
Preliminary Report. Final version to appear in:
Mathematical Foundations of Programming Semantics (MFPS), 2011

2-Dimensional Directed Type Theory

Daniel R. Licata∗ Robert Harper∗

Carnegie Mellon University

{drl,rwh}@cs.cmu.edu

Recent work on higher-dimensional type theory has explored connections between Martin-Löf type
theory, higher-dimensional category theory, and homotopy theory. These connections suggest a gen-
eralization of dependent type theory to account for computationally relevant proofs of propositional
equality—for example, taking IdSet A B to be the isomorphisms between A and B. The crucial obser-
vation is that all of the familiar type and term constructors can be equipped with a functorial action
that describes how they preserve such proofs. The key benefit of higher-dimensional type theory is
that programmers and mathematicians may work up to isomorphism and higher equivalence, such as
equivalence of categories.

In this paper, we consider a further generalization of higher-dimensional type theory, which asso-
ciates each type with a directed notion of transformation between its elements. Directed type theory
accounts for phenomena not expressible in symmetric higher-dimensional type theory, such as a uni-
verse set of sets and functions, and a type Ctx used in functorial abstract syntax. Our formulation
requires two main ingredients: First, the types themselves must be reinterpreted to take account of
variance; for example, a Π type is contravariant in its domain, but covariant in its range. Second,
whereas in symmetric type theory proofs of equivalence can be internalized using the Martin-Löf
identity type, in directed type theory the two-dimensional structure must be made explicit at the
judgemental level. We describe a 2-dimensional directed type theory, or 2DTT, which is validated
by an interpretation into the strict 2-category Cat of categories, functors, and natural transforma-
tions. We also discuss applications of 2DTT for programming with abstract syntax, generalizing the
functorial approach to syntax to the dependently typed and mixed-variance case.

1 Introduction

In type theory, it is standard to define a type A by introduction, elimination, and equality rules. The
introduction and elimination rules describe how to construct and use terms M of type A, and the equality
rules describe when two terms are equal. Intensional type theories distinguish two different notions of
equality: a judgement of definitional equality (M ≡ N : A), containing the β - and perhaps some η-rules
for the various types, and a type of propositional equality (IdA M N), which allows additional equalities
that are justified by explicit proofs. The type theory ensures that all families of types x:A ` C type
respect equality, in the sense that equal terms M and N determine equal types C[M/x] and C[N/x].
Definitionally equal terms give definitionally equal types, whereas propositionally equal terms induce a
coercion between C[M/x] and C[N/x]:

x:A ` C type P : IdA M N Q :C[M/x]
substC P Q :C[N/x]

∗This research was sponsored in part by the National Science Foundation under grant number CCF-0702381 and by the
Pradeep Sindhu Computer Science Fellowship. The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the
U.S. government or any other entity.



2

The nature of this coercion is explained by the groupoid interpretation of type theory given by Hofmann
and Streicher [22]. A closed type is interpreted as a groupoid (a category in which all morphisms are
invertible), where the objects of the groupoid are the terms of the type, and the morphisms are proofs
of propositional equality between terms. Open types and terms are interpreted as functors, whose object
parts are (roughly) the usual types and terms of the set-theoretic semantics, and whose morphism parts
show how those types and terms preserve propositional equality. An identity type IdA M N is interpreted
using the Hom set of A. Many types, such as natural numbers, are interpreted by discrete groupoids,
where the only proofs of propositional equality are identities. Such types satisfy uniqueness of iden-
tity proofs (UIP) (see Hofmann and Streicher [22] for an introduction), which states that all terms of
type IdA M N are themselves equal. However, the groupoid interpretation also permits types of higher
dimension that have a non-trivial notion of propositional equality.

One example of a higher-dimensional type is a universe, set, a type whose elements are themselves
classifiers: associated to each element S of set, there is a type El(S) classifying the elements of S. The
groupoid interpretation permits sets to be considered modulo isomorphism, by taking the propositional
equalities between S1 and S2 to be invertible functions El(S1)→ El(S2). Semantically, set may be inter-
preted as the category of sets and isomorphisms.1 This interpretation of set does not satisfy UIP, as there
can be many different isomorphisms between two sets. Given this definition of propositional equality,
subst states that all type families respect isomorphism: for any x :set `C :set, A∼= B implies C[A]∼=C[B].
Computationally, the lifting of the isomorphism is given by the functorial action of the type family C.

The groupoid interpretation accounts for types of dimension 2, but not higher. For example, while
the groupoid interpretation permits a universe of sets modulo isomorphism, it does not provide the ap-
propriate notion of equality for a universe containing a universe, where equality should be categorical
equivalence, which may be described as “isomorphism-up-to-isomorphism”. Recent work has general-
ized this interpretation to higher dimensions, exploiting connections between type theory and homotopy
theory or higher-dimensional category theory (which, under the homotopy hypothesis [5] are two sides
of the same coin). On the categorical side, Garner [17] generalizes the groupoid interpretation to a class
of 2-categories where the 2-cells are invertible. Lumsdaine [28] and van den Berg and Garner [37] show
that the syntax of intensional type theory forms a weak ω-category. On the homotopy-theoretic side,
Awodey and Warren [4] show how to interpret intensional type theory into abstract homotopy theory (i.e.
Quillen model categories), and Voevodsky’s equivalence axiom [38] equips a type theory with a notion
of homotopy equivalence, which provides the appropriate notion of equality for types of any dimension.

However, the groupoid interpretation, and all of these generalizations of it, make essential use of
the fact that proofs of equivalence are symmetric, interpreting types as groupoids or homotopy spaces.
For some applications, it would be useful to consider types with an asymmetric notion of transformation
between elements. For example, functors have proved useful for generic programming, because every
functor provides a way for a programmer to apply a transformation to the components of a data structure.
If we consider a universe set whose elements are sets S and whose morphisms are functions f : El(S1)→
El(S2), then any dependent type x:set ` C type describes such a functor, and subst can be used to apply
a function f to the components of the data structure described by C.

Another application concerns programming with abstract syntax and logical derivations. In the func-
torial approach to syntax with binding [3, 21, 14], the syntactic expressions in context Ψ are represented
by a family of types indexed by Ψ—e.g. a type prop(Ψ) classifying formulas in a first-order logic with
free variables in Ψ—where Ψ :Ctx is a representation of a context (e.g. a list of sorts). Structural proper-

1This works if the sets S themselves are discrete; otherwise, set can be interpreted as the groupoid of small groupoids, which
permits non-trivial maps between elements of sets.



3

ties, such as weakening, exchange, contraction, and substitution can be cast as showing that prop(−) is
the object part of a functor from a context category. The context category has contexts Ψ as objects, while
the choice of morphisms determines which structural properties are provided: variable-for-variable sub-
stitutions give weakening, exchange, and contraction; term-for-variable substitutions additionally give
substitution. However, these context morphisms are not in general invertible, and therefore describing
syntax functorially requires general, non-groupoidal, categories.

In this paper, we propose a new notion of directed type theory, which generalizes existing symmetric
type theory by permitting an asymmetric notion of transformation between the elements of a type. This
extends the connection between type theory, higher-dimensional category theory, and homotopy theory
to the directed case. Our formulation requires two interesting technical ingredients: First, directed type
theory differs from conventional type theory in that it must account for variances of families of types.
In conventional symmetric type theory there is no need to account for variance, because the proofs of
equivalence of two indices are invertible. To relax this restriction requires that the syntax distinguish
between co- and contra-variant dependencies. This has implications for the type structure as well, so
that, for example, dependent function types are contravariant in the domain and covariant in their range.
Second, directed type theory exposes higher-dimensional structure at the judgemental, rather than the
propositional level. In particular the Martin-Löf identity type is no longer available, because the usual
elimination rule implies symmetry, which we explicitly wish to relax. Moreover, in the absence of
invertibility, the identity type cannot be formed as a type. We must instead give a judgemental account
of transformations, and make explicit the action of transformations on families of types.

Here, we consider only the two-dimensional case of directed type theory, and define a type theory
2DTT (Section 2). 2DTT admits a simple interpretation in the category Cat of categories, functors, and
natural transformations (Section 3). The syntax of 2DTT reflects the fact that Cat is a strict 2-category,
in that various associativity, unit, and functoriality laws hold definitionally, rather than propositionally.
Although it is not necessary for the applications we consider here, it seems likely that 2DTT could be
extended to higher dimensions, and that more general interpretations are possible. Our main motivating
application of 2DTT, which we sketch in Section 4, is extending functorial syntax [22, 14] to account for
dependently typed and mixed variance syntax.

