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Agenda

“Any one who considers arithmetical methods of
producing random digits is, of course, in a state of sin.”
[J. von Neumann, 1951]

Sinful pleasures.

“If the numbers are not random, they are at least
higgledy-piggledy.” [G. Marsaglia, 1984]

Does it look random enough to you?

“Random numbers should not be generated with a
method chosen at random.” [D. Knuth, 1998]

Pseudo-random and quasi-random.

“Computers are very predictable devices.” [T. Ts’o,
probably circa 1994, but maybe as late as 1999]

Random tricks with the Linux kernel.
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Life in Sin According to Knuth (I)

Simulation
sciences: just about everywhere
operations research: workloads

Sampling

Numerical analysis

Computer programming
random inputs
randomized algorithms

Decision making
strategic executive decisions
Technion paper grades
optimal strategies in game theory
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Life in Sin According to Knuth (II)

Aesthetics

Recreation (where do you think Monte Carlo comes
from?)

Sins Knuth didn’t consider:

Financial markets
How random is IBM share price?

Cryptography and cryptanalysis
Is “random” equivalent to “cryptographycally
secure”?
RFC 1750, “Randomness Recommendations for
Security”
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Early (Biblical?) Virtues and Sins

Intuition: dice, cards, lottery urn, census reports

Physics: resistance noise (A. Turing, Mark I, 1951)

Disadvantage: irreproducible, difficult to debug

A CD-ROM of random bytes (G. Marsaglia, 1995)
output of noise-diode circuit with scrambled rap
music — “white and black noise”

Early attempts, while virtuous, were cumbersome and inad-

equate. A radical new approach was needed.
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Von Neumann’s Original Sin

Can random numbers be produced by ordinary
arithmetic?

Von Neumann (circa 1946): take a long number (e.g.,
10 digits), square it, extract the middle digits:��� � � ��� �� �	
 �

��� � � � 
 � �� � � 

 � � � �� � � � �
 �

��� � � � � � 

 � � � �� �

Are these numbers random?

No, but who cares? They appear random

Obvious problem: 0 is stationary

Another obvious problem: cycles

38 bit numbers: period of 750,000 (N. Metropolis, 1956)
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Does Look Random To You?

Are there any patterns in the decimal representation of �?

3.14159265358979323846264338327950
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Does Look Random To You?

Can this be considered a pattern?

3.14159265358979323846264338327950
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Does Look Random To You?

Can this be considered a pattern?

3.14159265358979323846264338327950

“The entire history of human race.” [Dr. I. J. Matrix, 1965]
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What Are (Pseudo-)Random Numbers?

Working definition of computer-generated random
sequence:

a program that generates random sequences should
be different and statistically independent from every
program that uses its output.

Interpretation of the definition:
two different generators ought to produce statistically
indistinguishable results when coupled to your
application.
if they don’t, at least one of them is not a good
generator.
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What Are Good PRNGs?

Pragmatic point of view: there are statistical tests that
are good at filtering out correlations that are likely to be
felt by applications.

follows (to a certain extent) from the working
definition coupled with insight and experience
good generators need to pass all the tests
or at least the user should be aware of failures to
judge their impact

How?
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�

Test

Consider a set of � independent observations of a random
variable with a finite number of possible values
Rolling “true” dice:

� 2 3 4 5 6 7 8 9 10 11 12

��� ��� ��� �� � �� ��� �� ��� �� �� � ��� ���

Roll the dice � � � 
 


times, expect to see � on average � � �

times:

� 2 3 4 5 6 7 8 9 10 11 12�� 4 8 12 16 20 24 20 16 12 8 4� � 2 4 10 12 22 29 21 15 14 9 6

What is the probability that the dice are “loaded” (i.e., the

results are not random)?
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�

test (cont.)

Compute the statistic

� � �
 

�! �
" � � # �� $ �

�� �
�

�
 

�! �
� ��

�� # �

For our experiment, � � � � %&� — is it improbable?

