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Abstract—Cloud service providers (CSPs) often overbook their
resources with user applications despite having to maintain
service-level agreements with their customers. Overbooking is
attractive to CSPs because it helps to reduce power consumption
in the data center by packing more user jobs in less number of
resources while improving their profits. Overbooking becomes
feasible because user applications tend to overestimate their
resource requirements utilizing only a fraction of the allocated
resources. Arbitrary resource overbooking ratios, however, may
be detrimental to soft real-time applications, such as airline
reservations or Netflix video streaming, which are increasingly
hosted in the cloud. The changing dynamics of the cloud preclude
an offline determination of overbooking ratios. To address these
concerns, this paper presents iOverbook, which uses a machine
learning approach to make systematic and online determination
of overbooking ratios such that the quality of service needs of
soft real-time systems can be met while still benefiting from
overbooking. Specifically, iOverbook utilizes historic data of
tasks and host machines in the cloud to extract their resource
usage patterns and predict future resource usage along with the
expected mean performance of host machines. To evaluate our
approach, we have used a large usage trace made available by
Google of one of its production data centers. In the context of
the traces, our experiments show that iOverbook can help CSPs
improve their resource utilization by an average of 12.5% and
save 32% power in the data center.

Keywords-resource overbooking, cloud computing, soft real-
time performance.

I. INTRODUCTION

Resource overbooking [, [2]], [3], [4] is a common prac-
tice adopted by Cloud Service Providers (CSPs) to increase
resource utilization of the servers in a data center and reducing
the number of physical servers that are powered on. The
outcome for the CSPs is a profitable business model and
lower energy bills due to lesser number of servers being used.
Resource overbooking entails committing more resources,
such as CPU and memory, than are actually available on the
physical host machines to the applications — in our case more
virtual machines (VMs) that host user applications — that are
packed onto physical servers than can actually fit. The resource
overbooking technique is a feasible option for CSPs to adopt
because cloud users often tend to overestimate the resource
requirements for their applications; in reality they use just a
fraction of the requested (and hence allocated) resources.

This claim can be validated by observing the dynamics of
a production data center whose usage trace is made available
by Google Inc [5]]. After analyzing the actual CPU usage, the

host machine CPU capacity, and the requested CPU capacity
of the several host machines in the cluster trace data, we
observed that the actual CPU usage of a task is much lower
than the allocated amount of CPU, which clearly indicates that
users overestimate their resource needs. Without overbooking,
this situation yields very low resource utilizations in data
centers, which is detrimental to the CSP as well as to the
environment. It is estimated that in Google’s data centers, the
resource utilization is maintained between 40-60% whereas
this percentage is around 7-25% in other data centers [6].

To enable overbooking the servers of data centers that
support virtualization, most well-known hypervisors, such as
Xen, KVM, and VMware ESX Server support a configuration
option for resource overbooking ratios. Even the cloud infras-
tructure software that manages the cloud platforms, such as
OpenNebula, OpenStack, and Eucalyptus allow overbooking.
For example, OpenStack has a feature for allowing up to 16:1
and 1.5:1 CPU and memory overbooking ratios, respectively.
A 16:1 CPU overbooking ratio means that one physical CPU
(pCPU) core can be overbooked by up to sixteen virtual CPU
(vCPU) cores. Techniques, such as transparent page sharing,
memory ballooning, memory compression, and swapping to
disk are some of the methods that hypervisors utilize to make
memory overbooking possible [7].

The resource overbooking approach adopted by CSPs tends
to be suitable for enterprise applications where most jobs are
of the batch processing type and for whom throughput is more
important. However, as more applications with soft real-time
requirements, such as airline reservations, video streaming
(e.g., Netflix), real-time stream processing, and massive open
online courses, get hosted on the cloud, resource overbooking
may cause significant jitter giving rise to unpredictable perfor-
mance, which is not acceptable for this class of applications.
Moreover, in accordance with the Service Level Agreements
(SLA) between the CSP and the customer, service providers
have to assure certain performance requirements, such as
response time and availability, which is hard to assure without
a systematic approach to resource overbooking.

