of 4 rounds
of encryption/decryption and the generation of the internal parameter
L with four AES rounds in ELmD are not acceptable in the proposal.
Actually, after obtaining an input and output pair of 4-round AES (i.e,
L = AES4(0)), it is feasible to make a meet-in-the-middle analysis to
recover the secret key. Previously, similar efforts are made to other CAE-
SAR candidates COPA [11], Marble and AEZ in [8] to find state collisions
beyond the birthday bound. Indeed, for AEZ and Marble [8], this attack
is used for realizing a key recovery attack.

Our Contribution: In this paper, after obtaining the internal state
parameter of ELmD, we make universal forgeries with a few queries to the
oracle. Furthermore, by exploiting the structure of ELmD, we are able to
query decryption oracle of the block cipher in ELmD. Finally, we mount
key recovery attacks on ELmD(6,6) reducing effective key strength more
than 60 bits.

Outline of the rest of the paper: In Section 2, a brief description of
ELmD is given. Then in Section 3, we show how to recover internal state
parameter L, and present universal forgery attacks on ELmD with a few
queries to the oracle. In Section 4, we introduce novel methods to gener-
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ate special plaintext pairs having relation between their ciphertexts and
to query to the decryption oracle of the block cipher. By using chosen ci-
phertexts, in Section 5, key recovery attacks on ELmD(6,6) are presented.
Section 6 concludes the paper.

2 Brief Description of ELmD

Notation: ‘⊕’: bitwise addition in modulo 2 (exclusive OR), ‘·’: field
multiplication modulo the polynomial p(x) = x128 + x7 + x2 + x + 1 in
GF (2128). Also, 0a denotes a-bit string of 0.

ELmD is a block cipher based Encrypt-Linear-mix-Decrypt authenti-
cation mode proposed by Datta and Nandi [5] for CAESAR competition.
In the proposal of ELmD, AES-128 [4] is used as the block cipher where
the number of rounds can be either 10 or 6. Note that 6-round AES used
in ELmD includes whitening-key layer and MixColumns operation at the
last round. Hence from now on, AESrd denotes AES with rd rounds.
For simplicity, EK is also used for AES-128 in the rest of the paper. In
addition, L is a key-depending mask which is generated in two ways;
L = AES6(AES6(0)) when rd = 6 and L = AES10(0) when rd = 10.

The linear mixing function ρ takes two inputs t, x ∈ {0, 1}128 and
produces two outputs t′, y ∈ {0, 1}128 as follows

ρ(x, t) = (y, t′) : y = x⊕ 3 · t and t′ = x⊕ 2 · t.

Algorithm 1 Processing associated data: IV generation
1: Input: D, d, L
2: Output: IV
3: for i = 0 to d− 1 do
4: DDi = Di ⊕ 3 · 2i · L
5: Zi = EK(DDi)
6: (Yi,W

′
i+1) = ρ(Zi,W

′
i )

7: end for
8: if |D∗d| = 128 then DDd = Dd ⊕ 3 · 2d · L
9: else DDd = Dd ⊕ 7 · 3 · 2d−1 · L

10: end if
11: Zd = EK(DDd)
12: (Yd,W

′
d+1) = ρ(Zd,W

′
d)

13: IV = W ′d+1

Associated data is used to generate IV (see Algorithm 1) which is
an input to both encryption/decryption function of ELmD. Let pub and
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param be a public message number and the parameter set, respectively,
which are both 64 bits, and D = (D1, . . . , D

∗
d) be an associated data. By

construction, the designers of ELmD assign D0 = pub‖param and W ′0 = 0.
The last block of associated data is padded as Dd = D∗d‖10∗ if |D∗d| 6= 128,
otherwise Dd = D∗d.

ELmD has two versions, namely v1.0 and v2.0. ELmD v1.0 was modi-
fied by the generation of last message block in such a way that the XOR of
previous messages added to this block. Also, rd is modified to ELmD(6,6)
and ELmD(10,10).

Tagged ciphertext is generated as follows. Let M = M1‖M2‖ · · · ‖M∗`
be the message to be encrypted. Padding is performed asM` = (⊕`−1i=1Mi)⊕
(M∗` ‖10∗) if |M∗` | < 128, otherwise M` = (⊕`−1i=1Mi)⊕M∗` . ELmD has an
intermediate tag option if it is needed, however for the simplicity we
mention only tagged ciphertext generation without producing intermedi-
ate tags (t = 0) in Algorithm 2. ELmD encryption including processing
associated data is depicted in Figure 1.

