
Comparing Computational Power

UDI BOKER, School of Computer Science, Tel Aviv University,

Ramat Aviv, Tel Aviv 69978, Israel. E-mail: udiboker@tau.ac.il

NACHUM DERSHOWITZ, School of Computer Science,

Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel. E-mail:

nachumd@tau.ac.il

All models are wrong but some are useful.

—George E. P. Box (1979)

Abstract

It is common practice to compare the computational power of different models of computation. For
example, the recursive functions are strictly more powerful than the primitive recursive functions, be-
cause the latter are a proper subset of the former (which includes Ackermann’s function). Side-by-side
with this “containment” method of measuring power, it is also standard to base comparisons on “sim-
ulation”. For example, one says that the (untyped) lambda calculus is as powerful—computationally
speaking—as the partial recursive functions, because the lambda calculus can simulate all partial
recursive functions by encoding the natural numbers as Church numerals.

The problem is that unbridled use of these two distinct ways of comparing power allows one to
show that some computational models (sets of partial functions) are strictly stronger than themselves!
We argue that a better definition is that model A is strictly stronger than B if A can simulate B via
some encoding, whereas B cannot simulate A under any encoding. We show that with this definition,
too, the recursive functions are strictly stronger than the primitive recursive. We also prove that the
recursive functions, partial recursive functions, and Turing machines are “complete”, in the sense
that no injective encoding can make them equivalent to any “hypercomputational” model.1

Keywords: Computational models, Computational power, Simulation, Hypercomputation

1 Introduction

Our overall goal is to formalize the comparison of computational models. We seek a
robust definition of relative power that does not itself depend on the notion of com-
putability. It should allow one to compare arbitrary models over arbitrary domains
via a quasi-ordering that successfully captures the intuitive concept of computational
strength. Eventually, we want to be able to prove statements like “analogue machines
are strictly more powerful than digital devices”, even though the two models operate
over domains of different cardinalities.

Since we are only interested here in the extensional quality of a computational model
(the set of functions or relations that it computes), not complexity-based comparison
or step-by-step simulation, we use the term “model” for any set of partial functions,
and ignore all “mechanistic” aspects.

1This research was supported by the Israel Science Foundation (grant no. 250/05) and was carried out in partial

fulfillment of the requirements for the Ph.D. degree of Udi Boker.

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–15 0000 c© Oxford University Press

2 Comparing Computational Power

1.1 The Standard Comparison Method

There are basically two standard methods, Approaches C and S below, by which
models have been compared over the years. These two approaches have been used in
the literature in conjunction with each other; thus, they need to be able to work in
harmony. That is, if models A and A′ are deemed equivalent according to approach
C, while A′ is shown to be stronger than B by approach S, we should expect that it
is legitimate to infer that A is also stronger than B.

Approach C (Containment). Normally, one would say that model A is at least as
powerful as B if all (partial) functions computed by B are also computed by A. If A
allows more functions than B, then it is standard to claim that A is strictly stronger.
For example, general recursion (Rec) is more powerful than primitive recursion (Prim)
(e.g. [12, p. 92]), and inductive Turing machines are more powerful than Turing ma-
chines [2, p. 86].

Approach S (Simulation). The above definition does not work, however, when mod-
els use different data structures (representations). Instead, A is deemed at least as
powerful as B if A can simulate every function computable by B. Specifically, the
simulation is obtained by requiring an injective encoding ρ from the domain of B to
that of A, such that for every function g computed by B we have g = ρ−1 ◦ f ◦ ρ for
some function f computed by A, in which case A is said to be at least as powerful as
B. (See Definition 2.4 below.) As one textbook states [11, p. 30]:

Computability relative to a coding is the basic concept in comparing the power
of computation models.. . . The computational power of the model is repre-
sented by the extension of the set of all functions computable according to
the model. Thus, we can compare the power of computation models using the
concept ‘incorporation relative to some suitable coding’.

Similar statements may be found, for example, in [9, p. 27] and [4, p. 24].

Equipotence. To show that two models are of equivalent power by the simulation
method, one needs to find two injections, each showing that every function computed
by one can be simulated by the other. For example, the Turing-computable partial
functions (TM), the untyped lambda calculus (Λ), and the partial recursive functions
(PR) were all shown to be of equal computational power, in the seminal work of
Church [3], Kleene [8] and Turing [13].

More Powerful. To show that model A is strictly more powerful than model B, one
normally shows that A is at least as powerful as some model A′ that comprises more
functions than B (A′) B). (See, for example, [10].) Figure 1 illustrates this standard
conception, according to which the computable functions (CF), computed by halting
Turing machines, are considered strictly more powerful than primitive recursion, since
CF is equivalent to Rec—by simulation, and Rec is strictly more powerful than Prim—
by containment.