At one end of the spectrum of overbooking possibilities lies
lower overbooking ratios, which can result in high satisfaction
for cloud users, but can be detrimental to CSPs who would
not be effectively and economically utilizing their resources.
At the other end of the spectrum exist higher and arbitrary
overbooking ratios, which might result in CSPs utilizing



their resources effectively thereby saving on energy costs and
making their services more profitable, however, the soft real-
time systems hosted in the cloud will suffer from not receiving
their desired quality of service (QoS) due to the high resource
contention and interference caused by overbooking [8], [9],
(1O], (L]

The key challenge lies in systematically identifying effective
overbooking ratios which will make the right trade-offs in
meeting these conflicting objectives. Note that since cloud
data centers are made up of heterogeneous machines, a single
overbooking ratio may not be effective. Finally, since the
cloud environment is highly dynamic, an offline computation
of overbooking ratios is not applicable. In the current state of
the art, system administrators determine overbooking strategies
for their data centers by analyzing the workloads of the
VMs through resource monitoring applications or by basing
their decisions on earlier studies [4] on optimum overbooking
ratios for CPU, memory, and disk . However, none of these
contemporary approaches might be appropriate for all the
CSPs because of the workload heterogeneity and the risks of
errors due to human involvement. These limitations call for
an online and autonomous solution.

To address these limitations, this paper presents iOver-
book, which provides an autonomous, online and intelligent,
performance-aware overbooking strategy for heterogeneous
and virtualized datacenters hosting soft real-time applications.
iOverbook autonomously forecasts asymmetric overbooking
ratios, i.e., an overbooking ratio per host machine in the
data center, by carefully considering the historic resource
usage of the applications and not jeopardizing the performance
requirements of the soft real-time systems. Specifically, it
predicts the mean CPU and memory usage of the physical
host machine a future specified time interval — in our case an
hour — by utilizing historic resource usage patterns along with
some other features, such as CPU capacity, memory capacity,
and requests for CPU and memory, and employing machine
learning algorithms. Overbooking ratios for the next hour for
CPU and memory are then computed based on a mathematical
formula. iOverbook continues to adjust these ratios till they
converge to a precise value, which will assure certain QoS
levels for the hosted applications. The prediction window
then slides to the next hour. Note that resource overbooking
can cause performance interference and affect VM placement,
however, these challenges are investigated in our ongoing
work [[12]].

The research contributions in this paper are summarized
below:

o It presents an intelligent and autonomous, performance-
aware overbooking strategy for each host machine in
heterogeneous virtualized datacenters that satisfies soft
real-time application QoS (See Section [III).

o Through experimental validations, it analyzes how re-
source utilization levels can be improved and power con-
sumption reduced in the cloud data centers by utilizing
iOverbook (See Section [[V).

The rest of this paper is organized as follows: Section

deals with relevant related work comparing it with our contri-
butions; Section presents iOverbook in detail; Section
evaluates the effectiveness of iOverbook; and finally Section
presents concluding remarks alluding to future work.

II. RELATED WORK

This section compares related work synergistic to our work.
Predicting future resource usage of VMs based on historic
data is a significant aspect of resource overbooking for which
our work has leveraged machine learning as a technique.
Our decision was based on the observation that machine
learning-based approaches have been widely used in different
domains for forecasting the future. For example, in the energy
domain, [[13]] predicts future usage of electrical consumption
and [14] predicts hot water production, respectively. In the
grid and cloud domain, [15] predicts future workload and [1]]
predicts resource utilization patterns.

Moreno et al. [1]] presented a neural network-based over-
allocation strategy to increase the energy efficiency in data
centers and satisfy performance requirements of real-time
applications. The mechanism presented in that work predicts
the customer’s resource utilization based on historic data and
computes the amount of resources that will be allocated to a
VM by employing cost-benefit analysis and an overallocation
algorithm. The work in that paper differs from our work in
that it does not provide per-host resource overbooking ratios
as we do. However, the forecasting of resource consumption
has similarity to our work.

Tomas and Tordsson [16] proposed a cloud computing
management framework comprising admission control for
horizontal elasticity (i.e., whether to accept more VMs) and
scheduling techniques for vertical elasticity (e.g., CPU, mem-
ory, and bandwidth). Additionally, they assumed that no SLA
violations occur if the used capacity is within the bounds of
the physical host machine. This might not always be the case
due to the resource contention and interference effects. Our
work differs from this work in two ways. First, we provide
asymmetric overbooking ratios for a specified timing window
(e.g., next one hour). Second, we take many parameters, such
as the number of VMs on the host machine and mean CPU
usage, into account to precisely predict the performance when
overbooked. This significantly alleviates the performance in-
terference problem.

