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Abstract. A common approach to XML updates is to extend XQuery with up-
date operations. This approach results in very expressive languages which are
convenient for users but are difficult to reason about. Deciding whether two ex-
pressions can commute has numerous applications from view maintenance to
rewriting-based optimizations. Unfortunately, commutativity is undecidable in
most recent XML update languages. In this paper, we propose a conservative
analysis for an expressive XML update language that can be used to determine
whether two expressions commute. The approach relies on a form of path analy-
sis that computes upper bounds for the nodes that are accessed or modified in a
given update expression. Our main result is a commutativity theorem that can be
used to identify commuting expressions.

1 Introduction

Most of the proposed XML updates languages [7, 15, 19, 1, 12] extend a full-fledged
query language such as XQuery [5] with update primitives. To simplify specification
and reasoning, some of the first proposals [7, 15, 1] have opted for a so-calledsnapshot
semantics, which delays update application until the end of the query. However, this
leads to counter-intuitive results for some queries, and limits the expressiveness in a
way that is not always acceptable for applications. For that reason, more recent pro-
posals [12, 6] give the ability to apply updates in the course of query evaluation. Such
languages typically rely on a semantics with a strict evaluation order. For example,
consider the following query, which first inserts a set of elements, then accesses those
elements using a path expression.

for $x in $doc/country return insert {<new/>} into {$x},
count($doc/country/new)

Such an example cannot be written in a language based on a snapshot semantics, as
thecount would always return zero. However, it can be written in the XQuery! [12] or
the XQueryP [6] proposals, which both rely on an explicit left-to-right evaluation order.
Still, such a semantics severely restricts the optimizer’s ability for rewritings, unless the
optimizer is able to decide that some pairs of expressions commute.

Deciding commutativity, or more generally whether an update and a queryinter-
fere, has numerous applications, including optimizations based on algebraic rewritings,
detecting when an update needs to be propagated through a view (usually specified as a
query), deciding whether sub-expressions of a given query can be executed in parallel,
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etc. Unfortunately, commutativity is undecidable for XQuery extended with updates.
In this paper, we propose a conservative approach to detect whether two query/update
expressions interfere, i.e., whether they can be safely commuted or not. Our technique
relies on an extension of the path analysis proposed in [17] that infers upper bounds for
the nodes accessed and modified by a given expression. Such upper bounds are specified
as simple path expressions for which disjointness is decidable [3, 18].

Our commutativity analysis serves a similar purpose to independence checking in
the relational context [10, 16]. To the best of our knowledge, our work is the first to study
such issues in the XML context, where languages are typically much more expressive.
A simpler form of static analysis is proposed in [1, 2], suggesting that similar techniques
can be used to optimize languages with a snapshot semantics. Finally, commutativity of
tree operations is used in transactional models [9, 14], but relies on run-time information
while our purpose is static detection.

Problem and examples.In the rest of the paper, we focus on a simple XQuery
extension with insertion and deletion operations. The syntax and semantics of that lan-
guage is essentially that of [12], with updates applied immediately. This language is
powerful enough to exhibit the main problems related to commutativity analysis, yet
simple enough to allow a complete formal treatment within the space available for this
paper. Here are some sample queries and updates in that language.

Q1 count($doc/country/new)

Q2 $doc/country[population > 20]

Q3 for $x in $doc//country
return ($x//name)

Q4 for $x in $doc/country
return $x/new/../very new

U1 delete {$doc/wines/california}

U2 for $x in $doc/country return
insert {<new/>} into {$x}

U3 for $x in
$doc/country[population < 24]

return
delete {$x/city}

Some of those examples obviously commute, for instanceU1 deletes nodes that are
unrelated to the nodes accessed byQ1 or Q2. This can be inferred easily by looking at
the paths in the query used to access the corresponding nodes. On the contrary,U2 does
not commute withQ1 since the query accesses nodes being inserted. Deciding whether
the set of nodes accessed or modified are disjoint quickly becomes hard for any non-
trivial update language. For instance, deciding whetherU3 andQ2 interfere requires
some analysis of the predicates, which can be arbitrarily complex in XQuery.

Approach.We rely on a form of abstract interpretation that approximates the set of
nodes processed by a given expression. The analysis must satisfy the following proper-
ties. Firstly, since we are looking to checkdisjointness, we must infer an upper bound
for the corresponding nodes. Secondly, the analysis must be precise enough to be useful
in practical applications. Finally, the result of the analysis must make disjointness de-
cidable. In the context of XML updates,pathsare a natural choice for the approximation
of the nodes being accessed or updated, and they satisfy the precision and decidability
requirements.

Contributions. The path analysis itself is a relatively intuitive extension of [17]
to handle update operations. However, coming up with a sound analysis turns out to
be a hard problem for a number of reasons. First of all, we use paths to denote sets
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of accessed nodes, but the forthcoming updates will change the nodes denoted by the
paths that are being accumulated. We need a way to associate a meaning to a path
that isstablein the face of a changing data model instance. To address that issue, we
introduce a store-based formalization of the XML data model and a notion of store
history that allows us to talk about the effect of each single update and to solve the
stability issue. Another challenge is to find a precise definition of which nodes are
actually used or updated by a query. For instance, one may argue thatU3 only modifies
nodes reached by the pathcountry/city. However, one would then miss the fact thatU3
interferes withQ3 because thecity nodes may have acountryor a namedescendant,
which is made unreachable by the deletion. In our analysis, this is kept into account
by actually inserting into the updated paths ofU3 all the descendants of the deleted
expressioncountry/city, as detailed in the table below.
U3 Q3
accessed paths: accessed paths:
$doc/country $doc//country
$doc/country/population $doc//country//name
$doc/country/city

updated paths: updated paths:
$doc/country/city/descendant-or-self::*

Q4 is interesting as well. If the returned expression$x/new/../verynewwere just as-
sociated to the pathcountry/new/../verynew, the interference withU2 would not be
observed, since the pathcountry/new/d.-o.-s.::∗ updated byU2 refers to a disjoint set of
nodes. Hence, the analysis must also consider the nodes traversed by the evaluation of
$x/new/../verynew, which correspond to the pathcountry|country/new|country/new/..,
whose second component intersects withcountry/new/d.-o.-s.::∗.

The main contributions of the paper are:

– We propose a form of static analysis that infers paths to the nodes that areaccessed
andmodifiedby an expression in that language;

– We present a formal definition of when such an analysis is sound, based on a no-
tion of store history equivalence; this formal definition provides a guide for the
definition of the inference rules;

– We show the soundness of the proposed path analysis;
– We prove a commutativity theorem, that provides a sufficient condition for the com-

mutativity of two expressions, based on the given path analysis.

Organization.The rest of the paper is organized as follows. Section 2 presents the
XML data model and the notion of store history. Section 3 reviews the update language
syntax and semantics. Section 4 presents the path analysis and the main soundness
theorem. Section 5 presents the commutativity theorem. Section 6 reviews related work,
and Section 7 concludes the paper. For space reasons, proofs for the analysis soundness
and for the commutativity theorem are provided separately in [13].

2 A Store for Updates
We define here the notions ofstoreandstore history, which are used to represent the
effect of XML updating expressions. Our store is a simplification of the XQuery Data
Model [11] to the parts that are most relevant to our path analysis.
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2.1 The Store

We assume the existence of disjoint infinite sets ofnode ids, N , thenode kinds, K =
{element,text}, names, Q , and possibletextual content, T . A nodelocation is used
to identify where a document or an XML fragment originates from; it is either a URI or
a unique code-location identifier:loc ::= uri | code-loc.

A uri typically corresponds to the URI associated to a document and acode-locis
used to identify document fragments generated during query evaluation by an element
constructor. Now we are ready to define our basic notion of store.

Definition 1 (Store).A storeσ is a quadruple(N,E,R,F) where N⊂ N contains the
set of nodes in the document, E⊂ N×N contains the set of edges, R: N→ loc is a
partial function mapping some nodes to their location, and the node description F=
(kind F ,nameF ,content F) is a triple of partial functions wherekind F : N→ K
maps each node to its kind,nameF : N→ Q maps nodes to their name (if any), and
content F : N→ T maps nodes to their text content (if any).

We use Nσ, Eσ, Rσ, Fσ to denote the N,E,R,F component ofσ. When(m,n)∈E, we
say that m is a parent of n and n is a child of m. A “root” is a node that has no parent.

Finally a store must be “well-formed”: (1) all nodes mapped by R must be root
nodes, (2) every non-root node must be the child node of exactly one parent node, (3) the
transitive closure E+ of E must be irreflexive (4) element nodes must have a name and
no content; and (5) text nodes must have no name and no children but do have content.

In what follows, every store operation preserves store well-formedness.

2.2 Accessing and updating the store

We assume the standard definitions for the usual accessors (parent, children, descen-
dants, ancestors, name, text-content. . . ), and focus on operations that modify the store
(insert,delete, and node creation).3 We define a notion ofatomic update record, which
captures the dynamic information necessary for each update, notably allowing the up-
date to be re-executed on a store, using theapplyoperation defined below.

Definition 2 (Atomic update records).Atomic update records are terms with the fol-
lowing syntax, where E is a set of pairs of nodes, andn̄ andm̄ are ordered sequences of
nodes. In thecreate case, F is such that(n̄,(),(),F) would be a well-formed store.

create (n̄,F) | R-insert (n, loc) | insert (E) | delete (n̄)

Definition 3 (Atomic update application).
The operation apply(σ,u) returns a new store as detailed below, but fails when the

listed preconditions do not hold.

– apply(σ,create (n̄,F′)) addsn̄ to N and extends F with F′.
Preconditions:n̄ disjoint from N.(n̄,(),(),F′) is a well-formed store.

– apply(σ,R-insert (n, loc)) extends R with n→ loc.
Preconditions: n is a root node and R(nc) =⊥.

