
A Joint Learning Framework for Attribute Models and Object Descriptions

Dhruv Mahajan Sundararajan Sellamanickam Vinod Nair
Yahoo! Labs, Bangalore, India

{dkm,ssrajan,vnair}@yahoo-inc.com

Abstract

We present a new approach to learning attribute-based
descriptions of objects. Unlike earlier works, we do not
assume that the descriptions are hand-labeled. Instead, our
approach jointly learns both the attribute classifiers and the
descriptions from data. By incorporating class information
into the attribute classifier learning, we get an attribute-
level representation that generalizes well to both unseen ex-
amples of known classes and unseen classes. We consider
two different settings, one with unlabeled images available
for learning, and another without. The former corresponds
to a novel transductive setting where the unlabeled images
can come from new classes. Results from Animals with
Attributes and a-Yahoo, a-Pascal benchmark datasets show
that the learned representations give similar or even better
accuracy than the hand-labeled descriptions.

1. Introduction

Attribute-based object recognition (e.g. [6, 9]) aims to go
beyond simply naming an object in an image to describing
it by its high-level characteristics. Given an image of, say, a
zebra, binary classifiers are applied to the image to predict
the presence or absence of semantic attributes like stripes,
four legs, hooves, etc. (along with various non-zebra at-
tributes). Their outputs form a binary vector description of
the object, which can then be used to predict the class label.
The set of attributes used in a particular application is typ-
ically designed by hand to be broad enough to describe the
objects of interest.

Since objects share attributes (e.g. many animals have
four legs), images for only a subset of objects may be
needed to train the attribute classifiers. What is learned
about an attribute from one class can be used by other
classes. This allows for a new kind of generalization: a pre-
viously unseen object class can be recognized at test time
knowing only which attributes it has. Such a capability can
be used to build a system that initially learns on a small set
of labeled objects and then gradually grows the catalogue of
objects it can recognize as it sees more images, with human
supervision limited to simply naming the new objects.

Lampert et al. [9] and Farhadi et al. [6] train attribute
classifiers on an attribute-labeled dataset consisting of pairs
of images and corresponding attribute values. Both use
hand-labeled attribute values to describe objects. For exam-
ple, the Direct Attribute Prediction (DAP) model [9] (see
Figure 2(a)) uses a single attribute vector per class as the
description for the class. Given a test image, the model
compares the attribute classifier outputs against the attribute
vectors of the known classes to predict the object label. This
has several drawbacks:

1. Semantic attributes need not always be detectable from
images. This can happen because they are either non-visual
(e.g. smelly and smart from Animals with Attributes dataset
[9]), or the image representation does not contain sufficient
information to detect them (e.g. detecting a colour attribute
from a grayscale image).

2. The attributes may not be discriminative. The most intu-
itive visual attributes we pick to describe, say, cats and dogs,
are unlikely to be good for distinguishing the two classes.

3. The attributes can be redundant. For example, Pubfig
[8] defines the attributes Senior and Youth to describe faces,
which are anti-correlated and therefore redundant.

4. Human labeling error can produce incorrect descriptions
of objects. For example, the class Collie in the Animals with
Attributes dataset has the attribute black set as absent, yet
most images in that class actually contain prominent black
patches. Setting attribute values by hand is more ambiguous
and requires more careful judgments than assigning a class
label, so attribute values are more prone to error.

We aim to overcome these limitations by automati-
cally learning from data the attribute vectors for the ob-
ject classes (both known and unseen), instead of hand-
specifying them. The idea is to rely on human supervision
to define a useful ‘vocabulary’ for describing objects, but
the descriptions themselves should be learned from data. To
do this, we jointly learn the attribute classifiers and the at-
tribute vectors. Thus we allow the potentially more reliable
class label information to influence the learning of the at-
tribute classifiers. The joint optimization helps in getting
a better attribute-level representation, by converting unde-

tectable and redundant attributes into discriminative ones,
while retaining the useful semantic attributes.

The basic version of our algorithm takes as input 1) a
set of attributes, 2) positive and negative training examples
for each of the binary attribute classifiers, and 3) training
images of various objects with known class labels (but not
their attribute labels). Note that labeled datasets with known
classes either already exist or are relatively easier to collect
(e.g., by using results for an image search on an object name
like Zebra). After learning, the algorithm outputs one at-
tribute vector per class. We then extend the basic version so
that, given unlabeled images from a pre-specified number
of unseen classes1, it outputs an attribute-based description
for each of those classes as well. Results show that the so-
lution generalizes well both 1) on the unseen examples of
the known classes and 2) on unseen classes.

Automatically learning the attribute vectors also re-
moves the manual effort needed to specify them. This is
particularly beneficial when we want to build a system that
can recognize thousands of classes.

1.1. Contributions

1. We present a general framework for jointly learning both
attribute classifiers and attribute vectors for known classes
(but unknown attributes) (Sections 3 and 4.1).

