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ABSTRACT tolerance (i.e., the coexistence of different strategms) the

) _ _ _ . coexistence of fault tolerance infrastructure (e.g., groommu-
Fault tolerance (FT) is a crucial design consideration fopjcation) and non-fault tolerance infrastructure (e.€CPTIP).

mission-critical distributed real-time and embedded ([;)RI.:lB E svstems’ stri  reali . that anv fault
systems, which combine the real-time characteristics systems’ stringent real-time requirememtsan that any fau
erance Strategy must meet real-time reqUIrementS \ﬂﬁbe’ct

embedded platforms with the dynamic CharaCtenStlcsotp recovery and availability of elements and the overheagmbsed

distributed platforms. Traditional FT approaches do n " _
address features that are common in DRE systems, suct{’%4&" Specific fault tolerance strategy on real-time eldmanust
' be weighed as part of the selection of a fault toleranceegjyat

scale, heterogeneity, real-time requirements, and othar-c

acteristics. Most previous R&D efforts in FT have focusd' those elements.

on client-server object systems, whereas DRE systems RRE applications are increasingly component-orientsd, that
increasingly based on component-oriented architecturdsylt tolerance solutions must support component infoastire
which support more complex interaction patterns, such asd their patterns of interaction.

peer-to-peer. This paper describes our current applied R&BRE applications are frequently long-lived and deployed in

efforts to _develop FT technology for DRE systems. F'rﬁ hly dynamic environmentBault tolerance solutions should be
we describe three enhanced FT techniques that suppQIt, -pie at runtime to handle new elements

the needs of DRE systems: a transparent approach to

mixed-mode communication, auto-configuration of dynamfiBis paper makes two major contributions. First, it deszsithe

systems, and duplicate management for peer-to-peer intearticular characteristics and challenges of componsdatited

actions. Second, we describe an integrated FT capability foRE systems and describes three advances we have made in the

a real-world component-based DRE system that uses &ffte of the art in fault tolerance for DRE systems:

the-shelf FT middleware integrated with our enhanced FT A new approach to communicating with replicas that

techniques. We present experimental results that show tha]t) '%p : f % q % licated

our integrated FT capability meets the DRE system’s real- Slljpports tf c B%eé'Stence N pﬁn-rep_mat::aT and replicate

time performance requirements for both the responsiveness Svi??igtse:t;a elerﬁgiirgigv'tnoVg;i’;ggoverrr;%'rir:e:;i’_

of failure recovery and the minimal amount of overhead . ; .

introduced into the fault-free case. repl!cated elements that only communicate with other non-
replicated elements.

2) An approach to self-configuration of replica communica-

INTRODUCTION tion, which enables replicas, non-replicas, and groups to
o ) ) discover one another automatically as the number of, and
Distributed Real-time Embedded (DREystems are a growing fault tolerance requirements of, elements change dynami-

class of systems that combine the strict real-time characte cally.

istics of gmbedded_ plfa\tforms with the dynamic, unpredietab 3) An approach to duplicate management that supports repli-
characteristics of distributed platforms. As these DREtesys cated clients and replicated servers, necessary to support

increasingly become part of critical domains, such as defen the complicated calling patterns of DRE applications.
aerospace, telecommunications, and healthdandt tolerance

(FT) becomes a critical requirement that must coexist with thefr second contribution of this paper is that we demonstratseh
real-time performance requirements. DRE systems havaaevadvances in the context of an integrated fault toleranceatuéty
characteristics affecting their fault tolerance: for a real-world DRE system with strict real-time and fawltet-

ance requirements, a multi-layered resource manager (MLRM
used in shipboard computing systems. The fault tolerance we
developed for this context utilizes off-the-shelf faullei@nce

and component middleware with the above enhancements; and

* This work was supported by the Defense Advanced ReseargbcBré\gency supports_ a mixture _Of fault tOIeranC_e strategles and Ialtga-n
(DARPA) under contract NBCHC030119. bers of inter-operating elements, with varying degreesaotf