Our earlier work [17] developed a model predictive algo-
rithm for workload forecasting based on which an autonomous
framework for resource autoscaling for the cloud was de-
veloped. This work was also based on insights gained from
usage traces; in that case from the Soccer World Cup of
1998. Although the goals of our previous and current work are
performance assurance, the previous work focused on deciding
how many resources are needed for a specific application
and how to proactively scale them up or down based on
prediction of the incoming workload. The end objective was
to trade-off performance with the price the customer pays for
using cloud resources. In the current work, we take a CSP-
centric viewpoint where the objective is to pack as many VMs



on the physical resources as possible to maximize resource
utilization while being cognizant of application performance
requirements.

In the context of supporting real-time applications, Zhang
et al. [I1] proposed CPI’> to improve the performance of
latency-sensitive jobs when they experience performance inter-
ference. CPI? detects CPU performance interference incidents
by automatically identifying jobs that cause the issue, and
optionally shields victim jobs by throttling the triggering task.
The authors prove that CPI (cycles-per-instruction) is a good
metric to represent application response time. Using these
insights, we have used the multiplicative inverse of CPI (i.e.
instruction per cycle or IPC) as the key metric to measure the
performance of tasks and develop our algorithms.

The technique we have presented in this paper was made
possible after gaining deep insights from a usage trace of a pro-
duction data center released by Google [5]. We have leveraged
the findings from recent analyses of this trace [6], [[18], [19]
that provide deep insights on workload characteristics, task
classification, statistical profile and actual resource utilization.

III. IOVERBOOK SYSTEM ARCHITECTURE AND DESIGN

Figure ] depicts the architecture of iOverbook, which is our
intelligent, machine learning-based approach for online deter-
mination of effective overbooking ratios for the machines of
a data center. Specifically, we focus on the CPU and memory
overbooking ratios for each individual host machine within a
specified future time interval. Since the online computation
of effective overbooking ratios must assure the performance
of soft real-time applications, we require an understanding of
how the resources are currently utilized and the properties
of existing applications so that we can predict the resource
usage for a future specified time interval. Once we know
this information, we can determine how much overbooking
is feasible and whether it is acceptable for soft real-time
applications or not.
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Fig. 1: iOverbook System Architecture

These responsibilities motivated a three stage design for
iOverbook, which comprises: (1) a resource usage predictor,
(2) an overbooking ratio prediction engine, and (3) a perfor-
mance assessor. The resource usage predictor and performance

assessor components retrieve historic data from a training set
repository to train their internal neural networks. iOverbook
utilizes mean CPU and memory request, mean CPU and mem-
ory usage, mean performance, mean VM count, mean CPU
and memory capacity, and CPU and memory overbooking
ratios as input parameters. Section [[II-A] justifies the choice
of these parameters. For this paper, we have showcased how
iOverbook predicts the overbooking ratios for a time window
of one hour, however, this property is tunable. The rest of this
section explains the three components of iOverbook.

Google Inc. has released a data center cluster trace collected
during a period of 29 days in May 2011 and a document
called Google cluster-usage traces: format+schema, which
describes the semantics, format, and schema of the trace in
detail [5]]. This workload consists of substantial data for more
than 12,000 heterogeneous physical host machines running
4,000 different types of applications and about 1.2 billion rows
of resource-usage data. We utilized all 29 days (i.e. 696 hours)
of data to gain the overall insights and train internal neural
networks of iOverbook. To avoid overfitting in the artificial
neural networks (ANNs) of iOverbook, the noisy data in the
training set was cleared out and numerous sets of training data

were provided for generalized training.

Most inputs in Figure [T] are obtained via collecting usage
information of the resources. The overbooking ratio inputs are
computed using Equation (Z) for each host machine in the
cluster.

