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Inverse Depth Parametrization for Monocular SLAM
Javier Civera, Andrew J. Davison, and J. M. Martı́nez Montiel

Abstract—We present a new parametrization for point fea-
tures within monocular simultaneous localization and mapping
(SLAM) that permits efficient and accurate representation of un-
certainty during undelayed initialization and beyond, all within
the standard extended Kalman filter (EKF). The key concept
is direct parametrization of the inverse depth of features rela-
tive to the camera locations from which they were first viewed,
which produces measurement equations with a high degree of
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linearity. Importantly, our parametrization can cope with features
over a huge range of depths, even those that are so far from the cam-
era that they present little parallax during motion—maintaining
sufficient representative uncertainty that these points retain the op-
portunity to “come in” smoothly from infinity if the camera makes
larger movements. Feature initialization is undelayed in the sense
that even distant features are immediately used to improve cam-
era motion estimates, acting initially as bearing references but not
permanently labeled as such. The inverse depth parametrization
remains well behaved for features at all stages of SLAM process-
ing, but has the drawback in computational terms that each point is
represented by a 6-D state vector as opposed to the standard three
of a Euclidean XYZ representation. We show that once the depth
estimate of a feature is sufficiently accurate, its representation can
safely be converted to the Euclidean XYZ form, and propose a
linearity index that allows automatic detection and conversion to
maintain maximum efficiency—only low parallax features need be
maintained in inverse depth form for long periods. We present a
real-time implementation at 30 Hz, where the parametrization is
validated in a fully automatic 3-D SLAM system featuring a hand-
held single camera with no additional sensing. Experiments show
robust operation in challenging indoor and outdoor environments
with a very large ranges of scene depth, varied motion, and also
real time 360◦ loop closing.

Index Terms—Monocular simultaneous localization and map-
ping (SLAM), real-time vision.

I. INTRODUCTION

AMONOCULAR camera is a projective sensor that mea-
sures the bearing of image features. Given an image se-

quence of a rigid 3-D scene taken from a moving camera, it
is now well known that it is possible to compute both a scene
structure and a camera motion up to a scale factor. To infer the
3-D position of each feature, the moving camera must observe it
repeatedly each time, capturing a ray of light from the feature to
its optic center. The measured angle between the captured rays
from different viewpoints is the feature’s parallax—this is what
allows its depth to be estimated.

In offline “structure from motion (SFM)” solutions from the
computer vision literature (e.g., [11] and [23]), motion and struc-
ture are estimated from an image sequence by first applying a
robust feature matching between pairs or other short overlap-
ping sets of images to estimate relative motion. An optimization
procedure then iteratively refines global camera location and
scene feature position estimates such that features project as
closely as possible to their measured image positions (bundle
adjustment). Recently, work in the spirit of these methods, but
with “sliding window” processing and refinement rather than
global optimization, has produced impressive real-time “visual
odometry” results when applied to stereo sequences in [21] and
for monocular sequences in [20].

An alternative approach to achieving real-time motion and
structure estimation are online visual simultaneous localiza-
tion and mapping (SLAM) approaches that use a probabilistic
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filtering approach to sequentially update estimates of the posi-
tions of features (the map) and the current location of the camera.
These SLAM methods have different strengths and weaknesses
to visual odometry, being able to build consistent and drift-free
global maps, but with a bounded number of mapped features.
The core single extended Kalman filter (EKF) SLAM technique,
previously proven in multisensor robotic applications, was first
applied successfully to real-time monocular camera tracking by
Davison et al. [8], [9] in a system that built sparse room-sized
maps at 30 Hz.

A significant limitation of Davison’s and similar approaches,
however, was that they could only make use of features that
were close to the camera relative to its distance of transla-
tion, and therefore exhibited significant parallax during motion.
The problem was in initializing uncertain depth estimates for
distant features: in the straightforward Euclidean XYZ feature
parametrization adopted, position uncertainties for low parallax
features are not well represented by the Gaussian distributions
implicit in the EKF. The depth coordinate of such features has
a probability density that rises sharply at a well-defined min-
imum depth to a peak, but then, tails off very slowly toward
infinity—from low parallax measurements, it is very difficult to
tell whether a feature has a depth of 10 units rather than 100,
1000, or more. For the rest of the paper, we refer to Euclidean
XYZ parametrization simply as XYZ.

There have been several recent methods proposed for cop-
ing with this problem, relying on generally undesirable special
treatment of newly initialized features. In this paper, we describe
a new feature parametrization that is able to smoothly cope with
initialization of features at all depths—even up to “infinity”—
within the standard EKF framework. The key concept is direct
parametrization of inverse depth relative to the camera position
from which a feature was first observed.

A. Delayed and Undelayed Initialization

The most obvious approach to coping with feature initial-
ization within a monocular SLAM system is to treat newly
detected features separately from the main map, accumulating
information in a special processing over several frames to reduce
depth uncertainty before insertion into the full filter with a stan-
dard XYZ representation. Such delayed initialization schemes
(e.g., [3], [8], and [14]) have the drawback that new features,
held outside the main probabilistic state, are not able to con-
tribute to the estimation of the camera position until finally
included in the map. Further, features that retain low parallax
over many frames (those very far from the camera or close to
the motion epipole) are usually rejected completely because
they never pass the test for inclusion.

In the delayed approach of Bailey [2], initialization is delayed
until the measurement equation is approximately Gaussian and
the point can be safely triangulated; here, the problem was posed
in 2-D and validated in simulation. A similar approach for a
3-D monocular vision with inertial sensing was proposed in [3].
Davison [8] reacted to the detection of a new feature by inserting
a 3-D semiinfinite ray into the main map representing everything
about the feature except its depth, and then, used an auxiliary

particle filter to explicitly refine the depth estimate over several
frames, taking advantage of all the measurements in a high frame
rate sequence, but again with new features held outside the main
state vector until inclusion.

More recently, several undelayed initialization schemes have
been proposed, which still treat new features in a special way
but are able to benefit immediately from them to improve cam-
era motion estimates—the key insight being that while features
with highly uncertain depths provide little information on cam-
era translation, they are extremely useful as bearing references
for orientation estimation. The undelayed method proposed by
Kwok and Dissanayake [15] was a multiple hypothesis scheme,
initializing features at various depths and pruning those not re-
observed in subsequent images.