Algorithm 2 Encryption and tag generation without producing inter-
mediate tag (t = 0)

1: Input: `, IV , M1, . . . ,M`, L, |M∗` |
2: Output: C1, . . . , C`, C`+1

3: W0 = IV
4: M`+1 = M`

5: for i = 1 to `− 1 do
6: MMi = Mi ⊕ 2i−1 · L
7: Xi = EK(MMi)
8: (Yi,Wi) = ρ(Xi,Wi−1)
9: CCi = E−1

K (Yi)
10: Ci = CCi ⊕ 32 · 2i−1 · L
11: end for
12: if |M∗` | = 128 then MM` = M` ⊕ 2`−1 · L and MM`+1 = M`+1 ⊕ 2` · L
13: else MM` = M` ⊕ 7 · 2`−2 · L and MM`+1 = M`+1 ⊕ 7 · 2`−1 · L
14: end if
15: for i = ` to `+ 1 do
16: Xi = EK(MMi)
17: (Yi,Wi) = ρ(Xi,Wi)
18: end for
19: CC` = E−1

K (Y`)
20: C` = CC` ⊕ 32 · 2`−1 · L
21: CC∗`+1 = E−1

K (Y`+1 ⊕ 1)
22: C∗`+1 = CC∗`+1 ⊕ 32 · 2` · L
23: if |M∗` | 6= 128 then C`+1 = trunc(C∗`+1)|M∗

`
|

24: else C`+1 = C∗`+1

25: end if
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ELmD decrypts and verifies a given tagged ciphertext pair in three
steps. First of all, IV is produced by using pub, param, and D as in Algo-
rithm 1. Afterwards, the tagged ciphertext is decrypted as an inversion
of Algorithm 2, and then tag is verified when M`+1 = M`. Once the tag
is verified, plaintext is released otherwise ⊥ is returned.
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Fig. 1. Processing associated data and the generation of tagged ciphertext in ELmD
when |Dd| = |M`| = n

3 Universal Forgery Attack on ELmD

In this section, we present universal forgery attacks on ELmD. First, we
recover ELmD state L by collision search of ciphertexts. Using L, we can
make universal forgery attack on ELmD. Before going into details, we
briefly describe the two main forgery models:

– Existential Forgery is the generation of a valid ciphertext and tag
pair for an unspecified message which is not previously queried to an
oracle.

– Universal Forgery is the generation of ciphertext and tag pair for
a given message which is not previously queried to an oracle.
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3.1 Recovering Internal State Parameter L

Similar to state recovery attacks of COPA and Marble [11, 8], we recover
ELmD state L by collision search of ciphertexts which has approximate
complexity 265 due to birthday attack as follows.

For a fixed D0, let (D,M) = (D1,M1) = (α,M) and (D′,M ′) =
(D′1,M

′
1) = (β,M) be two set of message pairs including associated data

where α and β take all possible values from the set
{

0, 1, . . . , 264 − 1
}

and
α is an incomplete block and β is complete, i.e., |α| = 64 and |β| = 128.
Here, we aim to exploit different parameter mask additions to the last
blocks of associated data when the block is incomplete. Also, we pick α
and β such that (α‖1063)⊕ β scans all values in F2128 .

After message pairs are queried, we search a collision in the first ci-
phertexts C1 and C ′1, i.e., C1 = C ′1. According to the birthday attack,
around 2 · 264 message pairs is enough to construct a collision. This
collision implies that messages’ corresponding IV values are equal, i.e.,
IV = IV ′. As we use the same D0 for two messages implying the same
internal chaining value (W ′1 = W ′′1 ), we obtain DD1 = DD′1 (see Figure
2). We recover L by solving

D′1 ⊕ 3 · 7 · L = D1 ⊕ 3 · 2 · L, (1)

since L is the only unknown in the equation, where D1 = α‖1063 and
D′1 = β.

3.2 Forgery

Once we recover L, we can make universal forgery attacks on ELmD by
making a few queries to the oracle.