Use � � distribution with ' � ( # � � ��

degrees of
freedom

NB:

�� , � � are not completely independent: given( # �

the

(

-th value can be computed.

the probability that the sum of the squares of ' random
normal variables of zero mean and unit variance will be
greater than � �
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Properties of

�

Distribution

NB: independent experiments are assumed
exercise: combine a set of � experiments with itself,
consider it a single set of size


 �: how will � � be
affected?

depends only on ', not on � or � �
if ' ) ) �

and � ) ) �

the � � distribution is a good
approximation

� should be large enough that all � �� are large (rule
of thumb: more than 5)
large � will smooth out locally nonrandom behaviour:
not a problem with dice but may be a problem with
computer-generated numbers
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�

Test Criteria

� � should not be too high — we do not expect too much
of a deviation from “true” dice!

� � should not be too low — if it is we cannot consider
the numbers to be random!

rules of thumb usually expressed in terms of � �

probability:
less than 1% or greater than 99% — reject
less than 5% or greater than 95% — suspect
5% to 10% or 90% to 95% — somewhat suspect
between 10% and 90% — acceptable

do the test several times - e.g. 2 out of 3
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Kolmogorov-Smirnov (KS) Test

� � test applies when there is a finite number of degrees
of freedom

what about, e.g., random real numbers on [0,1)?
yeah, in the computer representation that is finite,
but really large, and we want behaviour close to
“real” anyway

KS test: compare cumulative probability distribution
functions (CDF)

* ",+ $ � -/.0 132 14 5 46 7 " �98 + $

empirical CDF: given a sequence

�;:=< � �< � �< > > >< ���

*� ",+ $ �
�

�
�

?! �
� " � ?8 + $
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KS Test Algorithm

theoretical criterion:

@ �� � � A BCD E FG F � E
" *� ",+ $ # * ",+ $ $<

@ D� � � A BCD E FG F � E
" * ",+ $ # *� ",+ $ $ >

what is � doing there? std. dev. of

*� ",+ $

is
proportional to

� H � for fixed + , so the factor makes
the statistics (largely) independent of �

practical criterion (assume sorting, but can do without)

@ �� � � A B C� F ? F �
" I

� # * " � ? $ $<

@ D� � � A B C� F ? F �
" * " � ? $ #

I # �
�

$ >
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Practical Application of KS Test

� should be large enough so that the empirical and the
theoretical CDFs are observably different

� should be small enough not to wipe out significant
locally nonrandom behaviour

apply KS to chunks of a long sequence of medium size
( � J �� � �

)
obtain a sequence of

@ �� ",K $
,

@ D� "K $

, K � � > > > .

apply KS test again to the sequence of

@ �� ",K $

(and@ D� ",K $

)

for large � ( J �� � �
) the distribution of

@ �� ",K $

(and of@ D� ",K $

) is closely approximated by
* E ",+ $ � � # L C M " #
 + � $< + N � >
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KS Test Criteria

Again,

@ �� and

@ D� should be neither too high nor too
low

There is a probability distribution associated with them,
and we reject or suspect too low or too high probabilities

Can be used in conjunction with the � � test for discreet
random variables

do � � on chunks of the sequence
not a good policy to simply count how many � �

values are too large or too small

instead, obtain the empirical CDF of � �

use KS test to compare the empitrical CDF with the
theoretical one
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KS vs

�

KS applies to CDFs without jumps

� � applies to CDFs with nothing but jumps
can be applied to continuous CDFs by binning

sometimes KS is better, somethimes � � wins
divide [0,1) into 100 bins
if deviations for bins 0...49 are positive, and for bins
50...99 — negative, KS will indicate a bigger
difference than � �
if even deviations are positive and odd ones are
negative, KS will indicate a closer match than � �
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Empirical Tests

outlines of algorithms of some common tests

theoretical basis (TAOCP)

uniform real numbers on [0,1):

OP � Q � P : < P �< P �< > > >

auxiliary integer sequence on [0,d-1]

OR � Q � R : < R �< R �< > > >

where R � � ST P � U

T

is typically a power of 2, large enough for a
meaningful test, but not too large to be practical
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Empirical Tests (I)

Frequency test (tests uniformity)
use KS test with

* ",+ $ � + for

� V + V �
use

OR � Q

, for each . 8 T

count

R ? � . , apply � � test
with ' � T # �

and �W� � � H T

.