Sola et al. [24], [25] described a more rigorous undelayed
approach using a Gaussian sum filter approximated by a fed-
erated information sharing method to keep the computational
overhead low. An important insight was to spread the Gaus-
sian depth hypotheses along the ray according to inverse depth,
achieving much better representational efficiency in this way.
This method can perhaps be seen as the direct stepping stone
between Davison’s particle method and our new inverse depth
scheme; a Gaussian sum is a more efficient representation than
particles (efficient enough that the separate Gaussians can all be
put into the main state vector), but not as efficient as the single
Gaussian representation that the inverse depth parametrization
allows. Note that neither [15] nor [25] considers features at very
large “infinite” depths.

B. Points at Infinity

A major motivation of the approach in this paper is not only
the efficient undelayed initialization, but also the desire to cope
with features at all depths, particularly in outdoor scenes. In
SFM, the well-known concept of a point at infinity is a feature
that exhibits no parallax during camera motion due to its extreme
depth. A star for instance would be observed at the same image
location by a camera that translated through many kilometers
pointed up at the sky without rotating. Such a feature cannot be
used for estimating camera translation but is a perfect bearing
reference for estimating rotation. The homogeneous coordinate
systems of visual projective geometry used normally in SFM
allow explicit representation of points at infinity, and they have
proven to play an important role during offline structure and
motion estimation.

In a sequential SLAM system, the difficulty is that we do not
know in advance which features are infinite and which are not.
Montiel and Davison [19] showed that in the special case where
all features are known to be infinite—in very-large-scale outdoor
scenes or when the camera rotates on a tripod— SLAM in pure
angular coordinates turns the camera into a real-time visual
compass. In the more general case, let us imagine a camera
moving through a 3-D scene with observable features at a range
of depths. From the estimation point of view, we can think of
all features starting at infinity and “coming in” as the camera
moves far enough to measure sufficient parallax. For nearby
indoor features, only a few centimeters of movement will be
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sufficient. Distant features may require many meters or even
kilometers of motion before parallax is observed. It is important
that these features are not permanently labeled as infinite—
a feature that seems to be at infinity should always have the
chance to prove its finite depth given enough motion, or there
will be the serious risk of systematic errors in the scene map.
Our probabilistic SLAM algorithm must be able to represent the
uncertainty in depth of seemingly infinite features. Observing
no parallax for a feature after 10 units of camera translation
does tell us something about its depth—it gives a reliable lower
bound, which depends on the amount of motion made by the
camera (if the feature had been closer than this, we would have
observed parallax). This explicit consideration of uncertainty
in the locations of points has not been previously required in
offline computer vision algorithms, but is very important in a
more difficult online case.

C. Inverse Depth Representation

Our contribution is to show that, in fact, there is a unified and
straightforward parametrization for feature locations that can
handle both initialization and standard tracking of both close
and very distant features within the standard EKF framework.
An explicit parametrization of the inverse depth of a feature
along a semiinfinite ray from the position from which it was
first viewed allows a Gaussian distribution to cover uncertainty
in depth that spans a depth range from nearby to infinity, and per-
mits seamless crossing over to finite depth estimates of features
that have been apparently infinite for long periods of time. The
unified representation means that our algorithm requires no spe-
cial initialization process for features. They are simply tracked
right from the start, immediately contribute to improved cam-
era estimates, and have their correlations with all other features
in the map correctly modeled. Note that our parameterization
would be equally compatible with other variants of Gaussian
filtering such as sparse information filters.

We introduce a linearity index and use it to analyze and prove
the representational capability of the inverse depth parametriza-
tion for both low and high parallax features. The only drawback
of the inverse depth scheme is the computational issue of in-
creased state vector size since an inverse depth point needs
six parameters rather than the three of XYZ coding. As a so-
lution to this, we show that our linearity index can also be
applied to the XYZ parametrization to signal when a feature
can be safely switched from inverse depth to XYZ; the usage of
the inverse depth representation can, in this way, be restricted
to low parallax feature cases where the XYZ encoding departs
from Gaussianity. Note that this “switching,” unlike in delayed
initialization methods, is purely to reduce computational load;
SLAM accuracy with or without switching is almost the same.

The fact is that the projective nature of a camera means that
the image measurement process is nearly linear in this inverse
depth coordinate. Inverse depth is a concept used widely in com-
puter vision: it appears in the relation between image disparity
and point depth in a stereo vision; it is interpreted as the paral-
lax with respect to the plane at infinity in [12]. Inverse depth is
also used to relate the motion field induced by scene points with

the camera velocity in optical flow analysis [13]. In the track-
ing community, “modified polar coordinates” [1] also exploit
the linearity properties of the inverse depth representation in a
slightly different, but closely related, problem of a target motion
analysis (TMA) from measurements gathered by a bearing-only
sensor with known motion.

However, the inverse depth idea has not previously been prop-
erly integrated in sequential, probabilistic estimation of motion,
and structure. It has been used in EKF-based sequential depth
estimation from camera-known motion [16], and in a multibase-
line stereo, Okutomi and Kanade [22] used the inverse depth to
increase matching robustness for scene symmetries; matching
scores coming from multiple stereo pairs with different base-
lines were accumulated in a common reference coded in in-
verse depth, this paper focusing on matching robustness and
not on probabilistic uncertainty propagation. Chowdhury and
Chellappa [5] proposed a sequential EKF process using inverse
depth, but this was in some way short of full SLAM in its details.
Images are first processed pairwise to obtain a sequence of 3-D
motions that are then fused with an individual EKF per feature.

It is our parametrization of inverse depth relative to the po-
sitions from which features were first observed, which means
that a Gaussian representation is uniquely well behaved, this is
the reason why a straightforward parametrization of monocular
SLAM in the homogeneous coordinates of SFM will not give a
good result—that representation only meaningfully represents
points that appear to be infinite relative to the coordinate origin.
It could be said in projective terms that our method defines sep-
arate but correlated projective frames for each feature. Another
interesting comparison is between our method, where the rep-
resentation for each feature includes the camera position from
which it was first observed, and smoothing/full SLAM schemes,
where all historical sensor pose estimates are maintained in a
filter.

Two recently published papers from other authors have de-
veloped methods that are quite similar to ours. Trawny and
Roumeliotis [26] proposed an undelayed initialization for 2-D
monocular SLAM that encodes a map point as the intersection of
two projection rays. This representation is overparametrized but
allows undelayed initialization and encoding of both close and
distant features, the approach validated with simulation results.