2. We show that class-level information helps in learning
a better attribute-level representation. We present results
for the Animals with Attributes (AwA) and a-Yahoo, a-
Pascal datasets (Section 5). We get similar or better classifi-
cation accuracy compared to when both the classes and their
attribute vectors are known, while still generalizing well to
unseen classes.

3. We extend our framework to a novel transductive setting
where we have unlabeled images from new classes also (un-
like traditional transductive setting) and additionally learn
attribute vectors and labels for these classes (Sections 3 and
4.2). We get significant improvement in accuracy (about 5%
for AwA and 8% for a-Yahoo, a-Pascal).

2. Related Work
There has been a recent surge in interest in attribute-

based object recognition [7, 6, 9, 8, 5, 1, 11]. Farhadi et
al. [6] and Lampert et al. [9] present a number of innova-
tive applications that demonstrate the usefulness of seman-
tic attributes. Both of these papers look at the problem of
detecting unseen classes at test time, but as mentioned be-
fore, they use hand-specified attribute based descriptions,
whereas we learn them. Farhadi et al. describe a procedure
for explicitly learning a set of discriminative attributes (in
addition to a pre-defined set of semantic ones). It considers
various random two-way splits of classes and trains binary

1Neither class nor attribute labels are given for these classes.

classifiers to distinguish them. Such an approach still does
not take into account whether attributes are redundant, so
the final set of attributes may not be compact.

Dietterich and Bakiri [4] present algorithms for learning
Error-Correcting Output Codes (ECOCs) for a multi-class
problem. ECOCs were originally proposed as a purely top-
down way of learning a binary encoding of class labels. The
encoding does not have any pre-defined semantic interpreta-
tion. Note that ECOCs do not consider unseen classes. Sub-
sequent papers by others have considered designing codes
that depend not only on the class label, but has bottom-up
dependencies on the input as well (e.g. [10]). Our work
can be seen as combining ideas from ECOCs with seman-
tic attributes to learn binary encodings both for classes with
labeled examples as well as unseen classes.

A number of papers deal with not only detecting at-
tributes, but also localizing them within the image [7, 5, 1].
This is not the focus of our work, although our approach
can be modified to incorporate it.

Tuytelaars et al. [12] describe an empirical evaluation of
various unsupervised learning methods for discovering ob-
ject classes; but here we use supervision with the expecta-
tion that it will allow better generalization to unseen classes.

3. Overview of Our Approach
Our goal is to learn the attribute classifiers and attribute

vectors jointly. We have two settings: 1) supervised learn-
ing and 2) transductive learning. In both settings, we have
a set of positive and negative examples for training each of
the attribute classifiers (Figure 1). The two settings differ
in what kind of training data is available for the joint opti-
mization. Table 1 shows the notation used in the paper.
Supervised Learning: Figure 1(b) shows the inputs in this
case. A class-labeled dataset (dolphin, deer in Figure 1(b))
is available during training. Note that the mapping from
attributes to classes are not known at the beginning of the
learning (denoted by the missing links). Here, the goal is
to learn this mapping (RK), and the attribute classifiers
(W). Our formulation (section 4.1) addresses this problem
by jointly optimizing RK and W with some attribute vector
constraints. Constraints ensure that 1) the attribute vectors
discriminate the classes well, and 2) the attributes are not
redundant. We use two constraints, namely, row separation
and column separation on the rows and columns of the ma-
trix RK . Row separation measures the Hamming distance
between the attribute vectors – maintaining some mean dis-
tance helps in identifying attribute vectors that discriminate
the classes well. Column separation measures the correla-
tion among the attribute vectors – setting the correlation to
0 removes redundancy. After learning, RK is known, as
indicated by the links in Figure 1(c).

When the unlabeled data from new, unseen classes be-
come available, we can learn the attribute vectors for those

a) DAP- Lampert et. al [9] b) Input c) Supervised Learning d) Transductive Learning

3a
1

a

Dolphin Deer

Smelly Water Timid

1

w 2w 3w

1a 2a 3a

K
R

Smelly Water Timid
1a 2a 3a

?
K

R

Class Labeled

Smelly Water Timid

Dolphin Deer

2a

K
R

Flipped

Bits

Class Labeled

Smelly Water Timid
2a

K
R

Flipped

Bits

Unlabeled Data

Two Classes

U
R

53.0 83.0 59.0 87.0 83.0 91.0 85.0 83.0 93.0

A
tt

ri
b

u
te

s

3a
1a

Training examples for attributes

1w 2w 3w

Dolphin Deer

1w 2w 3w

Dolphin Deer

Class Labeled

1w 2w 3w

Training examples for attributes Training examples for attributes Training examples for attributes