3 Note that replace is trivial to add to the framework.
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– apply(σ, insert (E′)) extends E with E′.
Preconditions: for each(np,nc) ∈ E′, nc has no parent in E∪E′ \ {(np,nc)}, and
R(nc) =⊥. The transitive closure of E∪E′ is irreflexive.

– apply(σ,delete (n̄)) deletes each edge(np,nc) ∈ E where nc ∈ n̄.
Preconditions:n̄⊆ N.

Definition 4 (Composite updates).A composite update,∆, is an ordered sequence of
atomic updates:∆≡ (u1, . . . ,un). apply(σ,∆) denotes the result of applying u1. . . un on
storeσ, in this order.

We usecreated(∆) to denote the set of nodes created by∆. A composite update∆
respects creation timeiff, however we split it as∆1,∆2, no node increated(∆2) appears
in ∆1. Hereafter we will always assume that we only work with such∆’s.

Finally, we need a notion ofupdated(∆1) that enjoys the following property, where
S#T means thatSandT are disjoint.

Property 1. If ∆1,∆2 and∆2,∆1 both respect creation time, then

updated(∆1)#updated(∆2) ⇒ apply(σ,(∆1,∆2)) = apply(σ,(∆2,∆1))

The following notion satisfies Property 1.

Definition 5 (Update target).Theupdate targetof each update operation is defined as

updated(create (n̄,F)) =def {}
updated(R-insert (n, loc)) =def {}
updated(insert (E)) =def {nc | (np,nc) ∈ E}
updated(delete (n̄)) =def n̄

Intuitively, provided that creation time is respected, the only two operations that
do not commute areinsert(np,nc) anddelete(nc). Any other two operations either
do not interfere at all or they fail in whichever order are applied, as happens for any
conflictingR-insert-R-insert, R-insert-insert, or insert-insert pair.

2.3 Store History

Finally, we introduce a notion of store history, as a pair(σ,(u1, . . . ,un)). In our seman-
tics each expression, instead of modifying its input store, extends the input history with
new updates. With this tool we will be able, for example, to discuss commutativity of
two expressionsExpr1,Expr2 by analysing the histories(σ,(∆1,∆2)) and(σ,(∆′2,∆

′
1))

produced by their evaluations in different orders, and by proving that, under some con-
ditions,∆1 = ∆′1 and∆2 = ∆′2.

Definition 6 (Store history). A store historyη = (ση,∆η) is a pair formed by a store
and a composite update.

A store history(σ,∆) can be mapped to a plain store either by apply(σ,∆) or by
applying no-delete(∆) only, which is the∆ without any deletion. The accessors are
extended to store histories using the convention that, for any function defined on stores,
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f (η) =def f (apply(η)). The second mapping (mrg((σ,∆))) will be crucial to capture
the degree of approximation that store dynamicity imposes over our static analysis.

apply((σ,∆)) =def apply(σ,∆)
mrg((σ,∆)) =def apply(σ,no-delete(∆))

By abuse of notation we shall (1) implicitly interpretσ as(σ,()); (2) extend accessors
to store histories using the convention that, for any function defined on stores,f (η) =def

f (apply(η)); (3) whenη = (σ,∆) then writeη,∆′ =def (σ,(∆,∆′)). We define history
differenceη\η′ as follows:(σ,(∆,∆′))\ (σ,∆) =def ∆′.

Definition 7 (Well-formed History). A historyη is well-formed if mrg(η) is defined
(which implies that apply((σ,∆)) is defined).

3 Update language

The language we consider is a cut-down version of XQuery! [12] characterized by the
fact that the evaluation order is fixed and each update operation is applied immediately.
It is not difficult to extend our analysis to languages with snapshot semantics, but the
machinery becomes heavier, while we are trying here to present the simplest incarnation
of our approach. The language has the following syntax; we will use the usual abbrevia-
tions for the parent (p/..), child (p/name), and descendant (p//name) axes. We assume
thatcode-loc(See Section 2) is generated beforehand by the compiler.

Expr ::= $x | Expr/axis::ntest| Expr,Expr | Expr= Expr
| let $x := Expr return Expr | for $x in Expr return Expr
| if (Expr ) then Expr else Expr | delete {Expr }
| insert {Expr 1} into {Expr } | elementcode-loc {Expr }{Expr }

axis::= child | descendant| parent| ancestor

ntest::= text()| node()| name| ∗

The main semantic judgement “dEnv` η0;Expr⇒ η1; n̄” specifies that the evaluation
of an expressionExpr, with respect to a store historyη0 and to a dynamic environ-
mentdEnvthat associates a value to each variable free inExpr, produces a value ¯n and
extendsη0 to η1 = η0,∆. A value is just a node sequence ¯n; textual content may be
accessed by a functionf , but we otherwise ignore atomic values, since they are ignored
by path analysis. In an implementation, we would not manipulate the historyη0 but the
store apply(η0), since the value of every expression only depends on that. However,
store histories allow us to isolate the store effect of each single expression, both in our
definition of soundness and in our proof of commutativity.

As an example, we present here the rule for insert expressions; the complete seman-
tics can be found in [13]. Let ¯nd be the descendants-or-self of the nodes in ¯n. Insert-into
usesprepare-deep-copyto identify a fresh nodemi ∈ m̄d for each node in ¯nd, while
Ecopy andFcopy reproduce forEapply(η2) andFapply(η2) for m̄d, andm̄ is the subset of
m̄d that corresponds to ¯n. Hence,create(m̄d,Fcopy),insert(Ecopy) copy n̄ and their
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descendants, whileinsert({n}× m̄) links the copies of ¯n to n. Notice how the rule
only depends on apply(η2), not on the internal structure ofη2.

dEnv` η0;Expr1 ⇒ η1; n̄
dEnv` η1;Expr2 ⇒ η2;n

(m̄,m̄d,Ecopy,Fcopy) = prepare-deep-copy(apply(η2), n̄)
η3 = η2, create(m̄d,Fcopy),insert(Ecopy),insert({n}× m̄)

dEnv` η0;insert {Expr 1} into {Expr 2} ⇒ η3;()

It is easy to prove that, wheneverdEnv` η0;Expr⇒ η1; n̄ holds andη0 is well formed,
thenη1 is well-formed as well.

4 Path analysis

In this section, we introduce the path analysis judgment and the inference rules that
compute it.

4.1 Paths and prefixes
We now define the notion of paths that is used in our static analysis. Observe that the
paths used by the analysis are not the same as the paths in the target language. For
example, they are rooted in a different way, and the steps need not coincide: if we
added order to the store, we could add a following-sibling step to the language, but
approximate it withparent::∗/child:: in the analysis.

Definition 8 (Static paths).Static paths, or simplypaths, are defined as follows.

p ::= () | loc | p0|p1 | p/axis::ntest

Note that paths are always rooted at a given location. In addition, the particular fragment
chosen here is such that important operations, notably intersection, can be checked
using known algorithms [3, 18].

Definition 9 (Path Semantics).For a pathp and storeσ, [[p]]σ denotes the set of nodes
selected from the store by the path with the standard semantics [20] except that order
is ignored, and Rσ is used to interpret the locations loc. The following concepts are
derived from the standard semantics:

Inclusion. A pathp1 is included inp2, denotedp1⊆ p2, iff ∀σ : [[p1]]σ ⊆ [[p2]]σ.

Disjointness. Two pathsp1,p2 are disjoint, denotedp1#p2, iff ∀σ : [[p1]]σ∩ [[p2]]σ = /0.

Prefixes. For each patha we define pref(a) as follows.

a loc p/axis::ntest p|q
pref(a) {loc} {p/axis::ntest}∪pref(p) {p|q}∪pref(p)∪pref(q)

Prefix Closure. For a patha we write prefclosed(a) iff ∀p : p ∈ pref(a) ⇒ p⊆ a.

The prefixesof a path are all its initial subpaths, and a path is prefix-closed when it
includes all of its prefixes. For example, the paths/a//b|/a|/a//b/c and/∗ |/a/b are
both prefix-closed (the latter because/a⊆ /∗).
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4.2 The meaning of the analysis

Definition 10 (Path analysis).Given an expression Expr and a path environmentpEnv
which is a mapping from variables to paths, our path-analysis judgment

pEnv ` Expr⇒ r ; 〈a,u〉

associates three paths to the expression:r is an upper approximation of the nodes that
are returned by the evaluation of Expr,a of those that are accessed, andu of those that
are updated.

There are many reasonable ways to interpret which nodes are “returned” and “accessed”
by an expression. For example, a path $x//a only returns the $x descendants with ana
name but, in a naive implementation, may access every descendant of $x. Deciding what
is “updated” is even trickier. This definition should be as natural as possible, should
allow for an easy computation of a static approximation and, above all, should satisfy
the following property: if what is accessed byExpr1 is disjoint from what is accessed
or updated byExpr2, and vice-versa, then the two expressions commute.

In the following paragraphs we present our interpretation, which will guide the de-
finition of the inference rules and is one of the basic technical contributions of this
work.

The meaning ofr seems the easiest to describe: an analysis is sound ifpEnv `
Expr ⇒ r ; 〈a,u〉 and dEnv` η0;Expr ⇒ η1; n̄ imply that n̄ ⊆ [[r ]]apply(η1). Unfortu-
nately, this is simplistic. Consider the following example:

let $x := doc(’u1’)/a return let $y := $x return (delete($y), $x/b)

Our rules bind a path u1/a to $x, and finally deduce a returned path u1/a/b for the
expression above. However, afterdelete($y), the value of $x/b is not in[[p]]apply(η) any-
more; the best we can say it is that it is still in[[p]]mrg(η). This is just an instance of
a general “stability” problem: we infer something about a specific store history, but
we need the same property to hold for the store in some future. We solve this prob-
lem by accepting that our analysis only satisfies ¯n⊆ [[r ]]mrg(η1), which is weaker than
n̄⊆ [[r ]]apply(η1) but is stable; we also generalize the notion to environments.

Definition 11 (Approximation). A pathp approximates a valuēn in the store history
η, denotedp⊇η n̄, iff n̄⊆ [[p]]mrg(η).