Eade and Drummond presented an inverse depth initialization
scheme within the context of their FastSLAM-based system
for monocular SLAM [10], offering some of the same argu-
ments about advantages in linearity as in our paper. The posi-
tion of each new partially initialized feature added to the map
is parametrized with three coordinates representing its direction
and inverse depth relative to the camera pose at the first observa-
tion, and estimates of these coordinates are refined within a set
of Kalman filters for each particle of the map. Once the inverse
depth estimation has collapsed, the feature is converted to a fully
initialized standard XYZ representation. While retaining the dif-
ferentiation between partially and fully initialized features, they
go further and are able to use measurements of partially ini-
tialized features with unknown depth to improve estimates of
camera orientation and translation via a special epipolar up-
date step. Their approach certainly appears appropriate within
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a FastSLAM implementation. However, it lacks the satisfying
unified quality of the parametrization we present in this paper,
where the transition from partially to fully initialized need not
be explicitly tackled and full use is automatically made of all of
the information available in measurements.

This paper offers a comprehensive and extended version of
our work previously published as two conference papers [7],
[18]. We now present a full real-time implementation of the
inverse depth parameterization that can map up to 50–70 fea-
tures in real time on a standard laptop computer. Experimental
validation has shown the important role of an accurate cam-
era calibration to improve the system performance, especially
with wide-angle cameras. Our results section includes new real-
time experiments, including the key result of vision-only loop
closing. Input test image sequences and movies showing the
computed solution are included in the paper as multimedia
material.

Section II is devoted to defining the state vector, including
the camera motion model, XYZ point coding, and inverse depth
point parametrization. The measurement equation is described
in Section III. Section IV presents a discussion about measure-
ment equation linearization errors. Next, feature initialization
from a single-feature observation is detailed in Section V. In
Section VI, the switch from inverse depth to XYZ coding is
presented, and in Section VII, we present experimental valida-
tions over real-image sequences captured at 30 Hz in large-scale
environments, indoors and outdoors, including real-time perfor-
mance, and a loop closing experiment; links to movies showing
the system performance are provided. Finally, Section VIII is
devoted to conclusions.

II. STATE VECTOR DEFINITION

A. Camera Motion

A constant angular and linear velocity model is used to model
handheld camera motion. The camera state xv is composed
of pose terms: rW C camera optical center position and qW C

quaternion defining orientation, and linear and angular velocity
vW and ωC relative to world frame W and camera frame C,
respectively.

We assume that linear and angular accelerations aW and αC

affect the camera, producing at each step, an impulse of linear
velocity VW = aW ∆t and angular velocity ΩC = αC ∆t, with
zero mean and known Gaussian distribution. We currently as-
sume a diagonal covariance matrix for the unknown input linear
and angular accelerations.

The state update equation for the camera is

fv =




rW C
k+1

qW C
k+1

vW
k+1

ωC
k+1


 =




rW C
k +

(
vW

k + VW
k

)
∆t

qW C
k × q

((
ωC

k + ΩC
)
∆t

)
vW

k + VW

ωC
k + ΩC


 (1)

where q((ωC
k + ΩC )∆t) is the quaternion defined by the rota-

tion vector (ωC
k + ΩC )∆t.

Fig. 1. Feature parametrization and measurement equation.

B. Euclidean XYZ Point Parametrization

The standard representation for scene points i in terms of
Euclidean XYZ coordinates (see Fig. 1) is

xi = (Xi Yi Zi)
� . (2)

In this paper, we refer to the Euclidean XYZ coding simply as
XYZ coding.

C. Inverse Depth Point Parametrization

In our new scheme, a scene 3-D point i can be defined by the
6-D state vector:

yi = (xi yi zi θi φi ρi)
� (3)

which models a 3-D point located at (see Fig. 1)

xi =


 Xi

Yi

Zi


 =


 xi

yi

zi


 +

1
ρi

m (θi, φi) (4)

m = (cos φi sin θi,− sin φi, cos φi cos θi)
� . (5)

The yi vector encodes the ray from the first camera position
from which the feature was observed by xi, yi , zi , the camera
optical center, and θi, φi azimuth and elevation (coded in the
world frame) defining unit directional vector m (θi, φi). The
point’s depth along the ray di is encoded by its inverse ρi =
1/di .

D. Full State Vector

As in standard EKF SLAM, we use a single-joint state vector
containing camera pose and feature estimates, with the assump-
tion that the camera moves with respect to a static scene. The
whole state vector x is composed of the camera and all the map
features

x =
(
x�

v ,y�
1 ,y�

2 , . . . ,y�
n

)�
. (6)

III. MEASUREMENT EQUATION

Each observed feature imposes a constraint between the cam-
era location and the corresponding map feature (see Fig. 1).
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Observation of a point yi(xi) defines a ray coded by a direc-
tional vector in the camera frame hC = (hx hy hz )

�. For
points in XYZ

hC = hC
X Y Z = RC W


 Xi

Yi

Zi

− rW C


 . (7)

For points in inverse depth

hC = hC
ρ = RC W


ρi





 xi

yi

zi


 − rW C


 + m (θi, φi)



(8)

where the directional vector has been normalized using the in-
verse depth. It is worth noting that (8) can be safely used even
for points at infinity, i.e., ρi = 0.

The camera does not directly observe hC but its projection
in the image according to the pinhole model. Projection to a
normalized retina, and then, camera calibration is applied:

h =
(

u
v

)
=




u0 −
f

dx

hx

hz

v0 −
f

dy

hy

hz


 (9)

where u0 , v0 is the camera’s principal point, f is the focal length,
and dx , dy is the pixel size. Finally, a distortion model has to
be applied to deal with real camera lenses. In this paper, we
have used the standard two parameters distortion model from
photogrammetry [17] (see the Appendix for details).

It is worth noting that the measurement equation in in-
verse depth has a sensitive dependency on the parallax angle
α (see Fig. 1). At low parallax, (8) can be approximated by
hC ≈ RC W (m (θi, φi)), and hence, the measurement equa-
tion only provides information about the camera orientation and
the directional vector m (θi, φi).

IV. MEASUREMENT EQUATION LINEARITY

The more linear the measurement equation is, the better a
Kalman filter performs. This section is devoted to presenting an
analysis of measurement equation linearity for both XYZ and
inverse depth codings. These linearity analyses theoretically
support the superiority of the inverse depth coding.

A. Linearized Propagation of a Gaussian

Let x be an uncertain variable with Gaussian distribution x ∼
N

(
µx, σ2

x

)
. The transformation of x through the function f is a

variable y that can be approximated with Gaussian distribution:

y ∼ N
(
µy , σ2

y

)
, µy = f (µx) , σ2

y =
∂f

∂x

∣∣∣∣
µx

σ2
x

∂f

∂x

∣∣∣∣
�

µx

(10)
if the function f is linear in an interval around µx (Fig. 2).
The interval size in which the function has to be linear depends
on σx ; the bigger σx the wider the interval has to be to cover
a significant fraction of the random variable x values. In this
paper, we fix the linearity interval to the 95% confidence region
defined by [µx − 2σx, µx + 2σx ].