Serial test: we want pairs of successive numbers to be
uniformly distributed, too: “The sun comes up just as
often as it goes down, in the long run, but that does not
make its motion random.” [D. Knuth]

count

"R � ?< R � ? � � $ � ",X < . $
, apply � � test with' � T � # �

and �W� � � H T �

generalize to triples, quadruples, etc.
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Empirical Tests (II)

Gap test: examine the length of gaps between
occurrences of

P � in a given range
count number of gaps of different lengths, for lengths
of 0,1,...

6

, and lengths ) 6 , until � gaps are tabulated.

apply � � test to the counts — details in TAOCP

Poker test:
split

OR � Q

into “hands” (quintiples), apply � � test to
“pair”, “two pairs”, “three”, “full house”, “four”, “poker”
apply � � test according to the number of distinct
values in each “hand” — details in TAOCP.
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Empirical Tests (III)

Coupon collector’s test
observe the lengths of segments of

OR � Q
that are

required to collect a “complete set” of integers from 0
to

T # �

, apply � � — details in TAOCP

Permutation test
divide

OP � Q

into segments of length

6

each segment can have
6 Y

different orderings

count occurrences of each ordering, apply � � test
with ' �6 Y # �

and ��� � � H6 Y

.
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Empirical Tests (IV)

Run test: observe lengths of monotonic segments

do not apply � � test: adjacent runs are not
independent, a long runs will tend to be followed by
a short one, and vice versa
throw away the element that immediately follows a
run to make runs independent — details in TAOCP

Collision test: what to do if number of degrees of
freedom is much larger than the number of
observations?

hashing: count the number of collisions
a generator will pass the test if it does not generate
too few or too many collisions — details in TAOCP
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DIEHARD I — General Description

obtainable from
http://stat.fsu.edu/˜geo/diehard.html

source code available in C, but it it obfuscated: it is
“patched and jumbled” Fortran passed through f2c

you need f2c to link it (-lf2c -lm )
the original Fortran code is 30 years’ worth of
patches
very uncomfortable to alter, so don’t — it is not
advisable anyway unless you really know what you
are doing
“seems to suit my purposes” [G. Marsaglia]

there are also executables for DOS, Linux, and Sun
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DIEHARD II — Components

makewhat — creates test files

asc2bin — converts ascii (hex) to binary

diehard — runs the tests

diequick — a shorter version

a number of built-in random generators to test
makewhat prompts with a list

a battery of tests
diehard allows you to choose from 15 tests
really more than 15, since a few tests are compound
some familiar: run test, permutations
some custom: DNA test, parking lot test
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DIEHARD III — Procedure

write a main() that does one of two things:
open a binary file and write your random integers to
it
open a text file and write your random integers to it
in hex

8 hex digits per integer, 10 integers per line, no
spaces
then run asc2bin on the text file
the ascii file will be twice the size of the binary one

your PRNG should produce 32-bit integers
if 31-bit, then left-justify by left-shift: some tests
favour leading bits
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(Possible) Problems with rand(3)

often linear congruential generatorsZ ? � � � 2 Z ? []\ " A ^ _ K $

— period no greater than K

can provide quite decent random numbers with proper
choice of 2 , \ , and K , fast

ANSI C specifies that rand(3) return an int

RAND MAX is no larger than INT MAX

ANSI C requires only that INT MAX be greater or
equal 32767 — a simulation of

�� �

realizations will
repeat the sequence about 30 times
usually not a problem on 32-bit machines

ANSI C reference implementation
LC with a sub-optimal choice of 2 , \ , and K

botched by implementors who try to “improve”
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More Problems with rand(3)

LC PRNGs are not free of sequential correlation on
successive calls

problem when generating random numbers in many
dimensions:

plot points in

(

-dimensional space (between 0 and
1 in each dimension)
“random numbers fall mainly in the planes” [G.
Marsaglia], i.e., they will lie on less than K � `  

" ( # � $

-dimensional planesK � �
 �� 	

(bad),
( � � a less than 32 planesK J
 � �

(good) ,
( � � a about 1600 planes

“We guarantee that each number is random individually,
but we don’t guarantee that more than one of them is
random.” [NR]
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So how is glibc rand(3) doing?

not an LC generator (cf. man random )
do read the man pages for rand(3) and
random(3) !