2 Syntax

In this section, we give a proof theory for 2DTT. 2DTT has three main judgements, defining contexts Γ,
substitutions θ , and transformations δ . In the semantics given below, these are interpreted as categories,
functors, and natural transformations, respectively. Using the terminology of 2-categories, we will refer
to a context Γ as a “0-cell”, a substitution as a “1-cell”, and a transformation as a “2-cell”. Each of these
three levels has a corresponding contextualized version, which is judged well-formed relative to a context
Γ. Contextualized contexts and substitutions are dependent types A and terms M, while contextualized
transformations are asymmetric analogue of propositional equality proofs. As discussed above, the two
main ingredients in 2DTT are these transformation judgements, and variance annotations on assumptions
in the context. To summarize, the judgement forms of 2DTT are

• Contexts: Γ ctx

• Substitutions: Γ ` θ : ∆ (where Γ ctx and ∆ ctx)

• Transformations: Γ ` δ : θ =⇒∆ θ ′ (where Γ ctx and ∆ ctx and Γ ` θ ,θ ′ : ∆)

• Dependent Types: Γ ` A type (where Γ ctx)



4

Involution

Γ ctx
Γop ctx

Γop ` θ : ∆op

Γ ` θ op : ∆

Γop ` δ : θ ′op =⇒∆op θ op

Γ ` δ op : θ =⇒∆ θ ′

(Γop)op ≡ Γ 0-involution
(θ op)op ≡ θ 1-involution
(δ op)op ≡ δ 2-involution

Identity and composition for Γ ` θ : ∆

Γ⊇ ∆

Γ ` id∆ : ∆

Γ2 ` θ2 : Γ3 Γ1 ` θ1 : Γ2

Γ1 ` θ2[θ1] : Γ3

Γ ` θ : ∆ Γ0 ` δ : θ1 =⇒Γ θ2

Γ0 ` θ [δ ] : θ [θ1] =⇒∆ θ [θ2]

θ0[θ [θ ′]] ≡ θ0[θ ][θ ′] 1-subst assoc/unit
θ0[idΓ] ≡ θ0
idΓ

Γ[θ ] ≡ θ

θ [δ [δ ′]] ≡ θ [δ ][δ ′] 1-resp assoc
θ [reflθ ′ ] ≡ reflθ [θ ′] 1-resp preserves refl.
θ [θ ′][δ ] ≡ θ [θ ′[δ ]] 1-resp for 1-subst

idop
Γ

≡ idΓop op interactions
(θ1[θ2])op ≡ θ

op
1 [θ op

2 ]
(θ [δ ])op ≡ θ op[δ op]

Identity and Composition for Γ ` δ : θ =⇒∆ θ ′

Γ ` refl∆
θ : θ =⇒∆ θ

Γ ` δ1 : θ1 =⇒∆ θ2
Γ ` δ2 : θ2 =⇒∆ θ3

Γ ` δ2 ◦δ1 : θ1 =⇒∆ θ3

Γ ` δ : θ =⇒∆ θ ′

Γ0 ` δ0 : θ0 =⇒Γ θ ′0

Γ0 ` δ [δ0] : θ [θ0] =⇒∆ θ ′[θ ′0]

(δ3 ◦δ2)◦δ1 ≡ δ3 ◦ (δ2 ◦δ1) trans assoc/unit
(δ ◦ refl) ≡ δ

(refl◦δ ) ≡ δ

δ0[δ [δ ′]] ≡ δ0[δ ][δ ′] 2-resp assoc/unit
δ0[reflid] ≡ δ0
reflidΓ

Γ

[δ ] ≡ δ

(δ1 ◦δ2)[δ3 ◦δ4] ≡ δ1[δ3]◦δ2[δ4] interchange
reflθ [δ ] ≡ θ [δ ] delegate

reflop
θ

≡ reflθop
op interactions

(δ1 ◦δ2)op ≡ δ
op
2 ◦δ

op
1

(δ1[δ2])op ≡ δ
op
1 [δ op

2 ]

Figure 1: 2DTT: Identity, Composition, and Involution Principles (1)



5

Composition for Γ ` A type

Γ ` θ : ∆ ∆ ` A type

Γ ` A[θ ] type

∆ ctx ∆ ` C type Γ ` δ : θ1 =⇒∆ θ2 Γ `M :C[θ1]
Γ `map∆.C δ M :C[θ2]

A[θ [θ ′]] ≡ A[θ ][θ ′] 0-subst assoc/unit
A[idΓ] ≡ A

map∆.C reflθ M ≡ M 0-resp functoriality
map∆.C (δ2 ◦δ1) M ≡ map∆.C δ2 (map∆.C δ1 M)

(map∆.C δ M)[θ0] ≡ map∆.C δ [reflθ0 ] M[θ0] 1-subst for map
(mapC (δ : θ1 =⇒ θ2) M)[δ ′ : θ ′1 =⇒ θ ′2] ≡ resp (x.mapC (δ [reflθ ′2

]) x) (M[δ ′]) 1-resp for map

map∆.C[θ :∆′] δ M ≡ map∆
′.C reflθ [δ ] M def. map for A[θ ]

Composition for Γ `M :A

Γ ` θ : ∆ ∆ `M :A
Γ `M[θ ] :A[θ ]

∆ `M :A Γ ` δ : θ1 =⇒∆ θ2

Γ `M[δ ] : (map∆.A δ (M[θ1])) =⇒A[θ2] M[θ2]

M[θ [θ ′]] ≡ M[θ ][θ ′] 1-subst assoc/unit
M[idΓ] ≡ M

M[δ [δ ′]] ≡ M[δ ][δ ′] 1-resp assoc/unit
M[reflθ ] ≡ reflM[θ ] 1-resp preserves refl.
M[θ ][δ ] ≡ M[θ [δ ′]] 1-resp for 1-subst

Identity and Composition for Γ ` α : M =⇒A N

Γ ` reflA
M : M =⇒A M

Γ ` α1 : M1 =⇒A M2
Γ ` α2 : M2 =⇒A M3

Γ ` α2 ◦α1 : M1 =⇒A M3

Γ0 ` δ0 : θ0 =⇒Γ θ ′0
Γ ` α : M =⇒A N

Γ0 ` α[δ0] : (mapΓ.A δ0 (M[θ0])) =⇒A[θ ′0] N[θ ′0]

(α3 ◦α2)◦α1 ≡ α3 ◦ (α2 ◦α1) trans assoc/unit
(α ◦ refl) ≡ α

(refl◦α) ≡ α

α[δ [δ ′]] ≡ α[δ ][δ ′] 2-resp assoc/unit
α[reflid] ≡ α

(α1 ◦α2)[δ3 ◦δ4] ≡ α1[δ3]◦ resp (x.map δ3 x) (α2[δ4]) interchange
reflM[δ ] ≡ M[δ ] delegate

Figure 2: 2DTT: Identity, Composition, and Involution Principles (2)



6

All judgements respect equality:

Γ≡ Γ′ ∆≡ ∆′ Γ′ ` θ : ∆′

Γ ` θ : ∆

Γ≡ Γ′ Γ′ ` A type

Γ ` A type

Γ≡ Γ′ Γ ` A ≡ A′ type Γ′ `M :A′

Γ `M :A

Γ≡ Γ′ ∆≡ ∆′ Γ ` θ1 ≡ θ ′1 :A Γ ` θ2 ≡ θ ′2 :A Γ′ ` δ : θ ′1 =⇒∆′ θ ′2
Γ ` δ : θ1 =⇒∆ θ2

Γ≡ Γ′ Γ ` A ≡ A′ type Γ ` M ≡ M′ :A Γ ` N ≡ N′ :A Γ′ ` α : M′ =⇒A′ N′

Γ ` α : M =⇒A N

Equality respects equality: Each equality judgement has an analogous respect-for-equality rule, which says that it
respects equality in the context and classifier.

Congruence: Each equality judgement is a congruence, specified by reflexivity, symmetry, transitivity
rules, and a compatibility rule for each term constructor.

Empty context:

· ctx Γ ` · : · Γ ` · : ·=⇒· ·

θ ≡ · 1-η
δ ≡ · 2-η
·op ≡ · 0,1,2-involution
id· ≡ · identity
·[θ ] ≡ · 1-subst
·[δ ] ≡ · 1-resp
refl· ≡ · reflexivity
· ◦ · ≡ · trans
·[δ ] ≡ · 2-resp

Figure 3: 2DTT: General equality rules; Empty Context



7

Covariant term variables:

Γ ctx Γ ` A type

Γ , x:A+ ctx
x:A+ ∈ Γ

Γ ` x :A
Γ ` θ : ∆ Γ `M :A[θ ]

Γ ` θ ,M+/x : ∆,x :A+

Γ ` δ : θ =⇒∆ θ ′

Γ ` α : (map∆.A δ M) =⇒A[θ ′] N

Γ ` (δ ,α+/x) : (θ ,M+/x) =⇒∆,x:A+ (θ ′,N+/x)

idΓ,x:A+

Γ
[θ ,M+/x] ≡ θ 1-β

x[θ ,M+/x] ≡ M 1-β
θ :(Γ , x:A+) ≡ idΓ[θ ],x[θ ]+/x 1-η

idΓ,x:A+

Γ
[δ ,α+/x] ≡ δ 2-β

x[δ ,α+/x] ≡ α 2-β
δ : θ =⇒(Γ,x:A+) θ ′ ≡ idΓ[δ ],x[δ ]+/x 2-η

idΓ,x:A+ ≡ idΓ,x+/x 1-id
(θ ,M+/x)[θ0] ≡ θ [θ0],M[θ0]

+/x 1-subst
(θ ,M+/x)[δ0] ≡ θ [δ0],M[δ0]