A path environmentpEnv approximates a dynamic environment dEnv in a store
historyη, denotedpEnv⊇η dEnv, iff

($x 7→ n̄) ∈ dEnv⇒ ∃b. ($x 7→ b) ∈ pEnv and b⊇η n̄

Thanks to this “merge” interpretation, a path denotes all nodes that are reached by that
path, or were reached by the path in some past version of the current history. This
approximation is quite harmless, because the merge interpretation of a history is still a
well-formed store, where every node has just one parent and one name, hence the usual
algorithms can be applied to decide path disjointness.

The approach would break if we had, for example, the possibility of moving a node
from one parent to another. Formally, mrg(η) may now contain nodes with two parents.
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In practice, one could not deduce, for example, that(a/d)#(b/c/d), because $x/a/d
and $x/b/c/d, if evaluated at different times, may actually return the same node, be-
cause its parent was moved from $x/a to $x/b/c in the meanwhile. Similarly, if nodes
could be renamed, then node names would become useless in the process of checking
path disjointness.

The commutativity theorem in Section 5 is based on the following idea: assume that
Expr1 transformsη0 into (η0,∆) and only modifies nodes reachable through a pathu,
while Expr2 only depends on nodes reachable througha, such thatu#a. BecauseExpr1
only modifies nodes inu, the historiesη0 and(η0,∆) are “the same” with respect toa,
hence we may evaluateExpr2 either before or afterExpr1.

This is formalized by defining a notion of history equivalence wrt a pathη ∼p η′,
and by proving that the inferreda andu and the evaluation relation are related by the
following soundness properties.

Parallel evolution from a-equivalent stores, first version:
η′0∼a η0 and dEnv` η0;Expr⇒ (η0,∆); n̄
imply dEnv` η′0;Expr⇒ (η′0,∆); n̄, i.e. the same ¯n and∆ are produced.

Immutability out of u, first version:
∀c: c#u and dEnv` η0;Expr⇒ (η0,∆); n̄
imply η0∼c (η0,∆).

To define the right notion of path equivalence, consider the Comma rule

pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
pEnv ` Expr2 ⇒ r2; 〈a2,u2〉

pEnv ` Expr1,Expr2 ⇒ r1|r2; 〈a1|a2,u1|u2〉
(COMMA )

The rule says that ifη′0∼a1|a2
η0 then the evaluation ofExpr1,Expr2 gives the same re-

sult in bothη0 andη′0. Our equivalence overp will be defined as “∀p′ ∈ pref(p).P(p′)”,
so thatη′0 ∼a1|a2

η0 impliesη′0 ∼a1 η0 andη′0 ∼a2 η0. Hence, by induction, if we start
the evaluation ofExpr1,Expr2 from η0 ∼a1|a2

η′0, thenExpr2 will be evaluated against
(η0,∆) and(η′0,∆), but we have still to prove thatη0∼a2 η′0 implies(η0,∆)∼a2 (η′0,∆).
This is another instance of the “stability” problem. In this case, the simplest solution is
the adoption of the following notion of path equivalence: two historiesη1 andη2 are
equivalent modulo a pathp, denotedη1∼p η2, iff:

∀p′ ∈ pref(p). ∀∆. [[p′]]apply(η1,∆) = [[p′]]apply(η2,∆)

The quantification on∆ makes this notion “stable” with respect to store evolution, which
is extremely useful for our proofs, but the equality above actually implies that:

∀∆. (wf(η1,∆) ⇒ wf(η2,∆)) ∧ (∀∆. wf(η2,∆) ⇒ wf(η1,∆))

This is too strong, because, whenever two stores differ in one node, the∆ that creates
the node can only be added to the store that is missing it. Similarly, it they differ in one
edge, the∆ that inserts the edge can only be added to the store that is missing it. Hence,
only identical stores can be extended with exactly the same set of∆’s.
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So, we have to weaken the requirement. We first restrict the quantification to updates
that only create nodes that are fresh in both stores. Moreover, we do not require that
wf(η1,∆) ⇒ wf(η2,∆), but only that, for everyn of interest, a subset of∆′ of ∆ exists
which can be used to extendη1 andη2 so to haven in both. The resulting notion of
equivalence is preserved by every update in the language whose path does not intersect
pref(p); this notion is strong enough for our purposes (∆′ ⊆ ∆ denotes the inclusion of
the inserted edges).

Definition 12 (Store equivalence modulo a path).Two historiesσ1 andσ2 are equiv-
alent modulo a pathp, denotedσ1∼p σ2, iff:

∀p′ ∈ pref(p). ∀∆. created(∆)#(Nσ1 ∪Nσ2) ∧ n∈ [[p′]]apply(σ1,∆)

⇒ ∃∆′ ⊆ ∆. n∈ [[p′]]apply(σ1,∆′) ∧ n∈ [[p′]]apply(σ2,∆′)

∀p′ ∈ pref(p). ∀∆. created(∆)#(Nσ1 ∪Nσ2) ∧ n∈ [[p′]]apply(σ2,∆)

⇒ ∃∆′ ⊆ ∆. n∈ [[p′]]apply(σ1,∆′) ∧ n∈ [[p′]]apply(σ2,∆′)

Definition 13 (Store history equivalence modulo a path).

η1∼p η2 ⇔def apply(η1)∼p apply(η2)

Since[[p]]apply(η1,∆) is monotone wrt∆, the above definition implies that:

η1∼p η2 ⇒ (∀∆. wf(η1,∆) ∧ wf(η2,∆) ⇒ [[p]]apply(η1,∆) = [[p]]apply(η2,∆))

We are now ready for the formal definition of soundness.

Definition 14 (Soundness).The static analysispEnv ` Expr⇒ r ; 〈a,u〉 is soundfor
the semantic evaluation dEnv̀η0;Expr⇒ η1; n̄ iff for any well-formedη0, η1, dEnv,
pEnv, Expr,n̄, r , a, u, such that:

pEnv ` Expr⇒ r ; 〈a,u〉
dEnv` η0;Expr⇒ (η0,∆); n̄
pEnv⊇η0 dEnv

the following properties hold.

Approximation by r: r is an approximation of the result:r ⊇η1 n̄

Parallel evolution from a-equivalent stores: For any alternative initial store history
η′0, if η′0∼a η0 and Nη′0

#created(∆), then dEnv̀ η′0;Expr⇒ (η′0,∆); n̄

Immutability out of u: (1) u⊇η1 updated(∆)
(2) ∀prefclosed(c) : c#u ⇒ η0∼c (η0,∆).

In theParallel evolutionproperty, the conditionNη′0
#created(∆) is needed because,

if η′0 did already contain some of the nodes that are added by∆, then it would be
impossible to extendη′0 with ∆. This condition is not restrictive, and is needed because
we identify nodes in different stores by the fact that they have the same identity. We
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could relate different store using a node morphism, rather that node identity, but that
would make the proofs much heavier.

Immutabilityhas two halves. The first,u⊇η1 updated(∆), confines the set of edges
that are updated to those that are inu, and is important to prove that two updates com-
mute ifu1#u2. The second half specifies that, for everyc#u, the store after the update is
c-equivalent to the store before. Together withParallel evolution, it essentially says that
afterExpr is evaluated, the value returned by any expressionExpr1 that only accesses
c is the same value returned byExpr1 beforeExpr was evaluated, and is important to
prove that an update and a query commute ifa1#u2. The pathc must be prefix-closed for
this property to hold. For example, according to our rules,delete(/a/b) updates a path
u = /a/b/dos::∗. It is disjoint fromc = /a/b/.., but still the value of/a/b/.. changes
afterdelete(/a/b). This apparent unsoundness arises becausec is not prefix-closed. If
we consider the prefix-closurea = /a|/a/b|/a/b/.. of /a/b/.., we notice thata is not
disjoint fromu.

4.3 Path analysis rules

We present the rules in two groups: selection and update rules.

Selection rules.These rules regard the querying fragment of our language. We extend
the rules from [17] for the proper handling of updated paths.

The (Comma) rule has been presented above.
The (Var) rule specifies that variable access does not access the store. One may won-

der whetherr should not be regarded as “accessed” by the evaluation of $x. The doubt
is easily solved by referring to the definition of soundness: the value of $x is the same in
two storesη0 andη′0 independently of any equivalence among them, hence the accessed
path should be empty. This rule also implicitly specifies that variable access commutes
with any other expression. For example,$x,delete($x) is equivalent todelete($x),$x.