Fig. 2. First derivative variation in [µx − 2σx , µx + 2σx ] codes the departure
from Gaussianity in the propagation of the uncertain variable through a function.

Fig. 3. Uncertainty propagation from the scene point to the image. (a) XYZ
coding. (b) Inverse depth coding.

If a function is linear in an interval, the first derivative is
constant in that interval. To analyze the first derivative variation
around the interval [µx − 2σx, µx + 2σx ], consider the Taylor
expansion for the first derivative:

∂f

∂x
(µx + ∆x) ≈ ∂f

∂x

∣∣∣∣
µx

+
∂2f

∂x2

∣∣∣∣
µx

∆x. (11)

We propose to compare the value of the derivative at the interval
center µx with the value at the extremes µx ± 2σx , where the
deviation from linearity will be maximal, using the following
dimensionless linearity index:

L =

∣∣∣∣∣∣∣∣∣

∂2f

∂x2

∣∣∣∣
µx

2σx

∂f

∂x

∣∣∣∣
µx

∣∣∣∣∣∣∣∣∣
. (12)

When L ≈ 0, the function can be considered linear in the inter-
val, and hence, Gaussianity is preserved during transformation.

B. Linearity of XYZ Parametrization

The linearity of the XYZ representation is analyzed by means
of a simplified model that only estimates the depth of a point
with respect to the camera. In our analysis, a scene point is
observed by two cameras [Fig. 3(a)], both of which are oriented
toward the point. The first camera detects the ray on which the
point lies. The second camera observes the same point from a
distance d1 ; the parallax angle α is approximated by the angle
between the cameras’ optic axes.

The point’s location error d is encoded as Gaussian in depth

D = d0 + d, d ∼ N
(
0, σ2

d

)
. (13)
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This error d is propagated to the image of the point in the second
camera u as

u =
x

y
=

d sin α

d1 + d cos α
. (14)

The Gaussianity of u is analyzed by means of (12), giving the
following linearity index:

Ld =
∣∣∣∣ (∂2u/∂d2)2σd

∂u/∂d

∣∣∣∣ =
4σd

d1
|cos α| . (15)

C. Linearity of Inverse Depth Parametrization

The inverse depth parametrization is based on the same scene
geometry as the direct depth coding, but the depth error is en-
coded as Gaussian in inverse depth [Fig. 3(b)]:

D =
1

ρ0 − ρ
, ρ ∼ N

(
0, σ2

ρ

)
(16)

d = D − d0 =
ρ

ρ0 (ρ0 − ρ)
d0 =

1
ρ0

. (17)

So, the image of the scene point is computed as

u =
x

y
=

d sin α

d1 + d cos α
=

ρ sin α

ρ0d1 (ρ0 − ρ) + ρ cos α
(18)

and the linearity index Lρ is now

Lρ =
∣∣∣∣ (∂2u/∂ρ2)2σρ

∂u/∂ρ

∣∣∣∣ =
4σρ

ρ0

∣∣∣∣1 − d0

d1
cos α

∣∣∣∣ . (19)

D. Depth Versus Inverse Depth Comparison

When a feature is initialized, the depth prior has to cover
a vast region in front of the camera. With the inverse depth
representation, the 95% confidence region with parameters ρ0 ,
σρ is [

1
ρ0 + 2σρ

,
1

ρ0 − 2σρ

]
. (20)

This region cannot include zero depth but can easily extend to
infinity.

Conversely, with the depth representation, the 95% region
with parameters d0 , σd is [d0 − 2σd, d0 + 2σd ] . This region
can include zero depth but cannot extend to infinity.

In the first few frames, after a new feature has been initial-
ized, little parallax is likely to have been observed. Therefore,
d0/d1 ≈ 1 and α ≈ 0 =⇒ cos α ≈ 1. In this case, the Ld lin-
earity index for depth is high (bad), while the Lρ linearity index
for inverse depth is low (good): during initialization, the inverse
depth measurement equation linearity is superior to the XYZ
coding.

As estimation proceeds and α increases, leading to more
accurate depth estimates, the inverse depth representation con-
tinues to have a high degree of linearity. This is because in the
expression for Lρ , the increase in the term |1 − (d0/d1)cos α|
is compensated by the decrease in 4σρ/ρ0 . For inverse depth
features, a good linearity index is achieved along the whole
estimation history. So, the inverse depth coding is suitable for
both low and high parallax cases if the feature is continuously
observed.

The XYZ encoding has low computational cost, but achieves
linearity only at low depth uncertainty and high parallax. In
Section VI, we explain how the representation of a feature can be
switched over such that the inverse depth parametrization is only
used when needed—for features that are either just initialized
or at extreme depths.

V. FEATURE INITIALIZATION

From just a single observation, no feature depth can be es-
timated (although it would be possible in principle to impose
a very weak depth prior by knowledge of the type of scene
observed). What we do is to assign a general Gaussian prior
in inverse depth that encodes probabilistically the fact that the
point has to be in front of the camera. Hence, due to the linear-
ity of inverse depth at low parallax, the filter can be initialized
from just one observation. Experimental tuning has shown that
infinity should be included with reasonable probability within
the initialization prior, despite the fact that this means that depth
estimates can become negative. Once initialized, features are
processed with the standard EKF prediction-update loop—even
in the case of negative inverse depth estimates—and immedi-
ately contribute to camera location estimation within SLAM.

It is worth noting that while a feature retains low parallax,
it will automatically be used mainly to determine the camera
orientation. The feature’s depth will remain uncertain with the
hypothesis of infinity still under consideration (represented by
the probability mass corresponding to negative inverse depths).
If the camera translates to produce enough parallax, then the
feature’s depth estimation will be improved and it will begin to
contribute more to the camera location estimation.

The initial location for a newly observed feature inserted into
the state vector is

ŷ
(
r̂W C , q̂W C ,h, ρ0

)
= (x̂i ŷi ẑi θ̂i φ̂i ρ̂i)

� (21)

a function of the current camera pose estimate r̂W C , q̂W C , the
image observation h = (u v )�, and the parameters determin-
ing the depth prior ρ0 , σρ .