Total ResourceAllocated = Z ResourceAllocated; (1)
i=0
Total Allocated
Overbooking Ratio = ota Resourc? ocate 2)
Capacity
where

Total ResourceAllocated : Total amount of resources allocated
to all the tasks on host machine
n : Total number of the tasks
ResourceAllocated : Size of allocated CPU or memory
Clapacity : Resource capacity of host machine

A. Resource Usage Predictor

The purpose of the resource usage predictor is to predict
the mean CPU and memory usage of the host machine within
the next hour (or the specified time interval). A two layer,
feed forward ANN is employed for prediction. ANNs have
a powerful ability to model and generalize both linear and
non-linear relationships between input and output, and only
a hidden layer is sufficient to make any prediction [20]. The
sliding window mean CPU and memory resource usage data,
and mean CPU and memory requests along with the host
machine’s resource capacity are the extracted features that are
provided to the resource usage predictor.

The structure of the ANN is depicted in Figure [2] The
Levenberg-Marquardt back-propagation algorithm is employed
for training the ANN. The topology of the ANN for predicting
mean CPU and memory usage within the next specified time
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Fig. 2: Structure of the Resource Usage Prediction Artificial
Neural Network

interval — in our case one hour — is shown in the mathematical
formulation of the ANN below.

Input Layer : cu(t — 1), cu(t — 2), mu(t — 1), mu(t — 2),
er(t —1),er(t —2),mr(t —1),mr(t —2),
cc, me

Hidden Layer :

Activation Function

23 neurons

(in hidden layer)
: Tangent Sigmoid
cu(t), mu(t)

(in output layer)

Output Layer :
Transfer Function
: Pure Linear
where
t = The predicted hour

The reason behind utilizing these input parameters for re-
source usage prediction is that they are the most common
factors affecting the CPU and memory usage of a host ma-
chine. CPU and memory capacity are also provided to the
ANN due to the heterogeneity of data center machines, which
help convey better correlation between input and output.

For testing and experimentation, 40 of the host machines
which have the highest mean CPU usage in the 29 days usage
of the entire cluster trace are utilized (i.e. sufficient number of

host machines have been used for the experimental study). The
idea behind this filtering is to study only those host machines
which hosted more compute-intensive tasks.

The best performance of the ANN was produced with 23
neurons in the hidden layer using a trial-and-error approach
with the mean squared error value (MSFE), which is the
averaged squared difference between inputs and outputs, of
0.0001. The regression (R) value, which is the correlation
between inputs and outputs, is 0.9. The generated M SE and
R values indicate that the resource usage predictor predicts
outputs with a negligible error value, and that the output
parameters of the ANN are very well correlated with its input
parameters.

The selection of the activation function made in the hidden
layer and output layer are based upon the ANN type (e.g., back
propagation dictates an activation function in the hidden layer
that provides a derivative), desired output value constraints,
and on trial-and-error performance results of the ANN.

The predicted CPU and memory usage values along with
the actual usage values for each host machine are illustrated
in Figure 3| The training ANN involved using 695 hours of
the cluster trace except the 696th hour. The prediction was
made for the 696th hour. As seen in Figure [3] the predicted
resource usage value follows the actual usage values well
enough because of the decent M .SE and R values.

The resource usage predictor can also predict the resource
demand when flash crowds occur by refining itself through
learning new resource usage data. This challenge has already
been addressed and discussed in our earlier work [17].

B. Overbooking Ratio Prediction Engine

After the resource usage predictor predicts the CPU and
memory usage for the next one hour time window, the
overbooking ratio prediction engine computes the CPU and
memory overbooking ratios per machine, and hands it to the
performance assessor. The performance assessor component
predicts the performance by using these new overbooking
ratios and hands it back to the overbooking ratio prediction en-
gine. This two way communication between the overbooking
ratio prediction engine and performance assessor iterates until
the predetermined convergence values (calculated manually
from the historic data in trace) are satisfied. These conver-
gence values are justified in Section The details of the
computation are shown in Equation @). A discrete step size
called “SecuritySlack™ is used by our iterative approach to
converge on an acceptable overbooking ratio.