+/x 1-resp
reflθ ,M+/x ≡ reflθ , reflM+/x refl

(δ2,α2
+/x)◦ (δ1,α1

+/x) ≡ (δ2 ◦δ1),(α2 ◦ resp (x.map∆.A δ2 x) α1)
+/x trans

(δ ,α+/x)[δ0] ≡ δ [δ0],α[δ0]
+/x 2-resp

(Γ , x:A+)op ≡ Γop , x:A- 0-invol
(θ ,M+/x)op ≡ θ op,M-/x 1-invol
(δ ,α+/x)op ≡ δ op,α-/x 2-invol

Contravariant term variables:

Γ ctx Γop ` A type

Γ , x:A- ctx

Γ ` θ : ∆ Γop `M :A[θ op]
Γ ` θ ,M-/x : ∆,x :A-

Γ ` δ : θ =⇒∆ θ ′

Γop ` α : (map∆op.A (δ op) N) =⇒A[θ ] M

Γ ` (δ ,α-/x) : (θ ,M-/x) =⇒∆,x:A- (θ ′,N-/x)

idΓ,x:A-
Γ

[θ ,M-/x] ≡ θ 1-β
θ :(Γ , x:A-) ≡ idΓ[θ ],x[θ op]-/x 1-η

idΓ,x:A-
Γ

[δ ,α-/x] ≡ δ 2-β
δ : θ =⇒(Γ,x:A-) θ ′ ≡ idΓ[δ ],x[δ op]-/x 2-η

idΓ,x:A- ≡ idΓ,x-/x 1-id
(θ ,M-/x)[θ0] ≡ θ [θ0],M[θ op

0 ]-/x 1-subst
(θ ,M-/x)[δ0] ≡ θ [δ0],M[δ op

0 ]-/x 1-resp
reflθ ,M-/x ≡ reflθ , reflM

-/x refl
(δ2,α2

-/x)◦ (δ1,α1
-/x) ≡ (δ2 ◦δ1),(α2 ◦ resp (x.map∆

op.A δ
op
2 x) α1)

-
/x trans

(δ ,α-/x)[δ0] ≡ δ [δ0],α[δ op
0 ]-/x 2-resp

(Γ , x:A-)op ≡ Γop , x:A+ 0-invol
(θ ,M-/x)op ≡ θ op,M+/x 1-invol
(δ ,α-/x)op ≡ δ op,α+/x 2-invol

Figure 4: 2DTT: Co- and Contravariant Term Variables



8

Dependent functions:

Γop ` A type
Γ , x:A- ` B type

Γ `Πx:A.B type

Γ , x:A- `M :B
Γ ` λ x.M :Πx:A.B

Γ `M1 :Πx:A.B Γop `M2 :A
Γ `M1 M2 :B[M2/x]

Γ , x:A- ` α : (M x) =⇒B (N x)
Γ ` λ x.α : M =⇒Πx:A.B N

Γ ` α : M =⇒Πx:A.B N Γop ` β : N1 =⇒A M1

Γ ` α M1 N1 β : map1
B β (MM1) =⇒B[N1/x] (NN1)

(λ x.M)N ≡ M[N-/x] 1-β
M :Πx:A.B ≡ λ x.M x 1-η
(λ x.α1)α2 ≡ α1[refl,α2

-/x] 2-β
α : M =⇒Πx:A.B N ≡ λ x.α (reflx) 2-η

(Πx:A.B)[θ0] ≡ Πx:A[θ op
0 ].B[θ0,x-/x] 0-subst

map∆.Πx:A.B δ M ≡ λ x.map∆,x:A-.B (δ , refl) (M (map op.A δ op x)) 0-resp

(λ x.M)[θ0] ≡ λ x.M[(θ0,x-/x)] 1-subst
(M1 M2)[θ0] ≡ (M1[θ0]) (M2[θ0]) 1-subst
(λ x.M)[δ ] ≡ λ x.M[δ , refl] 1-resp
(M N)[δ ] ≡ M[δ ]N[δ ] 1-resp

reflM ≡ λ x. reflM x refl
(λ x.α2)◦ (λ x.α1) ≡ λ x.α2 ◦α1 trans
(λ x:A.α)[δ0] ≡ λ x:A[θ ′].α[δ0, refl/a] 2-resp
α1 α2[δ0] ≡ (α1[δ0]) (α2[δ0]) 2-resp

Figure 5: 2DTT: Dependent Function Types



9

Dependent pairs:

Γ ` A type
Γ , x:A+ ` B type

Γ ` Σx:A.B type

Γ `M1 :A Γ `M2 :B[M1/x]
Γ ` (M1,M2) :Σx:A.B

Γ `M :Σx:A.B
Γ ` fst M :A

Γ `M :Σx:A.B
Γ ` snd M :B[fst M/x]

Γ ` α1 : fst M =⇒A fst N
Γ ` α2 : (map1

B α1 (snd M)) =⇒B[fst N/x] snd N

Γ ` (α1,α2) : M =⇒Σx:A.B N
Γ ` α : M =⇒Σx:A.B N

Γ ` fst α : fst M =⇒A fst N

Γ ` α : M =⇒Σx:A.B N
Γ ` snd α : (map1

B (fst α) (snd M)) =⇒B[fst N/x] snd N

fst (M,N) ≡ M 1-β
snd (M,N) ≡ N 1-β
M :Σx:A.B ≡ (fst M,snd M) 1-η
fst (α1,α2) ≡ α1 2-β
snd (α1,α2) ≡ α2 2-β
α : M =⇒Σx:A.B N ≡ (fst α,snd α) 2-η

(Σx:A.B)[θ0] ≡ Σx:A[θ0].B[θ0,x+/x] 0-subst
map∆.Σx:A.B δ M ≡ (map∆.A δ (fst M),map∆,x:A+.B (δ , reflmap δ (fst M)) (snd M)) 0-resp

((M1,M2))[θ0] ≡ (M1[θ0],M2[θ0]) 1-subst
(fst M)[θ0] ≡ fst (M[θ0]) 1-subst
(snd M)[θ0] ≡ snd (M[θ0]) 1-subst
(M,N)[δ ] ≡ (M[δ ],N[δ ]) 1-resp
(fst M)[δ ] ≡ fst M[δ ] 1-resp
(snd M)[δ ] ≡ snd M[δ ] 1-resp

reflM ≡ (reflfst M, reflsnd M) refl
(α2,α

′
2) ◦ (α1,α

′
1) ≡ (α2 ◦α1,α

′
2 ◦ resp (x.map∆.A (refl,α1) x) α ′1) trans

(α1,α2)[δ0] ≡ (α1[δ0],α2[δ0, refl]) 2-resp
(fst α)[δ0] ≡ fst α[δ0] 2-resp
(snd α)[δ0] ≡ snd α[δ0] 2-resp

Figure 6: 2DTT: Dependent Pairs



10

Sets and elements:

Γ ` set type
Γ ` S :set

Γ ` El(S) type

Γ , x:El(S)+ `M :El(S′)
Γ ` x.M : S =⇒set S′ Γ ` ? : M =⇒El(S) M

Γ ` α : M =⇒El(S) N

Γ ` M ≡ N :El(S)

mapEl(S) δ M[θ1] ≡ M[θ2] def. El(−)
α : S =⇒set S′ ≡ x.mapa:Set.El(a) (·,α) x 2-η

α : M =⇒El(S) N ≡ ? 2-η

set[θ0] ≡ set 0-subst
(El(S))[θ0] ≡ El(S[θ0])

map∆.set δ M ≡ M 0-resp
map∆.El(S) δ M ≡ N[id,M+/x] if S[δ ]≡ x.N

reflS :set ≡ x.x refl
reflM :El(S) ≡ ? refl

(x.M1)◦ (x.M2) ≡ x.M2[M1/x] trans
?◦? ≡ ? trans

(x.M)[δ0] ≡ x.map∆.S′ δ0 M[θ ,x+/x] if ∆ , x:El(S)+ `M :El(S′) and δ0 : θ =⇒ θ ′ 2-resp
?M[δ0] ≡ M[δ0] 2-resp

Figure 7: 2DTT: General Rules for Sets and Elements



11

Γop ` S :set
Γ , x:El(S)- ` S′ :set

Γ `Πx:S.S′ :set

Γ ` S :set
Γ , x:El(S)+ ` S′ :set

Γ ` Σx:S.S′ :set Γ ` 0,1,2 :set

Γ ` S :set Γ `M,N :El(A)
Γ ` IdS M N :set

Γ `M :Σx:El(S).El(S′)
Γ ` inM :El(Σx:S.S′)

Γ `M :El(Σx:S.S′)
Γ ` outM :Σx:El(S).El(S′)

Γ `M :Πx:El(S).El(S′)
Γ ` inM :El(Πx:S.S′)

Γ `M :El(Πx:S.S′)
Γ ` outM :Πx:El(S).El(S′)

Γ ` () :El(1) Γ ` true :El(2) Γ ` false :El(2)
Γ
± `M :El(0)

Γ ` abortM :C
Γ
± `M :El(0)