The endpoint of the initialization ray (see Fig. 1) is taken
from the current camera location estimate

(x̂i ŷi ẑi)
� = r̂W C (22)

and the direction of the ray is computed from the observed point,
expressed in the world coordinate frame

hW = RW C

(
ˆqW C

)
(υ ν 1)� (23)

where υ and ν are normalized retina image coordinates. Despite
hW being a nonunit directional vector, the angles by which we
parametrize its direction can be calculated as

(
θi

φi

)
=


 arctan

(
hW

x ,hW
z

)
arctan

(
−hW

y ,

√
hW

x
2 + hW

z
2
) 

 . (24)

The covariance of x̂i , ŷi , ẑi , θ̂i , and φ̂i is derived from the
image measurement error covarianceRi and the state covariance
estimate P̂k |k .

The initial value for ρ0 and its standard deviation are set em-
pirically such that the 95% confidence region spans a range of
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depths from close to the camera up to infinity. In our experi-
ments, we set ρ̂0 = 0.1, σρ = 0.5, which gives an inverse depth
confidence region [1.1,−0.9]. Notice that infinity is included
in this range. Experimental validation has shown that the pre-
cise values of these parameters are relatively unimportant to
the accurate operation of the filter as long as infinity is clearly
included in the confidence interval.

The state covariance after feature initialization is

P̂new
k |k = J


 P̂k |k 0 0

0 Ri 0
0 0 σ2

ρ


J� (25)

J =




I

∂y
∂rW C

,
∂y

∂qW C
, 0, . . . , 0,

∣∣∣∣∣∣∣∣
0

∂y
∂h

,
∂y
∂ρ


 . (26)

The inherent scale ambiguity in a monocular SLAM has usu-
ally been fixed by observing some known initial features that fix
the scale (e.g., [8]). A very interesting experimental observation
we have made using the inverse depth scheme is that sequential
monocular SLAM can operate successfully without any known
features in the scene, and in fact, the experiments we present
in this paper do not use an initialization target. In this case,
of course, the overall scale of the reconstruction and camera
motion is undetermined, although with the formulation of the
current paper, the estimation will settle on a (meaningless) scale
of some value. In a very recent work [6], we have investigated
this issue with a new dimensionless formulation of monocular
SLAM.

VI. SWITCHING FROM INVERSE DEPTH TO XYZ

While the inverse depth encoding can be used at both low and
high parallax, it is advantageous for reasons of computational
efficiency to restrict inverse depth to cases where the XYZ encod-
ing exhibits nonlinearity according to the Ld index. This section
details switching from inverse depth to XYZ for high parallax
features.

A. Conversion From Inverse Depth to XYZ Coding

After each estimation step, the linearity index Ld (15) is
computed for every map feature coded in inverse depth

hW
X Y Z = x̂i − r̂W C σd =

σρ

ρ2
i

σρ =
√

Py i y i
(6, 6)

di =
∥∥hW

X Y Z

∥∥ cos α = m�hW
X Y Z

∥∥hW
X Y Z

∥∥−1
. (27)

where x̂i is computed using (4) and Py i y i
is the submatrix 6 × 6

covariance matrix corresponding to the considered feature.
If Ld is below a switching threshold, the feature is trans-

formed using (4) and the full state covariance matrix P is trans-
formed with the corresponding Jacobian:

Pnew = JPJ� J = diag
(
I,

∂xi

∂yi
, I

)
. (28)

Fig. 4. Percentage of test rejections as a function of the linearity index Ld .

B. Linearity Index Threshold

We propose to use index Ld (15) to define a threshold for
switching from inverse depth to XYZ encoding at the point when
the latter can be considered linear. If the XYZ representation is
linear, then the measurement u is Gaussian distributed (10), i.e.,

u ∼ N
(
µu , σ2

u

)
µu = 0 σ2

u =
(

sin α

d1

)2

σ2
d .

(29)
To determine the threshold in Ld that signals a lack of lin-

earity in the measurement equation, a simulation experiment
has been performed. The goal was to generate samples from
the uncertain distribution for variable u, and then, apply a stan-
dard Kolmogorov–Smirnov Gaussianty [4] test to these sam-
ples, counting the percentage of rejected hypotheses h. When
u is effectively Gaussian, the percentage should match the test
significance level αsl (5% in our experiments); as the num-
ber of rejected hypotheses increases, the measurement equation
departs from linearity. A plot of the percentage of rejected hy-
potheses h with respect to the linearity index Ld is shown in
Fig. 4. It can be clearly seen than when Ld > 0.2, h sharply
departs from 5%. So, we propose the Ld < 10% threshold for
switching from inverse depth to XYZ encoding.

Notice that the plot in Fig. 4 is smooth (log scale in Ld ),
which indicates that the linearity index effectively represents
the departure from linearity.

The simulation has been performed for a variety of values
of α, d1 , and σd ; more precisely, all triplets resulting from the
following parameter values:

α(deg) ∈ {0.1, 1, 3, 5, 7, 10, 20, 30, 40, 50, 60, 70}
d1(m) ∈ {1, 3, 5, 7, 10, 20, 50, 100}
σd(m) ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 5} .

The simulation algorithm detailed in Fig. 5 is applied to every
triplet {α, d1 , σd} to count the percentage of rejected hypotheses
h and the corresponding linearity index Ld .

VII. EXPERIMENTAL RESULTS

The performance of the new parametrization has been tested
on real-image sequences acquired with a handheld-low-cost
Unibrain IEEE1394 camera, with a 90◦ field of view and
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Fig. 5. Simulation algorithm to test the linearity of the measurement equation.

Fig. 6. First (a) and last (b) frame in the sequence of the indoor experiment
of Section VII-A. Features 11, 12, and 13 are analyzed. These features are
initialized in the same frame but are located at different distances from the
camera.

320 × 240 resolution, capturing monochrome image sequences
at 30 fps.

Five experiments were performed. The first was an indoor
sequence processed offline with a Matlab implementation, the
goal being to analyze initialization of scene features located
at different depths. The second experiment shows an outdoor
sequence processed in real time with a C++ implementation.
The focus was on distant features observed under low parallax
along the whole sequence. The third experiment was a loop
closing sequence, concentrating on camera covariance evolu-
tion. Fourth was a simulation experiment to analyze the effect
of switching from inverse depth to XYZ representations. In the
last experiment, the switching performance was verified on the
real loop closing sequence. This section ends with a computing
time analysis. It is worth noting that no initial pattern to fix the
scale was used in any of the last three experiments.

