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Abstract

We compare realizability models over partial combinatory algebras
by embedding them into sheaf toposes. We then use the machinery of
Grothendieck toposes and geometric morphisms to study the relation-
ship between realizability models over different partial combinatory
algebras. This research is part of the Logic of Types and Computa-
tion project at Carnegie Mellon University under the direction of Dana
Scott.

1 Introduction

The purpose of this paper is to compare realizability models over partial
combinatory algebras by embedding them into sheaf toposes. We then use
the machinery of Grothendieck toposes and geometric morphisms to study
the relationship between realizability models over different partial combina-
tory algebras. This work is related to Rosolini and Streicher [RS99], where
the focus was mainly on the locally cartesian closed structure of realizability
models, as well as to Mulry [Mul82] and Rosolini [Ros86]. Here we are also
interested in comparison of logical properties.

As a reference on topos theory we use [MM92], and Johnstone and Mo-
erdijk [JM89] as a reference on local map of toposes. Longley’s disserta-
tion [Lon94] contains material on partial combinatory algebras, applica-
tive morphisms, and realizability. In Birkedal’s dissertation [Bir00] and in
[ABS99] you can find further information about realizability, and also on
local maps of toposes and the corresponding f-b calculus.

*5000 Forbes Ave., Pittsburgh, PA 15213, USA; E-mail: awodey@andrew.cmu.edu
tJadranska 19, 1000 Ljubljana, Slovenia. E-mail: Andrej.Bauer@andrej.com



Acknowledgement. We thank Peter Johnstone, Bill Lawvere, and Alex
Simpson for helpful discussions.

2 Sheaves on Partial Combinatory Algebras

We quickly review the basic definitions about partial combinatory algebras
and applicative morphisms. For motivation and examples of PCAs and
applicative morphisms, see [Lon94]. For a partial function f: A — B and
x € A, the notation fx | means that fx is defined. When t is a term, ¢ |
means that the value of ¢, and hence of all of its subterms, is defined.

Definition 2.1 A partial combinatory algebra (PCA) is a set A with a par-
tial application operation [J-[: A x A — A and distinguished elements
K,S € A such that, for all x,y,z € A,

Koy ~ x, Sxy |, Szyz ~ (x2)(yz) ,

where ~ means that if one side is defined then so it the other and they are
equal. We usually write xy instead of x - y, and associate application to the
left. Here we only consider non-trivial PCAs that satisfy K # S.

Example 2.2 Scott’s graph model P = PN, [Sco76], is a model of the un-
typed A-calculus, therefore a (total) combinatory algebra. The algebraic
lattice of continuous maps P’ is a retract of the algebraic lattice P. The
embedding I': P — P is defined by

I'f={(m,n) ‘ n € Nand m € f(finsetn)} |

where (m,n) is an effective pairing of natural numbers and finsetn is an
effective enumeration of finite subsets of N. The set I'f is called the graph
of f. For a continuous map f: P — P the graph I' f uniquely determines f
because the value of f at any element z € P is the union of values of f at
finite subsets of . The retraction A: P — P? is defined by

(Az)y ={m e N|3IneN.((m,n) € z and finsetn C y)} .
Define application on P by
z-y=(Ar)y,
and A-abstraction by
M. p(u) =T(Ax:P.p(x)) .

Here ¢(u) is an expression with u occurring as a free variable, and involving
further A-abstractions and applications of elements of P. By taking K =
Azy.x and S = Azyz. (rz)(yz), P becomes a total combinatory algebra for
the above application operation.



Example 2.3 The first Kleene Algebra K is the set of natural numbers N
equipped with Kleene application n-m = {n}m which applies the n-th par-
tial recursive function {n} to m. The existence of K and S is a consequence
of the s-m-n theorem [Rog87].

Example 2.4 The second Kleene Algebra B = NN, or the Baire space, is a
partial combinatory algebra. The continuous partial application is defined
as follows. If a € NN, let @n be the sequence [a0,...,a(n — 1)], encoded
reasonably as a natural number. Define the operation x by

axf=n < ImeN.(a(fm)=n+1AVEk <m.a(Bk)=0) .
Now the partial application on B is defined by
(a| B)n=ax*(n:p),

where n::(3 is the sequence obtained by prepending n to 5. We consider «| 3
to be defined only if (« | #)n is defined for all n € N. For details about the
PCA structure of B, see [KV65].