Γ ` abortM : M1 =⇒C M2

Γ
± `M :El(2)

Γ `M1 :C[true±/x]
Γ , x:2± ` C type
Γ `M2 :C[false±/x]

Γ ` ifx±.C(M,M1,M2) :C[M±/x]

Γ
± `M :El(2)

Γ , x:2± ` C type
Γ , x:2± `M1,M2 :C
Γ ` α1 : M1[true±/x] =⇒C[true±/x] M2[true±/x]
Γ ` α2 : M1[false±/x] =⇒C[false±/x] M2[false±/x]

Γ ` ifx±.C(M,α1,α2) : M1[M±/x] =⇒C[M±/x] M2[M±/x]

Γ ` α : M =⇒El(S) N

Γ ` idi α : IdS M N

Γ ` P : IdEl(S) M N

Γ ` ide P : M =⇒El(S) N

Rules for sets:

Πx:S.S′[θ ] ≡ Πx:S[θ ].S′[θ ,x-/x] 1-subst
Σx:S.S′[θ ] ≡ Σx:S[θ ].S′[θ ,x+/x]
{0,1,2}[θ ] ≡ {0,1,2}
IdS M N[θ ] ≡ IdA[θ ] M[θ ] N[θ ]
{0,1,2}[δ ] ≡ x.x 1-resp
(Πx:S.S′)[δ : θ =⇒ θ ′] ≡ x.in(mapΠx:El(S).El(S′) δ (outM))
(Σx:S.S′)[δ : θ =⇒ θ ′] ≡ x.in(mapΣx:El(S).El(S′) δ (outM))
IdS M N[δ : θ =⇒ θ ′] ≡ x.idi?

Figure 8: 2DTT: Some Sets (1)



12

Rules for elements:

out(inM) ≡ M βη

in(outM) ≡ M
M :El(1) ≡ ()
M[(N :El(0))±/x] ≡ abortN
if (true,M1,M2) ≡ M1
if (false,M1,M2) ≡ M2
M[(N :El(2))±/x] ≡ if (N,M[true±/x],M[false±/x])
ide (idi α) ≡ α

P : IdS M N ≡ idi (ide P)

(inM)[θ ] ≡ inM[θ ] 1-subst
(outM)[θ ] ≡ outM[θ ]
{(), true, false}[θ ] ≡ {(), true, false}
ifx :2±.C(M,M1,M2)[θ Γ

∆
] ≡ ifx :2±.C[θ ,x±/x](M[θ ],M1[θ ],M2[θ ])

(idi α)[θ ] ≡ idi α[reflθ ]
(ide P)[δ ] ≡ ? 2-resp

(inM)[δ ] ≡ ? 1-resp
(outM)[δ ] ≡ ?
{(), true, false}[δ ] ≡ ?
idi α[δ ] ≡ idi?
if (M,M1,M2)[δ : θ1 =⇒ θ2] ≡ if (M[θ2],M1[δ ],M2[δ ])

Rules for transformation elims for positives:

ifx.C(true,α1,α2) ≡ α1 β

ifx.C(false,α1,α2) ≡ α2
α[(reflM :0)±/x] ≡ abortM η

α[(reflM :2)±/x] ≡ if (M,α[refltrue/x],α[reflfalse/x])

(abortM)[δ : θ1 =⇒ θ2] ≡ abortM[θ2] 2-resp
if (M,α1,α2)[δ : θ1 =⇒ θ2] ≡ if (M[θ2],α1[δ ],α2[δ ])

Figure 9: 2DTT: Some Sets (2)



13

• Terms: Γ `M :A (where Γ ctx and Γ ` A type)

• Term Transformations: Γ ` α : M =⇒A M′ (where Γ ctx and Γ ` A type and Γ `M,M′ :A)

Because 2-cell structure is not commonly described type-theoretically, we have chosen to make many
rules derivable, rather than admissible, so that the typing rules give a complete account of the theory.
For example, we make use of explicit substitutions, which internalize the composition principles of a
2-category, rather than treating substitution as a meta-level operation. The defining equations of substi-
tutions are included as definitional equality rules. However, we leave weakening admissible, as the de
Bruijn form that results from explicit weakening is difficult to read. The treatment of dependent types
in Pitts [33]’s survey article provides an introduction to this style of syntax, with an explicit substitution
judgement and internalized composition principles.

2.1 Involution, Identity, and Composition Principles

In Figures 1 and 2, we present the generic involution, identity, and composition principles that define the
basic structure of the theory.

The involution rules say that there is a dualizing operation op on contexts, substitutions, and trans-
formations. The equations say that this dualization operation is involutive. The rule for θop says that
the opposite of a substitution proves the opposite of the contexts. To avoid specializing the context in
the conclusion of the rules, we phrase this as an “elimination” rule, removing op from the two premise
contexts. However, because op is an involution, an “introduction” rule which concludes Γop ` θop : ∆op

from Γ ` θ : ∆ is derivable. The dual of a transformation not only dualizes the contexts and substitutions,
but also reverses the direction of the transformation.

Identity and Composition for Substitutions The next three rules define identity and composition for
substitutions. To make weakening admissible, id is really the composition of the identity substitution
with projections that forget any number of variables. We write Γ⊇ ∆ to mean that ∆ is obtained from Γ

by dropping some number of variables:

Γ⊇ · done
Γ⊇ Γ′

Γ , x:A± ⊇ Γ′
skip Γ⊇ Γ′

Γ , x:A± ⊇ Γ′ , x:A±
keep

We do not require a rule for op because op can always be expanded away using equalities. All judgements
of the form Γ ` J satisfy the following: If Γ ` J and Γ′ ⊇ Γ then Γ′ ` J.

Composition of substitutions θ2[θ2], which we refer to as 1-substitution, is standard in explicit substi-
tution calculi. The additional composition operation, θ [δ ], forces substitutions to respect transformation:
substitution instances by transformable substitutions are transformable. For this reason, we refer to it as
1-resp(ect). The first three equations say that 1-substitution is associative and unital. In the second equa-
tion, idΓ can in fact be a weakening, in which case θ is tacitly weakened in the right-hand side. The third
equation only makes sense when Γ ` id : Γ, which we notate by idΓ

Γ. The next two rules say that 1-resp
associates with 2-resp (δ [δ ′]), which is the analogous operation for transformations (defined below), and
preserves identities refl(defined below). The next three rules say that op preserves identities (and pro-
jections), and distributes over compositions. As will often be the case, the second rule (for 1-cells) is
necessary to type-check the third (for 2-cells).



14

Identity and Composition For Transformations The next three rules define identity and composition
for transformations. Transformations are always reflexive (refl) and transitive (δ2 ◦ δ1). Additionally,
transformations themselves respect transformation (δ [δ0]), which we call 2-resp. The equations say that:
Transitivity is associative and unital with reflexivity. 2-resp is also associative and unital. However, the
unit of 2-resp is not an arbitrary reflθ —which would still require adapting a transformation δ : θ =⇒ θ ′ to
θ [θ0] =⇒ θ [θ0]—but only Γ` reflidΓ

Γ

: idΓ =⇒Γ idΓ (by above, θ [idΓ] equals θ ). As above, the second rule
holds when id is in fact a projection, but the third requires that it really be the identity. The interchange
law relates 2-resp and transitivity: transitivity followed by 2-resp is the same as 2-resp followed by
transitivity. It has a variety of useful special cases:

θ [δ ◦δ ′] ≡ θ [δ ]◦θ [δ ′] 1-resp preserves transitivities
(δ ◦δ ′)[reflθ ] ≡ δ [reflθ ]◦δ ′[reflθ ] 2-resp preserves transitivities

(δ : θ1 =⇒ θ2)[δ ′ : θ ′1 =⇒ θ ′2] ≡ reflθ2 [δ
′]◦δ [reflθ ′1

] 2-resp interchange 1
(δ : θ1 =⇒ θ2)[δ ′ : θ ′1 =⇒ θ ′2] ≡ δ [reflθ ′2

]◦ reflθ1 [δ
′] 2-resp interchange 2

The first two equations say that resp preserves transitivities. The next two state that a 2-resp is equivalent
to holding one part fixed while doing one transformation, then holding the other fixed while doing the
other—in either order. Returning to the figure, the rule delegate delegates 2-resp at reflexivity to 1-resp.
The final three rules say that op preserves identities and compositions, reversing the order of composition
in the case of transitivity.

We do not define 2-subst, δ [θ ], directly, as this composition is definable as δ [reflθ ]. Alternatively,
we could take δ [θ ] as primitive and define δ [δ ′] using the interchange law. However, it is in fact no
harder to define δ [δ ′], as the rules for the binary version also proceed compositionally in the term, just
like ordinary substitution with a single θ would. This fact suggests that it may be possible to treat 2-resp
as a meta-operation, which may be a helpful implementation technique.

Dependent Types In Figure 2, we define identity and composition for dependent types, terms, and
term transformations. A dependent type A can be pre-composed with a substitution, written A[θ ]; and
has a functorial action map∆.A δ M, which is the analogue of the subst elimination rule for propositional
equality described above. map says that a transformation θ1 =⇒ θ2 allows a term of type A[θ1] to be
coerced to a term of type A[θ2]. This says that dependent types respect transformation. We refer to these
as 0-subst and 0-resp; there are no 0-subst/resp for contexts because contexts are not dependent.