Comparing Computational Power 3

�� ��Prim

'

&

$

%
Rec ∼ CF

'

&

$

%

PR ∼ TM

ITM

Recursive

Partial Recursive

'

&

$

%Hypercomputation

ITM = Inductive Turing Machines

PR = Partial Recursion

TM = Turing Machines

Rec = General Recursion

CF = Halting Turing Machines

Prim = Primitive Recursion

Fig. 1. Computational power hierarchy

1.2 The Problem and Solution

Unfortunately, it turns out that these two approaches, which form the standard
method of comparing computational power, are actually incompatible. We provide
examples, in Section 3, of cases in which model A is strictly more powerful than B
by the first approach, whereas B is at least as powerful as A by the second. It follows
that the combination of these two standard approaches allows for models to be strictly
stronger than themselves!

Specifically, in Example 3.1 below, we describe a model that is a proper subset of
the recursive functions, but can, nevertheless, simulate all of them. This raises the
question whether, for instance, it could possibly also be the case that the primitive
recursive functions are of equivalent power to Turing machines, via some “wild” simu-
lation. Could it be that the recursive functions are of equivalent computational power
to some proper superset, containing non-recursive functions?

To resolve this issue, we begin (in Definition 2.6 below) with the basic compari-
son notion “as powerful as” (%), using the simulation approach (Approach S), which
naturally extends containment (Approach C) to models operating over different do-
mains. Then the “strictly more powerful” partial ordering (≻) is derived from the
quasi-ordering % by saying that A ≻ B if A % B but not B % A; in other words, only
when there is no injection via which B can simulate A.

To compare models operating over different domains requires some sort of mapping
between the domains. One possible alternative might be to require a domain mapping
that is not only injective, but that also possesses additional properties, like surjec-
tiveness. It turns out, however, that bijective mappings not only cannot provide a
sufficiently general comparison notion, but to work in harmony with the containment
approach (Approach C) they would have to be limited to permutations with bounded
orbits, an unpalatable restriction (Theorem 3.4).

One is tempted to judge computational models to be “well-defined” only when
they cannot be shown by simulation to be of equivalent power to any proper superset
of the functions they compute. We call such models “complete” (Definition 4.1).

4 Comparing Computational Power

The question then is: Are classic models, such as Turing machines, well-defined? In
Section 4, we show that general recursive functions, partial recursive functions, and
Turing machines are indeed all complete models in this sense (Theorems 4.7, 4.8, and
4.12). Accordingly, we obtain a criterion by which to verify that a model operating
over a denumerable domain is hypercomputational (Corollary 4.10).

2 Comparing Power

We treat here only deterministic computational models; hence, we deal with partial
functions, referred to plainly as “functions” below. To simplify the development, we
will assume for now that the domain and range of functions are identical, except that
the range is extended with ⊥, representing “undefined” function values.

As usual, two partial functions (f and g) over the same domain (D) are deemed
(semantically or extensionally) equal (denoted simply f = g) if they are defined for
exactly the same elements of the domain (f(x) = ⊥ iff g(x) = ⊥ for all x ∈ D) and
have the same value whenever they are both defined (f(x) = g(x) if f(x) 6= ⊥, for all
x ∈ D).

Definition 2.1 (Model of Computation)
Let D be an arbitrary domain (any set of elements). A model of computation over D
is any set of functions f : D → D ∪ {⊥}. We write dom A for the domain over which
model A operates.

Since models are sets: When A ⊆ B, for models A and B over the same domain, we
say that A is a submodel of B and, likewise, that B is a supermodel of A. Moreover,
whenever we claim that A ⊆ B, we mean to also imply that the two models operate
over the same domain.

2.1 Injective Mappings

To deal with models operating over different domains, however, it is incumbent to
map the domain of one model to that of the other.

Definition 2.2 (Encoding)
Let DA and DB be the domains of two models. An encoding is an injection ρ :
DB ∪ {⊥} → DA ∪ {⊥}, with the restriction that ρ(y) = ⊥ iff y = ⊥ (i.e. ρ is total,
one-one, and strict).

We write ρ ◦ M for {ρ ◦ g : g ∈ M} and M ◦ ρ for {f ◦ ρ : f ∈ M}, where ρ is an
encoding and M is a model.

Definition 2.3 (Function Simulation)
Let DA and DB be the domains of two models. We say that function f : DA → DA

simulates function g : DB → DB via injection ρ if ρ−1 ◦ f ◦ ρ = g, or, equivalently,
f ◦ ρ = ρ ◦ g.