DRE systems typically consist of many independently dgeelo
elements, with different fault tolerance requiremeitisis means
that any fault tolerance approach must support mixed-madk f



tolerance. We then evaluate the performance of the replicaFT or RT to having very strict requirements. The following
MLRM to meet its real-time and fault tolerance requirementsgragraphs describe approaches to group communicatioitsand
and present analysis of the performance overhead of out faapplicability to DRE systems.

tolerance approach. Pervasive GCSSome approaches [11] use GCS for communica-

tion throughout the entire system. This approach provideést s
CHALLENGES IN PROVIDING FAULT guarantees and ensures that interactions between appiEand
TOLERANCE IN DRE SYSTEMS replicas are always done in the correct manner. In very IRIRE

) . i aystems, non-replica communication can be the more common
We first motivate our work by describing the fault-model an . .
. Case and using GCS everywhere can severely impact perfoeman
general approach under which our system operates. Thehrelett(aS we show in a later section)
sections introduce particular challenges with applyingsteng '
fault tolerance solutions to the needs of DRE systems, pedPervasive GCS is particularly problematic in componeigried
cally: systems due to features of component deployment. Theseydepl
o ] ] ) ) ment tools need to interact with a newly started applicatibiie
- Communicating with replicas in large scale, mixed modgisting replica continue to run. Unfortunately, the usepefva-
systems _ _ _ sive GCS would result in deployment messages going to egisti
« Handling dynamic system reconfigurations _ replicas (which were previously deployed and are not peptor
« Handling peer-to-peer communications and replicatedtsie 544itional deployment commands). Thus, replicating comepts
and servers. requires the coexistence of non-group communicationsir@ur

deployment) and group communications (once all replicag ha
A. FAULT-MODEL AND FAULT-TOLERANCE AP- peen fully deployed).

PROACH In general, being able to do some initial work before all the

A fault model describes the types of failures we expect ogtesy  reéquirements of replication are enforced is a very usefphbity
to deal with. By being specific about our fault model, we mak@nd can be used in other situations such as secure bootsgapp

clear the types of failures the system is designed to handle. registration, and other situations where initial non-iepprocess-

i ) ing or communication is required at start-up time.
For our solution, we assume that all faults are fail-stop at

the process level. When an application process fails, ipsstoGateways.Other systems [4], [12] make use of gateways on
communicating and does not obstruct the normal functioning the client-side that change interactions into GCS messdges
other unrelated applications. Network and host failures e limits group communication to communication with replicasd

seen as a collection of process failures on the element tmat Rrovides the option to use non-GCS communication pathsevher
failed. necessary. The gateway approach does come with tradeoffs,

however. First, it is less transparent than the pure GCSoagpr
because the gateway itself has a reference that has to bie-expl
itly called. Second, gateways typically introduce extrermead
(since messages need to traverse extra process boundzfioes b

We tolerate faults using both active [15] and passive [3]icap
tion strategies. In these schemes we use multiple copies apa
plication, called replicas, to deal with failures of the hpations.

In active repI|cat|ondaII reﬁllcaﬁ need to l:()je determinigtitheir o hing their final destination) and extra elements thatirte
message output, and each replica responds to every INpBAGEES o 4 de fault tolerant to avoid single points of failure. @th

Our soﬂware takes care of ensuring that only one request Flteway-like strategies [6], [16] have also been exploséilar
response is seen regardless of how many actual replicasege U, 1ha “fault-tolerance domain” specified in FT-CORBA.
In passive replication orleaderreplica responds to messages and

shares its state with any non-leader replicas so they cantbak Other projects [13] take a hybrid approach where GCS is only

leader’s place in case of a failure. These passive replioasoti Used to communicate between replicas and not to get mesisages

need to be deterministic but do need to be able to save armteesthe replicas. This places the gateway functionality on #rees-

their state when responding to a message. Using these $he|$’ige of a client-server interaction, which limits the imtetions

if a replica fails, there is another ready to act in its pland we between replicated clients and replicated servers butrhpkca-

can replace failed replicas if or when resources allow. tions for replicating both clients and servers at the same.tilt
introduces the possibility that lost messages may need teak

B. COMMUNICATION WITH GROUPS OF REPLI- with at the application level as they cannot use the guagesnte
CAS provided by the GCS.