A. Indoor Sequence

This experiment analyzes the performance of the inverse
depth scheme as several features at a range of depths are tracked
within SLAM. We discuss three features, which are all detected
in the same frame but have very different depths. Fig. 6 shows
the image where the analyzed features are initialized (frame
18 in the sequence) and the last image in the sequence. Fig. 7
focuses on the evolution of the estimates corresponding to the
features, with labels 11, 12, and 13, at frames 1, 10, 25, and 100.
Confidence regions derived from the inverse depth representa-

Fig. 7. Feature initialization. Each column shows the estimation history for a
feature horizontal components. For each feature, the estimates after 1, 10, 25,
and 100 frames since initialization are plotted; the parallax angle α in degrees
between the initial observation and the current frame is displayed. The thick
(red) lines show (calculated by a Monte Carlo numerical simulation) the 95%
confidence region when coded as Gaussian in inverse depth. The thin (black)
ellipsoids show the uncertainty as a Gaussian in the XYZ space propagated
according to (28). Notice how at low parallax, the inverse depth confidence
region is very different from the elliptical Gaussian. However, as the parallax
increases, the uncertainty reduces and collapses to the Gaussian ellipse.

tion (thick red line) are plotted in the XYZ space by numerical
Monte Carlo propagation from the 6-D multivariate Gaussians
representing these features in the SLAM EKF. For comparison,
standard Gaussian XYZ acceptance ellipsoids (thin black line)
are linearly propagated from the 6-D representation by means of
the Jacobian of (28). The parallax α in degrees for each feature
at every step is also displayed.

When initialized, the 95% acceptance region of all the features
includes ρ = 0, so infinite depth is considered as a possibility.
The corresponding confidence region in depth is highly asym-
metric, excluding low depths but extending to infinity. It is clear
that Gaussianity in inverse depth is not mapped to Gaussianity
in XYZ, so the black ellipsoids produced by Jacobian transfor-
mation are far from representing the true depth uncertainty. As
stated in Section IV-D, it is at low parallax that the inverse depth
parametrization plays a key role.

As rays producing bigger parallax are gathered, the uncer-
tainty in ρ becomes smaller but still maps to a nonGaussian dis-
tribution in XYZ. Eventually, at high parallax, for all of the fea-
tures, the red confidence regions become closely Gaussian and
well approximated by the linearly propagated black ellipses—
but this happens much sooner for nearby feature 11 than distant
feature 13.

A movie showing the input sequence and estimation
history of this experiment is available as multimedia
data inverseDepth indoor.avi. The raw input image
sequence is also available at inverseDepth indoorRaw-
Images.tar.gz.

B. Real-Time Outdoor Sequence

This 860 frame experiment was performed with a
C++ implementation that achieves real-time performance
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Fig. 8. (a) and (b) show frames #163 and #807 from the outdoor experiment
of Section VII-B. This experiment was processed in real time. The focus was
two features: 11 (tree on the left) and 3 (car on the right) at low parallax. Each
of the two figures shows the current images and top-down views illustrating
the horizontal components of the estimation of camera and feature locations
at three different zoom scales for clarity: the top-right plots (maximum zoom)
highlight the estimation of the camera motion; bottom-left (medium zoom)
views highlight nearby features; and bottom-right (minimum zoom) emphasizes
distant features.

at 30 fps with the handheld camera. Here, we high-
light the ability of our parametrization to deal with both
close and distant features in an outdoor setting. The
input image sequence is available at multimedia mate-
rial inverseDepth outdoorRawImages.tar.gz. A
movie showing the estimation process is also available at
inverseDepth outdoor.avi.

Fig. 8 shows two frames of the movie illustrating the perfor-
mance. For most of the features, the camera ended up gathering
enough parallax to accurately estimate their depths. However,
being outdoors, there were distant features producing low par-
allax during the whole camera motion.

The inverse depth estimation history for two features is high-
lighted in Fig. 9. It is shown that distant, low parallax fea-
tures are persistently tracked through the sequence, despite the
fact that their depths cannot be precisely estimated. The large
depth uncertainty, represented with the inverse depth scheme, is

Fig. 9. Analysis of outdoor experiment of Section VII-B. (a) Inverse depth
estimation history for feature 3, on the car, and (b) for feature 11, on a distant
tree. Due to the uncertainty reduction during estimation, two plots at different
scales are shown for each feature. It shows the 95% confidence region, and with
a thick line, the estimated inverse depth. The thin solid line is the inverse depth
estimated after processing the whole sequence. In (a), for the first 250 steps,
zero inverse depth is included in the confidence region, meaning that the feature
might be at infinity. After this, more distant but finite locations are gradually
eliminated, and eventually, the feature’s depth is accurately estimated. In (b),
the tree is so distant that the confidence region always includes zero since little
parallax is gathered for that feature.

successfully managed by the SLAM EKF, allowing the orienta-
tion information supplied by these features to be exploited.

Feature 3, on a nearby car, eventually gathers enough paral-
lax enough to have an accurate depth estimate after 250 images,
where infinite depth is considered as a possibility. Meanwhile,
the estimate of feature 11, on a distant tree and never displaying
significant parallax, never collapses in this way and zero inverse
depth remains within its confidence region. Delayed intializa-
tion schemes would have discarded this feature without obtain-
ing any information from it, while in our system, it behaves like
a bearing reference. This ability to deal with distant points in
real time is a highly advantageous quality of our parametriza-
tion. Note that what does happen to the estimate of feature 11
as translation occurs is that hypotheses of nearby depths are
ruled out—the inverse depth scheme correctly recognizes that
measuring little parallax while the camera has translated some
distance allows a minimum depth for the feature to be set.

C. Loop Closing Sequence

A loop closing sequence offers a challenging benchmark
for any SLAM algorithm. In this experiment, a handheld
camera was carried by a person walking in small circles
within a very large student laboratory, carrying out two
complete laps. The raw input image sequence is available
at inverseDepth loopClosingRawImages.tar.gz,
and a movie showing the mapping process at
inverseDepth loopClosing.avi.

Fig. 10 shows a selection of the 737 frames from the sequence,
concentrating on the beginning, first loop closure, and end of the
sequence. Fig. 11 shows the camera location estimate covariance
history, represented by the 95% confidence regions for the six
camera DOF and expressed in a reference local to the camera.

We observe the following properties of the evolution of the
estimation, focussing, in particular, on the uncertainty in the
camera location.

1) After processing the first few images, the uncertainty in
the depth of features is huge, with highly nonelliptical
confidence regions in the XYZ space [Fig. 10(a)].