C
la

ss
es

Figure 1. DAP Model (a) and our learning setups (b-d). a) The DAP model assumes that the attribute vectors (RK) are known as shown
by solid line (1) and dashed line (0). Computed AUC values corresponding to some attributes (e.g.,Smelly) are shown. b) Class labeled
and attribute labeled data needed by our approach (with unknown RK) are shown. c) After learning, RK is known. Retained semantic
attribute and undetectable semantic attributes that got flipped (blue) are shown. d) Additional unlabeled data (green box) and unknown
attribute vectors (RU) for the unseen classes are also shown.

x: Feature vector of an image
y: Class label of an image
Na: Number of attributes
ai,j : j-th attribute value of i-th image (ai,j ∈ {0, 1})
TA = {(xi,j , ai,j) : i = 1, . . . , Nj , j = 1, . . . , Na}

attribute labeled dataset
Nj : Number of examples to train j-th attribute classifier
wj : Model weight vector of j-th classifier
W = {wj : j = 1, . . . , Na}: Full attribute classifier models
TC = {(x̃i, yi) : i = 1, . . . , Nx̃}: class labeled dataset
YK ,YU (known, unseen/unknown set of classes)
Nx̃: Number of examples in TC
cy: Number of examples with label y
TU = {x̄i : i = 1, . . . , Nx̄}: unlabeled dataset
ry: Binary attribute vector for a class y (ry,j :j-th element)
RK ,RU : Matrices - each row is transpose of ry, y ∈ YK ,YU

r̄j : A column vector in RK or RU

Table 1. Notations

classes from the outputs of the attribute classifiers using a
mixture of Bernoulli model [2].
Discussion: In our approach, the joint optimization exerts
an additional top-down influence from the class labels to
the attribute-level representation (Figure 1(c)). This is in
contrast to the purely bottom-up methods which learn the
attribute classifiers using only attribute-labeled data, with-
out any class-level information [6, 9] (Figure 1(a)). Our
combined top-down and bottom-up approach has the desir-
able characteristic of retaining discriminative semantic at-
tributes and flipping attributes that are not useful in discrim-
inating the classes. Some of the non-detectable semantic at-
tributes like timid and smelly are flipped (highlighted in blue
in Figure 1(c)), while visually meaningful attributes like
water are retained. Note that the Area Under ROC (AUC) of
the flipped attribute classifiers are higher. This characteris-
tic helps in getting good generalization performance on both
seen and unseen classes, even in the unknown RK case.
Transductive Learning: Figure 1(d) shows this setting. In
addition to the inputs of the supervised setting, we also use

unlabeled data from unknown classes (green box in Figure
1(d)) during training. We assume that the known classes
and unknown classes do not overlap2. This case is of high
importance since the main goal in the attribute based ob-
ject recognition framework is to generalize well on com-
pletely unseen classes. We distinguish between unknown
classes and unseen classes: unseen classes are not used dur-
ing training, while unknown classes are used during train-
ing but without class label information. Again, the map-
ping from attributes to classes RK and RU (for unknown
classes) are not known at the beginning of the learning.

Our approach takes the conventional transductive learn-
ing one step further by additionally learning the attribute
vectors for the unknown classes along with the assignment
of unlabeled examples to clusters. Thus, the mapping be-
tween the outputs of the attribute classifiers and unknown
classes become known (see Figure 1(d)). We jointly opti-
mize W, RK and RU with attribute constraints (discussed
earlier). Learning RU jointly with W and RK is far more
powerful in getting good accuracy on the unlabeled data
(TU), compared to learning the attribute vectors (RU) sep-
arately after supervised learning. However, this is possible
only when the unlabeled data is available during training.

Since the classes are unknown (YU), the unlabeled data
(TU) is grouped into multiple clusters after learning, with
each cluster identified by an attribute vector in RU . While
the attribute vector of a cluster gives an object description
of the images present in the cluster, manual labeling is re-
quired to associate a cluster with a class label such as Tiger.
This can be done efficiently by looking at a few images per
cluster and assigning a label at the cluster level, rather than
at the image level.

It is well-known that label constraints are important
to get good solutions in transductive and semi-supervised

2The general case of the unseen classes containing a subset of known
classes can be handled by our approach with some modifications in our
formulations and will be presented in a future work.

learning settings. As constraints, we assume that the num-
ber of classes in YU is known and place constraints on the
cluster sizes to prevent highly skewed clusters.

4. Formulations and Optimization
4.1. Supervised Learning

Given TA and TC , the goal is to jointly learn the attribute
classifiers (W) and the attribute vectors (RK). We solve
this learning problem by optimizing the following objective
function Gs(W,RK ; TA, TC):

Ga(W; TA) + λcLC(W,RK ; TC) + λrLr(RK) (1)

where λc and λr are regularization constants. We explain
these terms below. Henceforth, we show the dependency on
the datasets only when a term is introduced; in other places,
we suppress it for brevity.
L2-Regularized Loss Function Ga(W; TA): This term
is given by: Ga(W; TA) = 1