Definition 2.5 (John Longley) Let E and F be PCAs. An applicative
morphism p: E L2, F is a total relation p C E x F for which there exists
r € F, such that rx | for all x € F, and for all u,v € E, z,y € F, if p(u, x),
p(v,y) and uv |, then rzy | and p(uv, ray). We say that r is a realizer for the
applicative morphism p. The composition of applicative morphisms is the
usual composition of relations. An applicative morphism is discrete when
p(u,x) and p(v,z) implies u = v.

Suppose p,o: E L2 F are applicative morphisms. We say there is an
applicative transformation from p to o, and write p < o, if there exists t € F
such that whenever p(u,x) then o(u,tz). When p < ¢ and o < p we write
pr~o.

Example 2.6 A discrete applicative morphism ¢: B L2, P can be ob-
tained by embedding B into P via ta = {En ‘ n e N}, where an € N is
the sequence [a0, ..., a(n — 1)] suitably encoded as a natural number. Note
that ¢ is actually a function, i.e., a single-valued total relation. There is also

a discrete applicative morphism §: P BLSIN B, defined by

0(x,a) <= m:{nGN’EIkGN.ak‘:n—l—l} .

In words, a sequence a is a d-implementation of x if it enumerates the ele-
ments of z. The trick with adding 1 ensures that the empty set is accounted
for.

Applicative morphisms induce functors between realizability toposes.
We only consider discrete applicative morphisms here, because they induce
functors between categories of modest sets.



Definition 2.7 Let A be a PCA. A modest set (S,lFg) over A is a set S
with a realizability relation IFg C A x S such that for every x € S there
exists a € A such that a lFg z, and for all a € A, z,y € S,

(alFsz)AN(alFsy) = x=1y.

A realized function f: (S,IFs) — (T,IFr) between modest sets is a function
f: S — T that is tracked by some a € A, which means that, for all x € S,

(blFs x) = ab| A (ablFr fx).
The category of modest sets and realized functions is denoted by Mod(A).

The category of modest sets Mod(A) is equivalent to the perhaps better
known category PER(A) of partial equivalence relations on A.

Example 2.8 The category Mod(PP) is equivalent to the category of count-
ably based equilogical spaces [BBS98]. A countably based equilogical space
is a pair (X, =x) where X is a countably based Tp-space and = is an equiva-
lence relation on X. A morphism [f]: (X,=x) — (Y,=y) is an equivalence
class of equivalence preserving continuous maps. Two such maps are con-
sidered equivalent when they map equivalent points to equivalent points.

Example 2.9 The category Mod(K) is closely related to Ersov’s numbered
set. The modest sets over K are equivalent to the category of partial nu-
merings, which are partial surjections N — S. ErSov’s numbered sets are
the total surjections from N, and in Mod(K) they are the regular quotients
of the natural number object.

Example 2.10 The category Mod(B) is the ambient category of Type Two
Effectivity [Wei00]. It is equivalent to 0-equilogical spaces [Bau00], which
is the full subcategory on those countably based equilogical spaces whose
underlying topological space is 0-dimensional.

Any discrete applicative morphism p: E 2, F induces a functor
p: Mod(E) — Mod(F) ,

defined as follows. A modest set (5,IFg) over E is mapped to p(S,lFs) =
(S,IF5s) where I-5g is defined by

albss x <= JbeE.((blFs z) Ap(b,a)) .

A realized map f: (S,lFg) — (T,lFp) is mapped to the same map pf =
f: S — T. To see that pf is realized, let r € F be a realizer for p, and let
a € E be a realizer for f. Because p is total there exists b € F such that
p(a,b), and rb is a realizer for pf.



2.1 Sheaves over a PCA

We would like to embed Mod(A) into a sheaf topos. An obvious choice is
the topos of sheaves for a subcanonical Grothendieck topology on Mod(A),
which is generated by suitable regular epimorphic families. There is an
equivalent but much simpler description of this topos, which is obtained as
follows.

For the site we take the category (A) whose objects are subsets of A,
and morphisms are the realized maps between subsets of A. More precisely,
if X, Y C A then a morphism f: X — Y is a function f: X — Y for which
there exists a € A such that, for all b € X, ab| and fb = ab.

In many cases (A) is equivalent to a well known category. For ex-
ample, (P) is equivalent to the category wTop, of countably based Tp-
spaces, whereas (B) is equivalent to the category 0Dim of countably based
0-dimensional Hausdorff spaces.

