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Abstract. A common approach to XML updates is to extend XQuery with up-
date operations. This approach results in very expressive languages which are
convenient for users but are difficult to reason about. Deciding whether two ex-
pressions can commute has numerous applications from view maintenance to
rewriting-based optimizations. Unfortunately, commutativity is undecidable in
most recent XML update languages. In this paper, we propose a conservative
analysis for an expressive XML update language that can be used to determine
whether two expressions commute. The approach relies on a form of path analy-
sis that computes upper bounds for the nodes that are accessed or modified in a
given update expression. Our main result is a commutativity theorem that can be
used to identify commuting expressions.

1 Introduction

Most of the proposed XML updates languages [7, 15,19, 1, 12] extend a full-fledged
query language such as XQuery [5] with update primitives. To simplify specification
and reasoning, some of the first proposals [7, 15, 1] have opted for a sosradipshot
semanticswhich delays update application until the end of the query. However, this
leads to counter-intuitive results for some queries, and limits the expressiveness in a
way that is not always acceptable for applications. For that reason, more recent pro-
posals [12, 6] give the ability to apply updates in the course of query evaluation. Such
languages typically rely on a semantics with a strict evaluation order. For example,
consider the following query, which first inserts a set of elements, then accesses those
elements using a path expression.

for $x in $doc/country return insert {<new/>} into {$x},

count ($doc/country/new)

Such an example cannot be written in a language based on a snapshot semantics, as
thecount would always return zero. However, it can be written in the XQuery! [12] or
the XQueryP [6] proposals, which both rely on an explicit left-to-right evaluation order.
Still, such a semantics severely restricts the optimizer’s ability for rewritings, unless the
optimizer is able to decide that some pairs of expressions commute.

Deciding commutativity, or more generally whether an update and a quieny
fere has numerous applications, including optimizations based on algebraic rewritings,
detecting when an update needs to be propagated through a view (usually specified as a
query), deciding whether sub-expressions of a given query can be executed in parallel,
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etc. Unfortunately, commutativity is undecidable for XQuery extended with updates.

In this paper, we propose a conservative approach to detect whether two query/update
expressions interfere, i.e., whether they can be safely commuted or not. Our technique
relies on an extension of the path analysis proposed in [17] that infers upper bounds for
the nodes accessed and modified by a given expression. Such upper bounds are specified
as simple path expressions for which disjointness is decidable [3, 18].

Our commutativity analysis serves a similar purpose to independence checking in
the relational context [10, 16]. To the best of our knowledge, our work is the first to study
such issues in the XML context, where languages are typically much more expressive.
A simpler form of static analysis is proposed in [1, 2], suggesting that similar techniques
can be used to optimize languages with a snapshot semantics. Finally, commutativity of
tree operations is used in transactional models [9, 14], but relies on run-time information
while our purpose is static detection.

Problem and exampledn the rest of the paper, we focus on a simple XQuery
extension with insertion and deletion operations. The syntax and semantics of that lan-
guage is essentially that of [12], with updates applied immediately. This language is
powerful enough to exhibit the main problems related to commutativity analysis, yet
simple enough to allow a complete formal treatment within the space available for this
paper. Here are some sample queries and updates in that language.

Q1 count ($doc/country/new) Ul delete {$doc/wines/california}
Q2 Sdoc/country[population > 20] U2 for $x in $doc/country return

insert {<new/>} into {$x}
Q3 for $x in $doc//country

return ($x//name) U3 for $x in
$doc/country[population < 24]
Q4 for $x in $doc/country return
return $x/new/../very_new delete {$x/city}

Some of those examples obviously commute, for instauiteleletes nodes that are
unrelated to the nodes accessediyor Q2. This can be inferred easily by looking at
the paths in the query used to access the corresponding nodes. On the cogtdarys
not commute withQ1 since the query accesses nodes being inserted. Deciding whether
the set of nodes accessed or modified are disjoint quickly becomes hard for any non-
trivial update language. For instance, deciding whethi@rand Q2 interfere requires
some analysis of the predicates, which can be arbitrarily complex in XQuery.
Approach.We rely on a form of abstract interpretation that approximates the set of
nodes processed by a given expression. The analysis must satisfy the following proper-
ties. Firstly, since we are looking to chedlsjointnesswe must infer an upper bound
for the corresponding nodes. Secondly, the analysis must be precise enough to be useful
in practical applications. Finally, the result of the analysis must make disjointness de-
cidable. In the context of XML updategsathsare a natural choice for the approximation
of the nodes being accessed or updated, and they satisfy the precision and decidability
requirements.
Contributions. The path analysis itself is a relatively intuitive extension of [17]
to handle update operations. However, coming up with a sound analysis turns out to
be a hard problem for a number of reasons. First of all, we use paths to denote sets
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of accessed nodes, but the forthcoming updates will change the nodes denoted by the
paths that are being accumulated. We need a way to associate a meaning to a path
that isstablein the face of a changing data model instance. To address that issue, we
introduce a store-based formalization of the XML data model and a notion of store
history that allows us to talk about the effect of each single update and to solve the
stability issue. Another challenge is to find a precise definition of which nodes are
actually used or updated by a query. For instance, one may argué3loaty modifies

nodes reached by the pathuntry/city However, one would then miss the fact thi&
interferes withQ3 because theity nodes may have eountryor anamedescendant,

which is made unreachable by the deletion. In our analysis, this is kept into account
by actually inserting into the updated pathsU all the descendants of the deleted
expressiorcountry/city as detailed in the table below.

U3 Q3

accessed paths: accessed paths:
$doc/country $doc//country
$doc/country/population $doc//country//name
$doc/country/city

updated paths: updated paths:

$doc/country/city/descendant-or-self::*

Q4 is interesting as well. If the returned expressiginew/../verynewwere just as-
sociated to the pathountry/new/../vernew the interference witiJ2 would not be
observed, since the patbuntry/new/d.-o.-sx updated byJ2 refers to a disjoint set of
nodes. Hence, the analysis must also consider the nodes traversed by the evaluation of
$x/new/../verynew, which correspond to the pattountrycountry/nevicountry/new/,.
whose second component intersects wihintry/new/d.-o0.-sx.

The main contributions of the paper are:

— We propose a form of static analysis that infers paths to the nodes thetcassed
andmodifiedby an expression in that language;

— We present a formal definition of when such an analysis is sound, based on a no-
tion of store history equivalencehis formal definition provides a guide for the
definition of the inference rules;

— We show the soundness of the proposed path analysis;

— We prove a commutativity theorem, that provides a sufficient condition for the com-
mutativity of two expressions, based on the given path analysis.

Organization.The rest of the paper is organized as follows. Section 2 presents the
XML data model and the notion of store history. Section 3 reviews the update language
syntax and semantics. Section 4 presents the path analysis and the main soundness
theorem. Section 5 presents the commutativity theorem. Section 6 reviews related work,
and Section 7 concludes the paper. For space reasons, proofs for the analysis soundness
and for the commutativity theorem are provided separately in [13].

2 A Store for Updates

We define here the notions eforeandstore history which are used to represent the
effect of XML updating expressions. Our store is a simplification of the XQuery Data
Model [11] to the parts that are most relevant to our path analysis.
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2.1 The Store

We assume the existence of disjoint infinite setaade ids A/, thenode kinds X =
{element,text}, names Q, and possibléextual content7. A nodelocationis used
to identify where a document or an XML fragment originates from; it is either a URI or
a unique code-location identifidnc ::= uri | code-loc

A uri typically corresponds to the URI associated to a document aode:-locis
used to identify document fragments generated during query evaluation by an element
constructor. Now we are ready to define our basic notion of store.

Definition 1 (Store). A storec is a quadruple(N,E, R, F) where NC A’ contains the
set of nodes in the document,c(EN x N contains the set of edges; R — loc is a
partial function mapping some nodes to their location, and the node descriptien F
(kind g,nameg,content f) is a triple of partial functions wher&ind g: N — K
maps each node to its kindamer : N — Q maps nodes to their name (if any), and
content g: N — 7 maps nodes to their text content (if any).
We use N, Eg, Ry, Fo to denote the NE, R F component of. When(m,n) € E, we
say that m is a parent of n and n is a child of m. A “root” is a node that has no parent.
Finally a store must be “well-formed”: (1) all nodes mapped by R must be root
nodes, (2) every non-root node must be the child node of exactly one parent node, (3) the
transitive closure E of E must be irreflexive (4) element nodes must have a name and
no content; and (5) text nodes must have no name and no children but do have content.