2

∑Na

j=1 ||wj ||2 −
λa

Na

∑Na

j=1
1

Nx,j

∑Nx,j

i=1 log p(ai,j |xi,j ; wj) where λa is a
regularization constant. We use the logistic regression
model, p(a|x; w) = 1

1+exp(−awTx)
3 with linear kernel.4

Predictive Likelihood Term LC(W,RK): Before we de-
fine this term, we define a class predictive likelihood score
for each example, given the attribute vector (ry). This score
is computed using the attribute classifiers and is given by:
F (ry; x,W) =

∑Na

j=1 log p(aj = ry,j |x,wj); this can

also be written as
∑Na

j=1 ry,j log p(aj = 1|x,wj) + (1 −
ry,j) log p(aj = −1|x,wj). Furthermore, using this score
we can find the Maximum A Posteriori (MAP) label esti-
mate as: ŷ = arg maxy∈RK

F (ry; x,W). Then, we have:

LC(W,RK) = − 1

Nx̃Na

∑
y∈YK

∑
i:yi=y

F (ry; x̃i,W). (2)

This term facilitates joint learning of RK and W.
Attribute Vector Regularization Term Lr(RK): The role
of this term is to enforce the row and column separation at-
tribute constraints by regularizing the attribute matrix RK .
We assume that the distances among the classes (row sepa-
ration) and correlations (column separation) among the at-
tribute vectors come from Gaussian distributions. Then, it
is sufficient to specify the desired means and variances for
the row and column separations (denoted by (µr, σ

2
r) and

(µc, σ
2
c)). We define Lr(RK) as a sum of two terms:

ROW SEPARATION TERM: This terms measures the
Kullback-Leibler (KL) divergence between the reference
Gaussian distribution with mean and variance (µr, σ

2
r), and

empirical Gaussian distribution with mean and variance

3Note that there is a conversion from {0,1} to {-1,+1} done here.
4Note that our formulation can handle nonlinear kernels as well.

(µ̂r, σ̂2
r) computed using distances between the rows of RK .

We compute the distance between every pair of attribute
vectors (y, y′) as ηy,y′ = rTy (1 − ry′) + (1 − ry)T ry′ ,
y, y′ ∈ YK and y 6= y′, where 1 is a vector of all ones;
note that ηy,y′ = ηy′,y .
COLUMN SEPARATION TERM: This term is similar to the
row separation KL-divergence term. Here, we compute
(µ̂c) and (σ̂2

c) for the column separation using the distances
γi,j = (2r̄i−1)T (2r̄j−1), i, j = 1, . . . , Na and i 6= j. Note
that we capture both positive and negative correlations.

4.2. Transductive Learning

In this formulation, given TU (in addition to TA, TC),
the goal is to jointly learn W, RK and RU . Furthermore,
we group the examples in TU into clusters. To address this
learning problem, we propose to optimize the following ob-
jective function Gt(W,RK ,RU ,Q; TA, TC , TU):

Gs(W,RK) + λuLU (W,RU ,Q; TU) + λlLl(Q) (3)

where λu and λl are regularization constants, Q denotes a
set of variables {qi,y : i = 1, . . . , Nx̄,∀y ∈ YU}; qi,y is
an indicator variable such that qi,y = 1 when i-th example
belongs to the cluster with label y and 0 otherwise. The first
term is nothing but (1) except that we modify the attribute
regularization term Lr(RK) by including RU in the com-
putation of the means and variances of the row and column
separation. We define the remaining terms below.
Predictive Likelihood Term LU (W,RU ,Q): Using Q,
we define this term as a generalized version of (2):

LU (W,RU ,Q) = − 1

Nx̄Na

Nx̄∑
i=1

∑
y∈YU

qi,yF (ry; x̄i,W)

(4)
and it also plays the role of learning the attribute classifiers.
Note that (4) is similar to (2) when Q is known.
Label Regularization TermLl(Q): As mentioned earlier,

we assume that the number of classes in YU is known. Fur-
thermore, we use lower and upper bound constraints such
as: nl ≤ c̄y ≤ nu,∀y where c̄y denotes the number of ex-
amples with class label y; nl, nu denote some lower and
upper bounds, and

∑
y∈YU

c̄y = Nx̄. However, instead of
solving a constrained optimization problem, we enforce the
above constraints by adding Ll(Q) defined as:∑
y∈YU

max(0, (
∑
i

qi,y − nu))2 + max(0, (nl −
∑
i

qi,y))2

(5)
Thus, the squared terms penalize the solution when the con-
straints are violated.