“The period of this random number generator is very
large, approximately 16*((2**31)-1)” [man random ]

not really very large

DIEHARD tests on rand(3) : so-so

# # [ # [ # [ [ [

# # [ [ [ # [ [ [

many (most?) other generators are no better, e.g. ran2
from NR is only a little bit better, Sun f77 (old?) is
really lousy.
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Are there Any Good PRNGs?

yes, some pass all the tests with flying colors:
KISS
The "Mother of all random number generators"

Multiply-With-Carry + � � 2 + � D � []\ " A ^ _
 � � $

Mersenne Twister

do check!

check by yourself
generators improve
tests get tougher

if you are really serious, develop your own tests
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Implementation of Good PRNGs

from
http://www.cs.yorku.ca/˜oz/marsaglia-rng.html

#define znew (z=36969*(z&65535)+(z>>16))
#define wnew (w=18000*(w&65535)+(w>>16))
#define MWC ((znew<<16)+wnew )
#define SHR3 (jsrˆ=(jsr<<17), \

jsrˆ=(jsr>>13), \
jsrˆ=(jsr<<5))

#define CONG (jcong=69069*jcong+1234567)
#define FIB ((b=a+b),(a=b-a))
#define KISS ((MWCˆCONG)+SHR3)

not the last word in software engineering, one can do
better with little effort
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Seeding PRNGs

fixed seed very useful for debugging

srand(time(NULL))

get a MOSIX cluster, run
for i in ‘seq 1 10‘; do (./sim &); done

srand(clock())

will be surprisingly similar from run to run: many
runs will only use a few seeds

call gettimeofday(2) , use low-order bits of
microseconds, mix with pid , etc.

good, but note that gettimeofday(2) is not
POSIX , not guaranteed to work

entropy — also non-portable!
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Monte Carlo Simulations I

Applications
throwing dice or spinning wheels (if you are into
getting rich, quickly)
modelling price fluctuations in various markets (if
you are hired to help the rich keep their money)
studying Brownian motion, diffusion, cosmic ray
propagation, etc. (if getting rich is not the objective)
designing new computers and/or algorithms for
efficient management of resources under uncertain
workloads (strictly for common good, of course)
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Monte Carlo Simulations II

Technique
generate “realizations” based on random sequences
compute the expectation value of the result (payoff,
displacement, etc.) and the “likely” deviation as an
error estimate
equivalent to integration over realizations

example:

b ",+ $ T + — generate random points

",+ < 7 $ ,
count those for which 78 b "+ $

example:

b T R

over a complicated shape

R

— encloseR

into a simple shape that can be easily sampled,
compute c T where c � b

in

R

, c � � outside of

R
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Non-Uniform RNG: Transformations

fundamental transformation law of probability:

d �We " 7 $ T 7 d � d �G ",+ $ T + d ^f �We " 7 $ � �G "+ $ d T +
T 7

d

for + uniform on [0,1) �G ",+ $ � �
for

� V + 8 �

, zero
otherwise

for � e " 7 $ � b " 7 $ we must solve
T + H T 7 � b " 7 $ to obtain,

with

* " 7 $ being the CDF of 7

7 "+ $ � * D � "+ $

in multiple dimensions, with Jacobian

g;h ? � i+ h H i 7 ?:
� e "j 7 $ T j 7 � �G "j + $ T j + � �G "j + $ d gh ? d T j 7
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Normal Deviates: Box-Muller

Generate normal deviates 7 �lk � from uniform (on [0,1)) + �lk �:
the transformation:

7 � � #
 m3n + � o ^p 
 �+ �<

7 � � #
 m3n + � p q n 
 �+ �<

or, equivalently

+ � � L C M #
�


 r 7 �� [ 7 �� s <

+ � �
�


 � Bf o t Bn 7 �
7 �
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Normal Deviates: Box-Muller (cont.)