In order to obtain a convenient description of the Grothendieck topology
on (A) we need to know precisely which coproducts exist in (A). For this the
purpose we prove Lemma 2.11 below. Let us call a family (X;);c; non-trivial
if none of the objects X; are initial. We are only interested in coproducts
of non-trivial families because we can always omit any summands that are
initial. The cardinality of a set I is denoted by |I|.

Lemma 2.11 Let A be a PCA. There exists a reqular cardinal number w(A),
called the weight of A, such that the coproduct of a non-trivial family (X;)cr
exists in (A) if, and only if, |I| < w(A).

Proof. We prove the following statement: if a coproduct of a non-trivial
family (X;)ser exists in (A), then coproducts of all I-indexed families exist.
We then take as the weight of A the smallest cardinal x for which there
exists a non-trivial x-indexed family such that its coproduct does not exist
in (A).

Let (X;)icr be a non-trivial family and let C' = [[,.; X; be its coproduct
in (A), with canonical injections e;: X; — C' that are realized by r; € A, for
each ¢ € I. We denote the image of X; under e; by e;(X;).

First we show that the coproduct of (1);cr exists. An object in (A) is
initial if, and only if, it is the empty set. Because (X;);cs is non-trivial the
sets e;(X;) are non-empty, hence there exists a choice function ¢: I — A such
that ¢; € e;(X;) for all ¢ € I. The function c is injective because e;(X;) N
ej(X;) = 0 when i # j. We show that S = {¢ ‘ i €I} is a coproduct of
the family (1);e; with the i-th canonical injection realized by Ke¢;. It suffices
to find a realizer for an arbitrary function f: S — A. Let g;: X; — A be
the morphism realized by K(f(¢;)). Then there exists a unique morphism
g: C — A, realized by some s € A, such that g(e;(z)) = gi(z) = f(¢;) for all
i €I and all x € X;. In particular, f(c;) = g(¢;) = s¢; for all i € I, hence s
realizes f.



Now let (Y;);er be an arbitrary I-indexed family. We claim that the set
T = {(ci, u) | i1clAnuc YZ} is a coproduct of (Y;);cr with the i-th canonical
injection realized by A\*u. (¢;,u). Let (g;: Y; — Z);cr be a cocone, where g;
is realized by t; € A for every ¢ € I. We only need to show that the map
(ci,u) — gi(u): T — Z is realized. Define f: S — A by f(¢;) = t;. Because
S is a coproduct of 1’s f is realized by some s € A. The map (¢;, u) — g;(u)
is then realized by A w. (s(fstw))(snd w).

It remains to show that w(A) is a regular cardinal. It is necessarily
infinite because (A) always has all finite coproducts. By [Jec97, Lemma 3.6],
it suffices to show that ),y x; < w(A) whenever A < w(A) and x; < w(A)
for all i < A. For every i < A, the coproduct K; = [];_, 1 exists in (A)
because k; < w(A). Similarly, the coproduct L = [];_, K; exists. But L is
also a coproduct of ), _, k; many copies of 1, therefore >, , ki <w(A). m

The name weight of a PCA is motivated by the fact that in a topologi-
cal PCA it often happens that its weight is the successor of its topological
weight, which is the cardinality of a minimal base for its topology. For ex-
ample, the topological weights of P and B are Xy and their weights are Ny be-
cause (P) ~ wTop, and (B) ~ 0Dim have precisely all countable coproducts.
The first Kleene algebra has weight 8g. PCAs built as syntactic models of
the untyped A-calculus typically have weight Xg because the corresponding
sites have precisely all the finite coproducts.

Corollary 2.12 Let A be a PCA. In Mod(A), the coproduct of a non-trivial
family (X;)ier exists if, and only if, |I| < w(A).

Proof. The category (A) is the full subcategory of Mod(A) on the canon-
ically separated modest sets, which in turn is equivalent to the full subcat-
egory Proj(A) on the regular projective modest sets over A. It is easy to
check that the inclusion of Proj(A) into Mod(A) preserves and reflects all
coproducts that exist. By combining this with the fact that every modest
set is covered by a regular epi whose domain is regular projective, we get
the desired result. n

As the Grothendieck topology on (A) we take the coproduct topology C
which is generated by those families {f;: Y; — X},.; for which [I| < w(A)
and the morphism [fi]ier: [[;c; Ys — X is an isomorphism.

Definition 2.13 The category of sheaves on (A) for the coproduct topology
is denoted by Sh(A).