($x 7→ r) ∈ pEnv

pEnv ` $x⇒ r ; 〈(),()〉
(VAR)

The (Step) rule specifies that a step accesses the prefix closure ofr . Technically,
the rule would still be sound if we only putr |(r/axis::ntest) in the accessed set. How-
ever, the commutativity theorem relies on the fact that, for any expression, its inferred
accessed path is prefix-closed, for the reasons discussed at the end of the previous sec-
tion, and the addition of the prefix closure ofr does not seem to seriously affect the
analysis precision.

pEnv ` Expr⇒ r ; 〈a,u〉
pEnv ` Expr/axis::ntest⇒ r/axis::ntest; 〈pref(r/axis::ntest)|a,u〉

(STEP)

Iteration binds the variable and analyses the body once. Observe that the analysis
ignores the order and multiplicity of nodes.
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pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
(pEnv+$x 7→ r1) ` Expr2 ⇒ r2; 〈a2,u2〉

pEnv ` for $x in Expr 1 return Expr 2
⇒ r2; 〈a1|a2,u1|u2〉

(FOR)

Element construction returns the unique constructor location, but there is no need
to regard that location as accessed.

pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
pEnv ` Expr2 ⇒ r2; 〈a2,u2〉

pEnv ` elementcode-loc {Expr 1}{Expr 2}
⇒ code-loc; 〈a1|a2,u1|u2〉

(ELT)

Local bindings just returns the result of evaluating the body, but the accesses and
side effects of both subexpressions are both considered.

pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
(pEnv+$x 7→ r1) ` Expr2 ⇒ r2; 〈a2,u2〉

pEnv ` let $x := Expr 1 return Expr 2 ⇒ r2; 〈a1|a2,u1|u2〉
(LET)

The conditional approximates the paths by merging the results of both branches.

pEnv ` Expr⇒ r0; 〈a1,u1〉
pEnv ` Expr1 ⇒ r1; 〈a2,u2〉
pEnv ` Expr2 ⇒ r2; 〈a3,u3〉

pEnv ` if (Expr ) then Expr 1 else Expr 2
⇒ r1|r2; 〈a1|a2|a3,u1|u2|u3〉

(IF)

Equality returns nothing but accumulate accesses and side effects.

pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
pEnv ` Expr2 ⇒ r2; 〈a2,u2〉

pEnv ` Expr1 = Expr2 ⇒ (); 〈a1|a2,u1|u2〉
(EQ)

Update rules.The second set of rules deals with update expressions.
The first rule is the one for delete. The “updated path”u is extended with all the

descendants ofr becauseu approximates those paths whose semantics may change
after the expression is evaluated, and the semantics of each path inr/dos::∗ is affected
by the deletion. Assume, for example, that($x 7→ loc) ∈ pEnv, ($x 7→ n) ∈ dEnv, andn
is the root of a tree of the form〈a〉〈b〉〈c/〉〈b/〉〈a/〉. The evaluation ofdelete {$x/b}
would change the semantics of $x//c, although this path does not explicitly traverse
loc/b. This is correctly dealt with, since the presence ofloc/b/dos:: ∗ in u means:
every path that is not disjoint fromloc/b/dos:: ∗ may be affected by this operation,
and, by Definition 9,loc//c is not disjoint from loc/b/dos::∗.

Observe thatdelete {$x/b} also affects expressions that do not end below $x/b,
such as “$x/b/..”. This is not a problem either, since the accessed patha computed for
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the expression $x/b/.. is actuallyloc|(loc/b)|(loc/b/..), and the second component is
not disjoint fromloc/b/dos::∗.

pEnv ` Expr⇒ r ; 〈a,u〉
pEnv ` delete {Expr } ⇒ (); 〈a,u|(r/dos::∗)〉

(DELETE)

Similarly, insert {Expr 1} into {Expr 2} may modify every path that ends
with descendants ofExpr2. Moreover, it depends on all the descendants ofExpr1, since
it copies all of them.

pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
pEnv ` Expr2 ⇒ r2; 〈a2,u2〉

pEnv ` insert {Expr 1} into {Expr 2}
⇒ (); 〈a1|a2|(r1/dos::∗),u1|u2|(r2//∗)〉

(INSERTCHILD )

4.4 Soundness Theorem
Theorem 1 (Soundness of the analysis).The static analysis rules presented in Sec-
tion 4.3 are sound.

Soundness is proved by induction, showing that the soundness properties are pre-
served by each rule. A detailed presentation of the soundness proof for the most impor-
tant rules can be found in Appendix B.

5 Commutativity Theorem

Our analysis is meant as a tool to prove for specific expressions whether they can be
evaluated on a given store in any order or, put differently, whether theycommute.

Definition 15 (Commutativity). We shall use[[Expr]]dEnv
η as a shorthand for the pair

(apply(η′),bag-of(n̄)) such that dEnv̀ η;Expr⇒ η′; n̄, and where bag-of(n̄) forgets
the order of the nodes in̄n.

Two expressions Expr1 and Expr2 commutein pEnv, written Expr1
pEnv←→ Expr2, iff,

for all η and dEnv such thatpEnv⊇η dEnv, the following equality holds:

[[Expr1,Expr2]]
dEnv
η = [[Expr2,Expr1]]

dEnv
η

Hence,Expr1
pEnv←→ Expr2 means that the order of evaluation ofExpr1 andExpr2

only affects the order of the result.

Theorem 2 (Commutativity). Consider two expressions and their analyses inpEnv:

pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
pEnv ` Expr2 ⇒ r2; 〈a2,u2〉

If the updates and accesses obtained by the analysis are independent then the expres-
sions commute, in any environment that respectspEnv:

u1#a2,a1#u2,u1#u2 ⇒ Expr1
pEnv←→ Expr2
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Commutativity is our main result. The proof can be found in Appendix C. It follows
the pattern sketched in Section 4, after Definition 11. The proof is far easier than the
proof of soundness, and is essentially independent on the actual definition of the equiv-
alence relation. It only relies on soundness plus the following five properties, where
only Stability is non-trivial.

p⊇η0 n̄ ⇒ p⊇η0,∆ n̄ (Stability)

for eachp, ∼p is an equivalence relation (Equivalence)

p#(q0|q1) ⇔ p#q0 ∧ p#q1 (|#)

η0∼(q0|q1) η1 ⇒ η0∼q0 η1 (|∼)

q0⊆ q0|q1 (|⊆)

6 Related work

Numerous update languages have been proposed in the last few years [7, 15, 19, 1, 12].
Some of the most recent proposals [12, 6] are very expressive, as they provide the abil-
ity to observe the effect of updates during query evaluation. Although [6] limits the
locations where updates occur, this has little impact on our static analysis which also
works for a language where updates can occur anywhere in the query such as [12]. Very
little work has been done so far on optimization or static analysis for such XML update
languages, a significant exception being the work by Benedikt et al [1, 2]. However,
they focus on analysis techniques for a language based on snapshot semantics, while
we consider a much more expressive language. A notion of path analysis was proposed
in [17], which we extend here by considering side effects.

Independence between updates and queries has been studied in the relational con-
text [10, 16]. The problem becomes more difficult in the XML context because of the
expressivity of existing XML query languages. In the relational case, the focus has been
on trying to identify fragments of datalog for which the problem is decidable, usually
by reducing the problem to deciding reachability. Instead, we propose a conservative
approach using a technique based on paths analysis which works for arbitrary XML
updates and queries. Finally, commutativity properties for tree operations are important
in the context of transactions for tree models [9, 14], but these papers rely on dynamic
knowledge while we are interested in static commutativity properties, hence the techni-
cal tools involved are quite different.

7 Conclusion

In this paper, we have proposed a conservative approach to detect whether two expres-
sions commute in an expressive XML update language with strict evaluation order and
immediate update application. The approach relies on a form of path analysis which
computes an upper bound for the nodes accessed or updated in an expression. As there
is a growing need to extend XML languages with imperative features [6, 12, 8], we
believe the kind of analysis we propose here will be essential for the long-term devel-
opment of those languages. We are currently exploring the use of our commutativity
analysis for the purpose of algebraic optimization of XML update languages.



Commutativity Analysis in XML Update Languages 15

References

1. Michael Benedikt, Angela Bonifati, Sergio Flesca, and Avinash Vyas. Adding updates to
XQuery: Semantics, optimization, and static analysis. InXIME-P’05, 2005.

2. Michael Benedikt, Angela Bonifati, Sergio Flesca, and Avinash Vyas. Verification of tree
updates for optimization. InCAV, pages 379–393, 2005.

3. Michael Benedikt, Wenfei Fan, and Gabriel M. Kuper. Structural properties of xpath frag-
ments.Theor. Comput. Sci., 336(1):3–31, 2005.

4. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and J. Siméon.
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A Language Semantics

A.1 Accessors

For convenience, we define some of the usual accessors, as follows. The definitions are
kept informal. Hereafter, we writeE(m,n), or mEn, to signify that(m,n) ∈ E.

nodekind(σ,n) =def kindF(n)
children(σ,n) =def {n′ | E(n,n′)}

descendant(σ,n) =def children(σ,n)
∪{n′′ | n′ ∈ children(σ,n),n′′ ∈ descendant(σ,n′)}

parent(σ,n) =def {n′ | E(n′,n)}
ancestor(σ,n) =def parent(σ,n)

∪{n′′ | n′ ∈ parent(σ,n),n′′ ∈ ancestor(σ,n′)}

A.2 Semantics of Paths

To interpret paths we first define a function that interprets each step as a set of pairs.

[[child::t]]σ = {(n1,n2) | n2 ∈ children(σ,n1) ∧ NodeTest(t,n2)}
[[descendant::t]]σ = {(n1,n2) | n2 ∈ descendant(σ,n1) ∧ NodeTest(t,n2)}

[[parent::t]]σ = {(n1,n2) | n2 ∈ parent(σ,n1) ∧ NodeTest(t,n2)}
[[ancestor::t]]σ = {(n1,n2) | n2 ∈ ancestor(σ,n1) ∧ NodeTest(t,n2)}

with the auxiliary

NodeTest(QName,n) ⇔ nameF(σ,n) = QName

NodeTest(*,n) ⇔ ∃QName: nameF(σ,n) = QName

NodeTest(text(),n) ⇔ kindF(σ,n) = text

NodeTest(node(),n) is always true

Let σ = (N,E,R,F) be a store andp a path. Path interpretation[[p]]σ is defined as
follows. The result is unordered, for simplicity, and because order is not tracked by the
analysis we study in this paper.

