Spectral embedding and spectral clustering are common methods for non-linear dimensionality reduction and clustering of complex high dimensional datasets. In this paper we provide a diffusion based probabilistic analysis of algorithms that use the normalized graph Laplacian. Given the pairwise adjacency matrix of all points in a dataset, we define a random walk on the graph of points and a diffusion distance between any two points. We show that the diffusion distance is equal to the Euclidean distance in the embedded space with all eigenvectors of the normalized graph Laplacian. This identity shows that characteristic relaxation times and processes of the random walk on the graph are the key concept that governs the properties of these spectral clustering and spectral embedding algorithms. Specifically, for spectral clustering to succeed, a necessary condition is that the mean exit times from each cluster need to be significantly larger than the largest (slowest) of all relaxation times inside all of the individual clusters. For complex, multiscale data, this condition may not hold and multiscale methods need to be developed to handle such situations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schölkopf, B. and Smola, A. J., and Müller, K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10 (5), 1299-1319 (1998)
Weiss, Y.: Segmentation using eigenvectors: a unifying view. ICCV (1999)
Shi, J. and Malik, J.: Normalized cuts and image segmentation. PAMI, 22 (8), 888-905, (2000)
Ding, C., He, X., Zha, H., Gu, M., and Simon, H.: A min-max cut algorithm for graph partitioning and data clustering. In: Proc. IEEE International Conf. Data Mining, 107-114, (2001)
Cristianini, N., Shawe-Taylor, J., and Kandola, J.: Spectral kernel methods for clustering. NIPS, 14 (2002)
Belkin, M. and Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS, 14 (2002)
Belkin, M. and Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15, 1373-1396 (2003)
Ng, A. Y., Jordan, M., and Weiss, Y.: On spectral clustering, analysis and an algorithm. NIPS, 14 (2002)
Zhu, X., Ghahramani, Z., and Lafferty J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the 20th interna-tional conference on machine learning (2003)
Saerens, M., Fouss, F., Yen L., and Dupont, P.: The principal component analy-sis of a graph and its relationships to spectral clustering. In: Proceedings of the 15th European Conference on Machine Learning, ECML, 371-383 (2004)
Coifman, R. R., Lafon, S.: Diffusion Maps. Appl. Comp. Harm. Anal., 21, 5-30 (2006)
Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., and Zucker S.: Geometric diffusion as a tool for harmonic analysis and structure definition of data, parts I and II. Proc. Nat. Acad. Sci., 102 (21), 7426-7437 (2005)
Berard, P., Besson, G., and Gallot, S.: Embedding Riemannian manifolds by their heat kernel. Geometric and Functional Analysis, 4 (1994)
Meila, M., Shi, J.: A random walks view of spectral segmentation. AI and Statistics (2001)
Yen, L., Vanvyve, D., Wouters, F., Fouss, F., Verleysen M., and Saerens, M.: Clustering using a random-walk based distance measure. In: Proceedings of the 13th Symposium on Artificial Neural Networks, ESANN, 317-324 (2005)
Tishby, N. and Slonim, N.: Data Clustering by Markovian Relaxation and the information bottleneck method. NIPS (2000)
Chennubhotla, C. and Jepson, A. J.: Half-lives of eigenflows for spectral clustering. NIPS (2002)
Harel, D. and Koren, Y.: Clustering spatial data using random walks. In: Pro-ceedings of the 7th ACM Int. Conference on Knowledge Discovery and Data Mining, 281-286. ACM Press (2001)
Pons, P. and Latapy, M.: Computing Communities in Large Networks Using Random Walks. In: 20th International Symposium on Computer and Informa-tion Sciences (ISCIS’05). LNCS 3733 (2005)
Nadler, B., Lafon, S., Coifman, R. R., and Kevrekidis, I. G.: Diffusion maps spec-tral clustering and eigenfunctions of Fokker-Planck operators. NIPS (2005)
Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065-1076 (1962)
Lafon, S. and Lee, A. B.: Diffusion maps: A unified framework for dimension reduction, data partitioning and graph subsampling. IEEE Trans. Patt. Anal. Mach. Int., 28 (9), 1393-1403 (2006)
Yu, S. and Shi, J.: Multiclass spectral clustering. ICCV (2003)
Nadler, B., Lafon, S., Coifman, R. R., and Kevrekidis, I. G.: Diffusion maps, spectral clustering, and the reaction coordinates of dynamical systems. Appl. Comp. Harm. Anal., 21, 113-127 (2006)
von Luxburg, U., Bousquet, O., and Belkin, M.: On the convergence of spectral clustering on random samples: the normalized case. NIPS (2004)
Belkin, M. and Niyogi, P.: Towards a theoeretical foundation for Laplacian-based manifold methods. COLT (2005)
Hein, M., Audibert, J., and von Luxburg, U.: From graphs to manifolds -weak and strong pointwise consistency of graph Laplacians. COLT (2005)
Singer, A.: From graph to manifold Laplacian: the convergence rate. Applied and Computational Harmonic Analysis, 21 (1), 135-144 (2006)
Belkin, M. and Niyogi, P.: Convergence of Laplacian eigenmaps. NIPS (2006)
Gardiner, C. W.: Handbook of Stochastic Methods, 3rd edition. Springer, NY (2004)
Risken, H.: The Fokker Planck equation, 2nd edition. Springer NY (1999)
Matkowsky, B. J. and Schuss, Z.: Eigenvalues of the Fokker-Planck operator and the approach to equilibrium for diffusions in potential fields. SIAM J. App. Math. 40 (2), 242-254 (1981)
Basri, R., Roth, D., and Jacobs, D.: Clustering appearances of 3D objects. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR-98), 414-420 (1998)
Roweis, S. T. and Saul, L. K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323-2326 (2000)
Kato, T.: Perturbation Theory for Linear Operators, 2nd edition. Springer (1980)
Nadler, B. and Galun, M.: Fundamental limitations of spectral clustering. NIPS, 19(2006)
Nadler, B.: Finite Sample Convergence Results for Principal Component Analy-sis: A Matrix Perturbation Approach, submitted.
Zhou, D., Bousquet, O., Navin Lal, T., Weston J., and Scholkopf, B.: Learning with local and global consistency. NIPS, 16 (2004)
Kevrekidis, I. G., Gear, C. W., Hummer, G.: Equation-free: The computer-aided analysis of complex multiscale systems. AIChE J. 501346-1355 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nadler, B., Lafon, S., Coifman, R., Kevrekidis, I.G. (2008). Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms. In: Gorban, A.N., Kégl, B., Wunsch, D.C., Zinovyev, A.Y. (eds) Principal Manifolds for Data Visualization and Dimension Reduction. Lecture Notes in Computational Science and Enginee, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73750-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-73750-6_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73749-0
Online ISBN: 978-3-540-73750-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)