o ) o ) ORB-provided transportsSome service-based approaches [7]
Providing fault tolerance using replication requires a neto completely remove GCS from the fault-tolerance infragtie

communicate with groups of replicas. A common approach i,q yse ORB-provided transports instead, which limits them
the use of a group communication system (GCS), to ens{[&ng passive replication.

consistency between and among replicas. DRE systems provid
several challenges for using a GCS. DRE systems can contain
large numbers of elements with varying fault tolerance arad-r
time requirements. These requirements range from not ngedi
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C. CONFIGURING FT SOLUTIONS to maintain message ordering, reliable delivery, and statesis-
) . ) ) ) _ tency, which is harder to do in asynchronous, multi-threladed
A recurring problem with using GCS in dynamic systems likgnconstrained calling patterns. It is also due to the faat the

DRE systems is keeping track of groups, replicas, theireeiees, semantics of such calling patterns in the face of replicatice
and their supporting infrastructure as elements come and @@re difficult to define.

during the life of a large system. Many existing fault tolere
solutions make use of static configuration files or enviromime
variables [4], [11]. The DRE systems that we are working with
are highly dynamic, with elements and replicated groups tha
can come and go and need to make runtime decisions abIOnUE

things such as fault tolerance strategy, level of replicgtiand .
replica placement. Static configuration strategies laekftgxibil- that we have developed, each of which addresses one of the
challenges described in the following section. First, wecdibe

ity needed to handle these runtime dynamics. Eternal [1@sdo ) .
y : aynar . [. b a Replica Communicator (RChhat enables the seamless and
support dynamic fault tolerance configurations. Greateitfikty . L

. : . fransparent coexistence of group communication and noaggr
is also available in some agent-based systems [9], but fae mo

. . . .. ... communication while providing guarantees essential forsts
common non-agent infrastructures dynamically adding tautdil . . . .
. . tent replicas. Next, we describe a self-configuration ldgethe
FT elements to a running system is not common.

RC that enables dynamic auto-discovery of new applicatzors
replicas. Finally, we describe an approach and implemientaff

D. REPLICATED CLIENT AND SERVERS AND duplicate message management for both the client- andrserve
PEER-TO-PEER INTERACTIONS side message handling code in order to deal with peer-to-pee
interactions.

FAULT TOLERANCE SOLUTIONS TO THE
CHALLENGES FOR DRE SYSTEMS

his section, we describe three new fault tolerance athsn

Support for replicated servers is ubiquitous in fault takere , ) ) )
replication solutions, whereas support for replicateert is ©Once we've described each of these solutions, we discussveow

not as common. Many CORBA-based fault tolerant solutiohdtegrated them with other off-the-shelf fault tolerancétware
concentrate onsingle-tier replication semantics, in which ansolutions to create a flexible and generally applicablet faeér-
unreplicated client calls a replicated server, which thetuns ance solution which we then demonstrated and evaluated asin
a reply to the client without making additional calls. Multi SPecific DRE system.

tiered or peer-to-peer invocations are possible but th€EBRBA

standard does not provide sufficient guarantees or infretsire A. THE REPLICA COMMUNICATOR

to ensure that failures, especially on the client-sideinguthese

invocations can be recovered from. A similar situation xisLimiting the use of group communication provides a way to
in some service-based approaches [2], [7] where peerdp-pgeparate concerns and limit resource usage and complexity i

interactions are possible but care must be taken by dewslop® large system. Where group communication is necessary for
using the functionality. maintaining consistent replicas it needs to be availalsleother

areas, where group communication is not needed, we want to

A cati it i which . remove it. This separation allows us to not disturb the dédic
peer-lo-peer communication pattems, in which componea tuning necessary for real-time applications when grouproam

be clients, servers, or even bath simuitaneously. Many gamgr nication is not needed. Analysis of our replication scheshesvs

DRI.E .systems are deve_loped based on gompongnt models i the only places where GCS communication is necessary is
exh|b|t peer—to—p_eer.calllng_ st_ructure, .makllqg solutitsased on when interacting with a replica. That is, only replicas ahdse
strict server replication of limited applicabilty. components that interact directly with them need the guasmn
Since components can be both clients and servers, componpnivided by group communication. Other applications cae us
oriented DRE systems can have chains of nested calls, wh&@P without having to unnecessarily accept the conseqsesfce

a client calls (or sends an event to) a server, which in tuusing group communication.