SecuritySlack(t) = Capacity(t) x SecurityPercentage

(3)
. ) Capacity(t) — SecuritySlack(t)
book tio(t) = A
OverbookingRatio(t) % PredictedUsage(t)
C))

ResourceRequest(t) = OverbookingRatio(t) x Capacity
where
t : The predicted hour
A : Elastic capacity to converge the best ratio
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if predicted performance is too high

the overbooking ratio engine computes new ratios. Based

Capacity(t) : Resource capacity (e.g. CPU and memory) upon newly computed ratios in Equation (), the performance

of a host machine at hour ¢
SecurityPercentage(t) : Elastic capacity on a host machine
to converge the best ratio at hour ¢
OverbookingRatio(t) : CPU and memory overbooking

ratios at hour ¢ for a host machine

C. Performance Assessor

The performance assessor component is responsible for
predicting the performance thereby providing an assurance that
the new overbooking ratios computed by the overbooking ratio
engine do not violate the SLAs. The performance assessor
uses the instruction per cycle (IP(ﬂ) as the performance
metric which means that the higher the value, the better the
performance. The SLA violation is checked based on the
historic maximum performance values (max) on a per-host
basis. These threshold values are derived from the tracelog,
however, a domain expert may also decide and assign these
values.

If the machine under consideration’s predicted IPC is greater
than the maximum observed IPC in the trace of the same host
machine reached in the cluster, iOverbook assumes that SLA
will not be violated thereby providing performance assurances
to soft real-time applications. If the predicted IPC violates the
SLA, iOverbook does not allow overbooking that particular
host machine. In Section [V} this SLA violation logic is
elaborated upon by taking the standard deviation of the same
type of host machines into account for tighter and more
realistic performance results.

The structure of the performance predictor ANN is similar
to the resource usage predictor ANN in Figure 2] however,
with different inputs and outputs. The topology of this ANN
for predicting IPC is provided in the mathematical formulation
below. It is considered that the allocated amount of resources
and mean VM count on a host machine are changed once

1“TPC” metric is used interchangeably with the term “performance”

assessor is employed to check whether these new overbooking
ratios may trigger any SLA violations. As long as the predicted
IPC is less than the historic maximum IPC value of that host
machine (i.e., a SLA violation will occur), the performance
assessor increases the security percentage value in Equation
() by 0.5% and requests new ratios from the overbooking
ratio engine till the ratios converge to the values that do
not violate the SLA. The security percentage is preferred as
0.5% to gradually increase the security slack value, which
in turn speeds up the convergence to optimum overbooking
ratios. If the predicted IPC is too high (which means that the
overbooking ratios are suboptimal), iOverbook raises the A
value by 0.5% to rapidly increase overbooking ratios to the
best values that do not violate the SLA.

Input Layer : cr(t), mr(t), cor(t), mor(t),
vm(t), cc, me
Hidden Layer : 22 neurons
Activation Function (in hidden layer)
: Tangent Sigmoid
P(t)

(in output layer)

Output Layer :
Transfer Function
: Pure Linear
where
t = The predicted hour

cr(t) = Mean CPU request at hour ¢
mr(t) = Mean memory request at hour ¢
cor(t) = CPU overbooking ratio at hour ¢
mor(t) = Memory overbooking ratio at hour ¢
vm(t) = Mean VM count at hour ¢
cc = CPU capacity of the host machine
mc = Memory capacity of the host machine

P(t) = Mean performance at hour ¢

The best performance of the ANN was produced with 22
neurons in the hidden layer by a trial-and-error approach
with the MSE of 0.009 and the R of 0.67. The generated
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MSE and R values indicate that the performance assessor
component predicts IPC output values with a somewhat higher
yet negligible error compared to our resource usage predictor
ANN. The outputs of this ANN are well correlated with its
inputs.

The predicted IPC value along with the actual IPC values
for each host machine are illustrated in Figure ] The predicted
hour is the same as the overbooking ratio prediction engine,
which is chosen as the 696th hour in the time line. As can be
seen from Figure [4] the predicted performance value follows
the actual usage values well because of the lower M SE and
good R values for each host machines in the training set. We
believe that additional input parameters will help the ANN to
lower the prediction errors and show better correlation.

IV. VALIDATING THE IOVERBOOK APPROACH

This section validates the iOverbook approach using the
Google cluster usage trace.

Validation Approach: Since it is not possible to recreate
the Google’s data center trace, we have used an alternate
approach to validating iOverbook. We use part of the usage
trace to train iOverbook. Subsequently, we use iOverbook to
predict overbooking for a time interval that was not used in the
training phase. The results of this prediction are then compared
to the actual numbers appearing in the usage trace.