A Universal Forgery Attack Let (D,M) = (D1, . . . , Dd−1, Dd,M1, . . . ,
M`−1,M`) be targeted associated data and message pair with assigned
D0 = pub‖param, where |Dd| = 128. Compute D′d such that D′d‖10∗ =
Dd ⊕ 2d · 3L ⊕ 7 · 2d−1 · 3L and |D′d| < 128. Note that because of the
padding rule, we can always obtain D′d with |D′d| < 128.

Query (D′,M) = (D1, . . . , Dd−1, D′d,M1, . . . ,M`−1,M`) with the same

D0 and obtain the corresponding ciphertext and tag pair as (C̃, T̃ ). Due
to the choice of associated data, D and D′ produce the same IV. Hence,
the corresponding ciphertext and tag pair (C, T ) of (D,M) is equal to
that of (D′,M), i.e., (C, T ) = (C̃, T̃ ). Note that the same attack also
works for |Dd| < 128 case. In a similar manner, a |D′d| = 128 block can
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Fig. 2. Recovering L by finding a collision in (t = 0)

be chosen where D′d = Dd‖10∗⊕ 2d · 3L⊕ 7 · 2d−1 · 3L, and the rest of the
attack is the same. Therefore, this forgery attack works for any associated
data and message pair.

Another Universal Forgery Attack Here we present another forgery
for the same (D0, D,M) triple using only completed blocks. First, query
M1 = D0 ⊕ 3L⊕L without D, and obtain C1. Then, query (D′,M) such
that D′0 = D0, D

′
1 = C1 ⊕ 32L ⊕ 2 · 3L, D′i+2 = Di ⊕ 2i · 3L ⊕ 2i+2 · 3L

for i = 0, 1, . . . , d and obtain ciphertext C and tag T . It can be seen that
this (C, T ) pair is also valid for (D,M).

Note that this forgery attack introduces an important ability of gen-
erating a pair of plaintexts such that one of the corresponding ciphertext
is half of the other one. These related plaintext pairs are explained in
Section 4, and used for key recovery in Section 5.

Forgery of Intermediate tags (when t 6= 0) In the proposal of
ELmD, the authors state that “When intermediate tags are used i.e. t 6= 0,
if the forger can compute a valid intermediate tag such that the ciphertext
up to that is not identical to any of previous ciphertexts then the forger
succeeds”. Once L is known, we can make a universal forgery attack for
the version of ELmD with intermediate tags. Without any further details,
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it can be seen that the previously given forgery attacks also applies when
t 6= 0. Because both attacks only uses the associated data.

4 Exploiting the Structure of ELmD

In this section, we explore the block cipher used in ELmD by exploiting
the general structure of the authenticated encryption algorithm where the
bottom function is the decryption mode of the upper one. First, using the
recovered L value, we can obtain two types of plaintext pairs:

1. For any P1 and µ, (P1, P2) pair such that µ · E(P1) = E(P2).

2. For any ∆, (Q1, Q2) pair such that E(Q1) = E(Q2)⊕∆.

Using these special plaintext pairs, we can obtain plaintext and corre-
sponding ciphertext pairs of the encryption block cipher EK(·) or AESrd.
Especially, we can query any ciphertext to the decryption mode of the
cipher.

Following attacks are mostly explained for the maskless version of
ELmD. Since we know the L value, we can easily switch from (D,M,C)
triple to (DD,MM,CC) triple and vice versa, whereDi = DDi⊕2i−1·3L,
Mi = MMi ⊕ 2i−1L and Ci = CCi ⊕ 2i−1 · 32L. In other words, we can
query (DD,MM) and obtain CC values. For the simplicity, we usually
use (DD,MM,CC) triples. It is important to note that the last message
block cannot be controlled since MM`+1 = MM` ⊕ 2`−1L⊕ 2`L.