calls another server, and so on. This leads to a need to @ns
replication of multiple tiers of servers. Research intoparting
fault-tolerance immulti-tiered applications is still ongoing. Some
of the most promising recent work has concentratedtwo-
tier replication specifically addressing applications with a no
replicated client, a replicated server, and a replicatedldese

In contrast, component-oriented applications routinekhilait

"Phere are several advantages to limiting the use of GCS. Tste fi
reason is that GCS introduces a certain amount of extradgten
overhead, and message traffic that is undesirable in the non-
replica case and, in fact, can jeopardize real-time remergs.
nSec:ond, many off-the-shelf GCS packages, such as Spread [1]
have built-in limits on their scalability and simply do nobwk

[8]. with the large-scale DRE systems that we are targetingllizias
General, unrestricted calling patterns, such as asynobnsocalls, described earlier, many of the components of our targetel DR
nested client-server calls, and even callbacks (wheretslialso systems are developed independently. Since the non-aégdic
act as servers and can have messages arrive via the calllde is the prevalent one (most components are not repljcate
mechanism while replies from sequential request-replysamgss retrofitting these components onto GCS, with the subsequent
are pending), present tremendous challenges for faultatode testing and verification, would be a tremendous extra adtfed e
solutions. This is partially due to the need for fault toteza for no perceived benefit.
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Therefore, we developed a new capability, called a Replicaly used by non-replicas.

Communicator, with the following benefits: We have realized a prototype of the RC pattern in the system

« The RC supports the seamless co-existence of mixed métgscribed in the next section and have implemented it usiag t
communications, i.e., group communication and non-grodEAD framework [11] and its system call interception layas,

communication. illustrated in Fig. 2. CORBA calls are intercepted by MEADheT
« It introduces no new elements in the system. RC code maintains a lookup table associating IP addressks an
« It can be implemented in a manner transparent to appligdart numbers with the appropriate transport and group ndme i
tions. GCS is used. The default transport is TCP; if there is no antry

the lookup table, the destination is assumed to be a norcasgd
The RC can be seen as the introduction of a mel& in an ap- entity. For replicated entities, the RC sends the requéstube
plication, along with the corresponding code and functityn&®  spread GCS, which provides totally-ordered reliable roatting.
support it. That is, the application now has three commuitioa Fqy replies, the RC remembers the transport used for theacall
patterns: returns the reply in the same manner.

1) Replica to replica communication, which uses GCS

2) Non-replica to non-replica communication, which use$TC

3) Replica to non-replica communication, in which the regpli
always uses GCS and the non-replicas make use of an RC
to route the communication to a replica over GCS while

using TCP for communicating with other non-replicas Replica P | Por | Transpon
Communicator

X Y Gcsa1
A B GCEG3
Client
i L T
lIoP
Repli
I:i Lookup ref LI

- >

\ E

Non-
Replicas

Send to Send to
reps Non-reps

Fig. 1. Generalized pattern of the Replica Communicator

. . . . . Fig. 2. The Replica Communicator instantiated at the systalinlayer
An abstract view of the RC is illustrated in Fig. 1. Its basic

functionality consists of the following pieces: The Replica Communicator was crucial for resolving the feob

. Interception of client calls (In this case calls used to seftytlined previously, namely that the CCM deployment infras
messages formatted using CORBA 110P) tructure needs a way to communicate with exactly one replica

« A lookup table to hold references to replicas and to nofYring bootstrapping so that start-up messages are nottsent
replicas already running and processing replicas. We used the RC with

« A decision branch that determines whether a call is destin@d! CCM-based active and passive replicas to allow a reptica
for a non-replica or a replica and treats it accordingly be bootstrapped while not disturbing the existing replicas

« A means to send a message to all replicas, e.g., using
multicast, looping over all replica references, or usingSGCB- A SELF-CONFIGURING REPLICA COMMUNI-
« A default behavior, treating a message by default as one @ATOR
the branches
« A configuration interface to add references to new serve
to add new replicas to an existing group, or to remove
replica (if it has failed)