the Jacobian:

d g d � #
�


 � L D 7 �� H
 �

 � L D 7 �� H


a further trick: pick

",u �< u � $ inside the unit circle (using
rejection)

+ � � v � � u �� [ u �� , + � � ��xw Bf o t Bn yzy{

o ^p 
 �+ � � u � H v

, p q n 
 �+ � � u � H v

get two normal deviates

7 � � 
 # m n v " u � H v $<

7 � � 
 # m n v " u � H v $

no need to compute p q n or o ^p !
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Non-Uniform RNG: Rejection

What if we do not know the inverse CDF?

pick

b ",+ $

such that

� ",+ $ 8 b ",+ $

* "+ $ � G: b ",+ $ T + is known and analytically invertibleE: b ",+ $ T + � |

generate 7 � uniform in [0,A)

compute + � * D � " 7 � $
generate 7 � uniform on

}� < b "+ $ $

accept + if 7 � V � "+ $
, reject if � ",+ $ 8 7 �
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Variance Reduction Techniques

complexity analysis for integration using

~
uniformly

distributed random points in an �-dimensional space:
each point adds linearly to the accumulate sum that
will become the function average
it also adds linearly to the accumulated sum of
squares that will become the variance
the estimates error comes from the square root of
the variance, hence

~ D � ` � — slow convergence!

antithetic variables

non-uniform sampling (importance, stratification)
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Can We beat the Square Root?

~ D � ` � is not inevitable
choose points on a Cartesian grid, sample each grid
point exactly once in whatever order:

~ D � or better
convergence
problem: must decide in advance how fine the grid
has to be, commit to sample all the points

can we pick sample points “at random” yet spread them
out in some self-avoiding way, eliminating the “local
clustering” of uniformly random points?

another context: search an �-dimensional volume for a
point where some locally computable condition holds

we want to move smoothly to finer scales, and do
better than random
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Quasi-Random Sequences

sequences of �-tuples that fill �-dimensional space
more uniformly than uncorrelated random points

not random at all, “maximally avoiding” each other

Halton sequence: algorithm
for

� ? write

I

as a number in base

1
, where

1

is prime
reverse the digits and put a radix point in front
example:

I � � �

,

1 � �
: 17 base 3 is 122,

� ? � � >
 
 �

base 3

Halton sequence: intuition
every time the number of digits in

I

increases,

� ?

becomes finer-meshed
the fastest-changing digit in

I

controls the most
significant digit of

� ?
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Quasi-Monte Carlo

many quasi-random (a.k.a. low-discrepancy)
sequences: Halton, Faure, Sobol, Niederreiter,
Antonov-Saleev (efficient variant of Sobol) — details in
NR and references therein

non-trivial mathematics involved

complexity:

" m3n ~ $ � H ~

, i.e., almost as

~ D � , with a bit of
curvature

can be orders of magnitude better convergence

tricky to implement

beware of USPTO!
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drivers/char/random.c

Gathering “environmental noise”
inter-keypress timings from the keyboard
mouse interrupt timings and position as reported by
hardware
inter-interrupt timings

not all interrupts are suitable (consider timer)
finishing time of block requests

maintain an “entropy pool” mixed with a CRC-like
function (fast enough to do on every interrupt)

random bytes are obtained by taking SHA
message of length8 
 � &

bits a 160-bit “digest”
keep an estimate of “true randomness” in the pool, if
zero an attacker has a chance if he cracks SHA
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/dev/random and /dev/urandom

/dev/random

will only return a maximum of the number of bits of
randomness contained in the entropy pool

/dev/urandom

will return as many bytes as are requested, without
giving the kernel time to replenish the pool
acceptable for many applications
very random, passes DIEHARD (Ts’o: suitable for
one-time pads)

void get random bytes(void *buf, int n);

for use within the kernel

not very fast, good for seeding, non-portable
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Unpredictable over Reboots

on shutdown:
seed=/var/run/random-seed
touch $seed; chmod 600 $seed
pool=/proc/sys/kernel/random/poolsize
[ -r $pool ] && bytes=‘cat $pool‘ || bytes=512
dd if=/dev/urandom of=$seed count=1 bs=bytes
on boot:
seed=/var/run/random-seed
[ -f $seed ] && cat $seed > /dev/urandom
touch $seed; chmod 600 $seed
pool=/proc/sys/kernel/random/poolsize
[ -r $pool ] && bytes=‘cat $pool‘ || bytes=512
dd if=/dev/urandom of=$seed count=1 bs=bytes
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Other Interfaces

sysctl(8)