In what follows, every store operation preserves store well-formedness.

2.2 Accessing and updating the store

We assume the standard definitions for the usual accessors (parent, children, descen-
dants, ancestors, name, text-content...), and focus on operations that modify the store
(insert,delete, and node creatidn)Ve define a notion citomic update recordvhich
captures the dynamic information necessary for each update, notably allowing the up-
date to be re-executed on a store, usinggiiely operation defined below.

Definition 2 (Atomic update records).Atomic update records are terms with the fol-
lowing syntax, where E is a set of pairs of nodes, arshdm are ordered sequences of
nodes. In thereate case, Fis such thah, (), (),F) would be a well-formed store.

create (n,F) | R-insert (n,loc) | insert (E) | delete (n)

Definition 3 (Atomic update application).
The operation applio,u) returns a new store as detailed below, but fails when the
listed preconditions do not hold.

— apply(o,create (n,F’)) addsn to N and extends F with'F
Preconditionsn disjoint from N.(n, (), (),F’) is a well-formed store.
— apply(o,R-insert  (n,loc)) extends R with r- loc.
Preconditions: n is a root node and ) =_L.

3 Note that replace is trivial to add to the framework.
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— apply(o,insert (E')) extends E with £
Preconditions: for eactinp,n¢) € E', nc has no parent in EJE'\ {(np,n¢)}, and
R(nc) =.L. The transitive closure of BE' is irreflexive.

— apply(o,delete (n)) deletes each eddep,nc) € E where g € n.
Preconditionsn C N.

Definition 4 (Composite updates)A composite updatéy, is an ordered sequence of
atomic updatesA = (ug,...,Un). apply(o,A) denotes the result of applying.u. u, on
storeo, in this order.

We usecreatedA) to denote the set of nodes created/byA composite updaté
respects creation timiéf, however we split it ad\1, Ay, no node ircreatedA;,) appears
in A;. Hereafter we will always assume that we only work with si&h

Finally, we need a notion afpdatedA;) that enjoys the following property, where
SHT means thaBandT are disjoint.

Property 1. If Aj,A; andAy, A1 both respect creation time, then
updatedAs)#updatedAz) = apply(o, (A1,A2)) = apply(o, (A2,A1))

The following notion satisfies Property 1.

Definition 5 (Update target). Theupdate targedf each update operation is defined as

updatedcreate (n,F)) =def {}
updatedR-insert  (n,loc)) =ger {}
updatedinsert (E)) =def {Nc| (Np,Nc) €E}
updateddelete (n)) =def N

Intuitively, provided that creation time is respected, the only two operations that
do not commute arensert(np,nc) anddelete(ne). Any other two operations either
do not interfere at all or they fail in whichever order are applied, as happens for any
conflictingrR-insert-R-insert, R-insert-insert, Or insert-insert pair.

2.3 Store History

Finally, we introduce a notion of store history, as a gair(us,...,uUs)). In our seman-

tics each expression, instead of modifying its input store, extends the input history with
new updates. With this tool we will be able, for example, to discuss commutativity of
two expression&xpr,, Expr, by analysing the historie®, (A1,42)) and (o, (A%,4)))
produced by their evaluations in different orders, and by proving that, under some con-
ditions,A; = A] andA; = A,

Definition 6 (Store history). A store historyn = (0,,4y) is a pair formed by a store
and a composite update.

A store history(o,A) can be mapped to a plain store either by apply) or by
applying no-deletéA) only, which is theA without any deletion. The accessors are
extended to store histories using the convention that, for any function defined on stores,
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f(n) =qef f(apply(n)). The second mapping (M@, A))) will be crucial to capture
the degree of approximation that store dynamicity imposes over our static analysis.

apply((0,4)) =derapply(o,4)
mrg((0,4)) =qef apply(a, no-deleté))

By abuse of notation we shall (1) implicitly interpretas(o, ()); (2) extend accessors
to store histories using the convention that, for any function defined on stdrgs=qes
f(apply(n)); (3) whenn = (o,A) then writen, A =gt (0, (A,4)). We define history
differencen \ n’ as follows:(o, (A, &)\ (0,A) =get &',

Definition 7 (Well-formed History). A historyn is well-formed if mrgn) is defined
(which implies that appli{c,A)) is defined).

3 Update language

The language we consider is a cut-down version of XQuery! [12] characterized by the
fact that the evaluation order is fixed and each update operation is applied immediately.
It is not difficult to extend our analysis to languages with snapshot semantics, but the
machinery becomes heavier, while we are trying here to present the simplest incarnation
of our approach. The language has the following syntax; we will use the usual abbrevia-
tions for the parentd/..), child (p/namg, and descendanp(/namg axes. We assume
thatcode-loc(See Section 2) is generated beforehand by the compiler.

Expr::= $x | Expr/axis:ntest| Expr, Expr | Expr = Expr
| let $x := Expr return EXpr | for $X in Expr return Expr
| if (Expr ) then Expr else Expr |delete {Expr }
| insert {EXpr 1} into {EXpr } |elementcode-loc {EXpr }{EXpr }

axis::= child | descendantparent| ancestor
ntest::= text()| node()] name|

The main semantic judgemerdEnvt no; Expr = n1;n" specifies that the evaluation

of an expressiorfexpr, with respect to a store historyy and to a dynamic environ-
mentdEnvthat associates a value to each variable fre€xpr, produces a value and
extendsnp to N1 = no,A. A value is just a node sequenngtextual content may be
accessed by a functioh but we otherwise ignore atomic values, since they are ignored
by path analysis. In an implementation, we would not manipulate the higtdoyt the

store applyno), since the value of every expression only depends on that. However,
store histories allow us to isolate the store effect of each single expression, both in our
definition of soundness and in our proof of commutativity.

As an example, we present here the rule for insert expressions; the complete seman-
tics can be found in [13]. Lety be the descendants-or-self of the nodes imsert-into
usesprepare-deep-copio identify a fresh noden € my for each node img, while
Ecopy and Feopy reproduce forEappiyn,) andFappiyn,) for mg, andmis the subset of
my that corresponds tn. Hence,create (Mg, Feopy), insert(Ecopy) COpy N and their
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descendants, whilensert({n} x m) links the copies oh to n. Notice how the rule
only depends on app(g2), not on the internal structure gb.

dEnvt no; Expry = n1;n
dEnvk n1; Expr, = na;n
(M, My, Ecopy, Fcopy) = prepare-deep-coggpply(nz), n)
N3 = N2, create(My, Fcopy), insert (Ecopy), insert({n} x m)
dEnvt- no; insert {Expr 1} into {EXpr 2} = nz;()

Itis easy to prove that, whenewdEEnv no; Expr = ni;nholds ando is well formed,
thenn; is well-formed as well.

4 Path analysis

In this section, we introduce the path analysis judgment and the inference rules that
compute it.

4.1 Paths and prefixes

We now define the notion of paths that is used in our static analysis. Observe that the
paths used by the analysis are not the same as the paths in the target language. For
example, they are rooted in a different way, and the steps need not coincide: if we
added order to the store, we could add a following-sibling step to the language, but
approximate it wittparent::«/child:: in the analysis.

Definition 8 (Static paths).Static pathsor simplypaths are defined as follows.

p:=() | loc | polp1 | p/axis:ntest

Note that paths are always rooted at a given location. In addition, the particular fragment
chosen here is such that important operations, notably intersection, can be checked
using known algorithms [3, 18].

Definition 9 (Path Semantics)For a pathp and storeo, [p]lc denotes the set of nodes
selected from the store by the path with the standard semantics [20] except that order
is ignored, and R is used to interpret the locations loc. The following concepts are
derived from the standard semantics:

Inclusion. A pathp; is included inp,, denotedy; C py, iff Vo: [P1]le C [P2o]o-
Disjointness. Two path9,, p, are disjoint, denoteg,#p,, iff Vo: [p1]c N [P2]lc = 0.

Prefixes. For each patha we define préf) as follows.

a loc p/axis:ntest plg
pref(a)|{loc}|{p/axis:ntes§ U pref(p)|{p|q} Upref(p) U pref(q)
Prefix Closure. For a patha we write prefclose@) iff Vp: p € prefla) = pCa.

The prefixesof a path are all its initial subpaths, and a path is prefix-closed when it
includes all of its prefixes. For example, the pathg/b|/a|/a//b/cand/«|/a/bare
both prefix-closed (the latter becayseC /«).
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4.2 The meaning of the analysis

Definition 10 (Path analysis)Given an expression Expr and a path environnpryv
which is a mapping from variables to paths, our path-analysis judgment

PEnv - Expr=-r; (a,u)

associates three paths to the expressiois. an upper approximation of the nodes that
are returned by the evaluation of Exprpf those that are accessed, amdf those that
are updated.