Ezé)pulating the table distinguishing GCS and TCP endpoias ¢

2 done in multiple ways. One way is to set all the values
statically at application start-up time using configuratiiles.
However, this leads to static configurations in which groaps
Documented in the above pattern, the RC can be realized wilbfined a priori and supporting dynamic groups and configura-
multiple implementations, from application specific implen- tions is difficult and error prone. To better support the dyita
tations to easier to integrate solutions using standardriios characteristics of DRE systems and to simplify configuratiad
techniques and library code. replica component deployment, we developed a self-cornfigur

The RC functionality resides in the same process space as ({ﬁgability for the RC.

application. This improves over traditional gateway apgtes, When a GCS-using element (i.e., a replica or non-replica RC)
because it introduces no extra elements into the systeniceNois started, we have it join a group used solely for distritgti
that the RC does not need to be made fault tolerant, since iréference information. The new element announces itsefh¢o
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other members of the system, which add an entry to their Ipoksenders independently interact with a shared receiveyiihpor-

table for the new element. An existing member, chosen ancemaant to differentiate messages based not only on messadautD,
fault-tolerant in the same way that a leader is chosen in warto use a combination of message ID and source. In Fig. 3 both A
passive replication, responds to this notification with enptete (replicated as A-1 and A-2) and C use sequence number 1 to send
list of system elements in the form of an RC lookup table. Thee message to B, but since suppression uses both the sequence
new element blocks until the start-up information is reediv number and the sender there is no confusion. A-2's duplicate
to ensure that the necessary information is available whemma&ssage is suppressed while C's non-duplicate is allowed.
connection needs to be established (i.e., when the elemagsnm
a call). Since GCS-using elements always register and aokddl
at start-up until they are finished registering, the RC wliNays
have all the information it needs to initiate any connectitin
there is no entry for a given endpoint it means that TCP sho
be used for that connection.

Our solution enables duplicate management in the highly dy-

namic situations typical of DRE and component-based soéwa

Requests and replies can be dealt with in parallel and are

Lﬁaaﬁected by failures that could reset application-leseguence
mbers. We replace the ORB supplied request ID with a unique

and consistent value for each request or reply and disshgui

One complexity that does not affect users, but needs to ntaknessages upon receipt using both the ID as well as the sending

into account while developing the self-configuring RC, istth group. This allows replicas to come and go without introdgci

the relationships between elements are not necessarilgitikee. any extra messages at the application layer.

Simply becauseR(C; interacts with replicakR via GCS and

R also interacts withRC> via GCS, this does not mean that IMPLEMENTATION OF AN INTEGRATED FT

RC, should use GCS to interact witlRC>. In the case of CAPABILITY

manual configuration this is handled by having a configunatio

specific for each application. However, in our automatedtgm As part of a case study we performed on providing fault toleea

it is necessary to do more than note that a given endpoint dar@ real-world DRE system with stringent real-time requmients

be contacted via a given GCS group name. We also need[1d], we implemented a fault tolerance architecture iraéigg

distinguish the circumstances where GCS is necessary aseé ttthe techniques described previously with other off-thefstault

where it is not. We accomplish this by noting whether a refeee tolerance software to make a pre-existing software badedcal

refers to a replica or non-replica. Given that interactinighva the Multi-Layer Resource Manager (MLRM) fault tolerant.erh

replica or being a replica are the only two times GCS is nesgss MLRM is a critical piece of system functionality because it

an RC knows to use GCS when it is interacting with a repliceploys mission-critical applications and enables theootdinue

(and TCP elsewhere) and replicas always use GCS. functioning after failures by redeploying them.

There are three distinct hierarchical layers of the MLRMglea
C. CLIENT- AND SERVER-SIDE DUPLICATE MAN- corresponding to a physical division:

AGEMENT « Node Provides services (such &art Applicationor Stop

. S . Application) for a specific node. One of this layer’s tasks is
One step towards a solution for replication in multi-tiesygtems bp n b Y

is the ability for each side of an _interaction to perform bdlient :g fﬁiﬁgfgglﬁg doefsairr)lpzhcstg;gtse.;here are many (hurered
and server role_zs, at the same t|me_. They 6_“30 need to detgct A% Pool Provides services and an abstraction layer for phys-
suppress dgpllcate messages wh!le allowmg nested calt_netq ically clustered groups of nodes called pools. One of this
mad_e. All this needs to be Fione without locking up an ente_re t' layer’s responsibilities is to designate nodes for appibca
waiting for a response, which can guarantee consistentyisbu