[[()]]σ = /0
[[loc]]σ = {n | R(n) = loc}
[[p|q]]σ = [[p]]σ∪ [[q]]σ

[[p/Step]]σ = {n2 | n1 ∈ [[p]]σ ∧ (n1,n2) ∈ [[Step]]σ }
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A.3 Semantics of Updates

The metavariablesn, m, range over node ids, ¯n andm̄ range over node id sequences, and
nameranges over qnames. The metavariables constrain rule applicability. This means
that, if a judgment in the premise uses n in the result position, as in:

dEnv` η0;Expr⇒ η1;n,

the judgment can only be applied ifExpr evaluates to a value which is a node.

dEnv` η0;Expr⇒ η1; n̄
η2 = η1,delete(n̄)

dEnv` η0;delete {Expr } ⇒ η2;()
(DELETE)

insert copies all the descendants of the first argument, and links the copies as new
children of the second argument. Let ¯nd be the descendants-or-self of the nodes in ¯n.
Insert-into usesprepare-deep-copyto identify a fresh nodemi ∈ m̄d for each node in
n̄d, while Ecopy andFcopy reproduce forEapply(η2) andFapply(η2) for m̄d, andm̄ is the
subset ofm̄d that corresponds to ¯n. Hence,create(m̄d,Fcopy),insert(Ecopy) copy n̄
and their descendants, whileinsert({n}× m̄) links the copies of ¯n to n. Notice how
the rule only depends on apply(η2), not on the internal structure ofη2.

dEnv` η0;Expr1 ⇒ η1; n̄
dEnv` η1;Expr2 ⇒ η2;n

(m̄,m̄d,Ecopy,Fcopy) = prepare-deep-copy(apply(η2), n̄)
η3 = η2, create(m̄d,Fcopy),insert(Ecopy),insert({n}× m̄)

dEnv` η0;insert {Expr 1} into {Expr 2} ⇒ η3;()
(INSERT)

Element creation copies all the descendants of the second argument, and links the
copy as new children of a fresh node whose name is given by the first argument. The
fresh node is linked tocode-loc, only for the purposes of our analysis. The function
fresh(N) returns a new node fresh forN.

dEnv` η0;Expr1 ⇒ η1;name
dEnv` η1;Expr2 ⇒ η2; n̄

(m̄,m̄d,Ecopy,Fcopy) = prepare-deep-copy(apply(η2), n̄)
m= fresh(Napply(ES2)∪ m̄d)

η3 = η2, create(m̄d,Fcopy),
create(m,(m 7→ element,m 7→ name,())),
R-insert(m,code-loc),insert(Ecopy),insert({n}× m̄)

dEnv` η0;elementcode-loc {Expr 1}{Expr 2} ⇒ η3;m
(ELT)

dEnv` η0;Expr⇒ η1; n̄
n̄ = {n′ | ∃n∈ n̄. (n,n′) ∈ [[Step]]apply(η1) }

dEnv` η0;Expr/Step⇒ η1; n̄
(STEP)
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dEnv` η0;Expr1 ⇒ η1; n̄1

dEnv` η1;Expr2 ⇒ η2; n̄2

dEnv` η0;Expr1,Expr2 ⇒ η2; n̄1, n̄2
(COMMA )

dEnv` η0;Expr1 ⇒ η1; n̄1

(dEnv+$x 7→ n̄1) ` η1;Expr2 ⇒ η2; n̄2

dEnv` η0;let $x := Expr 1 return Expr 2 ⇒ η2; n̄2
(LET)

dEnv` η0;Expr1 ⇒ η1; item1, . . . , itemm

for i in 1. . .m : (dEnv+$x 7→ itemi) ` ηi ;Expr2 ⇒ ηi+1; n̄i

dEnv` η0;for $x in Expr 1 return Expr 2 ⇒ ηm+1; n̄1, . . . , n̄n
(FOR)

dEnv` η0;Expr⇒ η1;true
dEnv` η1;Expr1 ⇒ η2; n̄

dEnv` η0;if (Expr ) then Expr 1 else Expr 2 ⇒ η2; n̄
(IFT)

dEnv` η0;Expr⇒ η1;false
dEnv` η1;Expr2 ⇒ η2; n̄

dEnv` η0;if (Expr ) then Expr 1 else Expr 2 ⇒ η2; n̄
(IFF)

dEnv` η0;Expr1 ⇒ η1; n̄1

dEnv` η1;Expr2 ⇒ η2; n̄2

b = equal(n̄1, n̄2)
dEnv` η0;Expr1 = Expr2 ⇒ η2;b

(EQ)

B Soundness proof

B.1 Some Lemmas

Lemma 1.

∆′ ⊆ ∆ ⇒ wf(η,∆) ⇒ wf(η,∆′)
∆′ ⊆ ∆ ⇒ wf(η,∆) ⇒ [[p]]apply(η,∆′) ⊆ [[p]]apply(η,∆)

Lemma 2 (Store history equivalence modulo a path).The following is an alternative
characterization of equivalence

∀p′ ∈ pref(p). ∀∆. wf(η1,∆) ∧ wf(η2,∆) ⇒ [[p′]]apply(η1,∆) = [[p′]]apply(η2,∆)

∀p′ ∈ pref(p). ∀∆. created(∆)#(Nη1 ∪Nη2) ∧ wf(η1,∆)
∧ n∈ [[p′]]apply(η1,∆) ⇒ ∃∆′ ⊆ ∆. wf(η2,∆′) ∧ n∈ [[p′]]apply(η1,∆′)

∀p′ ∈ pref(p). ∀∆. created(∆)#(Nη1 ∪Nη2) ∧ wf(η2,∆)
∧ n∈ [[p′]]apply(η2,∆) ⇒ ∃∆′ ⊆ ∆. wf(η1,∆′) ∧ n∈ [[p′]]apply(η2,∆′)

We useR−1 andR∗ to denote the inverse and the Kleene star or a binary relation.
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Property 2. Either[[step]]σ⊆E∗σ (downward steps) or[[step]]σ⊆ (E−1
σ )∗ (upward steps).

Proposition 1.

(pref()∼) p ∈ pref(q) ∧ η1∼q η2 ⇒ η1∼p η2

Lemma 3.
p|p′ ∈ pref(q) ⇒ p ∈ pref(q) ∧ p′ ∈ pref(q)
p/Step∈ pref(q) ⇒ p ∈ pref(q)

Proof. First part: by induction onq. If q is loc, the result is immediate. Ifq = q′/StepExpr,
thenp|p′ ∈ pref(q′), hence, by induction,p ∈ pref(q′) andp′ ∈ pref(q′) and the result
follows. If q = q′|q′′, then eitherq = p|p′, or not. In the first case, the thesis follows
becausep ∈ pref(p) andp′ ∈ pref(p′). Otherwise,p|p′ ∈ pref(q′) or p|p′ ∈ pref(q′′).
W.l.o.g., assume the first, then, by induction,p ∈ pref(q′) andp′ ∈ pref(q′), and the
result follows.

Second part: analogous.

B.2 Delete rule

The rule deduces:

pEnv ` delete {Expr }⇒ (); 〈a,u|(r/dos::∗)〉

from:
(0) pEnv ` Expr⇒ r ; 〈a,u〉

We have to prove that the following assumptions:

(1) dEnv` η0;delete {Expr } ⇒ η2;()
(2) pEnv⊇η0 dEnv

imply the following facts:

Approximation:
()⊇η2 ()

Immutability:
prefclosed(c) ∧ c#(u|(r/dos::∗)) ⇒ η0∼c η2

(u|(r/dos::∗))⊇η2 updated(η2\η0)

Parallel Evolution:
η′0∼a η0 ∧ N′0#(N1\N0)
⇒ ∃η′2 ( dEnv` η′0;delete {Expr } ⇒ η′2;()

∧ η2\η0 = η′2\η′0 )

By the inversion property of the dynamic semantics,(1) implies:

(3) dEnv` η0;Expr⇒ η1; n̄
(4) η2 = η1,delete(n̄)

By induction,(0), (3), and(2) imply the following properties:
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Approximation – induction:
r ⊇η1 n̄

Immutability – induction:
c#u ⇒ η0∼c η1

u⊇η1 updated(η1\η0)

Parallel Evolution – induction:
η′0∼a η0 ∧ N′0#(N1\N0)
⇒ ∃η′1 ( dEnv` η′0;Expr⇒ η′1; n̄

∧ η′1\η′0 = η1\η0 )

Now we can prove the three properties. Approximation is trivial. Immutability and par-
allel evolution are less trivial.

Immutability. (1) prefclosed(c) ∧ c#(r/dos::∗) ⇒ η1∼c η2

(2) (r/dos::∗)⊇η2 updated(η2\η1)

To prove (2), observe thatη2\η1 = delete(n̄), henceupdated(η2\η1) = n̄, by approx-
imation - inductionr ⊇η1 n̄, by stabilityr ⊇η2 n̄, and by the semantics of(p/dos::∗),
(r/dos::∗)⊇η2 n̄. The thesis(u|(r/dos::∗))⊇η2 updated(η2\η0) follows by this prop-
erty plus the inductione hypothesisu ⊇η1 updated(η1\η0), transformed intou ⊇η2

updated(η1\η0) by stability.
We now prove the following fact, from which[[p]]apply(η0,∆) = [[p]]apply(η0,delete(n̄),∆)
immediately follows, since the opposite inclusion is trivial.

∀p ∈ pref(c). ∀∆. m∈ [[p]]apply(η0,∆) ⇒ m∈ [[p]]apply(η0,delete(n̄),∆)

We reason by induction on the size ofp and by cases on its shape. Observe that,
while c is prefix-closed,p is not, in general.

[[loc]]apply(η0,∆) = [[loc]]apply(η0,delete(n̄),∆): this holds becausedelete(n̄) has no ef-
fect on the semantics ofloc.

[[p′|p′′]]apply(η0,∆) = [[p′|p′′]]apply(η0,delete(n̄),∆): follows since, by Lemma 3, induc-
tion guarantees the same property forp′ andp′′.