There are many reasonable ways to interpret which nodes are “returned” and “accessed”
by an expression. For example, a pati f& only returns the $descendants with am

name but, in a naive implementation, may access every descendanbeftdding what

is “updated” is even trickier. This definition should be as natural as possible, should
allow for an easy computation of a static approximation and, above all, should satisfy
the following property: if what is accessed Bypr; is disjoint from what is accessed

or updated by¥expr,, and vice-versa, then the two expressions commute.

In the following paragraphs we present our interpretation, which will guide the de-
finition of the inference rules and is one of the basic technical contributions of this
work.

The meaning of seems the easiest to describe: an analysis is souplEn¥ -

Expr = r; (a,u) and dEnv- ng; Expr = n;n imply thatn C [r]appiym,)- Unfortu-
nately, this is simplistic. Consider the following example:

let $x := doc(’ul’)/a return let Sy := $x return (delete(Sy), $x/b)

Our rules bind a path yh to $x, and finally deduce a returned path/alb for the
expression above. However, aftiletefy), the value of &/b is not in [p]lappiyn) any-

more; the best we can say it is that it is still jp]lnrgn)- This is just an instance of

a general “stability” problem: we infer something about a specific store history, but
we need the same property to hold for the store in some future. We solve this prob-
lem by accepting that our analysis only satisfies [[f [|mgny,), which is weaker than

N C [r]lappiyn,) but is stable; we also generalize the notion to environments.

Definition 11 (Approximation). A pathp approximates a valua in the store history
n, denoted 2n N, iff N C [[p]mrgn)-

A path environmenpEnv approximates a dynamic environment dEnv in a store
historyn, denotedbEnv Dy, dEnv, iff

($x—n) e dEnv = 3b. ($x+— b) € pEnv and b Oy n

Thanks to this “merge” interpretation, a path denotes all nodes that are reached by that
path, or were reached by the path in some past version of the current history. This
approximation is quite harmless, because the merge interpretation of a history is still a
well-formed store, where every node has just one parent and one name, hence the usual
algorithms can be applied to decide path disjointness.

The approach would break if we had, for example, the possibility of moving a node
from one parent to another. Formally, fing may now contain nodes with two parents.
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In practice, one could not deduce, for example, {lagtd)#(b/c/d), because $'a/d

and ¥/b/c/d, if evaluated at different times, may actually return the same node, be-
cause its parent was moved from/& to $x/b/c in the meanwhile. Similarly, if nodes

could be renamed, then node names would become useless in the process of checking
path disjointness.

The commutativity theorem in Section 5 is based on the following idea: assume that
Expr; transformsag into (ne,A) and only modifies nodes reachable through a path
while Expr, only depends on nodes reachable throagsuch thau#a. Becausd=xpr,
only modifies nodes in, the histories)p and(no,4) are “the same” with respect &
hence we may evaluatexpr, either before or afteExpr;.

This is formalized by defining a notion of history equivalence wrt a ppth, n’,
and by proving that the inferreelandu and the evaluation relation are related by the
following soundness properties.

Parallel evolution from a-equivalent stores, first version:
N ~aNo and dEnvt- no; Expr = (No,4);n
imply dEnvt ng; Expr = (ng,4);n, i.e.the samaandA are produced.

Immutability out of u, first version:

Ve: c#u and dEnvt ng; Expr = (no,A);n
imply no ~c (No,4).

To define the right notion of path equivalence, consider the Comma rule
pEnv - Expr; = r1; (a1,us)

pEnv F Expr, = ry; (az,uz)

(CommA)
pEnv - Expry, Expr, = ri|ro; (a1]ag, us|uz)

The rule says that ify, ~a|a, No then the evaluation dExpry, Expr, gives the same re-
sult in bothno andng. Our equivalence over will be defined as¥p’ € pref(p). P(p’)”,

S0 thatng ~g|a, No iMpliesng ~a;, No andng ~a, No. Hence, by induction, if we start
the evaluation oExpry, Expr, from ng ~4,ja, No, thenExpr, will be evaluated against
(No,4) and(ng,A), but we have still to prove thafy ~a, Ng implies(nog,A) ~a, (NG, 4).

This is another instance of the “stability” problem. In this case, the simplest solution is
the adoption of the following notion of path equivalence: two histofesndn, are
equivalent modulo a patty, denotedy ~p Ny, iff:

Vpl € pref(p). VA. [[p/]]apply(r]l,A) = [[plﬂapply(nzA)

The quantification o makes this notion “stable” with respect to store evolution, which
is extremely useful for our proofs, but the equality above actually implies that:

VA. (wf(ng,A) = wi(ng,4)) A (VA wf(nz,A) = wf(ng,A))

This is too strong, because, whenever two stores differ in one nodA, ttied creates

the node can only be added to the store that is missing it. Similarly, it they differ in one
edge, the\ that inserts the edge can only be added to the store that is missing it. Hence,
only identical stores can be extended with exactly the same #¢4.of
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So, we have to weaken the requirement. We first restrict the quantification to updates
that only create nodes that are fresh in both stores. Moreover, we do not require that
wf(ni,A) = wif(ny,4), but only that, for every of interest, a subset & of A exists
which can be used to extemd andn2 so to haven in both. The resulting notion of
equivalence is preserved by every update in the language whose path does not intersect
pref(p); this notion is strong enough for our purpos&5C A denotes the inclusion of
the inserted edges).

Definition 12 (Store equivalence modulo a path)Two historiess; ando, are equiv-
alent modulo a patlp, denotedsy ~p 03, iff:

Vp' € pref(p). VA. createdA)#(Ng; UNg,) A N € [0 ]appiyay.a)

= AN CAne [[p/]]apply(ol,A’) Ane [[plﬂapply(oz,,A’)
Vp' € pref(p). VA. createdA)#(Ng, UNg,) A N € [p'Tappiyas.a)

= I CA ne [plappyoray A NE [P Tappiyop.ar)

Definition 13 (Store history equivalence modulo a path).

N1 ~p N2 <def appIY(N1) ~p apply(nz)

Since[[p]lapplyn;.4) IS monotone wrty, the above definition implies that:

Ni~pN2 = (VA Wf(rllaA) A Wf(r]27A) = [[pﬂapply(nl.A) = [[pﬂapply(nz,A))
We are now ready for the formal definition of soundness.

Definition 14 (Soundness)The static analysipEnv - Expr = r; (a,u) is soundfor
the semantic evaluation dEhvng; Expr = na;n iff for any well-formedhg, n1, dEnv,
pEnv, Expr,n,r, a, u, such that:

PENnv F Expr=-r; (a,u)
dEnvk-no; Expr = (no,A);n
PEnNv Op, dEnv

the following properties hold.

Approximation by r: r is an approximation of the result:2>,, n

Parallel evolution from a-equivalent stores: For any alternative initial store history
NG, if NG ~aNo and Nqé)#createc(A), then dEnv- ng; Expr = (Ng,A);n

Immutability out of u: (1) u Oy, updatedA)
(2) Vprefclosedc): cu = ng ~¢ (No,4).

In the Parallel evolutionproperty, the conditiom%#createdA) is needed because,
if ng did already contain some of the nodes that are added, lhen it would be
impossible to extendg, with A. This condition is not restrictive, and is needed because
we identify nodes in different stores by the fact that they have the same identity. We
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could relate different store using a node morphism, rather that node identity, but that
would make the proofs much heavier.

Immutabilityhas two halves. The first, Oy, updatedA), confines the set of edges
that are updated to those that araijrand is important to prove that two updates com-
mute if u;#u,. The second half specifies that, for evety, the store after the update is
c-equivalent to the store before. Together witrallel evolution it essentially says that
after Expr is evaluated, the value returned by any expresEipr; that only accesses
c is the same value returned Bxpr; beforeExpr was evaluated, and is important to
prove that an update and a query commugg#i,. The pathc must be prefix-closed for
this property to hold. For example, according to our rutkdete /a/b) updates a path
u = /a/b/dos:x. Itis disjoint fromc = /a/b/.., but still the value of/a/b/.. changes
afterdeleté /a/b). This apparent unsoundness arises becaiseot prefix-closed. If
we consider the prefix-closuee= /a|/a/b|/a/b/.. of /a/b/.., we notice that is not
disjoint fromu.