2 to run on.
very limiting. « Infrastructure Provides the control interface to operators and

Method 1 coordinates the pool-layer services. One of this layeskda

/\ is to designate pools for applications to run in.
Callbacl{j

Component A-1

Al BL*¥ The MLRM is implemented using a number of base technologies
\ / \ / including DANCE [5]; CIAO,which is a C++ implementation of
Component A-2 \S; % ilﬁx / CCM; a real-time CORBA ORB, TAO; and JacORB, a Java ORB.
Component B 1 Alc*l* The MLRM takes care of the fault tolerance of individual ap-
Cl/\ plications, by restarting them if they fail (on a differerdde if
Component C the cause of the failure is a node failure). However, ourgtesi

X - Suppressed duplicate messages

ZN* - Reply to message N from group Z requirements state that pool failures (entire clustersoales) are
a possibility. Since the infrastructure-level componemeshosted
Fig. 3. Duplicate management during peer-to-peer intenast on nodes within one of the pools, the failure of an arbitrary

pool could lead to the failure of the infrastructure-levehipo-
One characteristic necessary to support duplicate mareges nents, rendering the entire system unusable. Thereforeaali
that messages need to be globally distinguishable, bothirwittolerance focus is on the availability of the infrastruetlevel
an interaction and between multiple interactions. Whentiplal MLRM components and recovery from catastrophic pool faiur
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The goal was to have an instance of the infrastructure-lewede wherever possible, the characteristics of other MLRIM-co

components in every pool, so that the failure of any pool wouponents made it infeasible. TH&lobal Resource Status Service

not bring down the infrastructure layer MLRM functionality = (GRSS)which monitors resource usage and system health) and
ndwidth Broker (BBYwhich manages bandwidth allocation)

elements were written in Java and used JacORB. The fact

that JacORB is inherently multi-threaded and the fact that t

application logic uses internal timers means that the GR86E a

« The infrastructure layer functionality, since it is crilc BB elements are non-deterministic. The GRSS has a very small
functionality, needs to be nearly continuously availablegmount of state, and the BB element is stateless (it uses a
motivating fault masking or very rapid recovery. back-end database to store all state). We determinecpéssive

« The MLRM has to deploy many hundreds or thousands tfplication was the best choice for the GRSS and BB elements,
application components, and there are hundreds or thosisaasl long as we could implement the passive recovery within our
of node level service components, most of which do not neeghl-time requirements (the next section shows that we. did)
to be fault tolerant to the same degree. Yet some of theBee performance trade-off is favorable. With passive oepion,
need to communicate with the infrastructure layer compoverhead on ordinary message traffic is lower, but periogites
nents. Existing off-the-shelf fault tolerance softwareedis transfers are necessary. The state being transferreddse tiwvo
GCS systems for the group management; reliable, ordeldments was much smaller (when compared to the state of the
multicasting; and consistency guarantees that we needgy, but the GRSS receives frequent messages reporting ®n th
However, they did not handle mixed-mode communicatiofealth of nodes, processes, and pools.

and r_e-hostlng the entire system over GCS was out of tWe used the MEAD fault tolerance framework [11], extended
question dug to scalability and performgnce concerns. ThiRh our new Replica Communicator and client-side dupécat
motivated using the RC approach described earlier. suppression, and the Spread GCS to implement our active and
« The infrastructure cofmp(r)]nehnts arbe |r|;npllt_amenteddas CClMssive fault tolerance. Spread provides group membersaip
components, many of which are both clients and Servelyement and total ordered, reliable multicast of messagg®tip

aqd with multiple tiers _need?ng replication. I_3ecause_ Fhembers. We used Spread’s group membership features @ dete
this, we needed both client-side and server-side duplical® , as

management, as described earlier.