Since ρ is an injection, ρ−1 is a partial function. See Fig. 2.
We will say that one model simulates another if every function of the latter is

simulated by some function of the former:

Comparing Computational Power 5

DB DB

DA DA

-

??
-

g ∈ B

f ∈ A

ρ ρ
Model A computes all
functions of model B

via mapping ρ.

Fig. 2. Model Simulation

Definition 2.4 (Model Simulation)
Model A simulates model B via injection ρ : dom B → dom A, denoted A %ρ B, if
ρ ◦ B ⊆ A ◦ ρ.

This is the notion of “incorporated” used in [11, p. 29].

Example 2.5

Turing-computable functions (CF) simulate the recursive functions (Rec) via a unary
representation of the natural numbers.

As a degenerate case, with the identity encoding ι (λx.x), we have A %ι B iff A ⊇ B.
The containment approach (C) to comparison of models (see the introduction) uses
this simple relation.

The simulation-based approach (S) is embodied in the following:

Definition 2.6 (Computational Power)
1. Model A is (computationally) at least as powerful as model B, denoted A % B, if

there is an injection ρ such that A %ρ B.

2. Model A is (computationally) more powerful than B, denoted A ≻ B, if A % B
but B 6% A.

3. Models A and B are (computationally) equivalent if A % B % A, in which case we
write A ∼ B.

Proposition 2.7

The computational power relation % between models is a quasi-order. Computational
equivalence ∼ is an equivalence relation.

Transitivity of % follows from the fact that the composition of injections is an
injection.

Example 2.8

The (untyped) λ-calculus (Λ) is computationally equivalent to the partial recursive
functions (PR), via Church numerals, on the one hand, and via Gödelization, on the
other.

Since domain encodings imply function mappings—by simulation (Definition 2.3),
we extend them to (partial) functions and models, as follows:

Definition 2.9 (Function Mappings)
An injective encoding ρ : dom B → dom A between the domains of two models A
and B induces a mapping

ρ(g) = ρ ◦ g ◦ ρ−1

6 Comparing Computational Power

of functions g ∈ B to functions over the domain of A. Viewing partial functions as
sets of pairs, this is:

ρ(g) = {(ρ(x), ρ(y)) : (x, y) ∈ g} .

The same encoding induces a mapping

ρ〈f〉 = ρ−1 ◦ f ◦ ρ

from f ∈ A to functions over dom B. These mappings extend to sets of functions M
in the usual manner:

ρ(M) = {ρ(g) : g ∈ M}
ρ〈M〉 = {ρ〈f〉 : f ∈ M} .

Note that any partial function f extending ρ(g) (i.e. f ↾rng ρ= ρ(g) ↾rng ρ) simulates
g via ρ, while ρ〈f〉 is the only function simulated by f .

Model ρ(M) is minimal (with respect to the restriction of the domain to rng ρ)
among those that simulate M via ρ, and ρ〈M〉 is the maximal model simulated by
M :

Theorem 2.10

For all models A and B and injections ρ, A %ρ B iff B ⊆ ρ〈A〉.
Proof. By definition, B ⊆ ρ〈A〉 iff for every g ∈ B there is an f ∈ A, such that
g = ρ−1 ◦ f ◦ ρ. This is the same as requiring that ρ ◦ g = ρ ◦ ρ−1 ◦ f ◦ ρ = f ◦ ρ, which
is what is demanded by A %ρ B. (Cf. Fig. 2.)

Corollary 2.11

For all models A and injections ρ, A % ρ〈A〉.
Proposition 2.12

For all models B and C and injections ρ, B ⊆ C implies that ρ〈B〉 ⊆ ρ〈C〉.
Proposition 2.13

For all models B and C and injections ρ, B (C implies that ρ(B) (ρ(C).

Proof. The mapping f 7→ ρ(f) for functions is injective: Let ρ(f) = ρ(g), that is,
ρ ◦ f ◦ ρ−1 = ρ ◦ g ◦ ρ−1. Then f = ρ−1 ◦ ρ ◦ f ◦ ρ−1 ◦ ρ = ρ−1 ◦ ρ ◦ g ◦ ρ−1 ◦ ρ = g.
Hence, if B (C, then ρ(C) has a function not in ρ(B).

2.2 Bijective Mappings

Stronger notions of equivalence of models under simulation can be based on bijections,
for which π〈A〉 = π−1(A):

Definition 2.14 (Strong Equivalence)
Models A and B are strongly equivalent, denoted A ≃ B, if there are bijections π and
τ such that A %π B %τ A.