4.3 Path analysis rules
We present the rules in two groups: selection and update rules.

Selection rulesThese rules regard the querying fragment of our language. We extend
the rules from [17] for the proper handling of updated paths.

The (Comma) rule has been presented above.

The (Var) rule specifies that variable access does not access the store. One may won-
der whether should not be regarded as “accessed” by the evaluatior. dfte doubt
is easily solved by referring to the definition of soundness: the valurisftfie same in
two stores)p andn independently of any equivalence among them, hence the accessed
path should be empty. This rule also implicitly specifies that variable access commutes
with any other expression. For examp$e,delete$x) is equivalent talelete$x),$x.

($x—r) € pEnv
PENV = $x = 1:((),())

(VAR)

The (Step) rule specifies that a step accesses the prefix closurdethnically,
the rule would still be sound if we only put(r /axis:ntes} in the accessed set. How-
ever, the commutativity theorem relies on the fact that, for any expression, its inferred
accessed path is prefix-closed, for the reasons discussed at the end of the previous sec-
tion, and the addition of the prefix closure nfloes not seem to seriously affect the
analysis precision.

pEnv - Expr = r; (a,u)
pEnv - Expr/axis:ntest= r /axis:ntest (pref(r /axis:ntesb|a, u)

(STEP)

Iteration binds the variable and analyses the body once. Observe that the analysis
ignores the order and multiplicity of nodes.
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PENnv - Expr; = ry; (a,up)
(PENV +$x—r1) F EXpr, = ry; (az,up)
PENnvE for $x in Expr 1 return Expr ,
= r2; (arlag,u1|uz)

(FoR)

Element construction returns the unique constructor location, but there is no need
to regard that location as accessed.

pEnv - Expr; = r1; (a1,us)
pEnv F Expr, = ry; (az,uz)
PENVE elementcodeloc  {EXPr 1} {EXpr o}
= code-loc (a;|ap, u1|u2)

(ELT)

Local bindings just returns the result of evaluating the body, but the accesses and
side effects of both subexpressions are both considered.

pEnv F Expr; = ry; (a1,u1)
(PENV+$x— r1) - EXpr, = r2; (az,u)
PEnv let $x := EXpr ; return EXpr , = ry; (a1]ag,ui|uz)

(LET)

The conditional approximates the paths by merging the results of both branches.

PENV + Expr = ro; (az,us)
PENv - Expr; = r1; (ag,Up)
PENv - Expr, = r; (ag,us)

pPEnvif (EXpr ) then EXpr, else EXpr , (9
= r1|ra; (a1|az|as,us|uz|us)
Equality returns nothing but accumulate accesses and side effects.
pEnv - Expr; = r1; (a1,us)
pEnv F Expr, = ry; (ag,u2) (EQ)

pEnv - Expr; = Expr, = (); (a1]ag, uz|uz)

Update rulesThe second set of rules deals with update expressions.

The first rule is the one for delete. The “updated paiti% extended with all the
descendants af becauseau approximates those paths whose semantics may change
after the expression is evaluated, and the semantics of each péthom: x is affected
by the deletion. Assume, for example, tli&t — loc) € pEnv, ($x — n) € dEny, andn
is the root of a tree of the forra) (b)(c/)(b/)(a/). The evaluation ofielete {$x/b}
would change the semantics of/§c, although this path does not explicitly traverse
loc/b. This is correctly dealt with, since the presenceaif/b/dos:: x in u means:
every path that is not disjoint frooc/b/dos:: « may be affected by this operation,
and, by Definition 9Joc//c is notdisjoint fromloc/b/dos:: x.

Observe thatielete {$x/b} also affects expressions that do not end belayb$
such as “®/b/.."”. This is not a problem either, since the accessed aattmputed for
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the expressionx@b/.. is actuallyloc|(loc/b)|(loc/b/..), and the second component is
not disjoint fromloc/b/dos:: .

PENnv F Expr = r; (a,u)
PEnv - delete {Expr } = (); (a,u|(r/dos:x*))

(DELETE)

Similarly, insert {EXpr 1} into {EXpr 5} may modify every path that ends
with descendants dxpr,. Moreover, it depends on all the descendantSxr,, since
it copies all of them.

pEnv - Expr; = r1; (a1,us)
PENV - Expr, = r2; (ag,Up)

PEnvF insert {EXpr 1} into {EXpr ,}
= (); (aalaz|(r1/dos::x),uzfuz|(r2//*))

(INSERTCHILD)

4.4 Soundness Theorem

Theorem 1 (Soundness of the analysisThe static analysis rules presented in Sec-
tion 4.3 are sound.

Soundness is proved by induction, showing that the soundness properties are pre-
served by each rule. A detailed presentation of the soundness proof for the most impor-
tant rules can be found in Appendix B.

5 Commutativity Theorem

Our analysis is meant as a tool to prove for specific expressions whether they can be
evaluated on a given store in any order or, put differently, whetherdbmmute

Definition 15 (Commutativity). We shall use{[Exprﬂ‘nE”V as a shorthand for the pair
(apply(n’),bag-ofn)) such that dEn¥ n; Expr = n’;n, and where bag-¢h) forgets
the order of the nodes in.

Two expressions Expand Expp commutein pEnv, written Expg pEM Expr,, iff,
for all n and dEnv such thgiEnv Oy, dEnv, the following equality holds:

[Expry, EXprz]]ﬁEnV: [Expry, EXprl]]H'Env

Hence,Expr; pEY Expr, means that the order of evaluation Bxpr; and Expr,
only affects the order of the result.
Theorem 2 (Commutativity). Consider two expressions and their analysepkmv:

pEnv - Expr, = ry; (ag,us)
pENv - Expr, = r2; (a2, up)

If the updates and accesses obtained by the analysis are independent then the expres-
sions commute, in any environment that resppEtsv:

Env
Urfap, agftls, UsHl, = Expry s EXpI,
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Commutativity is our main result. The proof can be found in Appendix C. It follows
the pattern sketched in Section 4, after Definition 11. The proof is far easier than the
proof of soundness, and is essentially independent on the actual definition of the equiv-
alence relation. It only relies on soundness plus the following five properties, where
only Stabilityis non-trivial.

POneN = P2Onpahl (Stability)
for eachp, ~ is an equivalence relation (Equivalence)
p#(doldy) < PHdo A PHI, (I#)
N0 ~(qolgy) M1 = Mo ~go N1 (I~)
do € doldz (19)

6 Related work

Numerous update languages have been proposed in the last few years [7, 15, 19, 1, 12].
Some of the most recent proposals [12, 6] are very expressive, as they provide the abil-
ity to observe the effect of updates during query evaluation. Although [6] limits the
locations where updates occur, this has little impact on our static analysis which also
works for a language where updates can occur anywhere in the query such as [12]. Very
little work has been done so far on optimization or static analysis for such XML update
languages, a significant exception being the work by Benedikt et al [1, 2]. However,
they focus on analysis techniques for a language based on snapshot semantics, while
we consider a much more expressive language. A notion of path analysis was proposed
in [17], which we extend here by considering side effects.

Independence between updates and queries has been studied in the relational con-
text [10, 16]. The problem becomes more difficult in the XML context because of the
expressivity of existing XML query languages. In the relational case, the focus has been
on trying to identify fragments of datalog for which the problem is decidable, usually
by reducing the problem to deciding reachability. Instead, we propose a conservative
approach using a technique based on paths analysis which works for arbitrary XML
updates and queries. Finally, commutativity properties for tree operations are important
in the context of transactions for tree models [9, 14], but these papers rely on dynamic
knowledge while we are interested in static commutativity properties, hence the techni-
cal tools involved are quite different.

7 Conclusion

In this paper, we have proposed a conservative approach to detect whether two expres-
sions commute in an expressive XML update language with strict evaluation order and
immediate update application. The approach relies on a form of path analysis which
computes an upper bound for the nodes accessed or updated in an expression. As there
is a growing need to extend XML languages with imperative features [6,12, 8], we
believe the kind of analysis we propose here will be essential for the long-term devel-
opment of those languages. We are currently exploring the use of our commutativity
analysis for the purpose of algebraic optimization of XML update languages.
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A Language Semantics

A.1 Accessors

For convenience, we define some of the usual accessors, as follows. The definitions are
kept informal. Hereafter, we writE(m,n), or mEnR to signify that(m,n) € E.

nodekind(0,Nn) =gef kindg (N)
children(o,n) =gef {N | E(n,n")}
descendant (0,N) =gef children(o,n)
u{n”|n" € children(o,n),n” € descendant(o,n’)}
parent(0,0) =ger {1 | E(.1)}
ancestor(0,N) =gefparent(a,n)
u{n”|n" € parent(o,n),n” € ancestor(a,n’) }

A.2 Semantics of Paths
To interpret paths we first define a function that interprets each step as a set of pairs.