The only diffcult case inp = q/step. Assumem∈ [[q/step]]apply(η0,∆).
Then,∃m′ ∈ [[q]]apply(η0,∆) and (3)(m′,m) ∈ [[step]]apply(η0,∆).
By lemma 3,q/step∈ pref(c) implies thatq ∈ pref(c).
Hence, by inductionm′ ∈ [[q]]apply(η0,delete(n̄),∆)
We only have to prove that(m′,m) ∈ [[step]]apply(η0,delete(n̄),∆).
Assume for a contradiction that (4)(m′,m) 6∈ [[step]]apply(η0,delete(n̄),∆).
By prefclosed(c), q/step∈ pref(c) implies thatq/step⊆ c, hencem∈ [[c]]apply(η0,∆).
By Lemma 3,q ∈ pref(c), henceq⊆ c, hencem′ ∈ [[c]]apply(η0,∆).
Since we only have upward and downward steps, (3) and (4) together imply that
∃n∈ n̄ such that either(i) mE+nE∗m′ or (ii) m′E+nE∗m, whereE = Eapply(η0,∆).
In either case, an elementm or m′ of [[c]]apply(η0,∆) is a descendant (or self) ofn
in apply(η0,∆).
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Hence, an element of[[c]]mrg(η0,∆) is a descendant ofn in mrg(η0,∆).
By approximation, we know thatn∈ [[r ]]mrg(η0).
By stability,n∈ [[r ]]mrg(η0,∆).
Hence, every descendant ofn in mrg(η0,∆) belongs to[[r/dos::∗]]mrg(η0,∆).
Now, the presence of a mrg(η0,∆)-descendant ofn in [[c]]mrg(η0,∆)
contraddicts the assumptionc#(r/dos::∗).

We have now to prove that∀p ∈ pref(c):

(3) ∀∆. n∈ [[p]]apply(η2,∆) ∧ (node-created(∆))#Napply(η2,delete(n̄))
⇒ ∃∆′ ⊆ ∆. wf(η2,delete(n̄),∆′) ∧ n∈ [[p]]apply(η2,∆′)

(4) ∀∆. n∈ [[p]]apply(η2,delete(n̄),∆) ∧ (node-created(∆))#Napply(η2)
⇒ ∃∆′ ⊆ ∆. wf(η2,∆′) ∧ n∈ [[p]]apply(η2,delete(n̄),∆′)

(3) is trivial: take ∆′ = ∆: the addition of adelete creates no conflict. In the (4)
case, letE′ be the set of pairs(np,nc) such that(np,nc) ∈ apply(η2,∆) and nc ∈ n̄,
and let ∆′ be ∆ where eachinsertE has been substituted byinsertE\E′. Then,
wf(η2,deleten̄,∆) implies wf(η2,∆′), and apply(η2,∆) = apply(η2,delete(n̄),∆′),
hencen∈ [[p]]apply(η2,∆′). The thesisn∈ [[p]]apply(η2,∆′) follows by[[p]]apply(η2,∆′) = [[p]]apply(η2,deleten̄,∆′),
which we proved before.

This proves that (1) prefclosed(c) ∧ c#(r/dos::∗) ⇒ η1 ∼c η2. The thesis fol-
lows by induction: assumec#(u|(r/dos::∗)). This impliesc#u andc#(r/dos::∗), hence
η0∼c η1 follows by induction andη1∼c η2 follows by (1), henceη0∼c η2 follows by
transitivity.

Parallel Evolution. We choose anyη′1 among those implied by the inductive property,
and defineη′2 = η′1,delete(n̄). We must provedEnv` η′0;delete {Expr } ⇒ η′2;()
andη2\η0 = η′2\η′0. The first holds by construction. For the second,(η2\η0)= ((η1\
η0),delete(n̄))= ((η′1\η′0),delete(n̄))= (η′2\η′0).

B.3 Insert rule

The rule deduces:

pEnv ` insert {Expr 1} into {Expr 2}
⇒ (); 〈a1|a2|(r1/dos::∗),u1|u2|(r2//∗)〉

from:
(0) pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
(1) pEnv ` Expr2 ⇒ r2; 〈a2,u2〉

We have to prove that the following assumptions:

(2) dEnv` η0;insert {Expr 1} into {Expr 2} ⇒ η3;()
(3) pEnv⊇η0 dEnv

imply the following facts:
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Approximation:
()⊇η3 ()

Immutability:
prefclosed(c) ∧ c#(u1|u2|(r2//∗)) ⇒ η0∼c η3

(u1|u2|(r2//∗))⊇η3 updated(η3\η0)

Parallel Evolution:
η′0∼a η0 ∧ N′0#(N1\N0)
⇒ ∃η′3 ( dEnv` η′0;insert {Expr 1} into {Expr 2} ⇒ η′3;()

∧ η3\η0 = η′3\η′0 )

By the inversion property of the dynamic semantics,(2) implies what follows (we iden-
tify hereinsert(E),insert(E′) with insert(E∪E′)).

(4) dEnv` η0;Expr1 ⇒ η1; n̄
(5) dEnv` η1;Expr2 ⇒ η2;n
(6) η3 = η2,create(m̄d,F′),insert(E′∪ ({n}× m̄))

By induction,(0), (4), (5), and(3) imply the following properties:

Approximation – induction:
r1⊇η1 n̄
r2⊇η2 n

Immutability – induction:
c#u1 ⇒ η0∼c η1

c#u2 ⇒ η1∼c η2

u1⊇η1 updated(η1\η0)
u2⊇η2 updated(η2\η1)

Parallel Evolution – induction:
η′0∼a1 η0 ∧ N′0#(N1\N0)
⇒ ∃η′1 ( dEnv` η′0;Expr1 ⇒ η′1; n̄ ∧ η′1\η′0 = η1\η0 )

η′1∼a2 η1 ∧ N′1#(N2\N1)
⇒ ∃η′2 ( dEnv` η′1;Expr2 ⇒ η′2;n ∧ η′2\η′1 = η2\η1 )

Now we can prove the three properties. Approximation is trivial. Immutability and par-
allel evolution are less trivial.

Immutability We first prove the following property:

(1) ∀c, p ∈ pref(c), r , η, np, m̄d#Nη, m̄⊆ m̄d, E′ ⊆ (m̄d×nodes()), ∆.
wf(η,create(m̄d,F′),insert(E′∪ ({np}× m̄)),∆)
∧ wf(η,Delta) ∧ r ⊇η np ∧ prefclosed(c) ∧ c#(r//∗)
⇒ [[p]]apply(η,∆) = [[p]]apply(η,create(m̄d,F′),insert(E′∪({np}×m̄)),∆)

Hereafter we abbreviatecreate(m̄d,F′),insert(E′ ∪ ({np}× m̄)),∆ with cr,ins,∆.
We prove the following inclusion, since the opposite is trivial:

[[p]]apply(η,cr,ins,∆) ⊆ [[p]]apply(η,∆)



Commutativity Analysis in XML Update Languages 23

We reason by induction on the size ofp and by cases on its shape. Observe that we
do not assume thatp is prefix-closed.

[[loc]]apply(η,∆) = [[loc]]apply(η,cr,ins,∆): this holds because
create(m̄d,F′), insert(E′∪ ({np}× m̄)) has no effect on the semantics ofloc.

[[p′|p′′]]apply(η,∆) = [[p′|p′′]]apply(η,cr,ins,∆): follows by induction from the same prop-
erty forp′ andp′′, which belong to pref(c) by Lemma 3.

The difficult case isp = q/step. Assumem∈ [[q/step]]apply(η,cr,ins,∆).
Then,∃m′ ∈ [[q]]apply(η,cr,ins,∆) and(m′,m) ∈ [[step]]apply(η,cr,ins,∆).
By lemma 3,q/step∈ pref(c) implies thatq ∈ pref(c).
Hence, by induction (3)m′ ∈ [[q]]apply(η,∆). We only have to prove that(m′,m)∈ [[step]]apply(η,∆).
If [[step]]apply(η,cr,ins,∆) connectsm′ tomwithout traversing an edge added byinsert(E′∪
({np}× m̄)), then the thesis is obvious. We hence assume that (4)[[step]]apply(η,cr,ins,∆)
connectsm′ to m by traversing an edge added byinsert(E′ ∪ ({np}× m̄)), and we
prove that (4) is impossible. Property (4) implies thatstepis a downward step, since, by
(3), m′ has no ancestor among the freshly added nodes.
Sincem′ is not fresh but a fresh node appears in the parent-child chain that connects
m′ to m, then a pair(o,o′) with o ∈ Nη and o′ 6∈ Nη must be in that chain. Such
pairs inEapply(η,cr,ins,∆) have the shape(np,mi), hence we havem′E∗npEmiE∗m, where
E = Eapply(η,cr,ins,∆). By hypothesisr ⊇η np and by stabilityr ⊇η,cr,ins,∆ np, hencem
is in [[r//∗]]mrg(η,cr,ins,∆).
This contradicts the hypothesisc#(r//∗) sincem is in
[[q/step]]apply(η,cr,ins,∆) ⊆ [[q/step]]mrg(η,cr,ins,∆), and prefix closure ofc implies
[[q/step]]mrg(η,cr,ins,∆) ⊆ [[c]]mrg(η,cr,ins,∆). This concludes the proof of (1).