4.3. Optimization

Supervised Learning: In order to optimize the objective
function Gs(W,RK) (see (1)), we perform an alternating

optimization of W and RK . In the first step, W is opti-
mized keeping RK fixed. In the second step, RK is op-
timized keeping W fixed. We convert the problem of dis-
crete optimization over RK to a continuous optimization
problem (see appendix). We use standard conjugate gradi-
ent algorithm to optimize in each step and repeat until there
is no significant improvement (i.e., the improvement is less
than a user defined parameter ε). The overall algorithm is
given in Algorithm 1.
Transductive Learning: As earlier, we convert the dis-
crete optimization problems in RU , and also Q into contin-
uous optimization problems (see appendix). We optimize
RU , Q using the alternating optimization technique. We
indicate only the changes in the steps of the algorithm 1.
We initialize Q randomly, but the assignments satisfy the
clustering constraints. When Q is known, we just have
the supervised learning problem; therefore, the steps (5)-
(7) are applied to find both RK and RU with the modified
objective function:λcLC(W,RK) + λuLU (W,RU ,Q) +
Lr(RK ,RU). Then, keeping RU and W, we optimize
λuLU (W,RU ,Q) + Ll(Q) over Q; this step is intro-
duced between the steps (7) and (8). Finally, keeping
RK , RU and Q fixed, we modify the step (8) to optimize
Gt(W,RK ,RU ,Q) over W (see (4)).

5. Experimental Evaluation
We demonstrate the effectiveness of our approach using

two benchmark datasets. We compare our methods with
different baselines. We make several interesting observa-
tions from the learned attribute vectors. We also study the
importance of attribute vector and label regularizations.

5.1. Experimental Setup

Datasets:
Animals with Attributes (AwA): This dataset created by
Lampert et al. [9] contains 30,475 images of 50 animal
classes. Each class is described by a set of 85 attributes such
as black, blue, striped etc. We use the same 10 classes used
by [9] as the unlabeled dataset (TU). To assess the ability
of our methods to learn different attribute vectors, we create
4 different random partitions of the attribute labeled dataset
(TA) and the class labeled dataset (TC) from the remaining
40 classes. We use 30 classes to create TA and 10 classes
for TC . The generated partitions are referred as Cut1 to
Cut4 . For testing on the known classes, we used 70% and
30% train-test split.
a-Pascal, a-Yahoo: This dataset created by Farhadi et.
al [6] has two sets of classes. a-Pascal consists of 20 classes
with 6340 training images, and 6355 test images collected
from PASCAL VOC 2008 challenge. a-Yahoo dataset has
12 classes (different from a-Pascal) with images collected
from Yahoo images. The images are semantically described
by a set of 64 attributes such as metal, wheel etc.

Data: TA, TC ; Parameters:{λa, λc, λr, λe},ε
Result: W,RK

1 begin
2 Initialize W = 0; t = 1

3 Optimize Ga(W) over W
4 while t=1 do
5 Initialize

rj,y = 1
cy

∑
i:yi=y p(ai,j = 1|x̃i;wj), ∀j, y

6 gold = Gs(W,RK)

7 Keeping W fixed, optimize
λcLC(W,RK) + Lr(RK) over RK

8 Keeping RK fixed, optimize Gs(W,RK) over W
9 gnew = Gs(W,RK)

10 if |gnew − gold| < ε then
11 t = 0

12 end
13 end
14 end

Algorithm 1: Alternating Optimization Algorithm

We split the a-Pascal data in two parts: 12 classes (bicy-
cle, person, sofa, cow, dog, dining table, bird, potted plant,
cat, boat, car, aeroplane) are used as TA, and remaining
8 classes (bottle, chair, motorbike, bus, horse, tv monitor,
train and sheep) are used as TC . As in [6], we use the a-
Yahoo dataset as TU . Since the attribute vectors are given at
the image level (rather than at the class level), we compute
RK and RU as the median of attribute predictions for the
images in each class.
Features: For the AwA dataset, we use the precomputed
PHOG features [3] provided by [9]. For the a-Yahoo and a-
Pascal datasets, we use the precomputed 9751 dimensional
features provided by [6]. These features are extracted from
information on color, texture, visual words, and edges.
Parameter Settings: In the supervised setting (Sec-
tion 4.1), there are four regularization parameters:
λa, λc, λr and λe (entropy regularization). Although there
are four parameters, we found that tuning only two of them
(λa and λe) was sufficient. We set λa using a validation
set while learning the classifier models W using TA only
(i.e., the first term in (1)). We used a validation set to find
the best value for λr in the interval [0, 4]5. We set the other
parameters as: λc = λr and λe = λc

10 . For the transductive
setting there are two more parameters: λu, λl. Again, we
used a validation set to find the best values for (λu, λr) in
[0, 4]× [0, 4] over an 8×8 grid. We set the label regulariza-
tion constant λl to 15λu.

Evaluation Criteria: We evaluate the performance of dif-
ferent methods on several metrics.

5Since both attribute labeled term Ga(W; TA) and predictive likeli-
hood term LC(W,RK) are log likelihood terms, this range works well.