Example 2.15

Let A = {fi,j : i, j > 0} and B = A ∪ {f1,0}, where fi,j = λn.(⌊√n⌋ + i)2 +
j mod (2 ⌊√n⌋ + 2i + 1), be two sets of total functions over the natural numbers.
They are strongly equivalent, in that A %π B %ι A, for a permutation π of the
naturals. See Example 3.6 below for more details.

Comparing Computational Power 7

Definition 2.16 (Isomorphism)
Models A and B are isomorphic, denoted A ≡ B, if there is a bijection π such that
A %π B %π−1 A.

Example 2.17

The programming language, Lisp, with only pure lists as data, is isomorphic to the
partial recursive functions via the Gödel pairing function: π(nil) = 0; π(cons(x, y)) =
2π(x)(2π(y) + 1).

Example 2.18

Turing machines (TM) and the partial recursive functions (PR) are isomorphic. (See
Theorem 4.11 below.)

Obviously:

Proposition 2.19

Isomorphism of models implies their strong equivalence.

When models operate over N and the bijection π is recursive, one may speak of “re-
cursive isomorphism”: function f is recursively isomorphic to g if there is a recursive
permutation π, such that f = π〈g〉 [9, pp. 52–53].2

By the same argument as for injections (Theorem 2.10):

Theorem 2.20

For all models A and B and bijections π, A %π B iff A ⊇ π(B).

Corollary 2.21

For all models A and bijections π, A and π(A) are isomorphic (A ≡ π(A)).

Proof. Applying the theorem twice, we have π(A) %π A and A = π−1(π(A)) %π−1

π(A).

We will be needing the following two lemmata:

Lemma 2.22

For all models B and C and bijections π, B (C implies that π〈B〉 (π〈C〉.

Proof. Since π ◦ π−1 is total, by an analogous argument to that of Proposition 2.12,
the function mapping f 7→ π〈f〉 is injective. Hence, if B (C, then π〈C〉 has a
function not in π〈B〉.

Lemma 2.23

If A ≃ B (C, for models A, B, and C, then there is a model D) A, such that
C ≃ D.

Proof. Suppose B %π A for bijection π. By Theorem 2.10, A ⊆ π〈B〉. Let D =
π〈C〉, for which we have C ≃ D. Since B (C, it follows from the previous lemma
that A ⊆ π〈B〉 (π〈C〉 = D.

2Moreover: “A property of a k-ary relations on N is recursively invariant if, whenever a relation R possesses

the property, so does g(R) for all g ∈ G∗” [9, p. 52], where G∗ are the recursive permutations of N. Thus, one

may claim: “[Recursion] theory essentially studies . . . those properties of sets and functions which remain invariant

under recursive permutations. For example, recursiveness, r.e.-ness, m-completeness are such invariants” [12, p.

333].

8 Comparing Computational Power

3 Comparing Submodels

Unfortunately, the above standard definition of “simulates” (Approach S, Defini-
tion 2.4) allows for the possibility that a model be equivalent to one of its strict
supermodels.

Example 3.1

The set of “even” recursive functions (R2) is of equivalent computational power to
the set of all recursive functions, where

R2 =

{

λn.

{

2f(n/2) n is even
n otherwise

}

: f ∈ Rec

}

We have that R2 %λn.2n Rec.

This example also shows that the standard comparison method, combining Ap-
proaches C and S (see Section 1.1), and denoted temporarily by ≻′, is ill-defined
as it allows situations where A ≻′ B ≻′ A for models A, B. For example, the
set of “odd” recursive functions (R1, defined analogously) is of equivalent power to
the set of all recursive functions, by the same argument as above. We have that,
R1 % Rec) R2 % Rec) R1, thus R1 ≻′ R2 ≻′ R1.

It turns out that the equivalence of a model and its strict supermodel is possible even
when the encoding ρ is a bijection and the model is closed under functional composi-
tion. Hence, some models are actually isomorphic to some of their strict supermodels.
If we choose to restrict ourselves to encodings that preclude such anomalies, then, not
only should we restrict ourselves to bijective encodings, but the bijections must be
“narrow”:

Definition 3.2 (Narrow Permutations)
A permutation π : D → D is narrow if all its orbits (cycles) are bounded in length
by some constant. In other words, if ∃k ∈ N. ∀x ∈ D. |{πn(x) : n ∈ N}| ≤ k.

Proposition 3.3

A permutation π : D → D is narrow iff there is a positive constant k ∈ Z+, such that

for all x ∈ D we have πk(x) = x. In other words, if πk = ι.