To that end we have used 696 hours of usage trace data to
train iOverbook’s ANNs except the 696th hour in that interval,
and instead used iOverbook to predict the overbooking rates
for the 696th hour (i.e., ANN is trained with the first 695
hours of data and tested to predict a future hour, which is the
696th that has not been used in the training). The predicted
overbooking rates (both CPU and memory) and performance
are compared to the actual overbooking and performance seen
from the usage trace.

In our experiments, two different overbooking ratios are
computed under two different conditions: (1) if the predicted
performance value (P(t)) is greater than or equal to the maxi-
mum performance value of that host machine in the trace (i.e.,
P(t) >= max), and (2) if the predicted performance value is
greater than or equal to the maximum performance value of
the same host machine and seven times the standard deviation

of this value (i.e., P(t) >= max +70). The motivation behind
computing overbooking ratios under two different conditions
is to provide results under tighter constraints.

We then analyze how these predicted overbooking ratios
for each host machine help to improve the resource uti-
lization and reduce power consumption in the data cen-
ter. To determine the power consumption, we have utilized
SPECpower_ssj2008 [21]], an industrial benchmark measuring
power and performance values of different computer architec-
tures, to compute power consumption of host machines.

Comparing Actual versus Predicted Overbooking and
Performance: Figures [3] and [6] compare Google host ma-
chines’ actual and iOverbook’s overbooking ratios computed
by the overbooking ratio prediction engine at t=696, for CPU
and memory, respectively.
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In the context of the Google trace, the following inferences
can be drawn from Figures 5] and [6] Overall, iOverbook was
able to predict higher overbooking ratios for host machines
compared to Google’s overbooking without SLA violations.

(1) 38/40 host machines could have been overbooked
without SLA violation under P(t) >= max condition (recall
that performance is measured as IPC so any value less than
the maximum performance is a SLA violation).



(2) 34/40 and 31/40 host machines could have had CPU
and memory overbooking ratios greater than ten, respectively,
without SLA violation under P(t) >= max condition.

(3) 30/40 host machines could have been overbooked
without SLA violation under P(t) >= max +70 condition.
These results are somewhat inferior compared to #1 due to a
tighter performance constraint.

(4) 31/40 and 24/40 host machines could have had CPU
and memory overbooking ratios greater than ten, respectively,
without SLA violation under P(t) >= max+70 condition.
These results are somewhat inferior compared to #2 due to a
tighter performance constraint.

In Figure [/, Google’s host machines’ actual (i.e, at t=696)
and iOverbook’s predicted performance values associated with
the overbooking ratios in Figure [5] are depicted. An identical
predicted and actual overbooking ratio in the figure means that
the machine is not overbooked by iOverbook. As seen from the
Figure [7] there are two host machines under P(t) >= max
condition and ten host machines under P(¢) >= max+7c
condition that iOverbook predicted a SLA violation and did
not compute overbooking ratios for those host machines and
secured their actual ratios. Additionally, iOverbook flagged
those cases as SLA violations and left the decision to the
scheduler.

25 —

TABLE I: Estimated Host Machine Configurations [21]

Actual Config. Estimated Configuration Power Values
Platform Processor CPU | Memory %Z?trsl %:’32
ID/CPU/Memory|| Name (cores) (GB) @100% @Idle
Al1/1 Xeon ES-2650L | 32 64 386 142
B /0.57/0.749 Xeon E5-2660 16 48 239 51.6
B /0.570.4995 Xeon E5-2660 16 32 257 59.7
B /0.570.2493 Xeon E5-2660 16 24 239 515
B/0.5/0.1241 Xeon E5-2660 16 16 239 54

to packing as many tasks on as less number of machines as
possible and leaving the rest of the machines at either powered
off or idle mode. Actual Case is the current status of the
host machines. Case-1 and Case-2 represent the status of the
host machines under P(¢) >= max condition representing
the expected power consumption if the host machines with no
tasks on it after the consolidation were powered off or remain
powered on but in idle mode conditions, respectively. Case-3
and Case-4 are the same cases as Case-1 and Case-2 except
they show the results under the P(t) >= max 7o condition.