2) In Fig. 11, the first peak in the X and Z translation un-
certainty corresponds to a camera motion backward along
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Fig. 10. Selection of frames from the loop closing experiment of Section VII-
C. For each frame, we show the current image and reprojected map (left),
and a top-down view of the map with 95% confidence regions and camera
trajectory (right). Notice that confidence regions for the map features are far
from being Gaussian ellipses, especially for newly initialized or distant features.
The selected frames are: (a) #11, close to the start of the sequence; (b) #417,
where the first loop closing match, corresponding to a distant feature, is detected;
the loop closing match is signaled with an arrow; (c) #441, where the first loop
closing match corresponding to a close feature is detected; the match is signaled
with an arrow; and (d) #737, the last image, in the sequence, after reobserving
most of the map features during the second lap around the loop.

the optical axis; this motion produces poor parallax for
newly initialized features, and we, therefore, see a reduc-
tion in the orientation uncertainty and an increase in the
translation uncertainty. After frame #50, the camera again
translates in the X-direction, parallax is gathered, and the
translation uncertainty is reduced.

3) From frame #240, the camera starts a 360◦ circular motion
in the XZ plane. The camera explores new scene regions,
and the covariance increases steadily as expected (Fig. 11).

4) In frame #417, the first loop closing feature is reobserved.
This is a feature that is distant from the camera, and causes
an abrupt reduction in the orientation and translation un-
certainty (Fig. 11), though a medium level of uncertainty
remains.

Fig. 11. Camera location estimate covariance along the sequence. The 95%
confidence regions for each of the 6 DOF of camera motion are plotted. Note
that errors are expressed in a reference local to the camera. The vertical solid
lines indicate the loop closing frames #417 and #441.

5) In frame #441, a much closer loop closing feature (mapped
with high parallax) is matched. Another abrupt covariance
reduction takes place (Fig. 11) with the extra information
this provides.

6) After frame #441, as the camera goes on a second lap
around the loop, most of the map features are revisited,
almost no new features are initalized, and hence, the un-
certainty in the map is further reduced. Comparing the
map at frame #441 (the beginning of the second lap) and
#737, (the end of the second lap), we see a significant re-
duction in uncertainty. During the second lap, the camera
uncertainty is low, and as features are reobserved, their
uncertainties are noticeably reduced [Fig. 10(c) and (d)].

Note that these loop closing results with the inverse depth
representation show a marked improvement on the experiments
on monocular SLAM with a humanoid robot presented in [9],
where a gyro was needed in order to reduce angular uncertainty
enough to close loops with very similar camera motions.

D. Simulation Analysis for Inverse Depth to XYZ Switching

In order to analyze the effect of the parametrization switching
proposed in Section VI on the consistency of SLAM estimation,
simulation experiments with different switching thresholds were
run. In the simulations, a camera completed two laps of a circular
trajectory of radius 3 m in the XZ plane, looking out radially
at a scene composed of points lying on three concentric spheres
of radius 4.3, 10, and 20 m. These points at different depths
were intended to produce observations with a range of parallax
angles (Fig. 12).

The camera parameters of the simulation correspond with
our real image acquisition system: camera 320 × 240 pixels,
frame rate 30 frames/s, image field of view 90◦, measure-
ment uncertainty for a point feature in the image, and Gaussian
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Fig. 12. Simulation configuration for analysis of parametrization switching
in Section VII-D, sketching the circular camera trajectory and 3-D scene, com-
posed of three concentric spheres of radius 4.3, 10, and 20 m. The camera
completes two circular laps in the (XZ )-plane with radius 3 m, and is orien-
tated radially.

Fig. 13. Details from the parametrization switching experiment. Camera lo-
cation estimation error history in 6 DOF. (translation in XY Z , and three orien-
tation angles ψθφ) for four switching thresholds: With Ld = 0%, no switching
occurs and the features all remain in the inverse depth parametrization. At
Ld = 10%, although features from the spheres at 4.3 and 10 m are eventually
converted, no degradation with respect to the non-switching case is observed.
At Ld = 40%, some features are switched before achieving true Gaussianity,
and there is noticeable degradation, especially in θ rotation around the Y axis.
At Ld = 60%, the map becomes totally inconsistent and loop closing fails.

N
(
0, 1 pixel2

)
. The simulated image sequence contained 1000

frames. Features were selected following the randomized map
management algorithm proposed in [8] in order to have 15
features visible in the image at all times. All our simulation
experiments work using the same scene features in order to
homogenize the comparison.

Four simulation experiments for different thresholds
for switching each feature from inverse depth to XYZ
parametrization were run with Ld ∈ {0%, 10%, 40%, 60%}.
Fig. 13 shows the camera trajectory estimation history in
6 DOF (translation in XY Z, and three orientation angles

Fig. 14. Parametrization switching on a real sequence (Section VII-E): state
vector size history. Top: percentage reduction in state dimension when using
switching compared with keeping all points in inverse depth. Bottom: total
number of points in the map, showing the number of points in inverse depth and
the number of points in XYZ.

ψ(Rotx), θ(Roty ), φ(Rotz , cyclotorsion)). The following con-
clusions can be made.

1) Almost the same performance is achieved with no switch-
ing (0%) and with 10% switching. So, it is clearly ad-
vantageous to perform 10% switching because there is no
penalization in accuracy and the state vector size of each
converted feature is halved.

2) Switching too early degrades accuracy, especially in the
orientation estimate. Notice how for 40% the orientation
estimate is worse and the orientation error covariance is
smaller, showing filter inconsistency. For 60%, the esti-
mation is totally inconsistent and the loop closing fails.

3) Since early switching degrades performance, the inverse
depth parametrization is mandatory for initialization of
every feature and over the long term for low parallax
features.

E. Parametrization Switching With Real Images

The loop closing sequence of Section VII-C was processed
without any parametrization switching, and with switching at
Ld = 10%. A movie showing the results is available at inver-
seDepth loopClosing ID to XYZ conversion.avi.
As in the simulation experiments, no significant change was
noticed in the estimated trajectory or map.

Fig. 14 shows the history of the state size, the number of
map features, and how their parametrization evolves. At the last
estimation step, about half of the features had been switched; at
this step, the state size had reduced from 427 to 322 (34 inverse
depth features and 35 XYZ), i.e., 75% of the original vector size.
Fig. 15 shows four frames from the sequence illustrating fea-
ture switching. Up to step 100, the camera has low translation
and all the features are in inverse depth form. As the camera
translates, nearby features switch to XYZ. Around step 420, the
loop is closed and features are reobserved, producing a sig-
nificant reduction in uncertainty that allows switching of more
reobserved close features. Our method automatically determines
which features should be represented in the inverse depth or XYZ
forms, optimizing computational efficiency without sacrificing
accuracy.
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Fig. 15. Parametrization switching seen in image space: points coded in in-
verse depth (�) and coded in XYZ (�). (a) First frame, with all features in inverse
depth. (b) Frame #100; nearby features start switching. (c) Frame #470, loop
closing; most features in XYZ. (d) Last image of the sequence.