W Training TC (Testing) TU (Testing)
Method TA RK RU RK RU

CLB1 X * - X X
CLB2 X X - X X
CLB3 X X - X Learned

RU (BMM)
SL Learned Learned

X X - RK RU (BMM)
TL X X X Learned RK Learned RU

Table 2. Methods for comparison. X and X indicate that the de-
signer specified attribute vectors are known and unknown respec-
tively. ∗ and − indicate that TC and TU is not used respectively.
SL: Supervised Learning and TL: Transductive Learning. BMM:
Bernoulli Mixture Models.
(1) For the attribute classifiers (W), we use Area under
ROC curve (AUC) as reported in other works.
(2) To evaluate the generalization performance on the
known classes (YK), we measure the accuracy on the un-
seen examples with the MAP label estimates.
(3) We make several observations from the attribute ma-
trix RK (learned using our supervised learning method)
in terms of visually detectable semantic attributes, non-
discriminative and discriminative attributes.
(4) To evaluate the performance on the unknown classes,
we measure the accuracy on TU . For the baselines (Table 2)
with known RU we use the MAP label estimates. For the
unknown RU scenario, we learn RU using Bernoulli mix-
ture models (BMM) with the number of clusters set equal to
the number of unseen classes. To measure the accuracy after
the cluster assignments are made using the learned attribute
vectors (RU), we use the Hungarian algorithm to match the
clusters with the classes (YU).
Baselines for Comparison: Table 2 shows three baselines
- CLB1, CLB2, CLB3 along with our methods. In CLB1,
the attribute classifiers W are learned using only TA. Dur-
ing testing phase, we assume that RK and RU are known.
In CLB2, TC is also used along with known RK during
training. The difference between CLB2 and CLB3 is only
during testing on TU . While we use the designer specified
class attribute matrix (RU) in CLB2, we use RU learned
using BMM in CLB3. Note that CLB2 and CLB3 are hard
baselines since RK is known during training.

5.2. Experimental Results

In this section, we compare various methods and provide
key insights into the attribute vector (RK) learning part of
our method. We also present the performance results with
and without attribute vector and label regularizations.

5.2.1 Supervised Learning

Generalization Performance on Known Classes (YK):
Table 3 shows the classification accuracy of different meth-

Dataset CLB1 CLB2/CLB3 SL TL
AwA (Cut1) 30.92 54.00 54.62 52.6
AwA (Cut2) 21.51 44.90 46.43 44.61
AwA (Cut3) 18.77 51.40 52.04 51.85
AwA (Cut4) 23.02 49.50 50.83 48.88
a-Pascal 30.83 62.01 67.33 65.33

Table 3. Classification accuracy (%) on the unseen examples of
known classes. CLB2 and CLB3 are same while testing on TC
with known RK .

Dataset CLB2 CLB3 SL TL
AwA (Cut1) 26.17 26.8 28.28 33.61
AwA (Cut1) 24.89 26.34 25.57 31.00
AwA (Cut1) 27.02 27.12 28.96 32.33
AwA (Cut1) 22.00 27.65 27.48 33.34
a-Yahoo 28.14 28.78 29.77 37.93

Table 4. Classification accuracy (%) on the unlabeled data (TU)
with unseen/unknown classes. Unseen classes case: CLB2, CLB3
and SL do not use TU . Unknown classes case: TL uses TU without
class label information.

ods on unseen examples of the known classes. Since CLB1
does not use TC to train W, its performance is not good.
CLB2 improves over CLB1 significantly. This is expected
since the examples belonging to TC are used during training
and evaluation is done on the same set of classes (though on
unseen examples). As mentioned earlier, CLB2 and CLB3
differ only during testing on the unlabeled data. Our su-
pervised learning (SL) method has similar or even better
accuracies than the hard baseline CLB2. Note that for the a-
Pascal dataset, the performance is better by more than 5%.
This experiment clearly demonstrates that our method with
the attribute vector learning component generalizes well on
the known classes and performs comparable or better than
the methods that make use of RK .
Generalization Performance on Unseen Classes (YU):
Table 4 shows the classification accuracy on the unlabeled
data with unseen/unknown classes. Note that CLB2, CLB3
and SL do not use the unlabeled data during training.
Therefore, evaluation on the unlabeled data means evalu-
ation on the unseen classes. The performance of all the
methods (first three columns) are similar. CLB2 is a hard
baseline since it assumes that RU is known during testing.
This result demonstrates that the attribute classifiers (W)
learned by our supervised learning method generalizes well
even on the unseen classes.
Gain from Joint Learning: We compared our joint learn-
ing framework with stage-wise learning in which attribute
classifers and object descriptions are learned separately. For
the AwA dataset, the joint learning gave an average im-
provement of 10% over the four cuts; while on the Yahoo-
Pascal dataset, the improvement was 8%. The correspond-
ing improvement for the case of unseen classes was about

AwA a-Pascal
Cut1 Cut2 Cut3 Cut4

Flips (%) 21.41 24.46 26.47 23.74 11.51
AUC (TC) 0.64 0.62 0.61 0.66 0.70(CLB1)
AUC (TC) 0.84 0.78 0.82 0.84 0.91(SL)
Acc. (TC) (%) 52.32 40.48 41.37 48.22 65.48(Semantic)
Acc. (TC) (%) 54.62 46.43 52.04 50.83 67.33(Full)