Proof. One direction is trivial. For the second, if π’s orbits are bounded by k, we
have πk!(x) = x for every x ∈ D.

Theorem 3.4

For every encoding ρ : D → D, there are models A and B, such that A %ρ B) A, iff
ρ is not a narrow permutation.

Proof. Suppose π is a narrow permutation with orbit size bounded by k, and assume
A %π B ⊇ A. For every function g ∈ B, there is, by assumption, some function
f1 ∈ A, such that π−1 ◦ f1 ◦π = g. Since f1 is also in B, there is, by k-fold repetition,
a function fk ∈ A, such that fk = π−k ◦ fk ◦ πk = g. Therefore, B = A.

For the other direction, we must consider three cases: (i) non-surjective encodings;
(ii) surjective encodings that are not injective; and (iii) bijections with no bound on
the length of their orbits. We prove each case by constructing a computational model
A over D that simulates a strict supermodel B of itself via the given encoding.

Comparing Computational Power 9

Case (i). Suppose ρ is non-surjective, and let c ∈ D \ rng ρ. Define B = {λx.ρi(c) :
i ∈ N} and A = B \ {λx.c}. Since c 6∈ rng ρ, it follows that A (B. Since for all i we
have that ρ−1 ◦ λx.ρi+1(c) ◦ ρ = λx.ρi(c), it follows that A %ρ B.

Case (ii). Suppose that ρ is surjective, but not injective, and let c ∈ D be such
that ρ(a) = ρ(b) = c, for some a 6= b in D. Since ρ is a (single-valued) function,
it follows that at least one of a and b, say a, is not in {ρi(c) : i ∈ N}. So, let
B = {λx.ρi(a) : i ∈ N} and A = B \ {λx.a}. By the same argument as in case (i), we
have A %ρ B) A.

Case (iii). Suppose that ρ is an unbounded-orbit permutation. Let σ be a function
that chooses a representative within each orbit: for all x, y ∈ D, σ(x) = σ(y) iff
ρi(x) = y for some i ∈ Z. Define B = {λx.ρi(σ(x)) : i ∈ N} and A = B \ {λx.σ(x)}.
Since the orbits of ρ are unbounded, it must be that A (B. By the argument of case
(i), we again have A %ρ B.

Corollary 3.5

There are models isomorphic to strict supermodels of themselves.

Proof. Let π be a non-narrow permutation of some domain D. By the above the-
orem, there are models A and B such that A %π B) A, and (by Theorem 2.10)
π〈A〉 ⊇ B. Since A ≡ π〈A〉 (Corollary 2.21), it follows that A is isomorphic to a
strict supermodel of itself, viz. π〈A〉.

We provide next an example of a specific computational model, consisting of com-
putable functions, that is isomorphic to a strict supermodel of itself via a computable
permutation.

Example 3.6

Let K be a set of “basic functions” over N, containing all the constant functions κk

(λn.k), plus the identity, ι. We present two models, A and B, both containing the
basic functions and closed under function composition, such that the smaller one (A)
simulates every function of the infinitely larger one (B).

Imagine the natural numbers arranged in a triangular array:

0 0
1 1 2 3
2 4 5 6 7 8
3 9 10 11 12 13 14 15
4 16 . . .
...

. . .

0 1 2 3 4 5 6 . . .

Now, define the following computable functions:

fi,j = λn.
(⌊√

n
⌋

+ i
)2

+ j mod
(

2
⌊√

n
⌋

+ 2i + 1
)

gi = fi,0 = λn.
(⌊√

n
⌋

+ i
)2

.

If n is located on row m, then gi(n) is the first number in row m + i, while fi,j(n) is
the number in row m + i and column j, wrapping around for overly large j. So

fi,j(n) = gi(n) + j mod (gi+1(n) − gi(n)) .

10 Comparing Computational Power

Consider the following sets of functions:

F = {fi,j : i, j > 0}
G = {gi : i > 0} .

Note that F and G are disjoint, since for every i, j > 0 and n > j2, fi−1,j(n) <
gi(n) < fi,j(n). Define:

A = K ∪ F

B = K ∪ F ∪ G .

Thus, B has functions to jump anywhere in subsequent rows, while A (B is missing
infinitely many functions gi for getting to the first position of subsequent rows. Since,
for i + k > 0, fi,j ◦ fk,ℓ = fi+k,j , it follows that both F and G are closed under
composition, as is their union F ∪ G, from which it follows that A and B are also
closed.