F. Processing Time

We give some details of the real-time operation of our
monocular SLAM system, running on a 1.8 GHz Pentium M
processor laptop. A typical EKF iteration would implies the
following.

1) A state vector dimension of 300.
2) 12 features observed in the image, a measurement dimen-

sion of 24.
3) 30 fps, so 33.3 ms available for processing.
Typical computing time breaks down as follows: image ac-

quisition, 1 ms.; EKF prediction, 2 ms; image matching, 1 ms.;
and EKF update, 17 ms. This adds up to a total of 21 ms. The
remaining time is used for graphics functions using OpenGL on
an NVidia card and scheduled at a low priority.

The quoted state vector size 300 corresponds to a map size
of 50 if all features are encoded using inverse depth. In indoor
scenes, due to switching maps of up to 60–70, features can be
computed in real time. This size is enough to map many typical
scenes robustly.

VIII. CONCLUSION

We have presented a parametrization for monocular SLAM
that permits operation based uniquely on the standard EKF
prediction-update procedure at every step, unifying initializa-
tion with the tracking of mapped features. Our inverse depth
parametrization for 3-D points allows unified modeling and
processing for any point in the scene, close or distant, or even
at “infinity.” In fact, close, distant, or just-initialized features
are processed within the routine EKF prediction-update loop
without making any binary decisions. Due to the undelayed ini-
tialization and immediate full use of infinite points, estimates
of camera orientation are significantly improved, reducing the
camera estimation jitter often reported in previous work. The
jitter reduction, in turn, leads to computational benefits in terms
of smaller search regions and improved image processing speed.

The key factor is that due to our parametrization of the di-
rection and inverse depth of a point relative to the location

from which it was first seen, our measurement equation has low
linearization errors at low parallax, and hence, the estimation
uncertainty is accurately modeled with a multivariate Gaussian.
In Section IV, we presented a model that quantifies lineariza-
tion error. This provides a theoretical understanding of the im-
pressive outdoor, real-time performance of the EKF with our
parametrization.

The inverse depth representation requires a 6-D state vector
per feature, compared to three for XYZ coding. This doubles the
map state vector size, and hence produces a fourfold increase in
the computational cost of the EKF. Our experiments show that
it is essential to retain the inverse depth parametrization for in-
tialization and distant features, but nearby features can be safely
converted to the cheaper XYZ representation, meaning that the
long-term computational cost need not increase significantly.
We have given details on when this conversion should be car-
ried out for each feature to optimize computational efficiency
without sacrificing accuracy.

The experiments presented have validated the method with
real imagery using a handheld camera as the only sensor, both
indoors and outdoors. We have experimentally verified the fol-
lowing the key contributions of our study:

1) real-time performance achieving 30 fps real-time process-
ing for maps up to 60–70 features;

2) real-time loop closing;
3) dealing simultaneously with low and high parallax fea-

tures;
4) nondelayed initialization;
5) low jitter, full 6-DOF monocular SLAM.
In the experiments, we have focused on a map size around

60–100 features because these map sizes can be dealt with in
real time at 30 Hz, and we have focused on the challenging loop
closing issue. Useful future work would be a thorough analysis
of the limiting factors in EKF inverse depth monocular SLAM
in terms of linearity, data association errors, accuracy, map size,
and ability to deal with degenerate motion such as pure rotations
or a static camera for long-time periods.

Finally, our simulations and experiments have shown that
inverse depth monocular SLAM operates well without known
patterns in the scene to fix scale. This result points toward further
work in understanding the role of scale in monocular SLAM (an
avenue that we have begun to investigate in a dimensionless for-
mulation in [6]) and further bridging the gap between sequential
SLAM techniques and structure from motion methods from the
computer vision literature.

APPENDIX

To recover the ideal projective undistorted coordinates hu =
(uu , vu )� from the actually distorted ones gathered by the cam-
era hd = (ud, vd)

�, the classical two parameters radial distor-
tion model [17] is applied:

(
uu

vu

)
=hu

(
ud

vd

)
=

(
u0 + (ud − u0)

(
1 + κ1r

2
d + κ2r

4
d

)
v0 + (vd − v0)

(
1 + κ1r

2
d + κ2r

4
d

) )

rd =
√

(dx(ud − u0))
2 + (dy (vd − v0))

2 (30)
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where u0 , v0 are the image centers and κ1 , κ2 are the radial
distortion coefficients.

To compute the distorted coordinates from the undistorted

(
ud

vd

)
= hd

(
uu

vu

)
=




u0 +
(uu − u0)

(1 + κ1r2
d + κ2r4

d)

v0 +
(vu − v0)

(1 + κ1r2
d + κ2r4

d)


(31)

ru = rd

(
1 + κ1r

2
d + κ2r

4
d

)
(32)

ru =
√

(dx(uu − u0))
2 + (dy (vu − v0))

2 (33)

where ru is readily computed computed from (33), but rd has to
be numerically solved from (32), e.g, using Newton–Raphson
method; hence, (31) can be used to compute the distorted point.

Undistortion Jacobian ∂hu/∂ (ud, vd) has the following an-
alytical expression:


(
1 + κ1r

2
d + κ2r

4
d

)
+

2 ((ud − u0) dx)2 ×(
κi + 2κ2r

2
d

)
2d2

x (vd − v0) (ud − u0)×(
κ1 + 2κ2r

2
d

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2d2
y (ud − u0) (vd − v0)×(

κ1 + 2κ2r
2
d

)
(
1 + κ1r

2
d + κ2r

4
d

)
+

2 ((vd − v0) dy )2 ×(
κi + 2κ2r

2
d

)




(34)
The Jacobian for the distortion is computed by inverting expres-
sion (34)

∂hd

∂ (uu , vu )

∣∣∣∣
(uu ,vu )

=

(
∂hu

∂ (ud, vd)

∣∣∣∣
hd (uu ,vu )

)−1

. (35)
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Zaragoza, where he is in charge of Perception and
Computer Vision courses. His current interests in-
clude computer vision, real-time vision localization
and mapping research, and the transference of this
technology to robotic and nonrobotic application

domains.
Dr. Montiel is member of the the Robotics, Perception, and Real-Time Group.

He has been awarded the Spanish Merrimack Education Center (MEC) grants to
fund research at the University of Oxford, Oxford, U.K., and Imperial College
London, London, U.K.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 17, 2008 at 05:06 from IEEE Xplore.  Restrictions apply.