4.1 2-multiplicative Pairs: (R1, R2) with 2 · E(R1) = E(R2)

Initially, for any given/fixed D0 = pub‖param, we make a query for one
block message MM1

1 = DD0 without an additional associated data and
obtain the corresponding ciphertext and tag pair (C1, T 1). As seen in
Figure 3, IV 1 = EK(DD0). Because of our message choice, X1

1 is also
equal to IV 1 and therefore Y 1

1 = 2 · IV 1. Even without knowing IV 1

value, we obtain CC1
1 such that EK(CC1

1 ) = 2 · IV 1 = 2 · EK(DD0).
Here, it is important to note that D0 has a special structure and cannot
take any 128-bit value. For any R1, using the same D0, query DD2

1 =
CC1

1 ,MM2
1 = MM2

2 = R1 and obtain the corresponding ciphertext and
tag pair (C2, T 2). It can be seen that IV 2 = ρ(IV 1, 2 · IV 1) = 0 and
therefore X2

1 = W 2
1 = EK(MM2

1 ). W 2
1 = EK(MM2

1 ) = X2
2 implies

Y 2
2 = 2·X2

2 and EK(CC2
2 ) = 2·EK(MM2

1 ). As can be seen in Figure 3, by
setting R2 = CC2

2 , we obtain (R1, R2) pair such that 2 ·E(R1) = E(R2).
The complexity to obtain N such 2-multiplicative pairs is only N + 1
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queries if the same D0 = pub‖param is used. Therefore, the complexity of
getting a 2-multiplicative pair is approximately one block query.
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Fig. 3. 2-multiplicative pairs
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4.2 µ-multiplicative Pairs: (P1, P2) with µ · E(P1) = E(P2)

Here, we present a method to generate (P1, P2) pair satisfying µ ·E(P1) =
E(P2) for any P1 and µ values with the help of observations in the previous
part. First, for a given P1, we obtain the plaintext R2 such that 2·E(P1) =
E(R2). Also, we arrange associated data to make IV = 0.

Let µ′ = 3−1(µ⊕ 1) where 3−1 represents the multiplicative inverse of
3 in the given field. It can be seen that any µ′ ∈ F2128 can be represented
as 2127 ·m1 ⊕ 2126 ·m2 ⊕ · · · ⊕ 2 ·m127 ⊕m128 where mi ∈ {1, 2}.

As shown in Figure 4, by querying 129-block message with MMi =
Rmi for i = 1, . . . , 128 and MM129 = P1, we can obtain the plaintext
P2 = CC129 satisfying E(P2) = µ · E(P1). The complexity to obtain any
multiplicative pair of a given Pi is about 27 block encryptions. In other
words, obtaining the plaintext of a given multiple of a given ciphertext
costs 27 block ELmD encryptions which is approximately 28 block cipher
calls.
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Fig. 4. µ-multiplicative pairs

Note that using µ-multiplicative pairs, we can obtain the plaintext P0

satisfying E(P0) = 0 · E(·) = 0.
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4.3 1-difference Pairs: (R1, R2) with E(R1) = E(R2)⊕ 1

In this part, we show how to construct (R1, R2) pairs such that E(R1) =
E(R2)⊕ 01271 by using 2-multiplicative pairs (see Figure 5). For any D0

(resp. M1), we can obtain D1 (resp. M2) such that E(DD1) = 2 ·E(DD0)
(resp. E(MM2) = 2 · E(MM1)). By querying the corresponding associ-
ated data and message pair, we can obtain R1 = MM3 and R2 = CC3

satisfying E(R1) = E(R2) ⊕ 1. The complexity to obtain a 1-difference
pair is simply a query of 1 associated data block and 2 message blocks
where associated data and message blocks are 2-multiplicative pairs.
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Fig. 5. 1-difference pairs

4.4 ∆-difference Pairs: (Q1, Q2) with E(Q1) = E(Q2)⊕∆

First, we generate a 1-difference pair: {R1, R2} where E(R1) = E(R2)⊕
01271. Then, for any ∆, compute δ = δ1‖δ2‖ · · · ‖δ128 such that 3 · δ = ∆
over the defined field.