[child::t

Jlo={
[descendant: :t]g ={
lo={
Jlo={

Nz) | Nz € children(o,n1) A NodeTest,ny) }
Ni,N2) | N2 € descendant(o,n;) A NodeTest,ny) }
Nz) | N2 € parent(o,n1) A NodeTest,ny) }

Nz) | N € ancestor(o,n1) A NodeTest,ny) }

[parent::t

[ancestor::t
with the auxiliary

NodeTegiQNamen) < nameg(0,n) = QName

NodeTegt,n) < 3IQName nameg(0,n) = QName
NodeTesdtext (),n) < kindr(0,N) = text
NodeTesghode (),n) is always true

Leto = (N,E,RF) be a store ang a path. Path interpretatidjp] ¢ is defined as
follows. The result is unordered, for simplicity, and because order is not tracked by the
analysis we study in this paper.

(0] =
[loc]s = {nl R(n) =loc}
[plallo = [Plo U ale
[p/Steflo = {nz | n € [pllo A (M, n2) € [Stefls }
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A.3 Semantics of Updates

The metavariables, m, range over node ids,andmrange over node id sequences, and
nameranges over gnames. The metavariables constrain rule applicability. This means
that, if a judgment in the premise uses n in the result position, as in:

dEnvt no; Expr = nu;n,
the judgment can only be appliedakpr evaluates to a value which is a node.

dEnvi- no; Expr = nay;n
N2 =N1,delete(n)
dEnvi- no;delete {Expr } = nz;()

(DELETE)

insert copies all the descendants of the first argument, and links the copies as new
children of the second argument. Lt be the descendants-or-self of the nodes.in —
Insert-into useprepare-deep-copio identify a fresh noden, € my for each node in
Ng, while Ecopy and Feopy reproduce forEappiyn,) andFappiyn,) for mg, andmis the
subset ofimy that corresponds to. Hence,create(My, Feopy), insert(Ecopy) COPy N
and their descendants, whilesert({n} x m) links the copies of to n. Notice how
the rule only depends on apiffy,), not on the internal structure qb.

dEnvtne; Expry = nu;n
dEnvk n1; Expr, = na;n
(M, My, Ecopy; Feopy) = Prepare-deep-copgapply(nz), n)
N3 = N2, create(My, Fcopy), insert (Ecopy), insert({n} x m)
dEnvt- no; insert {Expr 1} into {EXpr 2} = nz;()

(INSERT)

Element creation copies all the descendants of the second argument, and links the
copy as new children of a fresh node whose name is given by the first argument. The
fresh node is linked t@ode-log only for the purposes of our analysis. The function
fresh(N) returns a new node fresh fbt.

dEnvt ne; Expr; = ni;name
dEnv-ng; Expr, = nz;n
(M, My, Ecopy, Feopy) = prepare-deep-cogapply(nz), n)
m = freshNappiyEs) U M)
N3 =2, create(My, Fcopy),
create(m, (M+— element,M+— name())),
R-insert(m,code-l0g, insert(Ecopy), insert({n} x m)

(ELT)
dEnvi- no;elementcode-loc  {EXPr 1} {EXpr 2} = nz;m
dEnv no; Expr = ni;n
n={n|3nen. (nn) c[Ste
{ | ( ) [[ mappMﬂl)} (STEP)

dEnvi- no; Expr/Step=- ni;n
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dEnvi- no; Expr; = n1i;m
dEnvi- N1 Expr, = n2;np

— CoOMMA
dEnvk no; Expry, EXpr, = n2;ng, N2 ( )
dEnvt- no; Expry = n1;n1
(dEnv+$x — np) N1 Expry = na2;m2 (Le)
dEnvk no;let $x := Expr 1 return Expr o, = ng;ny
dEnv no; Expry = na;iteny, ... itemy
foriin 1...m: (dEnv+$x— item) - ni; Expr, = niv1;ni (FoR)

dENvk no; for $x in EXpr j return EXpr, = Nmi1;M,...,M

dEnvi- no; Expr = ni;true
dEnvi- n1; Expr; = n2;n
dEnvkng;if (Expr ) then Expr q else EXpr, = ng;n

(IFT)

dEnvk no; Expr = ni;false
dEnvt n1; Expr, = n2;n
dEnvi-no;if (Expr ) then EXxpr i else Expr , = no;n

(IFF)

dEnvk no; Expr; = n1;ng
dEnvi- N1 Expr, = nzinp
b=equal(ni,ny)
dEnv no; Expry = Expr, = na;b

(EQ)

B Soundness proof

B.1 Some Lemmas
Lemma 1.
AN CA = wi(n,A) = wi(n,4)
A CA = win,b) = [pﬂapply(n,A’) - [[p]]apply(mA)

Lemma 2 (Store history equivalence modulo a path)The following is an alternative
characterization of equivalence

vp' € pref(p). VA. wi(ny, 8) A wi(nz,8) = [P'lappiyny.a) = [P Tappiynz a)
vp' € pref(p). VA. createdA)#(Np, UNp,) A wi(ng,A)

Ane[p ]]apply(nlA = 3N CA wi(nz,&') A ne [[p/]]app|},(nl7A,)
vp' € pref(p). VA. createdA)#(Np, UNp,) A wi(nz,4)

ANnEp ]]apply(nz A = 3N C A wi(ng,A') Ane [[p/]]apply(nz,A/)

We useR~! andR* to denote the inverse and the Kleene star or a binary relation.
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Property 2. Either[[stefs C E}; (downward steps) dfstefs C (E51)* (upward steps).

Proposition 1.

(pref() ~) p€pref(@) A n1~qn2 = N1~pn2
Lemma 3.

plp’ e pref(q) = peprefig) A p’ € prefq)

p/Stepe pref(q) = p € pref(q)
Proof. First part: by induction ong. If g isloc, the resultis immediate. ¢f = q' /Ste pExpr
thenp|p’ € pref(q’), hence, by inductiorp € pref(q’) andp’ € pref(q’) and the result
follows. If g = q'|q”, then eitherq = p|p’, or not. In the first case, the thesis follows
because € pref(p) andp’ € pref(p’). Otherwise p|p’ € pref(q’) or p|p’ € pref(q”).
W.l.o.g., assume the first, then, by inductigne pref(q’) andp’ € pref(q’), and the
result follows.

Second part: analogous.

B.2 Delete rule

The rule deduces:
PEnv k- delete {Expr } = (); (a,u|(r/dos:x))
from:
(0) pEnv - Expr = r; (a,u)

We have to prove that the following assumptions:

(1) dEnvi-ng;delete {Expr } = nz;()

(2) pEnv 2y, cENV
imply the following facts:

Approximation:
() 2f]z ()

Immutability:
prefclosedc) A c#(u|(r/dos:x)) = No~cN2
(ul(r/dos:: %)) 2, updatedns \ no)
Parallel Evolution:
No~aNo A Ng#(N1\ No)
= 3n) (dEnvk ng;delete {Expr } = nj;()
ANz2\No=n\Ng )

By the inversion property of the dynamic semant{ds,implies:

(3) dEnvt no; Expr = ni;n’
(4) N2 =n1,delete(n)

By induction,(0), (3), and(2) imply the following properties:
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Approximation — induction:
r On, N

Immutability — induction:
CHu = No ~c N1
u 2n, updatedni \ no)
Parallel Evolution — induction:
No~aNo A Ng#(N1\No)
= 3nj (dEnvkng Expr=ni;n
AN\Ng=nN1\nNo )

Now we can prove the three properties. Approximation is trivial. Immutability and par-
allel evolution are less trivial.

Immutability. (1) prefclosedc) A c#(r/dos:*) = nNi~cn2
(2)  (r/dos:) O, updatednz\n1)

To prove (2), observe thgp \ n1 = delete(n), henceupdatedn, \ n1) = n, by approx-
imation - inductionr D, n, by stabilityr 2y, n, and by the semantics ¢p/dos:: *),
(r/dos:: k) Dy, n. The thesigu|(r /dos:: x)) Dy, updatedn> \ no) follows by this prop-
erty plus the inductione hypothesisD,, updatedn \ no), transformed intas Oy,
updatedni \ no) by stability.