# /sbin/sysctl -A 2>/dev/null | grep rand
kernel.random.uuid = e005e4a2-fde0-423d-8734-0a03f9e35f12
kernel.random.boot_id = 68eedc43-9a54-4a42-80de-9aaa616cd295
kernel.random.write_wakeup_threshold = 128
kernel.random.read_wakeup_threshold = 8
kernel.random.entropy_avail = 4096
kernel.random.poolsize = 512
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Formal Definition of “Random”

Assume we generated a random sequence

OP � Q � P : < P �< P �< > > >
of real numbers,

� V P � 8 �

. The sequence is deteministic,
but “behaves randomly”. What does that mean?
Quantitative definition of “random behaviour” shall list a
relatively small number of mathematical properties:

each property shall satisfy our intuitive notion of random
sequence

the list shall be complete enough for us to agree that any
sequence with these properties is “random”.

(TAOCP:3.5).
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Equidistributed Sequences

if � and u are real numbers,

� V �8 u V �

, and
P

is
uniformly distributed on [0,1), then- " � V P 8 u $ � u # �.
for sequence

OP ? Q , � V I 8 � let ' " � $ be the number ofP ? such that � V P ?8 u ; if for all � and u ,

� V �8 u V �

we have

m q A� � E
' " � $

� � u # �

then the sequence

OP ? Q is equidistributed

if ' " � $ is the number of cases when statement

� " I $

is
true, we say that

� " � $ is true with probability

�

,-/. " � " � $ $ � �
, if

m q A� � E
' " � $

� � �
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Is Equidistributed Random?

No. For instance, it is easy to construct an equidistributed
sequence where a number less than

� H


will always be
followed by a number that is greater than

� H

. Such a

sequence can be constructed from two other
equidistributed sequences,

OP � Q

and
OR � Q

:

O � Q �
�


 P : <
�


 " � [ R : $<
�


 P �<
�


 " � [ R � $< > > >

The resulting sequence is not random by any reasonable

definition (but keep your patience...)
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-distributed Sequences

2-distributed sequence:

-/. " � � V P � 8 u � � � V P � � � 8 u � $ � " u � # � � $ " u � # � � $

(

-distributed sequence

-/. " � � V P � 8 u � > > > �  V P � �  D � 8 u  $ �
 

?! �
" u  # �  $

an equidistributed sequence is 1-distributed

a

(

-distributed sequence is

" ( # � $

-distributed
proof: set �  � � , u  � �

a sequence is �-distributed if it is

(

-distributed for all
positive integers

(
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Integer ( -ary) Sequences

O � � Q � �:=< � �< > > > is a

1

-ary sequence if each
� � is

one of the integers 0, 1, ... ,

1 # �

.

a

(

-digit

1

-ary number is + � + � > > > +  where
� V + ?8 1

for� V I V (

.

a

1

-ary sequence is

(

-distributed if for all

1

-ary + � + � > > > +  

-. " � � ��� � � > > > ��� �  D � � + � + � > > > +  $ � � H 1  

if

OP � Q

is

(

-distributed then
O S 1P � U Q

is also

(

-distributed
(

1

-ary)(

-distributed (
1

-ary) is

" ( # � $

-distributed (

1

-ary)

� is a 10-ary sequence: is it �-distributed?
1-distributed? No one knows...
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Properties of -ary Sequences

a 1000000-distributed binary sequence will have runs of
a million zeroes in a row!

a 1000000-distributed [0,1) sequence will have runs of
a million consecutive values less than 1/2!

this will happen only

" � H
 $ � : : : : : :
of the time, but it will

happen

intuitively, this will also occur in any “truly random”
sequence

effect for simulations:
if it happens, one would complain about the RNG
if it doesn’t, then the sequence is not random and
will not be suitable for some other applications

truly random sequences exhibit local non-randomness!
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Further Generalizations

A [0,1) sequence

OP � Q

is

"K < ( $

-distributed if

-. " � � V P � � � ?8 u � > > > �  V P � � � ? �  D � 8 u  $ �
 

?! �
" u  # �  $

for all choices of real numbers �W� , u � , such that� V �� 8 u � V �

for

� V . V (

, and for all integers

I

such that� V I 8 K .