The equations say: Substitution into types (0-subst) is associative with unit refl. map is functorial,
preserving reflexivity and transitivity. The next two rules define 1-subst and 1-resp for map, which
reassociate the 1-subst/1-resp with the 0-resp. The next rule defines map for a composition, again by
reassociating.

Interactions between map and 2-resp are derivable from the above equations for transitivity, using
the interchange law:

mapC (δ : θ1 =⇒ θ2)[δ ′ : θ ′1 =⇒ θ ′2] M ≡ mapC (δ [reflθ ′2
]) (mapC reflθ1 [δ

′] M)
mapC (δ : θ1 =⇒ θ2)[δ ′ : θ ′1 =⇒ θ ′2] M ≡ mapC (reflθ2 [δ ]) (mapC δ [reflθ ′1

] M)

The interchange rule, along with the following, form the Godement calculus of functors and natural
transformation composition [19]:

(reflθ [θ ′])[δ ]≡ reflθ [reflθ ′ [δ ]]

This rule is derivable because reflθ◦θ ′ ≡ reflθ [refl′θ ] by 1-resp-preserves-refl and associativity.



15

There is also a right unit law for resp and reflid:

reflθ [reflid] ≡ reflθ

It is derivable using 1-resp preserves refl. and unit of id.

Terms Like all contextual judgements, terms are closed under substitution (M[θ ]) and respect trans-
formation (M[δ ]). Because terms are dependent on the context, the latter requires “adjusting” M[θ1] by
δ so that it lives in the same type as M[θ2]. The equality rules are analogous to those for substitutions:
1-subst is associative and unital, and 1-resp is associative and preserves reflexivities.

An associativity rule for 1-subst followed by 1-resp in a term is derivable, using 1-resp-preserves-refl,
congruence, and delegate and associativity for 2-resp (see below):

M[θ ][δ ]≡M[reflθ [δ ]] 1-resp for M[θ ]

Using interchange, we can derive that M preserves transitivities from the above interaction with
2-resp:

reflM[δ ◦δ
′]≡ reflM[δ ]◦ (resp (x.map δ x) (reflM[δ ′]))

Term Transformations The rules for term transformations are entirely analogous to the rules for trans-
formations, specifying reflexivity, transitivity, and 2-resp. The equations say that transitivity is asso-
ciative and unital, that 2-resp is associative and unital, and that the order of trans and 2-resp can be
interchanged. The interchange rule uses the derived form resp , which is explained below.

General equality rules Figure 3 collects a variety of general equality rules: Each judgement, including
equality, respects equality of its indices, and is a congruence.

2.2 Contexts

With the basic setup in hand, we are ready to define some concrete context formers. The general method-
ology for defining a context is to specify (1) A formation rule for Γ. (2) A substitution rule θ : Γ, and a
hypothesis rule for one of the other judgements (e.g. the term rule for x for the context former Γ , x:A+).
These function as the introduction and elimination rules for the context, which are products of some sort,
eliminated by first projections (which are implicit in id) and variables (representing projections). (3) A
transformation rule for δ : θ =⇒Γ θ ′ (4) Equations defining

1-βη βη for θ

2-βη βη for δ

0-involution Γop

1-involution θop

2-involution δ op

identity idΓ

1-subst θ [θ ′]
1-resp θ [δ ′]

reflexivity reflθ

transitivity δ ◦δ ′

2-resp δ [δ ′]

In general, refl and δ ◦δ ′ are defined in a type-directed manner, by giving one rule that covers arbitrary
arguments. On the other hand, the subst/resp principles are defined in a syntax-directed manner, giving
one rule for each syntactic construct.

In Figure 3 and Figure 4 we carry out this methodology for the basic contexts:

Empty context The empty context has a trivial substitution into it, and a trivial transformation from
this substitution to itself. Since the substitutions and transformations are singletons, the equations are all
trivial.



16

Covariant context extensions Next, we present the rules for covariant context extension: if A is a type
well-formed in Γ, then Γ can be extended with a variable of type A. A covariant variable can be used as
a term; the typing rule checks that the variable is in the context:

x :A+ ∈ (Γ,A+)
x :A+ ∈ Γ

x :A+ ∈ (Γ , y:B±)

As with weakening, we do not include a rule for op, which can be expanded away. The substitution
into an extended context ∆ , x:A+ is a pair of a substitution θ into ∆ and a term of type A, adjusted
by θ (this is analogous to the usual introduction rule for a Σ-type). A transformation between such
substitutions is a pair of transformations, one between the substitutions, and the other between the terms
(adjusted by the first component). As these substitutions and transformations are pairs, the first set of
rules gives the expected βη rules, for the projections given by id and variables. The next rules define
the identity, composition, and involution operations componentwise. The involution rules turn covariant
context extension into contravariant context extension, which is defined below.

The familiar resp congruence rule derives respect for the last variable in the context:
Γ ` α : M =⇒A N Γ ` B type Γ , x:A+ ` F :B

Γ ` resp F α : F [M/x] =⇒B F [N/x]

by resp F α = F[idid,α
+/x]. This is well-typed because map id cancels.

We will also make use of the corresponding rule for map, a derived form for transforming the last
variable in the context:

Γ,x:A+ ` B type Γ ` α : M1 =⇒A M2 Γ `M :B[M1
+/x]

Γ `map1
x:A+.B α M :B[M2

+/x]

This is defined by map1
x:A+.B α M = mapΓ,x:A+.B id,α+/x M.

Contravariant context extensions Next, we present the rules for contravariant context extension: if
A is a type well-formed in Γop, then Γ can be extended with a variable of type A. For the most part,
these are analogous to covariant context extension, except for the following: First, there is no rule for
using a contravariant variable. This is because we reduce contravariant terms to covariant terms using
op, and using the rules for Γ , x:A-op, a contravariant variable becomes a covariant variable. Second, the
transformation rule reverses the order of M and N in the premise. Third, various op’s are inserted on
substitutions and transformations to make the types work out.

A contravariant last-variable map rule is also definable:
Γ,x:A- ` B type Γop ` α : M2 =⇒A M1 Γ `M :B[M1

-/x]

Γ `map1
x:A-.B α M :B[M2

-/x]

by map1
x:A-.B α M = mapΓ,x:A-.B (id,α-/x) M.

2.3 Types

With contexts in hand, we can move on to types and terms. In general, a type is specified by (1) A
formation rule for A. (2) Introduction and elimination term rules, defining M : A. (3) Introduction and
elimination transformation rules, defining α : M =⇒A M′. (4) Equations defining

1-βη βη for M
2-βη βη for α

0-substitution A[θ ]
0-resp mapA δ M

1-substitution M[θ ]
1-resp M[δ ]

reflexivity reflM

transitivity α ◦α ′

2-resp α[δ ]



17

Dependent functions In Figure 5, we give the rules for dependent functions. The formation rule is
standard, except that the domain is well-formed contravariantly in Γ, and thus assumed as a contravari-
ant assumption. The intro and elim rules then insert the appropriate op’s. The transformation introduction
rule says that a transformation at Π can be introduced by giving a family of transformations that work
for each element—the extensionality rule. A transformation is eliminated by applying to transformable
arguments. The symmetric variants of these transformation rules, and the equations for them described
below, have been considered in prior categorically-motivated accounts of functionally extensional propo-
sitional equality [17].

The βη-rules are the expected rules for functions, both at the term and transformation levels. We
write M[N/x] to abbreviate M[id,N/x]. Substitution into a Π-type proceeds compositionally, though we
always op the substitution in contravariant positions. mapΠx:A.B is given by pre- and post-composition.
Note that the definition of transformation at ∆,x :A- is just right so that δ , refl works as the post-composition.
1-subst and 1-resp are both defined compositionally, as is 2-resp. The rule for refl says that the identity
at all elements is the identity. In the definition of transitivity, we again cheat by assuming the transfor-
mations are in introductory form, which makes sense because of η , but we could equivalently use the
elimination rule instead.

Dependent pairs The rules for Σ-types are mostly unsurprising, essentially a contextualized version of
the rules for covariant context extension. The formation rule is analogous to Π, but the first component
is well-formed covariantly, and the typing of the second component uses covariant context extension.
The term rules are standard; the transformation rules say that a transformation between a pair is a pair of
transformations. map is defined componentwise; in this case, the definition of transformation at ∆,x :A+

is just right so that δ , refl works as the second component. The βη-rules are standard, and the substitution
rules are all defined compositionally. Identity and composition are defined componentwise.

Sets and elements As our first example of a base type with non-trivial transformations, we consider
a universe set that contains discrete types. That is, each term S :set will represent a type El(S) whose
elements have no non-identity transformations between them. However, set itself is not a discrete type:
we take a transformation from S to S′ to be a function from El(S) to El(S′). Consequently, any type
s :set ` C type will admit a lifting of a function from El(S) to El(S′) to a transformation from C[S/s] to
C[S′/s]. This is the common functor interface used in many programming languages. This universe of
sets is extensional, in that transformation at sets satisfies equality reflection and definitional uniqueness
of identity proofs—one can work with these sets as one would work in extensional type theory.