We construct two messages M,M ′ each containing 129 blocks with
the same associated data D such that

MMi = R1 and MM ′i = Rδi+1 for i = 1, 2, . . . , 129

where δ129 = 0.
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As illustrated in Figure 6, 129th ciphertext blocks of (D,M) and
(D,M ′) differ by ∆. Here, we briefly, explain the differential path of
two messages (D,M) and (D,M ′). As their associated data are equal,
they will provide the same IV , that is IV ⊕ IV ′ = 0. After process-
ing of the first blocks of two messages R1 and Rδ1+1 in the upper layer
of encryption, we will get difference in X1’s as ∆X1 = X1 ⊕ X ′1 = δ1.
Since ∆IV = 0, ∆W1 = W1 ⊕W ′1 = δ1. For the second message blocks
R1 and Rδ2+1, we get ∆X2 = X2 ⊕ X ′2 = δ2. Then, we have ∆W2 =
W2 ⊕ W ′2 = 2δ1 + δ2. Similarly, after the encryption of 128th blocks,
we have ∆W128 = W128 ⊕W ′128 = 2127δ1 + 2126δ2 + · · · + δ128 = δ. Fi-
nally, as we choose the last message blocks equal, we have ∆X129 =
X129 ⊕ X ′129 = 0. Since no difference is coming from upper encryption
layer ∆Y129 = Y129 ⊕ Y ′129 = 3 · ∆W128 = 3 · δ = ∆. Hence, we obtain
plaintexts Q1 = CC129 and Q2 = CC ′129 having required ciphertext differ-
ence: E(Q1) = E(Q2)⊕∆. Note that by changing the last message block,
we can get several message pairs having desired ciphertext difference.
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Fig. 6. ∆-difference pairs

4.5 Querying Decryption Oracle of the Block Cipher

Here, we describe how to query inner block cipher of ELmD, AESrd. Since,
we can obtain any multiple of a given ciphertext in µ-multiplicative pairs,
it is obvious that any ciphertext can be queried, i.e., plaintext of a given
ciphertext can be obtained, if the decryption of 01271 is known.
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First, using 1-difference pairs, we obtain a pair (R1, R2) with E(R1) =
E(R2) ⊕ 1. Then, using µ-multiplicative pairs, we acquire R3 such that
3−1E(R1) = E(R3). By querying associated data satisfying IV = 0 and
message with MM1 = R3, MM2 = R2, we obtain CC2 which is equal to
decryption of 1, i.e., E(CC2) = 01271. After obtaining decryption of 1, we
can query any ciphertext with the help of µ-multiplicative pairs.

This property enables us to mount a chosen ciphertext attack.

5 Key Recovery

The encryption function EK used in ElmD is either 6-round AES (AES6)
or 10-round AES (AES10) depending on the application. For both versions
of ELmD, the designers claim that ELmD provides 128 bits of security
against plaintext and key recovery attacks. In this section, we show that
this claim is not valid if the function EK is AES6.

In Section 4, after recovering L parameter, it is shown how to obtain
corresponding plaintext for any given ciphertext in a time complexity of
about 28 encryption operations. As a result, we can mount attacks on
6-round AES with chosen ciphertexts. In [7], by using partial sums an
attack on 6-round AES was given with a time and data complexities of
244 and 234.6, respectively in chosen plaintext scenario. This attack can
be easily adapted to chosen ciphertext case because of the AES structure.
MixColumns and AddRoundKey operations can be swapped with apply-
ing the inverse of MixColumns to the round key. As known, the inverse of
AES without the MixColumns operation in the last round has the same
structure with AES, the similar attack can be applied. Note that the
MixColumn operations at the end of the cipher is not important because
ciphertexts can be easily manipulated. The total time complexity of key
recovery is 265 + 28 × 234.6 + 244 ≈ 265 which is dominated by the cost of
recovery of L.

In addition, we propose a Demirci-Selçuk meet-in-the-middle attack
[6] using the distinguisher on 3-round AES [9]. This attack also uses
chosen ciphertexts. The time and data complexities of this attack is 266

and 233, respectively. With this attack the time complexity of key recovery
attack on ELmD is 265 + 28× 233 + 266 ≈ 266.6 encryptions. Even though
the time complexity is relatively higher than the previous attack, this
attack uses relatively less data and illustrates Demirci-Selçuk MITM in a
splice-and-cut [3] perspective.