There exists a (computable) permutation π of the naturals N, such that A %π B,
namely:

π(n) = f
0,n−⌊√n⌋2

+1

=
⌊√

n
⌋2

+
(

n −
⌊√

n
⌋2

+ 1
)

mod
(

2
⌊√

n
⌋

+ 1
)

,

mapping numbers to their successor n + 1, but wrapping around before each square.
That is, π has the following unbounded cycles:

π = {(0), (1 2 3), (4 5 6 7 8), . . .}.

It remains to show that for all f ∈ B = K ∪ F ∪ G, we have π(f) ∈ A = K ∪ F .
The following can all be verified:

π(ι) = ι ∈ K ⊆ A

π(κk) = κπ(k) ∈ K ⊆ A

π(fi,j) = fi,j+1 ∈ F ⊆ A, for i > 0, j ≥ 0 .

Theorem 3.7

The primitive recursive functions (Prim) are strictly weaker than the recursive func-
tions.

Proof. Clearly, Rec %ι Prim. So, assume, on the contrary, that Prim %ρ Rec, for some
ρ. Let S ∈ Rec be the successor function. There is, by assumption, a function S′ ∈
Prim such that S′ ◦ρ = ρ◦S. Since ρ(0) is some constant and ρ(S(n)) = S′(ρ(n)), ρ is
primitive recursive. Define the recursive function h(n) = ρ(mini{ρ(i) > ack(n, n)}),
where ack is Ackermann’s function. Since λn.ack(n, n) grows faster than any primitive
recursive function and h(n) > ack(n, n), it follows that h /∈ Prim. Since ρ is a recursive
injection and rng h ⊆ rng ρ, it follows that t = ρ−1 ◦ h ∈ Rec. Presumably, then,
there is a function t′ ∈ Prim, such that t′ ◦ ρ = ρ ◦ t = ρ ◦ ρ−1 ◦ h = h. We have
arrived at a contradiction: on the one hand, t′ ◦ ρ ∈ Prim, while, on the other hand,
h /∈ Prim.

Comparing Computational Power 11

4 Completeness

As shown in the previous section, a model can be of equivalent power to its strict
supermodel. There are, however, models that are not susceptible to such an anomaly.

Definition 4.1 (Complete)
A model is complete if it is not of equivalent power to any of its strict supermodels.
That is, A is complete if A % B ⊇ A implies A = B for all B.

Completeness gives the converse of Proposition 2.19:

Theorem 4.2

If a model is complete, then all strongly equivalent models are isomorphic.

Proof. Let A be a complete model and assume A %π B %τ A for model B and
bijections π, τ . By Theorem 2.10, π〈A〉 ⊇ B and τ〈B〉 ⊇ A. Were π〈A〉) B, then,
by Lemma 2.22, τ〈π〈A〉〉) τ〈B〉 ⊇ A, which would contradict the completeness of
A. Thus, B = π〈A〉, and, therefore, A = π−1〈B〉.

The formulation of this result can be strengthened somewhat:

Lemma 4.3

If model A is complete and A %ρ B %π A, for model B, injection ρ and bijection π,
then A and B are isomorphic.

Proof. Suppose A is complete, and A %ρ B %π A for injection ρ and bijection π.
It follows that π〈B〉 = A′ ⊇ A. Thus, A %ρ B %π A′ ⊇ A. Therefore, from the
completeness of A, it follows that A′ = A. Hence, A = A′ %π−1 B, and A ≃ B. By
the previous theorem, A ≡ B.

Theorem 4.4

If a model is complete, then all strongly equivalent models are also complete.

Proof. Suppose that A is complete and A ≃ B (C, for models B, C. By
Lemma 2.23, C ≃ D) A for some D. Were B % C, then A ≃ B % C ≃ D,
contradicting the completeness of A. Hence, B is also complete.

Theorem 4.5

If model A is complete and A ≃ B (C, for models B and C, then C ≻ A.

Proof. If A ≃ B (C, then C % B % A. And, by the previous theorem, if A is
complete, then so is B; hence B 6% C and also A 6% C. Hence, C ≻ A.

We turn now to specific computational models.

Definition 4.6 (Hypercomputational Model)
Model H is hypercomputational if there is an injective encoding ρ, such that ρ〈H〉)

Rec.

Theorem 4.7

The recursive functions (Rec) are complete. That is, they cannot simulate any hyper-
computational model.

Proof. Assume Rec %ρ H ⊇ Rec, for some H , and let S ∈ H be the successor
function. Analogous to the proof of Theorem 3.7, ρ ∈ Rec and ρ−1 is partial recursive

12 Comparing Computational Power

(in PR). For every h ∈ H , there is an f ∈ Rec, such that h = ρ−1 ◦ f ◦ ρ; thus,
by the closure of PR under function composition, h ∈ PR. Actually, h is total, since
rng (f ◦ρ) = rng (ρ◦h) ⊆ rng ρ. Therefore, every h ∈ H is recursive; hence H = Rec.