Table 5. Analysis of RK

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.55 0.65 0.75 0.85 0.95

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

0.5

0.6

Area under ROC curve (AUC) Area under ROC curve (AUC)

F
ra

ct
io

n
 o

f
fl

ip
p
ed

 b
it

s
p
er

 a
tt

ri
b
u
te

F
ra

ct
io

n
 o

f
fl

ip
p
ed

 b
it

s
p
er

 a
tt

ri
b
u
te

Slight increase

in flipped bits

Smelly

Timid

Small
Plains

Furry

Water

Ground
Walk

Label

Occluded

Cloth
Round

Text
Metal

Wheel
Row-Win

Door

0.63

0.00

0.86

0.00

Leg

0.000.000.42Sheep

0.490.500.00Train

0.000.000.72Horse

0.470.890.00Bus

DoorRow WindFoot

a) AwA – Cut 1 b) a – Pascal

c) Fraction of positive labels per class for flipped attributes in red box (a – Pascal)

Figure 2. Analysis of RK

3% for both the datasets.
Observations from Attribute Vector Learning: To get
insights into the attribute vector learning aspects of our
method, we measured several metrics and they are reported
in Table 5. The first row shows the percentage of bits flipped
(i.e., that got changed) in the known RK. The average per-
centage of flips is around 24% over the different cuts of the
AwA dataset. For the a-Pascal dataset, the percentage is
11.52%. Note that our method retains the majority of the
bits since many semantic attributes are visually detectable,
thereby ensuring good generalization on unseen classes.

To get more insights, we analyzed the fraction of bits that
got flipped as a function of attributes. The results are pre-
sented in Figure 2a and b for the two datasets. We computed
the AUC score of each attribute classifier (trained using
TA and tested on TC). The following observations can be
made from the figure. (1) The AUC score for the attributes
like Smelly, Timid, etc. is less. The AUC plots shown in
Lampert et al.[9] also have similar behaviors. (2) The aver-
age number of flips is significantly higher for the attributes
with low AUC scores (more prominently seen in the AwA
dataset). Thus, visually non-detectable attributes get mod-
ified by our method during the attribute vector learning.

AwA a-Pascal
Cut1 Cut2 Cut3 Cut4

WOC 49.58 42.60 44.51 48.99 60.31
CS Only 53.00 45.85 45.89 48.17 63.44
RS Only 54.71 45.80 48.21 51.30 67.33
CS + RS 54.62 46.43 52.04 50.83 67.33

Table 6. Accuracy on known classesYK with and without attribute
vector regularization (WOC: Without Constraints, CS: Column
Separation, RS: Row Separation).

On the other hand, visually recognizable semantic attributes
such as Water are retained with very few bits of flip or no
flip at all across the classes, ensuring good generalization
performance on the unseen classes. (3) On the a - Pascal
dataset (Figure 2b), there is a slight increase in the frac-
tion of flips for some attributes with high AUC values (see
the red box). To understand this behavior, we looked at the
attribute values of examples as a function of classes. Fig-
ure 2c shows the fraction of positive labels for some of the
attributes and classes. Note that many values are close to
0.50. For example, depending upon the viewing direction,
the attribute door might not be visible for the classes bus
and train. Such attributes are not discriminative6. There-
fore, they get flipped.

We measured the average AUC score of the attribute
classifiers on both (TA and TC) with and without attribute
vector learning. The second and third rows in Table 5 show
the scores on TC . Note that by flipping the attributes with
low AUC scores, the AUC scores have improved signifi-
cantly (by around 0.2). This suggests that several discrimi-
native attributes have been identified. This has some effect
on the AUC scores computed on TA; however, we observed
that the drop was quite small (around 0.02). To evaluate the
importance of the flipped attributes we compared the clas-
sification accuracy on TC with and without these attributes.
We predicted the class labels with the full learned RK , and
after removing the attributes (columns) with more than 25%
flipped bits. On comparing the last two rows, we see that
these attributes are important since they give significant im-
provement (even more than 5% in a couple of cases).
Importance of Attribute Regularization: Table 6 shows
the classification accuracy results on the known classes YK
with and without attribute regularization. On comparing
the first and last row, we see that significant improvements
of 4.5% and 7.0% are achieved on the AwA and a-Pascal
datasets respectively. If we include only column separa-
tion regularization (second row), the performance improves
significantly. We observed that the average decrease in the
correlation was around 22% (with the maximum decrease
of 32%) for the AwA(Cut2) dataset. Similarly, adding row

6To use such attributes we need multiple attribute vector representation
per class.

separation regularization (third row) improves the accuracy
by maintaining sufficient mean Hamming distance between
the classes. As the results show, the row separation reg-
ularization is sufficient in many cases. However, for the
AwA(Cut3) dataset, the column separation regularization
helps in improving the accuracy by around 4%. Thus, it
is useful to have column separation regularization since its
inclusion gives significant improvement whenever possible
(while maintaining the same performance in other cases).