Observe that the sheaves on (A) are simply those presheaves P that
“preserve products”, i.e., P(][,Y;) = [, PY:.

Theorem 2.14 The category Sh(A) is equivalent to the category of sheaves
Sh(Mod(A), R) for the subcanonical Grothendieck topology R generated by



those families {f;: B; — A},c; for which [I| < w(A) and the morphism
[filier: 1lie; Bi — A is a regular epi.

Proof. As in the proof of Corollary 2.12, we may replace (A) with the
equivalent category Proj(A) of regular projective modest sets over A.

Let the jointly-split topology S on Proj(A) be generated by those families
{fi: Bi = A},c; for which [I| < w(A) and the morphism

[filier: [ier Bi — A

splits, i.e., has a right inverse s: A — [[,.; B;. Let us verify that the jointly
split families form a basis for Grothendieck topology:

1. Isomorphisms cover: It is obvious that an isomorphism is covering
since it is split by its inverse.

2. Stability under pullbacks: Suppose {f;: B; — A}, covers A. Con-
sider the pullback along g: C' — A. Since coproducts in (A) are stable,
we get a pullback diagram

I1; 9*_|Bi [I; B:

lg" fili [fili| |s

C

A

The morphism s in the above diagram is the splitting of [f;];. We
want to show that the left-hand vertical morphism splits, which follows
easily from the pullback property of the diagram. Since [f;];0s0g =
1c o g there exists a unique arrow t: C' — [[, g*B; such that 1¢ =
[g* fi]i o t, as required.

3. Transitivity: Suppose {f;: B; — A},c; is a covering family, and for
each i € I, the family {g;;: Ci; — Bi}jeJi covers B;. Then [f;]; splits
by a morphism s and [g;;]; splits by a morphism r;, for each i € I. The
coproduct C' =[],/ [1;e, Cij exists because ./ |Ji| < w(A). This
is so because w(A) is a regular cardinal, |I| < w(A) and |J;] < w(A)
for all ¢ € I. The map [f; o gi;]ij: C — A splits by (Zig ri) 0 Ss.

Next, we show that the jointly split families generate precisely the coproduct
topology C. We need to show that a sieve {f;: B; — A}, ; contains an S-
cover if, and only if, it contains a C-cover. One direction is easy, since every
C-cover is obviously an S-cover. For the converse, if {f;: B; — A}j6 J is
jointly split by s: A — ][ jes Bj, then we can decompose A into a coproduct



A= HjeJ s*Bj, as in the pullback diagram

Hje] Sij HjeJ Bj
14 1
A 3 [es Bj

Therefore, if a sieve contains a jointly split family {f;: B; — A}j > then it
also contains a family whose coproduct is isomorphic to A.

As in the statement of the theorem, let R be the Grothendieck topology
on Mod(A) generated by those families { fi: B; — A},.; for which [I] < w(A)
and [fi]icr: [l;c; Bi — A is a regular epi. To finish the proof, we apply the
Comparison Lemma [MM92, Appendix, Corollary 4.3] to Sh(Mod(A), R)
and Sh(Proj(A), S). For this we must check three conditions:

1. Topology R is subcanonical: we chose R to be generated by certain
regular-epimorphic families.

2. Every object in Mod(A) is R-covered by objects in Proj(A): this is
equivalent to every modest set being a regular quotient of a regular
projective modest set, which is the case.

3. A family {f;: B; — A}, ; is S-covering in Proj(A) if, and only if, it is
R-covering in Mod(A): this holds because a morphism f: B — A in
Proj(A) is split if, and only if, it is a regular epi in Mod(A). Indeed, if it
is split then it is a regular epi by a general category-theoretic argument.
Conversely, suppose f: B — A is a regular epi and A € Proj(A).
Since A is regular projective there exists a right inverse s: B — A
of f, hence f is split.

Corollary 2.15 The Yoneda embedding

Mod(A) — 7

Sh(A)

1s full and faithful, preserves the locally cartesian closed structure, regular
epis, and coproducts. In terms of categorical logic, it preserves and reflects
validity of formulas involving full first-order logic, exponentials, dependent
types, disjoint sum types, and quotients of ——-stable equivalence relations.
In addition, y preserves infinitary disjunctions and coproducts of cardinality
less than w(A). In case w(A) > Ny, y also preserves the natural numbers
object.