We populate the types El(S) determined by a universe by giving inference rules for the members of
these types. It is simpler to specify a set, than a type, because the transformations between elements
are always only reflexivity. A set is specified by: (1) A formation rule for S : set, with equations for
(2) 1-substitution S[θ ] and 1-resp S[δ ]. (3) Terms defining M : El(S), as well as equations defining
βη-rules, 1-substitution, and 1-resp. The equations for 1-resp for each S define the functorial action of
the set former—which is used by map.

Sets and Elements. In Figure 7, we present the generic rules that apply to all sets: set is a type, as is
El(S) if S has type set. A transformation at set is a function from the elements of one to the elements of
the other. The only transformation between elements of sets is reflexivity, and such transformations are
eliminated by equality reflection.

The first equation says that the 1-resp action of elements of sets is an equality, which is true because
El(S) is a discrete type: if M :El(S) then M takes transformable arguments to equal results. The next two



18

equations η-expand a transformation at set into a map, and a transformation at El(S) into reflexivity.
The rules for 0-subst are compositional.

map at set is a no-op, because set is a constant functor. map at El(S) applies the function (open
term) given by 1-resp of S, S[δ ]. We will give rules for each set-former defining S[δ ]. Reflexivity and
transitivity are defined in the expected way for sets, and trivially for elements. The 2-resp rule for set
says that a function x.M respects a transformation δ by running M at the source and then applying δ .
The 2-resp rule for El(−) is analogous to delegate.

Basic Sets: Rules. In Figures 8 and 9, we present the rules for some basic sets: Π, Σ, 0 (the empty
set), 1 (the unit set), 2 (booleans), and Id (identity between two elements of a set). In symmetric type
theory, given Γ and Γ `Atype and Γ `M,N :A, one can define a type Γ ` IdA M N type, whose functorial
action on an equality δ : IdΓ θ1 θ2 is given by pre-composition with an equality determined from M[δ ] and
post-composition with an equality determined from N[δ ]. However, this construction uses symmetry: the
precomposition needs to be with with (M[δ ])−1. In the directed setting, this is not necessarily possible,
which motivates the judgemental approach to transformations that we take in this paper. However, when
A is in fact groupoidal, one can internalize transformations as an identity type, whose functorial action
is given as in symmetric type theory. The type IdS M N defined here is a special case where El(S) is
discrete, and therefore trivially groupoidal. A more general alternative would be to consider a directed
Hom-type, whose first argument is a contravariant position, which internalizes the notion of a dinatural
transformation. However, the syntactic rules for such a type require further study.

The rules for Π and Σ express that they are isomorphic to Π/Σ types of discrete elements. In fact, the
domain of a Π need not be restricted to a set: Πx:A.S is a set even if A is higher-dimensional. However,
in our present theory types are both higher-dimensional than sets, and of higher size than sets: set itself
is a type. So such a quantifier would not only be higher-dimensional, but impredicative. If additionally
we had a universe typ of small types, then it would be appropriate to allow Π’s to range over A : typ.

0,1,2 are introduced by the usual rules. The elimination rules for 0 and 2 have one subtlety: they
allow elimination of both co- and contravariantly well-formed terms—we abbreviate a choice between
Γ and Γop by Γ±. The reason for this is that the natural deduction rules for positive types build in a
cut, and the appropriate notion of cut includes both co- and contra-variant cut formulas (cf. the fact that
substitutions allow for both co- and contravariant variables). These types can also be eliminated towards
transformation judgements, so we add rules for eliminating El(0) and El(2) towards M =⇒A N.

The rules for the identity type express an isomorphism with the corresponding term transformations.

Basic Sets: Equalities. 1-subst into each set is as expected. 1-resp is the identity for constant sets,
defined in terms of Π and Σ types for Π and Σ, and computationally trivial for identity (the verification
that the right-hand-side is well-typed uses symmetry of equality). Next, in Figure 9, the βη rules express
the isomorphisms for Π and Σ and Id, and the usual equations for 0,1,2. 1-subst (and 2-resp for ide
) are defined compositionally. The 1-resp rules are computationally trivial, but the fact that they are
well-typed is interesting: e.g. the rule for in M requires showing that if two terms are transformable
at Σx:El(S).El(S′) then they are equal—which is true because the transformation provides equalities
of each component. The 1-resp rule for if uses the transformation elimination form for booleans. The
remaining rules state that the rules eliminating 0,1,2 towards transformations satisfy similar βη and
2-resp laws.



19

3 Semantics

In this section, we sketch a semantics of 2DTT in Cat, the 2-category of categories, functors, and natural
transformations, referring the reader to Licata [25, Chapter 7] for details.

The intuition for this interpretation is that a context, or a closed type, is interpreted as a category,
whose objects are the members of the type, and whose morphisms are the transformations between mem-
bers. Thus, a substitution (an “open object”) is interpreted as a functor—a family of objects that preserves
transformations. A transformation (an “open morphism”) is interpreted as a natural transformation—a
family of morphisms that respects substitution. More formally, the context, substitution, and transforma-
tion judgements are interpreted as follows: [[Γ]] is a category. [[Γ ` θ : ∆]] is a functor [[θ ]] : [[Γ]]−→ [[∆]].
[[Γ ` δ : θ1 =⇒∆ θ2]] is a natural transformation [[δ ]] : [[θ1]] =⇒ [[θ2]] : [[Γ]]−→ [[∆]].

The judgement Γ ` A type represents an open type. Correspondingly, it should be interpreted as a
functor that assigns a closed type to each object of Γ, preserving transformations. Since closed types are
represented by categories, this is modeled by a functor [[A]] : [[Γ]] −→ Cat. Here we take Cat to be the
category of large categories, to interpret the type set.

As a notational convention, we will overload notation so that the semantics looks just like the syntax:
First, we use the same letter for a piece of syntax and for the semantic concept it is interpreted as; e.g. we
will write Γ for a category, θ for a functor, A for a functor into Cat, etc. Second, we use the same symbols
as we use in the syntax for the 2-category structure on Cat: we write the identity functor as id, functor
composition as θ [θ ′], vertical composition of natural transformations as δ ◦ δ ′, horizontal composition
as δ [δ ′], and the identity natural transformation as idθ , and the action of op as Γop, etc. Additionally, we
abbreviate Γ−→Cat by Ty Γ.

The set of terms Γ `M :A is isomorphic to the one-element substitutions Γ ` id,M+/x : Γ , x:A+, and
Γ , x:A+ is interpreted as the total category of the Grothendieck construction,

∫
Γ

A, with projection map
p :

∫
Γ

A −→ Γ. Thus, we can define the interpretation of a term Γ ` M :A to be a functor [[M]] : Γ −→∫
[[Γ]][[A]] such that the Γ part of the functor is the identity—which we can formalize by saying that [[M]] is

a section of p: p ◦ [[M]] = id. However, following Hofmann and Streicher [22], it is more convenient to
use an equivalent explicit definition:

DEFINITION 3.1. For a category Γ and a functor A : Γ−→Cat, the set of terms over Γ of type A, written
Tm Γ A, consists of pairs (Mo,Ma) such that

• For all γ ∈ Ob(Γ), Mo(γ) ∈ Ob(A(γ))

• For all c : γ1 −→Γ γ2, Ma(c) : A(c)(Mo(γ1)) −→A(γ2) Mo(γ2). Moreover, Ma(id) = id and Ma(c2 ◦
c1) = Ma(c2)◦A(c)(Ma(c1)).

Similarly, we define the semantic counterpart of Γ ` α : M =⇒A N:

DEFINITION 3.2. Given a category Γ, A :Ty Γ, and M,N :Tm Γ A, a dependent natural transformation
α :M =⇒ N consists of a family of maps αγ such that

• for γ ∈ Ob(Γ), αγ : M(γ)−→A(γ) N(γ)

• for c : γ1 −→Γ γ2, N(c)◦A(c)(αγ1) = αγ2 ◦M(c)

The interesting part of the interpretation is showing that each inference rule is true: given the se-
mantic domains corresponding to the premises, we can construct the semantic domain corresponding to
the conclusion. Once we have defined the operations, we can validate each equation on the semantic
counterparts of the terms in question. Taken together, these constructions and proofs represent the in-
ductive steps of the interpretation. Then, we tie these pieces together with a soundness theorem, which
is described in technical detail in Licata [25].



20

THEOREM 3.3. Soundness. There are total functions [[−]] that for each derivation D :: J yield a semantic
entity of type [[J]], validating the definitional equalities.