By the same token:

Theorem 4.8

The partial recursive functions (PR) are complete.

Corollary 4.9

The general recursive functions (Rec) and partial recursive functions (PR) are not
strongly equivalent to any of their strict submodels or strict supermodels.

Proof. Not being strongly-equivalent to strict supermodels is just Theorems 4.7 and
4.8. Non-equivalence to strict submodels follows from Lemma 2.22.

By the above theorems, we can provide a means of showing that a model is hyper-
computational:

Corollary 4.10

A model H , operating over a denumerable domain, is hypercomputational if any one
of the following conditions is satisfied:

1. H) Rec.

2. H ≻ Rec.

3. H %ρ K) Rec for some model K and injection ρ.

4. H) K %π Rec for some model K and bijection π.

This justifies the use of the standard comparison method (Section 1.1) in the par-
ticular case of the recursive functions.

Theorem 4.11

Turing machines (TM), over a binary alphabet, and the partial recursive functions
(PR) are isomorphic.

Proof. Since PR is complete, it is sufficient, by Lemma 4.3, to show that PR %ρ

TM %π PR, for some injection ρ and bijection π. Since it is well-known that PR % TM

via Gödelization, it remains to show that TM %π PR, for some bijection π. Define
(as in [7, p. 131]) the bijection π : N → {0, 1}∗, by

π(n) =







ǫ n = 0
d s.t. 1d is the shortest binary

representation of n + 1 otherwise

For example, π(i) is ǫ, 0, 1, 00, 01, 10, 11, 000, . . . for i = 0, 1, 2,
As per [7, pp. 131–133], TM %π RAM (Random Access Machine); RAM ⊇ CM

(Counter Machine) by [7, pp. 116–118]; and CM %ι PR by [7, pp. 207–208]. We have
that PR % TM %π RAM %ι CM %ι PR; thus, TM ≡ PR. (The exact definitions of
RAM and CM are immaterial, as they are only intermediaries in TM %π RAM %ι CM

%ι PR.)

Comparing Computational Power 13

Theorem 4.12

Turing machines (TM) are complete.

Proof. By Theorem 4.11, TM ≃ PR. Since PR is complete, it follows, by Theo-
rem 4.4, that TM is complete.

Conjecture 4.13

The lambda calculus (Λ) is incomplete.

This is because we believe that the lambda calculus cannot identify Church numerals
directly. Since Turing machines can—by viewing lambda terms as strings, and the
lambda calculus simulates Turing machines, it would follow that the lambda calculus
is incomplete.

We do not know if the primitive recursive functions (Prim) are complete, Theo-
rem 3.7 notwithstanding.

5 Discussion

There are various directions in which one can extend the work described above:

Inductive Domains. The completeness of the (general and partial) recursive functions
is due to several properties, among which is the inclusion of a successor function
(Theorem 4.7). The results herein can be extended to show that computational
models operating over other inductively-defined domains are also complete.

Intensional Properties of Completeness. Intuitively, a properly defined computational
model should be complete. What is, however, “properly defined”? One can look for
the intensional properties of a model that guarantee completeness. That is, what
internal definitions that constitute a model (e.g. a finite set of instructions, over a
finite alphabet, . . .) guarantee completeness.

Different Domain and Range. The simulation definition (Definition 2.4) naturally
extends to models M : Dk → D with multiple inputs, by using the same encoding ρ
for each input component. See, for example, [11, p. 29].

A more general definition is required for models with distinct input and output
domains. This can be problematic as the following example illustrates:

Example 5.1

Let RE be the recursively enumerable sets of naturals. We define infinitely many
non-r.e. partial predicates {hi}, which can be simulated by RE. Let

h(n) =

{

0 program n halts uniformly
1 otherwise

hi(n) =

{

0 n < i ∨ h(n) = 0
⊥ otherwise .

We have that RE %ρ RE ∪ {hi}, where

ρ(n) = 2n + h(n)

h′
i(n) =

{

0 ⌊n/2⌋ < i ∨ n mod 2 = 0
⊥ otherwise

14 Comparing Computational Power

ρ(f) =

{

f(⌊n/2⌋) f ∈ RE
h′

i(n) f = hi .

Without loss of generality, we are supposing that ρ(0) = h(0) = 0.