« The infrastructure components differed in their amount d¥hile the GRSS element used a standard passive replication
state and their use of non-determinism. Despite our need f&iheme that broadcasts the primary’s state on every stategeh
continuous availability, some components simply could néte BB element used a custom passive scheme. The BB element
be actively replicated. We had to use mixed-mode replickept all its state within a MySQL database. We used MySQL's
tion, with active and passive schemes applied where they riBtstering mechanisms (with some customizations by oualsel

the requirements and matched the component characteris@¥ators from Telcordia) to achieve a replicated databaseeS
the BB element itself had no state, and the MySQL back-end

... replicated itself using the built-in clustering mecharssme were

Pool 2: e .

© able to use an optimized passive scheme for the BB element tha
. did not transfer state from the primaries to the secondaries

D

. None of the pool-level components are replicated, but séver
U must communicate with replicated infrastructure-leveimpo-

Fig. 4. Target system architecture nents, and therefore use the RC pattern (i.e., PA-1, RA-d, an

PRSS-1). Note also that the Node Application (NA) composient

The relevant MLRM components and their communicationsgpat@re not replicated, and use regular TCP connections to cemmu
are shown in Fig. 4. Replicated components are shown in box@i€ate with the Resource Allocator (RA) component.
non-replicated components are ellipses. Communicatichspa

that need to go over GCS are shown as dotted lines, and TCP EVALUATION OF THE INTEGRATED FT
connections are shown as solid lines. SOLUTION

MLRM is representative of classic DRE systems, and exhib
many of the characteristics outlined previously, includithe
following:

:

v ~_ .

The Infrastructure Allocator (IA) component makes top-level
application deployment decisions. This component hasfigignt We measured the performance of our fault tolerance soliidin
state, but is largely deterministic. We determined thative in terms of meeting the real-time recovery requirements iand
replication was most appropriate for this component. Actiterms of the impact of the solution on the fault-free perfante
replication provides fault masking, so that there is alwaysplica of the system.

available for _progessing messages, and.allo_\NS_l_JS to avaid Sizirst, we measured the failure recovery time (i.e., dowatim
transfers, which in the case of the IA (with significant stétet
infrequent message traffic) reduced the impact of faultravlee
on system performance.

during a failure) using two failure scenarios. Second, wasueed
the fault-free overhead (i.e., the extra latency duringmadroper-
ation introduced by our fault tolerance software) by conmgathe
While active replication would seem the appropriate chdiwe “raw TCP” performance of a simple client-server configurati
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against the same client-server using our fault tolerartivgoé.  the second (cascading) fault when recovery was nearly catepl
the worst possible time with respect to recovery from the firs

A. SINGLE POOL FAILURE SCENARIO failure.

For our first scenario, we considered a single pool failure, & OVERHEAD OF THE FAULT TOLERANT SOFT-
which a whole pool fails instantaneously. This kind of fadu WARE

might result from a major power failure or destruction of ating

facility. We simulated this failure by Creating a networl«l}iﬁ{)n We measured the fault-free overhead of C++/TAO and
so that packets sent to the failed pool would be dropped attaro java/JacORB versions of our fault-tolerance. These tedtaat

This is an accurate simulation of failure and has the adg&ntanyolve the MRLM system, but instead used a simple cliemtese
that we are able to determine the time the failure occurreti¢o configuration.

millisecond. . ,
Our goal was to compare the latency of using CORBA with raw

The experiment evaluated two things, (1) that the missiitiegl TCP against the latency of using CORBA with our fault-tofera
functionality (i.e., the infrastructure layer MLRM) coutdcover middleware.
from the failure and (2) the speed of recovery, with the goal

being that a failure should not inhibit processing for mdrart 14
one second. We measured the recovery times for the actively
replicated and passively replicated elements using imstriation

we inserted in the fault tolerance software. We measured the
recovery time for the database replication using a progizamn t
made constant (as fast as possible) queries on the databéses

the database failover occurs, there is a slight increageeitire it
takes to do the query, since the database blocks until itrié@ies

that one of the replicated instances is gone (and is nevemngom ol
b k 2 8 32 128 512 2048 8192 32768
ac ) Forward Packet Size (bytes)

N
T
<
o
8
o
Ey)
@
=
o
o

1.