We describe the inductive steps here:

Involution, Identity, and Composition The involutions are interpreted by the 2-functor−op : Cat −→
Catco which sends each category to its opposite category. Γop is the action on objects; θop is the action
on 1-cells; and δ op is the action on 2-cells. The identity and composition principles for substitutions
and transformations are interpreted as the identity, horizontal composition, and vertical composition
operations of the 2-category Cat. The equations for them follow from the definition of a 2-category.
A type is interpreted as a functor, and A[θ ] as functor composition. map is an instance of whiskering
a functor (into Cat) with a natural transformation, which can be thought of as the functorial action of
the type on the transformation. It is simple to check that a term Tm ∆ A and a functor Γ −→ ∆ can
be composed as indicated by M[θ ]. Semantic identity and vertical and horizontal composition for term
transformations are defined as follows:

(reflM)σ = reflM(σ)
(α2 ◦α1)σ = α2σ ◦α1σ

(α[δ ])σ = N(δσ )◦A(c)(α(θ(σ)))

In the final equation, we use N and A and θ as in the typing rule for the left-hand side.

Interpretation of Contexts The empty context is interpreted as the category 1, which has one object
and its identity morphism. Γ , x:A+ is interpreted by the Grothendieck construction

∫
Γ

A. Γ , x:A- is
interpreted as (

∫
Γop A)op.

Interpretation of Types Π-types are defined as in Hofmann and Streicher [22]: we follow their con-
struction, checking that everywhere they depend on symmetry of equality, we have inserted the appro-
priate op’s. For a category Γ and a A :Ty Γ

op, we abbreviate semantic contravariant context extension
(
∫

Γop A)op by Γ.A-. Given a B :Ty Γ.A- and an object σ ∈ ObΓ, we define Bσ :Ty A(σ) by

(Bσ )(σ ′) = B(σ ,σ ′)
(Bσ )(c) = B(idσ ,c)

For any Γ and A, the Tm Γ A are the objects of a category with morphisms given by term transformations
α . This lets us define a Π type as follows:

(Π A B)σ = Tm A(σ)op Bσ

Functoriality is given by pre- and post-composition: the contravariance of A ensures that the pre-composition
faces the right direction. λ and application and βη rules are interpreted by giving a bijection between
Tm Γ.A- B and Tm Γ ΠAB. The transformation intro and elim and βη rules express a bijection between
M =⇒ N :Γ−→ΠAB and M v =⇒ N v :Γ.A- −→ B, where v :Tm (

∫
Γ

A) (A[p]) is defined by second pro-
jection from

∫
Γ

A. The proof follows Hofmann and Streicher [22], Section 5.3, which observes that the
groupoid interpretation justifies functional extensionality.

Because both subcomponents of Σx:A.B are covariant, the interpretation given in Hofmann and Stre-
icher [22] adapts to our setting unchanged.



21

The type set is interpreted as the constant functor returning Sets, the category of sets and func-
tions. Because the action on morphisms of a constant functor is the identity, Tm Γ set is bijective with
Γ −→ Sets. Thus, we can represent El(S) semantically by discrete ◦ S. As usual, we overload notation
and write El(S) for discrete◦S. The transformation rule for set expresses (half of) an isomorphism be-
tween, on the one hand, natural transformations between two functors into Sets, and, on the other, terms
Tm (

∫
Γ
(El(S))) (El(S′)), which is given by currying.

More details on this soundness theorem, including the interpretation of particular sets and the outer
induction that ties it all together, is described in Licata [25].

4 Applications and Extensions

4.1 Dependently Typed and Mixed Variance Syntax

First, we explain how 2DTT can be deployed to generalize the functorial approach to syntax [21, 14, 3]
to dependently typed and mixed variance syntax. These examples are discussed in more detail in [25,
Chapter 8].

Dependently Typed Syntax To illustrate the approach to representing dependently typed syntax, we
represent a judgement Ψ ` A as a type nd Ψ A, where the proposition A can mention the variables
in Ψ. Stating the structural properties for such judgements is tricky, because the substitution into the
derivation must prove the substitution into the type: substitution maps derivations of Ψ ` A to derivations
of Ψ′ ` A[θ ], given a substitution θ from Ψ to Ψ′.

First, we define a type Ctx representing object-language contexts Ψ. For example, if the variables in
Ψ are unsorted then the terms of type Ctx could be natural numbers, with variables represented by inhab-
itants of fin(Ψ)—numbers less than Ψ—i.e. we use dependent de Bruijn indices [9, 8]. Transformations
at Ctx are taken to be substitutions Ψ ` Ψ′, which are chosen to give the desired structural properties.
For example, representing substitutions by a function fin(Ψ′)→ fin(Ψ) gives weakening, exchange, and
contraction, but not substitution; term-for-variable substitutions give substitution as well.

Next, we represent propositions by a set

Γop `Ψ :Ctx
Γ ` propo Ψ :set

This typing says that propositions are contravariantly functorial in Ψ, meaning that

w : Ψ =⇒Ctx Ψ′ φ :propo Ψ
′

(mapψ-.propoψ (w-/ψ) e) :propo Ψ

Moreover, the functoriality equations for map stipulate that renaming by the identity is the identity,
weakening by a composition is composition of the renamings, and so on. We will sometimes abbreviate
mapψ-.propoψ w-/ψ e by map w e when the meaning is clear from context.

Finally, we represent natural deduction derivations by a type

Γop `Ψ :Ctx Γ ` φ :propo Ψ

Γ ` ndΨφ :set

The type-generic rule for map specializes to the appropriate renaming principle:

s : Ψ =⇒Ctx Ψ′ e :ndΨ
′
φ

(mapψ-,a+.ndψ a (s-/ψ, id+/a) e) :ndΨ(map s φ)



22

As desired, this principle says that the renaming/substitution into the derivation proves the renam-
ing/substitution of the judgement. Thus, 2DTT’s notion of transformation at a Σ-type naturally accounts
for the structural properties of dependently typed syntax.

Mixed Variance 2DTT also accounts for mixed variance syntax, which mixes admissibility and deriv-
ability [27, 26]—such as a logic with the infinitary ω-rule for eliminating natural numbers. For example,
in the rule

Ψ ` P(0) Ψ ` P(1) . . .

Ψ ` ∀x.P(x)

the infinitely many premises may be thought of as a function that yields P(n) for each n, likely defined
by induction. This will be encoded in 2DTT as a datatype constructor

omega : (Πn:nat.ndΨ(subst P n))→ ndΨ(all P)

where subst substitutes n for the last variable in P, and is defined using map. This datatype constructor
can be used in existing dependent type theories. The advantage of 2DTT is that we can obtain the
structural properties for free even for a logic with such a rule, because Π is equipped with a functorial
action given by pre- and post-composition.

4.2 Extensions

Putting the above ideas into practice will require some interesting extensions of 2DTT: To define higher-
dimensional types such as set and Ctx, we require an analogue of quotient types, where programmers
specify a type by giving an internal category—a description of a category inside the theory. To define
types such as propo and nd internally to the theory, we require an inductive datatype mechanism, adapting
W -types [30] or indexed containers [2].

The connection between functorial syntax and higher-order abstract syntax is that in the category
of presheaves, the exponential expexp : Ctx→ Sets is isomorphic to the type family exp(−+ 1) which
adds an extra de Bruijn index [14, 21]. We can reproduce this result in 2DTT, but the exponential is
not the contravariant Π we have considered so far, but a second, covariant, Πco. A term ψ : Ctx `
M :exp ψ →co exp ψ , is explicitly parametrized over extensions in ψ (c.f. the Kripke interpretation of
implication) and its functorial action is given by composing transformations—not by pre- and post-
composition. This permits the argument position of a function to be treated as a covariant position,
internalizing an assumption x :A+.

Given these extensions, which are described in more detail in Licata [25, Chapter 8], 2DTT will
afford an extremely general logical framework, in which programmers can specify logics using depen-
dently typed and mixed-variance definitions, and automatically obtain implementations of the structural
properties derived from the generic notion of functoriality built in to the calculus.

Another interesting avenue for future work is an Aop modality on types, given by the point-wise
opposite of A, which may be useful for internalizing a directed Hom type, as discussed above. We also
plan to consider generalizations to dimensions higher than 2, which will expose connections with weak
ω-categories and directed homotopy theory, and to recover undirected type theory as a special case of
directed type theory, by defining a universe of groupoids. On the semantic side, it will be interesting to
consider semantics in 2-categories other than Cat.



23

5 Related Work

Of the many categorical accounts of Martin-Löf type theory [20], our approach to the semantics of 2DTT
most closely follows the groupoid interpretation [22]. Recent work connecting (symmetric) type theory
with homotopy theory and higher-dimensional category theory [17, 28, 37, 4, 39, 15, 38] will be useful
in generalizing 2DTT to additional models and higher-dimensions. An early connection between λ -
calculus and 2-categories was made by Seely [35], who shows that simply-typed λ -calculus forms a
(non-groupoidal) 2-category, with terms as 1-cells and reductions as 2-cells.

Functoriality of simple and polymorphic type constructors has been studied in previous work on
generic traversals of data structures [24, 7] and compilation of subtyping [12]; our work generalizes
this to the dependently typed case. In tactic-based proof assistants, it is possible to construct a library
of tactics for showing that types and terms respect equivalence relations and order relations, such as
Jackson’s library for NuPRL [23] and setoid rewriting in Coq [11]. Our approach here is akin to building
these tactics into the language, equipping every type and term with an action on transformations. This
allows the computational content and equational behavior of these actions to be drawn out. Another
application of functors in dependent type theory is indexed containers [2, 16], a mechanism for specifying
inductive families. Whereas we associate a functorial action with every type constructor, containers are
deliberately restricted to strictly positive functors, which are useful for specifying datatypes. Also, 2DTT
allows types indexed by an arbitrary category, but a container denotes a type indexed by a set.