We have now to prove that:

(5) ∀∆. n∈ [[p]]apply(η2,∆) ∧ (node-created(∆))#Napply(η2,cr,ins)
⇒ ∃∆′ ⊆ ∆. wf(η2,cr,ins,∆′) ∧ n∈ [[p]]apply(η2,∆′)

(6) ∀∆. n∈ [[p]]apply(η2,cr,ins,∆) ∧ (node-created(∆))#Napply(η2)
⇒ ∃∆′ ⊆ ∆. wf(η2,∆′) ∧ n∈ [[p]]apply(η2,cr,ins,∆′)

(5) is trivial: take∆′ = ∆. No insert-insert conflicts may appear betweencr,ins
and∆, since all the children of all the edges added bycr,ins have been created by
cr,ins itself, hence do not appear in∆. In the (6) case, let us split∆ into ∆i , ∆r , ∆d

and ∆′, where the first three contain theinsert, R-insert, anddelete operations
that use a node created bycr,ins. This ensureswf(η2,∆′), but we have to prove that
n ∈ [[p]]apply(η2,cr,ins,∆′). We observe that every node created bycr,ins has a parent,
hence no∆r is empty, and every insert in∆i has the fresh node in the parent position,
hence:
n∈ [[p]]apply(η2,create(m̄d,F′),insert(E′∪({np}×m̄)),∆i ,∆d,∆′)
⇒ n∈ [[p]]apply(η2,create(m̄d,F′),insert(E′∪({np}×m̄)),∆i ,∆′)
(by (1)) ⇒ [[p]]apply(η2,∆′) ⇒ [[p]]apply(η2,cr,ins,∆′).
This ends the proof that (2) prefclosed(c) ∧ c#(r/dos::∗) ⇒ η2 ∼c η3. The thesis
follows by induction: assumec#(u1|u2|(r/dos::∗)). This impliesc#u1 andc#u2 and
c#(r/dos::∗), henceη0 ∼c η1 andη1 ∼c η2 follow by induction andη2 ∼c η3 follows
by (2), henceη0∼c η3 follows by transitivity.
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(3) (r2//∗)⊇η3 updated(η3\η2)

To prove (3), observe thatη3 \η2 = create(m̄d,F′),insert(E′ ∪ ({n}× m̄)), where
E′ ⊆ (m̄d× m̄d) andm̄⊆ m̄d, henceupdated(η3\η2)⊆ m̄d, by approximation - induc-
tion r2 ⊇η2 n, by stabilityr2 ⊇η3 n, and by the semantics of(p/dos::∗), (r2//∗) ⊇η3

m̄d, since eah node in ¯md is a descendant ofn in η3. The thesis(u1|u2|(r2//∗)) ⊇η3

updated(η3\η0) follows by this property plus the induction hypothesisu1⊇η1 updated(η1\η0),
u2 ⊇η2 updated(η2\η1), combined and transformed intou1|u2 ⊇η3 updated(η2\η0)
by stability.

B.4 Step rule

pEnv ` Expr⇒ r ; 〈a,u〉
pEnv ` Expr/Step⇒ r/Step; 〈pref(r/Step)|a,u〉

(STEP)

The rule deduces:

pEnv ` Expr/Step⇒ r/Step; 〈pref(r/Step)|a,u〉

from:
(0) pEnv ` Expr⇒ r ; 〈a,u〉

We have to prove that the following assumptions:

(1) dEnv` η0;Expr/Step⇒ η1; n̄
(2) pEnv⊇η0 dEnv

imply the following facts:
Approximation:

r/Step⊇η1 n̄

Immutability:
prefclosed(c) ∧ c#u ⇒ η0∼c η1

u⊇η1 updated(η1\η0)

Parallel Evolution:
η′0∼pref(r/Step)|a η0 ∧ N′0#(N1\N0)
⇒ ∃η′1 ( dEnv` η′0;Expr/Step⇒ η′1; n̄

∧ η1\η0 = η′1\η′0 )

By the inversion property of the dynamic semantics,(1) implies:

(3) dEnv` η0;Expr⇒ η1; n̄1

(4) n̄ = {n′ | ∃n∈ n̄1. (n,n′) ∈ [[Step]]apply(η1) }

By induction,(0), (3), and(2) imply the following properties:

Approximation – induction:
r ⊇η1 n̄1
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Immutability – induction:
c#u ⇒ η0∼c η1

u⊇η1 updated(η1\η0)

Parallel Evolution – induction:
η′0∼a η0 ∧ N′0#(N1\N0)
⇒ ∃η′1 ( dEnv` η′0;Expr⇒ η′1; n̄1

∧ η′1\η′0 = η1\η0 )

Now we can prove the three properties. Immutability is trivial. Approximation and par-
allel evolution are less trivial.

Parallel Evolution. We first introduce some notation. We use here a new atomic update
recordR-delete(n) whose effect is opposite toR-insert, in the same way asdelete
is opposite toinsert. We could do without, but proofs would become very heavy.

Definition 16.
[[Step]]nσ =def{n′ | (n,n′) ∈ [[Step]]σ′ }

Definition 17 (deepcopyσ,σ′(n), refreshσ,σ′(n)).
deepcopyσ,σ′(n) is the following composite update:

create (m̄d,Fcopy), insert (Ecopy)

where
(m̄,m̄d,Ecopy,Fcopy) = prepare-deep-copy(apply(η2), n̄)

refreshσ,σ′(n) is defined by cases.

– If n has a parent np in σ, then refreshσ,σ′(n) is the following composite update:

delete (n),deepcopyσ,σ′(n), insert (np,map(n))

– If n is a root that is mapped by R, then refreshσ,σ′(n) is:

R-delete (n),deepcopyσ,σ′(n),R-insert (map(n), loc(n)).

– Otherwise, refreshσ,σ′(n) is:
deepcopyσ,σ′(n)

Lemma 4. For any n,η, η′, such that wf(η) and wf(η′):
wf(η,deepcopyη,η′(n)), wf(η,deepcopyη′,η(n)),
wf(η, refreshη,η′(n)), wf(η, refreshη′,η(n)).

Observe that, after a storeσ goes through arefreshσ,σ′(n), every path expression re-
tains the same semantics, but all and only the descendants-or-selfmof n are substituted
by map(m); if we extendmapwith the identity on all the nodes where it is undefined,
we have:

[[r ]]apply((σ,refreshσ,σ′ (n))) = map([[r ]]σ)

Refresh gives us an easy way to prove that every node that is reached by a pathp in
a store has the same ascendants in any otherp-similar store, (fact (c) below), and other
similar properties of the equivalence.
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Lemma 5.

mE∗σn ⇒ n 6∈ [[r ]]apply((σ,refreshσ,σ′ (m),refreshσ′,σ(m))) (a)

n∈ [[r ]]σ ∧ n 6∈ [[r ]]apply((σ,refreshσ,σ′ (m),refreshσ′,σ(m))) ⇒ mE∗σn (b)

σ∼p σ′ ∧ (m,n) ∈ E∗σ ∧ n∈ [[p]]σ ⇒ (m,n) ∈ E∗σ′ (c)

wf(σ,∆) ∧ wf(σ′,∆) ∧ ∆ = no-delete(∆)
∧ σ∼p|q σ′ ∧ (m,n) ∈ E∗σ ∧ m∈ [[p]]apply(σ,∆) ∧ n∈ [[q]]apply(σ,∆)
⇒ (m,n) ∈ E∗σ′ (d)

σ∼p|q σ′ ∧ m∈ [[p]]σ ∧ n∈ [[q]]σ ∧ (m,n) ∈ Eσ ∧ (m′,n) ∈ Eσ′ ⇒ m= m′ (e)

Proof. The statement of(a) and(b) is strange, since(a) and(b) would already hold
in the simpler case[[r ]]apply((σ,refreshσ,σ′ (m))). The second componentrefreshσ′,σ(m) is

needed when(a) and(b) are used to prove(c).
(a): by construction,refreshσ,σ′(m) makesm and all of its descendants unreachable.
(b): any path ton in σ has a corresponding path in apply((σ, refreshσ,σ′(m), refreshσ′,σ(m))),
and that path ends inn, unlessn was a descendant (or self) ofm, in which case the path
exists but ends in the fresh copy ofn.
(c): By (a) and(m,n) ∈ E∗σ: n 6∈ [[p]]apply((σ,refreshσ,σ′ (m),refreshσ′,σ(m)))

By σ∼p σ′ andn∈ [[p]]σ: n∈ [[p]]σ′ andn 6∈ [[p]]apply((σ′,refreshσ,σ′ (m),refreshσ′,σ(m)))

By commutativity ofrefreshσ,σ′(m) andrefreshσ′,σ(m):
n∈ [[p]]σ′ andn 6∈ [[p]]apply((σ′,refreshσ′,σ(m),refreshσ,σ′ (m)))

By (b): (m,n) ∈ E∗σ′
(d): By (m,n) ∈ E∗σ: (m,n) ∈ E∗apply(σ,∆)
By (c) andn∈ [[q]]apply(σ,∆): (m,n) ∈ E∗apply(σ′,∆)
Assume(m,n) 6∈E∗σ′ , for a contradiction; then,∃(op,oc)∈Eapply(σ′,∆) such that(m,oc)∈
E+

apply(σ′,∆) and(oc,n) ∈ E∗apply(σ′,∆) andoc has no father inE∗σ
By (c) and(oc,n) ∈ E∗apply(σ′,∆): (oc,n) ∈ E∗apply(σ,∆)
By (m,n) ∈ E∗σ, hence(m,n) ∈ E∗apply(σ,∆) but them−n chain does not go throughoc:
(oc,m) ∈ E∗apply(σ,∆)
By (c) andm∈ [[p]]apply(σ,∆): (oc,m) ∈ E∗apply(σ′,∆)
Hence we have(m,oc) ∈ E+

apply(σ′,∆) and(oc,m) ∈ E∗apply(σ′,∆) which is a contradiction

(e): By (c), σ∼p|q σ′, (m,n) ∈ Eσ andn∈ [[q]]σ: mE∗σ′n.
By m 6= n: mE+

σ′n; by (m′,n) ∈ Eσ′ : mE∗σ′m
′ (1)

By (c), σ∼p|q σ′, (m′,n) ∈ Eσ′ andn∈ [[q]]σ: m′E∗σn
By m′ 6= n: m′E+

σ n; by (m,n) ∈ Eσ: m′E∗σm
By (c), σ∼p|q σ′, m′E∗σm, andm∈ [[p]]σ: m′E∗σ′m
By mE∗σ′m

′ (1) andm′E∗σ′m: m= m′.

The kernel of the parallel evolution proof is in the following lemma that says that, if
two stores are equivalent onr/Step, then, from each single node reached byr , the step
Stepreaches the same set of nodes in the two stores.
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Lemma 6.
σ∼r/Stepσ′ ∧ n∈ [[r ]]apply(σ,∆)
∧ ∆ = insert (E1), . . . , insert (En)
⇒ [[Step]]nσ = [[Step]]nσ′

Proof. σ ∼r/Stepσ′ (1) implies (2)σ ∼r σ′. Consider anyn∈ [[r ]]apply(σ,∆). We reason
by cases on the axis. In each case, for eachm in [[Step]]nσ, it immediately satisfiesntest
in Fσ′ , but we have to prove thatEσ′ relatesm andn as required by the axis. By (2)
∃∆′ ⊆ ∆ such thatn ∈ [[r ]]apply(σ,∆′) andwf(σ′,∆′). Throughout the proof we use the
fact that, since∆ = insert(E1), . . . ,insert(En), for bothσ andσ′ we have[[p]]σ′′ ⊆
[[p]]apply(σ′′,∆′). We useE∆′ for the set of edges added by∆′.

child :: ntest, which we abbreviate asntest: We haven∈ [[r ]]apply(σ,∆′) and want to
prove that(n,m) ∈ Eσ ⇒ (n,m) ∈ Eσ′ .