While presenting the attack we use the following notation. AES6 con-
sists of 6 full rounds of AES with initial key whitening and supports a key
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size of 128 bits. One full round of AES is composed of SubBytes (SB),
ShiftRows (SR), MixColumns (MC) and AddRoundKey (AK) operations
[4]. The whitening key and i-th round key (i ∈ {1, 2, 3, 4, 5, 6}) are de-
noted by k0 and ki respectively. We use xi, yi, zi and wi to represent
the blocks in i-th round before the SubBytes, ShiftRows, MixColumns
and AddRoundKey operations respectively where the input of the first
round is x1 = P ⊕ k0 and P is the plaintext. In the case of swapping
MixColumns and AddRoundKey operations we denote the round key as
ui = MC−1(ki) and the state after round key addition as w̄i. Also xji ,

yji , z
j
i , w

j
i and w̄ji denotes the blocks for j-th plaintext and a(m,n, ..., l)

are used for m,n, ..., l-th bytes of a block a. The orders of 128-bit blocks’
bytes in 4 × 4 matrix of bytes is as conventional, that is the first row is
composed of 0, 4, 8 and 12-th bytes of 128-bit block where 0-th byte is
the left-most byte.

The attack is given in Algorithm 3 and depicted in Figure 7. The
number of bits guessed in the attack is 144 and the probability that a
wrong guess passes the condition in Step 10 is 2−144. Thus, with the
correct guess, a wrong one can be returned by the algorithm. In Step 3 in
Algorithm 3, 280×19× 10

16×6 ≈ 281 encryptions are performed by guessing
10 bytes. Note that this step can be done offline. For a ciphertext the
time complexity of getting the corresponding plaintext is approximately
28 encryptions as mentioned in Section 4. Thus the number of operations
performed in Step 6 is 19× 232 × 28 = 244.25 encryptions. In Step 9, 144-
bit differences are computed performing 264×19× 10

16×6 ≈ 265 encryption

operations. As a result the time complexity of Algorithm 3 is 281 offline
and 265 online encryptions. To store the 144-bit difference for possible
280 values 280 × 144-bit memory is required. Note that in the attack 12
bytes of w̄j6 are fixed to a constant 0. Thus the attack needs 232 chosen
ciphertexts and corresponding plaintexts.

Notice that with this attack we obtain 4 bytes of k0 so far. With slight
modifications in the attack it can be seen easily that other 4 bytes of k0
can be found. Remaining 64 bits of the key can be recovered by brute
force. The total complexity of recovering 128-bit key will be 2×281 = 282

offline and 2× 265 + 264 ≈ 266 online encryptions.

The memory and data complexities will be 2× 280 × 144-bit memory
and 2×232 = 233 data respectively. Note that the offline time complexity
can be reduced to 274 by removing the guess of y5(0) from the offline
step and adding 8-bit guess for u5(0) to online step. In that case the time
complexity of online step will be 274 encryption operations.
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Fig. 7. Demirci-Selçuk MITM attack on 6-round AES. The offline and online steps are
on the left-hand and right-hand sides, respectively.
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Algorithm 3 Demirci-Selçuk MITM Attack on 6-round AES.

1: Take 19 different values for w̄j
5(0, 1, 2, 3) and w̄j

6(1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15)
such that w̄j

5(0) = j, and the other bytes are 0 for 0 ≤ j ≤ 18.
2: for each possible values of y05(0), y04(0, 5, 10, 15), y03(0, 1, 2, 3) and y02(0) do
3: Compute the difference (w0

1(0)⊕ w1
1(0), w0

1(0)⊕ w2
1(0), ..., w0

1(0)⊕ w18
1 (0)) and

store it in Table T .
4: end for
5: for each possible values of u6(0, 7, 10, 13) do
6: Compute Cj ’s
7: Find P j ’s by using the method in Section 4.
8: for each possible values of k0(0, 5, 10, 15) do
9: Compute the difference (w0

1(0) ⊕ w1
1(0), w0

1(0) ⊕ w2
1(0), ..., w0

1(0) ⊕ w18
1 (0))

and find the difference in Table T .
10: if a match found then
11: Return k0(0, 5, 10, 15) as the correct key
12: end if
13: end for
14: end for

6 Conclusion

ELmD is an a block cipher based Encrypt-Linear-mix-Decrypt authen-
tication mode submitted to CAESAR Competition. It is claimed to be
strong against misuse forgery attacks, block-wise adaptive adversaries and
key recovery attacks with 128-bit security. This work provides univer-
sal forgery attacks against ELmD. Furthermore, we disprove the 128-bit
security claim of ELmD by applying two key recovery attacks, namely
partial-sum and Demirci Selçuk meet-in-the-middle attacks with 265 and
266.6 time complexities, respectively.
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