Firm comparison. Comparison by an injective mapping between domains might be
too permissive, as shown in Example 5.1 above. Accordingly, one may add other
constraints on top of the mapping. For example, adding the requirement that the
“stronger” model can distinguish the range of the mapping. That is, requiring a total
function in the “stronger” model, whose range is exactly the range of the comparison
mapping. This approach is further developed in [1].

Multivalued Representations. It may be useful to allow several encodings of the same
element, so long as there are no two elements sharing one representation, something
injective encodings disallow. Consider, for example, representing rationals as strings,
where “1/2”, “2/4”, “3/6”, . . . could encode the same number. (See, e.g., [14, p. 33].)
To extend the notion of computational power (Definition 2.6) to handle multivalued
representations, we would say that model A % B if there is a partial surjective function
η : dom A → dom B (η(y) = ⊥ iff y = ⊥), such that there is a function f ∈ A for
every function g ∈ B, with η(f(x)) = g(η(x)) for every x ∈ dom η. This follows along
the lines suggested in [14, pp. 52–53]. The corresponding definitions and results need
to be extended accordingly.

Different Cardinalities. It may sometimes be unreasonable to insist that the encoding
be injective, since the domain may have elements that are distinct, but virtually
indistinguishable by the programs. For example, a model may operate over the reals,
but treat all numbers [n, n + 1) as representations of n ∈ N.

Effectivity. A different approach to comparing models over different domains is to
require some manner of effectiveness of the encoding; see [5, p. 21] and [6, p. 290], for
example. Two basic methods are usually applied for effective encoding:

1. One can demand an informal effectiveness: “The coding is chosen so that it is
itself given by an informal algorithm in the unrestricted sense” [9, p. 27].

2. One can require effectiveness of the encoding function via a specific model, usually
Turing machines: “The Turing-machine characterization is especially convenient
for this purpose. It requires only that the expressions of the wider classes be
expressible as finite strings in a fixed finite alphabet of basic symbols” [9, p. 28].

Effectivity is a useful notion; however, it is unsuitable for our purposes. The first,
informal approach is too vague, while the second can add computational power when
dealing with subrecursive models and is inappropriate when dealing with non-recursive
models.

Nondeterministic Models. The computational models we have investigated are de-
terministic (Definition 2.1). The corresponding definitions and results should be ex-
tended to nondeterministic models, as well.

Comparing Computational Power 15

Acknowledgements

We thank Arnon Avron, Yaacov Choueka, and Mayer Goldberg for their encourage-
ment and helpful comments.

References

[1] Udi Boker and Nachum Dershowitz. A hypercomputational alien. Journal of Applied Mathe-

matics & Computing, to appear.

[2] Mark Burgin. How we know what technology can do. Communications of the ACM, 44:82–88,
Nov. 2001.

[3] Alonzo Church. An unsolvable problem of elementary number theory. American Journal of

Mathematics, 58:345–363, 1936.

[4] Nigel Cutland. Computability: An Introduction to Recursive Function Theory. Cambridge
University Press, Cambridge, 1980.

[5] Erwin Engeler. Formal Languages: Automata and Structures. Lectures in Advanced Mathe-
matics. Markham Publishing Company, Chicago, IL, 1968.

[6] Fred Hennie. Introduction to Computability. Addison-Wesley, Reading, MA, 1977.

[7] Neil D. Jones. Computability and Complexity From a Programming Perspective. The MIT Press,
Cambridge, Massachusetts, 1997.

[8] Stephen Kleene. Lambda-definability and recursiveness. Duke Mathematical Journal, 2:340–353,

1936.

[9] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill,
New York, 1966.

[10] Hava T. Siegelmann. Neural Networks and Analog Computation: Beyond the Turing Limit.
Birkhäuser, Boston, 1998.

[11] Rudolph Sommerhalder and S. C. van Westrhenen. The Theory of Computability: Programs,

Machines, Effectiveness and Feasibility. Addison-Wesley, Workingham, England, 1988.

[12] George J. Tourlakis. Computability. Reston Publishing Company, Reston, VA, 1984.

[13] Alan Turing. On computable numbers, with an application to the Entscheidungsproblem. Pro-

ceedings of the London Mathematical Society, 42:230–265, 1936–37. Corrections in vol. 43 (1937),
pp. 544-546. Reprinted in M. Davis (ed.), “The Undecidable,” Raven Press, Hewlett, NY, 1965.
Available at: http://www.abelard.org/turpap2/tp2-ie.asp.

[14] Klaus Weihrauch. Computable Analysis — An Introduction. Springer-Verlag, Berlin, 2000.

Received 27 June 2004