We now prove the following fact, from whicfip]lappiyno.a) = [Plapplyne.celete().a)
immediately follows, since the opposite inclusion is trivial.

Vp € pref(c). YA. me [[Plappiyno.s) = ME [Plapplyno.delete(i).a)

We reason by induction on the size pfand by cases on its shape. Observe that,
while cis prefix-closedp is not, in general.

[10C] applytno.a) = [10C] appiy(ng,derete(m,a): this holds becausgelete(n) has no ef-
fect on the semantics ddc.

[P'IP" T appiyino.a) = [P’IP"Dappiyng.ce1cte(m.a): follows since, by Lemma 3, induc-
tion guarantees the same propertygoandp”.

The only diffcult case ip = q/step Assumem € [q/stef|appiyno.a)-

Then,3m' € [Alappiyng.a) @and (3)(M', m) € [[stedappiyno.a)-

By lemma 3,q/stepe pref(c) implies thatq € pref(c).

Hence, by inductiom’ € [[q] apply(n,de1ete(),A)

We only have to prove thatn',m) € [[stefapplyno,de1ete()A)-

Assume for a contradiction that (4)',m) ¢ [[Stedappiyng.cetete (i) a)-

By prefclosedc), q/stepe pref(c) implies thatq/stepC ¢, hencem € [[C]lappiyng.a)-
By Lemma 3 € pref(c), henceq C ¢, hencen & [[C]lappiyno.a)-

Since we only have upward and downward steps, (3) and (4) together imply that
3n € n'such that eitheti) mE*nE"nY or (i) ME*nE'm, whereE = Exppiyn,.a)-

In either case, an elememtor m' of [[c]appiyn,.0) IS @ descendant (or self) af

in apply(no,4).
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Hence, an element dit]yn,.0) is @ descendant afin mrg(no,A).

By approximation, we know that € [[r [ngn,)-

By stability, n € [[r [|mrgmo.a)-

Hence, every descendantroin mrg(no,A) belongs tg[r /dos:: #]Jmrgmo.a)-
Now, the presence of a miigo, A)-descendant afiin [C]lmrgin,.a)
contraddicts the assumptia#(r /dos:: ).

We have now to prove thafp € pref(c):

(3) VA.ne Hp]]apply(nz,A) A (nOde_Create(ﬂ>)#Napp|y(l’]2,delete(m)
= 30" C A wf(nz,delete(n),A") A ne [pPllapplyma.a)

(4) VA.ne Hp]]apply(r]z,delete(ﬁ)A) A (nOde'Create(A))#Napply(nz)
= A CA wi(nz, &) A e [Pllappiyng.derete(d.a)

(3) is trivial: take A’ = A: the addition of adelete creates no conflict. In the (4)

case, letE’ be the set of pairgénp,nc) such that(ny,nc) € apply(nz,A) andnc € n,

and letA’ be A where eachinsertE has been substituted byhsertE\ E'. Then,
wf(n2,deleten,A) implies wf(n,,4’), and applyn2,A) = apply(nz,delete(n),q’),

hencen € [[p[lappiyn,.a)- The thesisi € [pllappiyn,.a) follows by [pllappiyn,.a) = [Plapplynz.cetetenar):
which we proved before.

This proves that (1) prefclosér) A c#(r/dos:x) = n1~cN2. The thesis fol-
lows by induction: assum&#(u|(r /dos:: x)). This impliesc#u andc#(r /dos:: «), hence
No ~¢ N1 follows by induction and); ~¢ n2 follows by (1), henceyg ~¢ N2 follows by
transitivity.

Parallel Evolution. We choose ang’j among those implied by the inductive property,
and define}, = nj,delete(n). We must proveEnvk ng; delete {Expr } = nj;()
andnz\ no = n5\ ng. The first holds by construction. For the secofigh\ no)= ((N1\
No),delete(n))= ((n1\Np),delete(n))= (N3 \Np)-

B.3 Insertrule
The rule deduces:

PEnvF insert {EXpr 1} into {EXpr ,}
= (); (aaaz|(r1/dos::x),uzfuz|(r2//*))

from:
(0) PENV - Expry; = ry; (ay,us)
(1) PENV - EXPI, = 2} (3p,Uz)

We have to prove that the following assumptions:

(2) dEnvt no; insert {EXpr i} into {EXxpr 2} = ns;()
(3) pEnv 2y, dENV

imply the following facts:
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Approximation:
() 2ns ()
Immutability:
prefclosedc) A c#(ui|uz|(r2//*)) = No~cN3
(uzfuz|(r2//*)) 2ns updatedns\ no)
Parallel Evolution:
No~aMNo A No#(N1\No)
= 3ng (dEnvk ng;insert {EXpr ;} into {EXpr 2} = nj;()
Anz\no=n3\ng )

By the inversion property of the dynamic semanti&,implies what follows (we iden-
tify hereinsert(E), insert(E’) with insert(EUE)).

) dEnvi- no; Expry = n1;n

) dEnv-ng; Expr, = nz;n

) N3 = N2, create(My,F’), insert(E'U ({n} x m))
(

By induction,(0), (4), (5), and(3) imply the following properties:

Approximation — induction:
ri2n, N
2 2p, N
Immutability — induction:
CHul = No~c
CHuz = N1~cN2
U1 2, updatedns \ No)
Uz 2, updatednz \ 1)
Parallel Evolution — induction:
NG ~a, No A Ng#(N1\ No)
= 3N} (dEnv-ng; Expr = nf;n Anj\ng=ni\no )
Ni ~a, N1 A Ni#(N2\Ni)
= 3n, (dEnvkn;Expr = nhn Ans\ni=n2\n1 )

Now we can prove the three properties. Approximation is trivial. Immutability and par-
allel evolution are less trivial.

Immutability We first prove the following property:
Q) Ve, p € pref(c), r, n, np, Mg#N,, mC my, E' C (mg x nodes)), A
wf(n,create(My,F’), insert(E'U({np} x m)),A)
A wf(n,Delta) A r Dn np A prefclosedc) A cH(r//x)
= [Pllappiyn.a) = [P]appiyn.create(y.F').insert (EU({np} x)).A)
Hereafter we abbreviatereate(my,F’), insert(E' U ({np} x m)),A with cr,ins,A.
We prove the following inclusion, since the opposite is trivial:

[[p]]apply(r],cr,ins,A) - [[p]]apply(n,A)
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We reason by induction on the sizepénd by cases on its shape. Observe that we
do not assume thatis prefix-closed.

[[Ioc]}appw n) = [loC]lappiy(n.cx,ins.a)" this holds because
create(md F), msert(E’ ({np} x m)) has no effect on the semanticslot.

[0’ IP" Tappiyn.a) = [P’IP"Jappiyn.cx,ins,a): follows by induction from the same prop-
erty forp’ andp”, WhICh belong to prét) by Lemma 3.

The difficult case i = q/step Assumem € [[q/sted appiyn,cr,ins,a)-
Then’gm € [[qﬂappl)(r],cr,insA) aﬂd(m,m) € [[Ste@]aper],cr,ins,A)'
By lemma 3,q/stepe pref(c) implies thatq € pref(c).
Hence, by induction (31 € [q] appiyn.a)- We only have to prove that, m) € [[steappiyn a)-
If [stedlapplym,cr,ins,a) CONNECtST to mwithout traversing an edge addedysert (E'U
({np} x m)), then the thesis is obvious. We hence assume thds{@} appiyn.crins )
connectsm' to m by traversing an edge added bysert(E' U ({np} x m)), and we
prove that (4) is impossible. Property (4) implies thegpis a downward step, since, by
(3), M has no ancestor among the freshly added nodes.
Sincen? is not fresh but a fresh node appears in the parent-child chain that connects
m to m, then a pair(o,0') with o € Ny and o’ ¢ N,, must be in that chain. Such
pairs iNEappiy(n.cr,ins,a) NAve the shap@,, my), hence we have'E*npEmE*m, where
E = Eapply(n,cx.,ins.0)- BY hypothesis O np and by stabilityr Op c; ins a Np, hencem
isin [[r//*]]mrg(r],cr,ins,A)'
This contradicts the hypothesi#( //*) sincemis in

[9/sted appiyn,cr,ins,a) € [A/St€Amrgm,cr,ins,a), @nd prefix closure of implies
[[ /Ste@]mrg (n,cr,ins,A) g [[ ]]mrg(r]Acr,lns,A) ThIS concludes the prOOf of (1)

We have now to prove that:

(5) VA.ne Hp]]apply(nz,A) A (nOde'Create(ﬂ))#Napply(r]z,cr,ins)
= N CA wf(ng,cr,ins,A') A ne [P appiy(na,a)

(6) VA.ne Hp]]apply(nz,cr,insAA) A (nOde'CreateCﬂ))#Napply(r]z)
= 3 CA Wf(r]ZaA,) ANne [[p]]apply(r]z,cr,insaA’)

(5) is trivial: takeA’ = A. No insert-insert conflicts may appear betwee, ins
andA, since all the children of all the edges addeddayins have been created by
cr, ins itself, hence do not appear i In the (6) case, let us split into A, Ay, Ag
andA’, where the first three contain tHeisert, R-insert, anddelete operations
that use a node created by, ins. This ensuresvf(n,,4’), but we have to prove that
N € [[p]lapplynz.cr.ins.&)- We observe that every node createddayins has a parent,
hence na\; is empty, and every insert ify; has the fresh node in the parent position,
hence:

ne [[pﬂapply(r]g create(My,F’),insert (E'U({np}xm)).Ai Ag.A)
= ne [[p]]apply(r]z,create(n‘u,lz ),insert(E'U({np}=xm)),n),4")

(by (1)) = [[Plappiyns.ary = [Plapplyng.cr,ins,av)-
This ends the proof that (2) prefclogefl A c#(r/dos:x) = n2 ~cns. The thesis

follows by induction: assume#(uy|uz|(r /dos::*)). This impliesc#u; and c#u, and
c#(r /dos:: x), henceng ~¢ N1 andni ~¢ N2 follow by induction andy, ~¢ ns follows
by (2), henceyg ~¢ N3 follows by transitivity.
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(3)  (r2//*) 2n, updatednz\nz)

To prove (3), observe thafs \ N2 = create(my,F’),insert(E' U ({n} x m)), where

E' C (my x mq) andm C my, henceupdatedns \ n2) € my, by approximation - induc-
tionry Oy, N, by stabilityr, On, n, and by the semantics ¢p/dos:: ), (r2//*) 2n,

my, since eah node imy is a descendant af in n3. The thesigus|uz|(r2//*)) 2n,
updatedns \ no) follows by this property plus the induction hypothesiso,, updatedn: \ no),
Uz Dp, updatedn>\ n1), combined and transformed inta |uz Oy, updatedn2 \ no)

by stability.

B.4 Steprule

pEnv F Expr = r; (a,u)
pEnv - Expr/Step=- r /Step (pref(r /Step|a, u)

(STEP)

The rule deduces:
pEnv - Expr/Step=- r /Step (pref(r /Step|a,u)

from:
(0) pEnv - Expr = r; (a,u)

We have to prove that the following assumptions:

(1) dEnvF no; Expr/Step=- ni;n
(2) pEnv 2y, cENV

imply the following facts:
Approximation:
r/Stepon, n
Immutability:
prefclosedc) A cHu = no~c M
U 2n, updatedn \ no)
Parallel Evolution:
r]() ~pref(r /Step|a N0 A NZ)#(Nl \ NO)
= 3n} ( dEnvt ng; Expr/Step= nj;n
ANni\no=n1\ng )

By the inversion property of the dynamic semant{ds,implies:

(3) dENVi- No; Expr = ni;m
(4) n={n'|3ne . (n,n') € [SteWappiyn,) }

By induction,(0), (3), and(2) imply the following properties:

Approximation — induction:
r2ny N
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Immutability — induction:

CHU = No ~c N1

u 2p, updatedni \ no)
Parallel Evolution — induction:

No~aNo A Ng#(N1\No)

= 3n] (dEnvk ng;Expr=-nj;m

ANi\Np=nz\No )

Now we can prove the three properties. Immutability is trivial. Approximation and par-
allel evolution are less trivial.

Parallel Evolution. We first introduce some notation. We use here a new atomic update
recordr-delete(n) whose effect is opposite ®-insert, in the same way aglete
is opposite tainsert. We could do without, but proofs would become very heavy.
Definition 16.
[Stefic =dger {n' | (n,n) € [Stefly }
Definition 17 (deepcopy (), refresh, (n)).
deepcopy »(n) is the following composite update:
create (Mg, Fcopy),insert  (Ecopy)

where
(M, My, Ecopy, Feopy) = prepare-deep-copgpply(nz),n)
refreshy () is defined by cases.

— If nhas a parent pin o, then refresh ,, (n) is the following composite update:
delete (n),deepcopy (n),insert (np,mapn))
— If nis aroot that is mapped by R, then refrggh(n) is:
R-delete (n),deepcopy . (n),R-insert  (map(n),loc(n)).

— Otherwise, refreghy (n) is:
deepcopy (N

Lemma 4. For any n,n, n’, such that wii) and win’):

wf(n,deepcopy ,(n)), wi(n,deepcopy ,(n)),
wf(n, refresh, /(n)), wi(n, refreshy, ,(n)).

Observe that, after a stocegoes through eefresh; (n), every path expression re-
tains the same semantics, but all and only the descendants-arafatfare substituted
by map(m); if we extendmapwith the identity on all the nodes where it is undefined,
we have:

Hrﬂapply((c,refreshm/(n))) = mad[[r]]ﬁ)
Refresh gives us an easy way to prove that every node that is reached byparpath

a store has the same ascendants in any gtsémilar store, (fact (c) below), and other
similar properties of the equivalence.
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Lemma 5.

mEén = nQ [[r]]apply((o,refresrbﬂ/(m),refresQ,/.o(m))) (a)
ne [[r]]c AN §Z [[r]]appl)((o,refresh,,al(m),refresh,/‘c(m))) = mEckyn (b)
0~p0 A (Mn)eE; Ane[ple = (mn)ecE (c)

wif(a,A) A wf(o’,A) A A =no-deletéA)

A c7’\’p\q a A (m7 n) € E?J A me [[p]]apply(o,A) ANne [[qﬂapply(o,A)

= (mn)€E;, (d)
0~plg0 Ame[pls Anefale A (mn)eEs A (M,N)cEy = m=m (e

Proof. The statement ofa) and (b) is strange, sincé¢a) and (b) would already hold
in the simpler cas€[r [appiy((o refresh, ,(m)))- The second componergfreshy ;(m) is
needed whefia) and(b) are used to prové).
(a): by constructionrefresh; ,,(m) makesmand all of its descendants unreachable.
(b): any path tanin o has a corresponding path in aply, refreshy o (m), refreshy (m))),
and that path ends im unlessn was a descendant (or self)of in which case the path
exists but ends in the fresh copyrof
(C): By (a) and(m, n) € Eg: n 9{ [[p]]apply((c,refresrhd(m).refreshjlec(m)))
By 0 ~p o’ andne [[pﬂd: ne [[p]]c’ andn ¢ [[pﬂ apply((o’ refreshy o (m),refreshy, ;(m)))
By commutativity ofrefreshy ,,(m) andrefreshy ;(m):

ne Hp]]o’ andn € [[p]]apply((0’,refreshj/1c(m)Arefresrbg/(m)))
By (b): (m,n) € E};,
(d): By (mn) € Ej: (m,n) € B opiyo.0)
By (c) andn € [[Q]]apply(cA): (mn) e E;ppl}(g”A)
Assume(m, n) ¢ Ey,, for a contradiction; ther(op, 0c) € Eappiyor,a) SUCh thatm, oc) €
E;pplwc’,A) and(oc,n) € Eppiy’a) andoc has no father irfeg;
By (c) and(oc,n) € E oy’ a): (0¢,n) € Eopiyo.a)
By (m,n) € E, hence(mn) € E; but them— n chain does not go through:

i apply(c.A)
(0c,m) € S

By (c) andm € [[pllappiy(.a): (0c:M) € Expn o a)

Hence we havém,o;) € E;ppw,’ ay and(oc,m) € B oo a)

(€): By (¢), 0 ~pjq 0, (M,n) € Eg andn € [[q]¢: mE;N.
By m# n: mE5,n; by (m,n) € Ey: mE;,m (1)
By (€), G ~pjq 0, (M, n) € Ex andn € [[q]lo: MEgnN
By m' # n: ME{n; by (m,n) € Eg: ME;m

By (C), 0 ~pjq 0', MEgm, andme [[p]lo: ME;m

By mE;,m (1) andm'Ej,m: m=m.

which is a contradiction

The kernel of the parallel evolution proof is in the following lemma that says that, if
two stores are equivalent ariStep then, from each single node reached bthe step
Stepreaches the same set of nodes in the two stores.
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Lemma 6.
o Nr/Stepcl ANne [[rﬂapply(o,A)
ANA=insert (Ejp),...,insert (Ep)
= [Stedls = [Stedg

Proof. 0 ~/sep0’ (1) implies (2)o ~r o’. Consider anyn € [[r [lappiyo.a)- We reason
by cases on the axis. In each case, for gadh [Stef]], it immediately satisfiestest
in Fo, but we have to prove th&iy relatesm andn as required by the axis. By (2)
3A" € A such thain € [[r]appiyo.a) @andwf(a’,A’). Throughout the proof we use the
fact that, sincéd = insert(Ej),...,insert(Ey), for botho ando’ we have[p]q» C
[Pllappiyo”.ay- We useEy for the set of edges added By

child :: ntest which we abbreviate astest We haven € [[r [appiyo,a) @nd want to
prove that(n,m) € E; = (n,m) € Ey.