Variance annotations on variables are common in simply-typed subtyping systems [13, 10, 36]. In
the dependently typed case, variance annotations have been used to support termination-checking using
sized types, as in MiniAgda [1].

Many systems support programming with dependently typed abstract syntax [31, 32, 34]; 2DTT
will enable us to go beyond this previous work by generating the structural properties automatically for
mixed-variance definitions.

6 Conclusion

We introduce directed type theory, which equips types with an asymmetric notion of transformation be-
tween their elements. Examples include a universe of sets with functions between them, and a type of
variable contexts with renamings or substitutions between them. We show that the groupoid interpreta-
tion of type theory generalizes to the directed case, giving our language a semantics in Cat. We have
discussed an application to dependently typed and mixed variance syntax, and sketched some exciting
avenues of future work.

Finally, we speculate on some additional applications of our theory. First, we may be able to recover
existing examples of directed phenomena in dependent type systems, such variance annotations for sized
types [1], implicit coercions [6], and coercive subtyping [29]. For example, we may consider a trans-
lation of coercive subtyping into our system, using functoriality to model the lifting of a coercion by
the subtyping rules. Because uses of map are explicit, our approach additionally supports non-coherent
systems of coercions, and it will be interesting to explore applications of this generality; but the co-
herent case may provide a guide as to when instances of map can be inferred. Second, directed type
theory may be useful as a meta-language for formalizing directed concepts, such as reduction [35], or
category theory itself. Third, directed type theory may be useful for reasoning about effectful programs
or interactive systems, which evolve in a directed manner (Gaucher [18] connects homotopy theory and
concurrency). For example, we could define a type of interactive processes with transformations given



24

by their operational semantics, or a type of processes with the transformations given by simulation.

Acknowledgments We thank Steve Awodey, Peter Lumsdaine, Chris Kapulkin, Kristina Sojakova, and
Thorsten Altenkirch for helpful conversations about this work.

References

[1] A. Abel. Miniagda: Integrating sized and dependent types. In A. Bove, E. Komendantskaya, and M. Niqui,
editors, Workshop on Partiality And Recursion in Interative Theorem Provers, 2010.

[2] T. Altenkirch and P. Morris. Indexed containers. In IEEE Symposium on Logic in Computer Science, pages
277–285, Washington, DC, USA, 2009. IEEE Computer Society.

[3] T. Altenkirch and B. Reus. Monadic presentations of lambda terms using generalized inductive types. In CSL
1999: Computer Science Logic. LNCS, Springer-Verlag, 1999.

[4] S. Awodey and M. Warren. Homotopy theoretic models of identity types. Mathematical Proceedings of the
Cambridge Philosophical Society, 2009.

[5] J. C. Baez and M. Shulman. Lectures on n-categories and cohomology. Available from http://arxiv.
org/abs/math/0608420v2, 2007.

[6] G. Barthe. Implicit coercions in type systems. In International Workshop on Types for Proofs and Programs,
pages 1–15, London, UK, 1996. Springer-Verlag.

[7] G. Bellè, C. Jay, and E. Moggi. Functorial ML. In H. Kuchen and S. Doaitse Swierstra, editors, Programming
Languages: Implementations, Logics, and Programs, volume 1140 of Lecture Notes in Computer Science,
pages 32–46. Springer Berlin / Heidelberg, 1996.

[8] F. Bellegarde and J. Hook. Substitution: A formal methods case study using monads and transformations.
Science of Computer Programming, 23(2–3):287–311, 1994.

[9] R. S. Bird and R. Paterson. De Bruijn notation as a nested datatype. Journal of Functional Programming, 9
(1):77–91, 1999.

[10] L. Cardelli. Notes about Fω
<:. Unpublished., 1990.

[11] Coq Development Team. The Coq Proof Assistant Reference Manual, version 8.2. INRIA, 2009. Available
from http://coq.inria.fr/.

[12] K. Crary. Typed compilation of inclusive subtyping. In ACM SIGPLAN International Conference on Func-
tional Programming, 2000.

[13] D. Duggan and A. Compagnoni. Subtyping for object type constructors. In Workshop On Foundations Of
Object-Oriented Languages, 1999.

[14] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In IEEE Symposium on Logic in
Computer Science, 1999.

[15] N. Gambino and R. Garner. The identity type weak factorisation system. Theoretical Computer Science, 409
(3):94–109, 2008.

[16] N. Gambino and M. Hyland. Wellfounded trees and dependent polynomial functors. In Types for Proofs and
Programs, pages 210–225. Springer LNCS, 2004.

[17] R. Garner. Two-dimensional models of type theory. Mathematical. Structures in Computer Science, 19(4):
687–736, 2009.

[18] P. Gaucher. A model category for the homotopy theory of concurrency. Homology, Homotopy, and Applica-
tions, 5(1):549–599, 2003.

[19] R. Godement. Théorie des faisceaux. Hermann, Paris, 1958.
[20] M. Hofmann. Syntax and semantics of dependent types. In Semantics and Logics of Computation, pages

79–130. Cambridge University Press, 1997.
[21] M. Hofmann. Semantical analysis of higher-order abstract syntax. In IEEE Symposium on Logic in Computer

Science, 1999.

http://arxiv.org/abs/math/0608420v2
http://arxiv.org/abs/math/0608420v2
http://coq.inria.fr/


25

[22] M. Hofmann and T. Streicher. The groupoid interpretation of type theory. In Twenty-five years of constructive
type theory. Oxford University Press, 1998.

[23] P. Jackson. The nuprl proof development system (version 4.2) reference manual and user’s guide. Available
from http://www.nuprl.org/documents/Jackson/Nuprl4.2Manual.html, 1996.

[24] R. Laemmel and S. Peyton Jones. Scrap your boilerplate: a practical approach to generic programming. In
ACM SIGPLAN-SIGACT Symposium on Types in Language Design and Implementation, 2003.

[25] D. R. Licata. Dependently Typed Programming with Domain-Specific Logics. PhD thesis, Carnegie Mellon
University, 2011. Available from http://www.cs.cmu.edu/~drl/pubs/thesis/thesis.pdf.

[26] D. R. Licata and R. Harper. A universe of binding and computation. In ACM SIGPLAN International
Conference on Functional Programming, 2009.

[27] D. R. Licata, N. Zeilberger, and R. Harper. Focusing on binding and computation. In IEEE Symposium on
Logic in Computer Science, 2008.

[28] P. L. Lumsdaine. Weak ω-categories from intensional type theory. In International Conference on Typed
Lambda Calculi and Applications, 2009.

[29] Z. Luo. Coercive subtyping. Journal of Logic and Computatio, 9(1), 1999.
[30] B. Nordström, K. Peterson, and J. Smith. Programming in Martin-Löf’s Type Theory, an Introduction. Claren-

don Press, 1990.
[31] F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical framework for deductive systems.

In H. Ganzinger, editor, International Conference on Automated Deduction, pages 202–206, 1999.
[32] B. Pientka. A type-theoretic foundation for programming with higher-order abstract syntax and first-class

substitutions. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 371–
382, 2008.

[33] A. M. Pitts. Categorical logic. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of
Logic in Computer Science, Volume 5. Algebraic and Logical Structures, chapter 2, pages 39–128. Oxford
University Press, 2000.

[34] A. Poswolsky and C. Schürmann. Practical programming with higher-order encodings and dependent types.
In European Symposium on Programming, 2008.

[35] R. Seely. Modeling computations: a 2-categorical framework. In IEEE Symposium on Logic in Computer
Science, pages 65–71, 1987.

[36] M. Steffen. Polarized Higher-Order Subtyping. PhD thesis, Universitaet Erlangen-Nuernberg, 1998.
[37] B. van den Berg and R. Garner. Types are weak ω-groupoids. Available from http://www.dpmms.cam.

ac.uk/~rhgg2/Typesom/Typesom.html, 2010.
[38] V. Voevodsky. The equivalence axiom and univalent models of type theory. Available from http://www.

math.ias.edu/~vladimir/Site3/home_files/, 2010.
[39] M. A. Warren. Homotopy theoretic aspects of constructive type theory. PhD thesis, Carnegie Mellon Univer-

sity, 2008.

http://www.nuprl.org/documents/Jackson/Nuprl4.2Manual.html
http://www.cs.cmu.edu/~drl/pubs/thesis/thesis.pdf
http://www.dpmms.cam.ac.uk/~rhgg2/Typesom/Typesom.html
http://www.dpmms.cam.ac.uk/~rhgg2/Typesom/Typesom.html
http://www.math.ias.edu/~vladimir/Site3/home_files/
http://www.math.ias.edu/~vladimir/Site3/home_files/

	Introduction
	Syntax
	Involution, Identity, and Composition Principles
	Contexts
	Types

	Semantics
	Applications and Extensions
	Dependently Typed and Mixed Variance Syntax
	Extensions

	Related Work
	Conclusion