From (n,m) ∈ Eσ we obtain(n,m) ∈ Eapply(σ,∆′) (and (n,m) 6∈ E∆′ ) hencem ∈
[[r/ntest]]apply(σ,∆′), hencem∈ [[r/ntest]]apply(σ′,∆′), hence∃n′ ∈ [[r ]]apply(σ′,∆′) such that
(n′,m) ∈ Eapply(σ′,∆′).
By wf(σ′,∆′), we have that apply(σ,∆′) ∼r |(r/ntest) apply(σ′,∆′), hence we can apply
Lemma 5(e) ton∈ [[r ]]apply(σ,∆′), m∈ [[r/ntest]]apply(σ,∆′), (n,m) ∈ Eapply(σ,∆′), (n′,m) ∈
Eapply(σ′,∆′) hence deducingn = n′, hence(n,m) ∈ Eapply(σ′,∆′). From(n,m) 6∈ E∆′ , we
obtain(n,m) ∈ Eσ′ .

parent:: ntest: We haven ∈ [[r ]]apply(σ,∆′) and want to prove that(m,n) ∈ Eσ ⇒
(m,n) ∈ Eσ′ .

(m,n) ∈ Eσ ⇒ (m,n) ∈ Eapply(σ,∆′) and(m,n) 6∈ E∆′ . By n∈ [[r ]]apply(σ,∆′) we have
m∈ [[r/parent:: ntest]]apply(σ,∆′). By Lemma 5(d),(m,n) ∈ Eσ, n ∈ [[r ]]apply(σ,∆′), m∈
[[r/parent:: ntest]]apply(σ,∆′), imply (m,n) ∈ E+

σ′ , hence∃m′. (m′,n) ∈ Eσ′ .
(m,n) ∈ Eσ′ ⇒ (m,n) ∈ Eapply(σ′,∆′), hence, by Lemma 5(e),m= m′, hence(m,n) ∈
Eσ′ .

descendant:: ntest: We haven∈ [[r ]]apply(σ,∆′) and want to prove that(n,m)∈E+
σ ⇒

(n,m) ∈ E+
σ′ .

(n,m) ∈ E+
σ ⇒ (n,m) ∈ E+

apply(σ,∆′) hencem∈ [[r//ntest]]apply(σ,∆′).

From Lemma 5(d) we deduce(n,m) ∈ E+
σ′ .

ancestor:: ntest: We haven∈ [[r ]]apply(σ,∆′) and want to prove that(m,n) ∈ E+
σ ⇒

(m,n) ∈ E+
σ′ .

(m,n) ∈ E+
σ ⇒ (m,n) ∈ E+

apply(σ,∆′) hencem∈ [[r/ancestor:: ntest]]apply(σ,∆′). From

Lemma 5(d) we deduce(m,n) ∈ E+
σ′ .

We can now prove parallel evolution. We want to prove:
η′0∼pref(r/Step)|a η0 ⇒ dEnv` η′0;Expr/Step⇒ η′1; n̄
where
n̄ = {n′ | ∃n∈ n̄1. n′ ∈ [[Step]]napply(η′1) }.

By induction we have:

r ⊇η1 n̄1

η′0∼a η0 ∧ N′0#(N1\N0)
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⇒ ∃η′1 ( dEnv` η′0;Expr⇒ η′1; n̄1 ∧ η′1\η′0 = η1\η0 )

By induction,η′1\η′0 = η1\η0. Hence, we only have to prove
{n′ | ∃n∈ n̄1. n′ ∈ [[Step]]nσ }= {n′ | ∃n∈ n̄1. n′ ∈ [[Step]]nσ′ }.
The equivalenceη′0∼pref(r/Step)|a η0 impliesη′0∼r |(r/Step) η0 hence(η′0,η

′
1\η′0)∼r |(r/Step)

(η0,η′1\η′0) hence, byη′1 \η′0 = η1 \η0, η′1 ∼r |(r/Step) η1. Let Ed
η1

be the set of edges
deleted by all thedelete in η1. Then mrg(η1)= apply(apply(η1),insert(Ed

η1
)), hence,

by Lemma 6, for eachn∈mrg(η1) we have[[Step]]napply(η1) = [[Step]]napply(η′1), hence:

n̄1⊆ [[r ]]mrg(η1) ⇒
[

n∈n̄1

[[Step]]napply(η1) =
[

n∈n̄1

[[Step]]napply(η′1)

C Commutativity proof

Lemma 7 (Prefix closure of a). pEnv̀ Expr⇒ r ; 〈a,u〉 ⇒ prefclosed(a)

Theorem

Let
(h1-a) dEnv` η;Expr1 ⇒ η1; n̄1

(h1-b) pEnv ` Expr1 ⇒ r1; 〈a1,u1〉
(h1-c) pEnv⊇η dEnv
(h2-a) dEnv` η1;Expr2 ⇒ η12; n̄2

(h2-b) pEnv ` Expr2 ⇒ r2; 〈a2,u2〉
hencedEnv` η;Expr1,Expr2 ⇒ η12; n̄2, n̄2 ∧ pEnv ` Expr1,Expr2 ⇒ r1|r2; 〈a1|a2,u1|u2〉
If
(h3) u1#a2,a1#u2,u1#u2,
(h4) apply(η′) = apply(η) and mrg(η′) = mrg(η),
then existsη′21, such that:
(t1) dEnv` η′;Expr2,Expr1 ⇒ η′21; n̄2, n̄1

(t2) apply(η12) = apply(η′21) and mrg(η12) = mrg(η′21).

Throughout this section we useNi for the set of nodes of store historyηi andN′i for the
set of nodes of store historyη′i .

Proof We will prove that there existη′2, η′21, such that:
dEnv` η′;Expr2 ⇒ η′2; n̄2

dEnv` η′2;Expr1 ⇒ η′21; n̄1

hence
dEnv` η′;Expr2,Expr1 ⇒ η′21; n̄2, n̄1

and such that mrg(η12) = mrg(η′21).

First observe that, by Lemma 7, botha1 anda2 are prefix-closed. We will use this
fact whenever we apply immutability.

We will use (h4) to transfer implicitly most facts aboutη to η′, because (h4) implies
that:∀p,η′′ η∼p η′′ ⇔ η′ ∼p η′′;



Commutativity Analysis in XML Update Languages 29

N = N′;
pEnv⊇η′ dEnv

We also observe that, by stability, (h1-c) implies:
(h2-c)pEnv⊇η1 dEnv

By u1#a2, (h1-abc) and immutability we have that
(h1-imm-a)η∼a2 η1

(h1-imm-b)u1⊇η1 updated(η1\η)
hence:
(h1-imm-b’)u1⊇η12 updated(η1\η)
Similarly, byu2#a1, (h2-abc), and immutability we have that
(h2-imm-a)η1∼a1 η12

(h2-imm-b)u2⊇η12 updated(η12\η1)
By (h1-imm-b’), (h2-imm-b), andu1#u2

(tgt-disj) (η1\η)#(η12\η1)

By (h1-imm-a), i.e.η ∼a2 η1, (h2-abc),(N12\N1)#N, and parallel evolution, we
have:
∃η′2.
(h2-p-ev-a)dEnv` η′;Expr2 ⇒ η′2; n̄2

(h2-p-ev-b)η′2\η′ = η12\η1

(h2-p-ev-b) implies:
(h2-p-ev-c)N′2\N′ = N12\N1.

Now, we can apply immutability to (h2-p-ev-a), (h2-b), (h1-c) anda1#u2, and ob-
tain:
(h2-imm-2)η′ ∼a1 η′2

By stability, mrg(η′) = mrg(η) and (h1-c) imply:
(sta-1)pEnv⊇η′2

dEnv
From(N1\N)#(N12\N1), (N′2\N′) = (N12\N1) we derive(N1\N)#(N′2\N′), hence
(disj) (N1\N)#N′2.

Property (h2-imm-2) impliesη′2 ∼a1 η; and thanks to (h1-b), (sta-1), (disj), we can
apply parallel evolution in order to transfer the (h1-a) reduction (η to η1) into a reduc-
tion from η′2 to aη′21, and obtain:
∃η′21.
(h1-p-ev-a)dEnv` η′2;Expr1 ⇒ η′21; n̄1

(h1-p-ev-b)η′21\η′2 = η1\η.

Now, we can prove the thesis.
(t1): follows from (h2-p-ev-a) and (h1-p-ev-a)
(t2): Recall (h2-p-ev-b) and (h1-p-ev-b):

η′2\η′ = η12\η1, η′21\η′2 = η1\η
Hence, if we let∆1 = η1\η and∆2 = η12\η1:
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η′21 = (σ′,(∆′,∆2,∆1)), η12 = (σ,(∆,∆1,∆2))
Hence:
mrg(η′21) = apply(apply(mrg(η′),∆2),∆1)
By (tgt-disj) and by property 1:
= apply(apply(mrg(η′),∆1),∆2) = apply(apply(mrg(η),∆1),∆2) = mrg(η12).

It is worth noticing that the hypothesisu1#a2 anda1#u2 have been used to prove
that, by commutingExpr1 with Expr2 we transform(σ,(∆,∆1,∆2)) into (σ′,(∆′,∆′2,∆

′
1))

where∆i is identical to∆′i . The further hypothesisu1#u2 is only needed to exchange the
order of∆1 and∆2.