From (n,m) € E; we obtain(n,m) € Eappiyo,ay (@nd (n,m) ¢ Ex) hencem €
[[r /ntest appiyo.ary, hencem e [[r /ntesfappiyor ), heNCEIN € [r[appiyor ) SUch that
(n’, m) S Eapply(o’.A’)-
By wf(ad’,A"), we have that applp,A’) ~y|(r/ntesy @8PPIY0’,4"), hence we can apply
Lemma 5(e) tan € [[rﬂappl_y(o,A’)- me [[r/ntesﬂapply(o,A’)y (n,m) € Eapply(o,A’)v (n',m) €
EappMG/’A/) hence deducing = ', hence(n,m) € Eapplyo’.av)- From(n,m) & En, we
obtain(n,m) € Ey.

parent:: ntest We haven € [[r]lappiyo,a) @nd want to prove thatm,n) € E; =
(mn) € Ey.

(mn) € Eg = (M,n) € Egppiyoy @and(mM,n) € Ex. By N € [[lappiyo.ar) WE have
m & [[r /parent:: ntesfappiyo,)- By Lemma 5(d),(m,n) € Eg, n € [[r Jappiyo.ar), ME
[r /parent:: ntesflappiyo.), imply (m,n) € EZ,, hencednt. (n7,n) € Ey.
(mn) € By = (M,n) € Egppiyor &), heNce, by Lemma 5(ejn = m', hence(m,n) €
Ey.

descendarnt ntest We haven € [[r] appiyo,a) @nd want to prove thah,m) € Ef =
(n,m) € E.,.
(n,m) € Ef = (n,m) e E;rppMU’A,) hencem € [r //ntestlappiyo.a)-
From Lemma 5(d) we dedude,m) € E/,.

ancestor.: ntest We haven € [[r]Jappiyo,) @0d want to prove thaimn) € Ej =
(mn) e EL.
(mn) e Ef = (mn)e E;rpply(o,A’) hencem € [[r /ancestor.: ntesflappiyo,a)- From
Lemma 5(d) we deducgnm,n) € E,.
We can now prove parallel evolution. We want to prove:
No ~prefr /Stepla N0 = dEnvk ng; Expr/Step=- n’;n
where
n={n"|3nen;. n € [Stef

n
. . apply(n’) s
By induction we have:

r 2!’]1 rTl
No~aNo A Ng#(N1\No)
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= 3In} (dEnvkngExpr=-ni;n. A nj\ng=n1\no )

By induction,n? \ ng = N1\ no. Hence, we only have to prove
{n[3nem.n c[Stedg}={n|3Inen.n c[Sted, }.
The equivalencgg ~prefr /step|a N0 IMPliESNG ~r|(r /step No hence(Ng, Nt \ No) ~r|(r/step
(No,n1 \ ng) hence, byn} \ g = N1\ No. N} ~r|r/step N1- LetEY be the set of edges
deleted by all thelelete inni. Then mrgn1) = apply@ppiy(ni), insert(Eﬁl)), hence,

by Lemma 6, for each € mrg(n1) we have[[StemgppMnl) = [[Stemgpplym,l), hence:
ﬁl g [[r]]mrg(nl) = U [[Stemgpply(r]l) = U [[Stemgpply(r]&)
neny neng

C Commutativity proof

Lemma 7 (Prefix closure of a). pEnu- Expr = r; (a,u) = prefcloseda)
Theorem

Let

(hl-a) dEnvkn;Expry = ni;m

(h1-b) pEnvHk Expry = ry; (ag,us)

(h1-c) pEnv D, dEnv

(h2-a) dENnVE Ny EXpr, = Niznp

(h2-b) pEnv EXpr, = ry; (ap,uz)

hencedEnvi- n; Expry, EXpr, = niz;nN2,N2 A PENv = Expry, Expr, = ri|ro; (ai]ag, ui|uz)
If

(h3)  ur#ag, ag#up, usfuy,

(h4)  applyn’) = apply(n) and mrgn’) = mrg(n),

then exists)5,, such that:

(t1) dEnvt n’; Expry, EXpry = nby;np, Mg

(t2)  applyniz) = apply(ny,) and mrgniz) = mrg(ngy).

Throughout this section we udg for the set of nodes of store histany andN; for the
set of nodes of store history .

Proof We will prove that there exist5, n5,, such that:
dEnvk n’;Expr, = nb;ny

dEnvk n%; Expry = nbm

hence

dEnv- n'; Expry, Expr; = NNz, M

and such that mi@12) = mrg(n5,).

First observe that, by Lemma 7, badh anda, are prefix-closed. We will use this
fact whenever we apply immutability.

We will use (h4) to transfer implicitly most facts abaoyton’, because (h4) implies
that:vp,n"n~pn" < n’~pn";
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N=N"

PENv O, dEnv
We also observe that, by stability, (h1-c) implies:
(h2-c)pEnv Dy, dENv

By ui#ay, (h1-abc) and immutability we have that
(h1-imm-a)n ~a, N1
(h1-imm-b)uy Dp, updatedns\ n)
hence:
(h1-imm-b’) u; Dy,, updatedns \ n)
Similarly, by ux#a;, (h2-abc), and immutability we have that
(h2-imm-a)ny ~g N12
(h2-imm-b)u, 2y,, updatedni2\ nN1)
By (h1-imm-b’), (h2-imm-b), andi;#u»
(tgt-disj) (N1 \ n)#(N12\ n1)

By (hl-imm-a), i.e.n ~a, N1, (N2-abc),(N12\ N1)#N, and parallel evolution, we
have:
ans.
(h2-p-ev-a)Env n'’; Expr, = n5; M2
(h2-p-ev-b)n,\n' =n1z\ n1
(h2-p-ev-b) implies:
(h2-p-ev-c)N5 \ N’ = N12\ N1.

Now, we can apply immutability to (h2-p-ev-a), (h2-b), (h1-c) @adu,, and ob-
tain:
(h2-imm-2)n’ ~4, n)

By stability, mrgn’) = mrg(n) and (h1-c) imply:
(sta-1)pEnv =n, dEnv
From (N1 \ N)#(N12\ N1), (N5 \N’) = (N12\ N1) we derive(N1 \ N)#(N5\ N’), hence
(dlisf) (N1 \ N)#N5.

Property (h2-imm-2) implieg), ~5, n; and thanks to (h1-b), (sta-1), (disj), we can
apply parallel evolution in order to transfer the (h1-a) reductipio(n) into a reduc-
tion fromn), to an,, and obtain:
an;.

(h1-p-ev-a)Envi- n%; Expr; = byt
(h1-p-ev-b)nz; \nz =ni\n.

Now, we can prove the thesis.
(t1): follows from (h2-p-ev-a) and (h1-p-ev-a)
(t2): Recall (h2-p-ev-b) and (h1-p-ev-b):

N2\N" =Nn12\N1, N3;\N2=n1\n
Hence, if we letA; = n1\ n andA2 = na2\ N1
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n/21: (O-/’(A/aAZaAl))7 r|12: (0-3 (A7A17A2))

Hence:

mrg(n5;) = apply(apply(mrg(n’),Az),41)

By (tgt-disj) and by property 1:

= apply(apply(mrg(n’),A1),42) = apply(apply(mrg(n),A1),42) = mrg(n12).

It is worth noticing that the hypothesig#a, anda;#u, have been used to prove
that, by commutindExpry, with Expr, we transform(o, (A, Aq,A2)) into (o', (A, A5, A)))
whered; is identical taA{. The further hypothesis;#u, is only needed to exchange the
order ofA; andAs.