K � �

: a

(

-distributed sequence

K �
 :

(

-tuples starting in even positions have the
same density as

(
-tuples starting in odd positions
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Further Generalizations (cont.)

an

",K < ( $

-distributed sequence is

",K < 5 $

-distributed for� V 5 V (

an

",K < ( $

-distributed sequence is

" T < ( $
-distributed for all

divisors

T

of K

Theorem: An �-distributed sequence is",K < ( $

-distributed for all positive integers K and

(

[proof
in TAOCP].

Corollary: An �-distributed sequence will pass all the
interesting statistical tests.

Generation: Yes, there are algorithms (including at least
one by Knuth, cf. TAOCP).
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Is -distributed Random?

Simple definition D1: A [0,1) sequence is defined to be
“random” if it is �-distributed

uncountably many realizations are not even
1-distributed
but a random sequence is �-distributed with
probabilty one

Formal definition D2: A [0,1) sequence

OP � Q

is random if,
whenever property

- " OR � Q $
holds true with probability

one for a sequence

OR � Q
of independent samples of a

uniform random variable, then

- " OP � Q $

is also true.

Are the two definitions equivalent?
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Analysis of D1 and D2

D1 only deals with � � �, the first million numbers in a�-distributed series may be zero — can such a
sequence be considered random?

With probability one, a truly random sequence contains
infinitely many runs of numbers less than �, for any� ) � . This can also happen at the beginning...

Subsequence

OP � z Q

should also be random. “It ain’t
necessarily so”: if

P � z � � for all �, the counts ' " � $ are
changed by � at most, and

m q A � � E ' " � $ H � does not
change.
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Modifications of D1

D3: A [0,1) sequence is said to be “random” if each of its
infinite subsequences is �-distributed.

does not work either: any equidistributed sequence
has a monotonic subsequence

P �� 8 P � { 8 P � z 8 > > >

restrict the subsequences so that they could be defined
by a person who does not look at

P � before deciding
whether to include it in the subsequence

D4: A [0,1) sequence is said to be “random” if, for every
effective algorithm that specifies an infinite sequence of
distinct nonnegative integers

O � � Q

, the corresponding
subsequence

OP ��� Q
is �-distributed.
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Computability Issues

Computable rules:

O b� ",+ �< > > >< + � $ Q

, can be 0 or 1.

� � is
in subsequence if and only if

b� " �:=< > > >< � � D � $ � �
.

Let’s restrict ourselves to computable rules for
generating subsequences. Computable rules don’t deal
well with arbitrary real inputs though — better switch to
integer sequences:

D5: A

1

-ary sequence is said to be “random” if every
infinite subsequence defined by a computable rule is�

-distributed. A [0,1) sequence

OP � Q

is said to be
“random” if

O S 1P � U Q
is “random” for all integers

1 N


.
NB: D5 says,

�
-distributed, not �-distributed!

�-distributivity can be derived from D5.

Remaining problem:

O � � Q

is monotonic for computable
rules — does not correspond to D4
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Mathematical Randomness — At Last

D6: A

1

-ary sequence is said to be “random” if, for every
effective algorithm that specifies an infinite sequence of
distinct nonnegative integers

O � � Q

and the values��� < �� {< > > >< ���� � { , the corresponding subsequenceO ��� Q

is “random” in the sense of D5. A [0,1) sequenceOP � Q

is said to be “random” if

O S 1P � U Q
is “random” for all

integers

1 N


.

Knuth’s conjecture: D6 “meets all reasonable
philosophical requirements for randomness”.

TAOCP for more...
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