0.8

Round Trip Time for 1-byte reply (ms)

As illustrated in Fig. 5A, the MLRM recovered all its functiality
well within our real-time requirement. The MLRM elements
made fault tolerant using MEAD, Spread, and our enhancesne, -
recovered on average ingunder 130 Fr)ns, with a worst case n&;povi\he results shown in Fig. 6 show that our fault toleranceveate
in less than 140 ms. The database, made fault tolerant us S approximately a factor.of tvvo_ to' the Iatency compared to
MySQL’s clustering technique, recovered on average wifl40 RBA over TC’:P' However., if we didn’t need replicated Sesver
ms, with a worst case recovery time under 170 ms. then we wc_)uldnt use ar_1yth|ng but regular TCP (the whole poin
of the Replica Communicator). So we also ran the same tasts, b
with an actively replicated server. To implement the regikcl
server in the TCP version, we constructed a simple sequientia
invocation scheme where in order to make a single logicéhtical
client would make serial invocations on each server ingambe
results from two and three replicas are shown in Fig. 7. While
this implementation may be simplistic in terms of not making
parallel invocations, it also does not deal with multi-plhasmmit
protocols which would be used to provide guarantees neemted f

(A) (B) replicas and is a reasonable first-order stand-in for suatopols.
Fig. 5. Experimental Results for Scenarios A and B

Fig. 6. Latency of Transport Mechanisms

170

160

very (ms)
very (ms)

150

140

Time from Failure to Recoy
e
5
8

Time from Failure to Recoy

GRSS 1A BB-frontend BB-DB GRSS 1A BB-frontend BB-DB

In the two replica case, the results show that the fault olee

software using GCS performs nearly as well as TCP, intradyci

B. TWO CASCADING FAILURES SCENARIO very little extra latency for its total order and consensapa:
bilities. In the three replica case, the fault tolerancehwBCS

Our second scenario evaluated that the fault tolerant MLRperforms better than raw TCP.

could recover from cascading failures. We used three pauds a

induced failure on one pool. Before the recovery was comapleph ANALYSIS OF EXPERIMENTAL EVALUATION

we induced a failure on another pool.

Our results indicate that our FT solution enables fast regov

As with the single-pool failure’s results, the missiontical _ ' : : :
gie-p both in a single failure and cascaded failure scenarios.

MLRM functionality survived the cascading failures. Alsas
expected, the recovery times (from the time of the first fajjJu The fault-free overhead experiments highlight the impuoréaof

are about twice those of the single failure, but still welthim a the Replica Communicator. If every component in the system
few hundreds of milliseconds, as shown in Fig. 5B. The reppvewas required to use our fault tolerance software, the cuiiwiala
times are higher than for the first scenario because we imduedfect would adversely affect the real-time applicationsour
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Fig. 7. Latency of Transport Mechanisms with 2(A) and 3(B)lies

system. This supports our claim that only components tlatire
fault tolerance infrastructure (i.e., replicas and corgrds that

(4]

(5]

(6]

communicate with replicas) should use it, and using the RC

to limit the fault tolerance infrastructure to where it iseded
improves real-time performance, while at the same time lamab

[7]

total ordered messages, consistency among replicas amg gro

management.

The experimentation we have done gives us confidence thFSt]

our software fault tolerance solution handles failurediciehtly

rapidly and within acceptable overhead parameters for- soft
real time systems as exemplified by the requirements for our

evaluation context. However, this may prove insufficienteveh
hard real-time guarantees are needed.

CONCLUSIONS

This paper has described advances we have made in softwWafd

support for fault tolerance for DRE systems. Our approachry v
successful in this project — was to utilize off-the-shelilfaoler-

9]

ance software where it was applicable for our needs, cugtomi

it where necessary, and develop new reusable capabilitiesew
none existed.

[11]

The three techniques that we presented in this paper — thecRep

Communicator, self-configuration for replica communiecatiand
client- and server-side duplicate management — extendirexis
fault tolerance techniques to make them suitable for corapbn
oriented DRE applications. Yet, they are complementanaia
interoperable with, other existing fault tolerance segsic To
illustrate this, we have instantiated them and applied thera
real-world DRE example application. Our experiments shioat t
these solutions provide suitable real-time performancéadth
failure recovery and fault-free cases.
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