TABLE II: Power Consumption Results in Test Set

Number | Number | Number
Total of of of Savings
Watt Servers Servers Servers
@On @Off @Idle
Actual 2909.87 40 0 0 0%
Case-1 1964.67 22 18 0 32%
Case-2 3007.97 40 0 22 -3%
Case-3 4873.33 23 17 0 30%
Case-4 7204.53 40 0 17 -3%

Performance Value
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Fig. 7: Google’s Host Machines’ Actual and iOverbook’s
Predicted Performance Value under Different Performance
Considerations

Improved Power Savings and Utilization due to iOver-
book: The cluster trace provides obfuscated configurations
of machine attributes, which does not allow us to identify
and compute the exact power consumption of those host
machines. However, the platform id field in the trace, which
provides a sense of hardware architecture type, represents the
microarchitecture and chipset version of the host machine
in the cluster [S]. Therefore, we surmise the potential con-
figuration of the machine such that it is in tune with the
normalized resource capacities of the physical host machines
and hardware architecture. The estimated configurations are
shown in Table [l

The comparison of power consumption results for different
consolidation cases are shown in Table [Tl Consolidation refers

As seen from Table iOverbook helped save roughly
32% and 30% of energy for Case-1 and Case-3, respectively.
However, if the host machines with no tasks on it are left in the
idle state (Case-2 and Case-4), then it has a negative impact on
energy consumption, which we surmise can be attributed to the
power consumption of host machines in idle mode. Migration
costs were not considered in this calculation.

Table [l compares the actual (from the trace) and iOver-
book’s resource utilization effects. The “Total CPU” request
value in the table is based upon the overbooking ratios
computed by iOverbook. The ratio of total CPU usage over
total CPU requested that may be named as overestimation
ratio is used to calculate the utilization value when the host
machines are overbooked with iOverbook. As seen in Table[I]
the actual utilization for 40 host machines in the trace was
8.7%. In contrast, the utilization level using iOverbook could
have been 21.2% under P(t) >= max and 19.7% under
P(t) >= max +7o conditions, which shows an improvement
of 12.5% and 11%, respectively. These utilization levels can
easily be raised by manipulating the defined performance con-
straints, such as utilizing mean IPC rather than the maximum.

Lessons from the Validation Experiments: These valida-
tion results demonstrate that adding higher standard deviations
gives us less beneficial results but probably tighter and a



TABLE III: Resource Utilization Results in Test Set

Actual iOverbook iOverbook
Value (P(t) >= | (P(t) >=
max) max +70)

Total CPU Request 137.5874 | 333.2819 310.4185

Total CPU Capacity 20.5 20.5 20.5

Total CPU Usage /

Total CPU Requested 0.0130 0.0130 0.0130

Total CPU Usage 1.7984 4.3564 4.0575

Mean CPU Utiliza- 3.8% 21.3% 19.8%

tion

preferred result to assure SLAs. CSPs can utilize our technique
by first training our ANNs with their own historic data and
then integrating iOverbook with their actual job and VM
scheduler in the data center. Therefore, the scheduler could
overbook each host machine by considering the overbooking
ratios provided by iOverbook. Since our approach allows run-
time updates to overbooking ratios, it can adapt autonomously
to changing workloads. Therefore, credit-based CPU scheduler
in the Xen hypervisor could be integrated with iOverbook to
determine weight and cap parameters for each host machine
to dynamically. This is the focus of our future work.

V. CONCLUSION

This paper presented iOverbook, which is an intelligent and
online resource overbooking strategy for supporting cloud-
based soft real-time applications and effective server utilization
by using the insights from Google’s production data center
usage trace. iOverbook employs two artificial neural networks
for predicting a host machine’s future resource usage and per-
formance. It requires historical usage data that cloud providers
can provide for use in their data centers. The forecasted
values are used in computing significantly better CPU and
memory overbooking ratios than those used by Google in their
production data center without triggering SLA violations.

The prediction mechanism of iOverbook can be configured
and tuned to another desired time interval rather than an hour
interval. In the current work, we did not consider the potential
for outliers in the available traces. Our future work will
investigate effective filtering of outliers and using confidence
intervals.

All scripts, source code, and experimental results of iOver-
book are available to download at the www.dre.vanderbilt.edu/
~caglarf/download/iOverbook.
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