5.2.2 Transductive Setting

Performance on Known and Unknown Classes: The last
column in Table 4 shows the performance of our TL method
on the unlabeled data (TU)7. Significant accuracy improve-
ments are clearly seen on all the datasets. For different cuts
of AwA dataset, the average improvement is around 5.3%.
On the a-Yahoo dataset, the improvement is > 8% and the
performance is even 6% better than the feature selection
approach proposed by Farhadi et. al [6] with known RU .
The last column in Table 3 indicates the accuracy of the TL
method on the unseen examples of the known classes. Al-
though there is approximately 1−2% degradation compared
to our SL method, its generalization is quite good. These re-
sults clearly demonstrate the effectiveness of the TL method
in the attribute based object recognition framework.
Label Regularization: We compared the performance with
and without label regularization. On the a-Yahoo dataset,
the accuracy improved from 29.88% to 37.83% with the la-
bel regularization term. We observed that highly skewed
clusters were formed without regularization. For example,
the classes zebra, wolf, donkey have several common se-
mantic attributes and only two clusters (instead of four)
were formed with images mainly belonging to these classes.
For the AwA dataset, the attributes for the classes are rela-
tively far apart. Hence, the accuracy did not change much.

6. Conclusions and Future Work
We proposed an approach to learn attribute-based ob-

ject descriptions jointly with the attribute classifiers. We
use class label information to improve the attribute-
level representation by converting undetectable and non-
discriminative attributes into discriminative ones. We
showed that 1) it is possible to learn good descriptions from
data while generalizing well to unseen classes, and 2) in-
cluding images from unseen classes into the learning signif-
icantly improves the accuracy on those classes. Future ex-
tensions include learning more expressive representations,
such as allowing multiple descriptions per class (e.g. us-
ing a mixture model), and reducing human supervision even

7Note that TU is used during training, but without the class label infor-
mation. Therefore, evaluation on TU means evaluation on unknown classes
(in contrast to the unseen classes).

further by automatically discovering semantic attributes.

References
[1] T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute

discovery and characterization from noisy web data. In
ECCV, ECCV’10, pages 663–676, Berlin, Heidelberg, 2010.
Springer-Verlag. 2

[2] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006. 3

[3] A. Bosch, A. Zisserman, and X. Munoz. Representing shape
with a spatial pyramid kernel. In CIVR, pages 401–408,
2007. 5

[4] T. G. Dietterich and G. Bakiri. Solving multiclass learning
problems via error-correcting output codes. Journal of Arti-
ficial Intelligence Research, 2:263–286, 1995. 2

[5] A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recog-
nition for cross-category generalization. CVPR, 0:2352–
2359, 2010. 2

[6] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing
Objects by their Attributes. In CVPR, 2009. 1, 2, 3, 5, 8

[7] V. Ferrari and A. Zisserman. Learning visual attributes. In
NIPS, Dec. 2007. 2

[8] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. At-
tribute and Simile Classifiers for Face Verification. In ICCV,
Oct 2009. 1, 2

[9] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to
Detect Unseen Object Classes by Between-Class Attribute
Tranfser. In CVPR, 2009. 1, 2, 3, 5, 7

[10] O. Pujol, P. Radeva, and J. Vitria. Discriminant ecoc: A
heuristic method for application dependent design of error
correcting output codes. PAMI, 28:1007–1012, 2006. 2

[11] Y. Su, M. Allan, and F. Jurie. Improving object classifica-
tion using semantic attributes. In Proceedings of the British
Machine Vision Conference, pages 26.1–26.10, 2010. 2

[12] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Bun-
tine. Unsupervised object discovery: A comparison. IJCV,
88:284–302, June 2010. 2

APPENDIX

Optimization over RK: We optimize (1) over RK by
solving an unconstrained optimization problem using the
transformation: ry,j = 1

1+exp(−dy,j) and optimizing on
the variables dy,j ,∀y, j over ry,j ∈ [0, 1],∀y ∈ YK , j =
1, . . . , Na. To push the solution to the boundary, we
add an entropy regularization term. That is, we add
−λe

∑
y,j ry,j log ry,j + (1− ry,j) log(1− ry,j) to the KL-

divergence terms that penalize violations of the row and col-
umn separation constraints. Here, λe is an entropy regular-
ization constant.
Optimization over Q: We define qi,y =

exp(
ei,y
T)∑

y∈YU
exp(

ei,y
T)

and optimize over the variables {ei,y,∀i, y}. For small
value of T , the maximum element in {qi,y,∀y} gets a value
close to 1, and we used T = 0.1 in our experiments. Thus,
c̄y ≈

∑Nx̄

i=1 qi,y and
∑
y∈YU

c̄y = Nx̄.