More precisely, the functor y is defined as follows. If I: (A) — Mod(A) is
the inclusion, then for S € Mod(A), yS = Hom(I(O), S) where the hom-set
is taken in Mod(A). We do not have to compose with sheafification because
the topology is subcanonical.

The Yoneda embedding y itself extends similarly along the inclusion
J: Mod(A) — RT(A) of modest sets into the realizability topos for A, to
give a functor Y: RT(A) — Sh(A), as indicated below.

Mod(A) — 7

Sh(A)
J
RT(A)

The functor Y is defined much like y, i.e., for X € RT(A), let Y(X) =
Hom(J(O), X ), where the hom-set is now taken in RT(A). It can be shown
fairly easily that Y also preserves first-order logic, but unlike y, it is not
faithful (since the modest sets do not generate RT(A)), nor does it preserve
exponentials.

Example 2.16 Countably based equilogical spaces embed via the Yoneda
embedding into the topos Sh(P) ~ Sh(wTopg, C,,) of sheaves on the count-
ably based Ty spaces equipped with the countable coproducts topology.

Example 2.17 The topos Sh(K) is closely related to Mulry’s recursive
topos R [Mul82]. Specifically, a site for R is the category R of r.e. sets
and partial recursive functions, equipped with the finite cover topology;
the evident inclusion functor ¢ : R < (K) induces a geometric morphism
Sh(K) — R which, however, is not an equivalence. To see this, consider an
immune set' I C N as an object of (K). A non-recursive function h : I — I
induces a natural endomorphism ho— on the restricted representable functor
Hom(i(—), ) in R which is not induced by any morphism in Sh(K).

Example 2.18 The category Mod(B) embeds into the topos Sh(B) which is
equivalent to the topos Sh(0Dim, C,,), where 0Dim is the category of count-
ably based 0-dimensional Hausdorff spaces.

2.2 Functors Induced by Applicative Morphisms

Recall that a discrete applicative morphism p: E 2 F induces a func-
tor p: Mod(E) — Mod(F). This functor preserves finite limits and regular
epis by [Lon94]. Suppose that in addition p preserves those coproducts

'Recall that an immune set is an infinite set which does not contain any infinite r.e. sets,
see e.g. [Rog87].



that Mod(E) has, and call such a functor +-preserving. Then p preserves
covering families, and so (by [MM92, Section VIIL.7]) induces a geometric
morphism (p*, ps): Sh(F) — Sh(E) between the corresponding sheaf toposes,
as in the diagram below.

Sh(E) =——— Sh(F) (1)
P
Yy Yy
Mod(E) — > Mod(F)
)

The inverse image part p* of the geometric morphism in the above diagram
makes the evident square commute up to natural isomorphism.

2.3 Applicative Retractions Induce Local Maps of Toposes

A pair of applicative morphisms §: E LA F and n: F 2, E such that
lp 2 donand nod <X 1 is called an applicative adjunction, written (n -
0): E AL T, see [Lon94]. An applicative adjunction for which § on ~ 1p
is called an applicative retraction.

Example 2.19 As Peter Lietz observed, the morphisms (1 4 6): P —2- B
of example 2.6 form an applicative retraction. See [Bau00] for details.

Let (n H40): E 2, F be an applicative retraction of discrete applicative
morphisms. Then the induced functors 7 and 0 form an adjoint pair 77 4 9,

0
Mod(E) <~ _ Mod(F) .

&)

In addition, 5o 7 = IMmod(r)- Suppose that 5 is +-preserving. Combining
this with (1), we get three adjoint functors n* 4 n, = 6* - d,,

*

n

/77;;5*\
SO
where 0% o * = 1gy ). Thus, a +-preserving discrete applicative retraction

(n 4 6): E =5 F induces a local map of toposes Sh(E) — Sh(F). Such
maps were studied by Birkedal in [Bir99]; there and in [ABS99] a f-b cal-
culus for the internal logic is obtained, which can be used here to compare
realizability in modest sets over & with that over F.

Sh(E)

Sh(F)
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An applicative retraction does not seem to induce a third adjoint if we
use realizability toposes RT(E) and RT(F) instead of sheaf toposes (although
one might consider relative realizability [Bir99, ABS99]). On the other hand,
many applicative retractions that we have encountered are +-preserving, and
so they induce local maps of sheaf toposes. A good conceptual explanation
of this phenomenon would be desirable.

2.4 A Forcing Semantics for Realizability

The following theorem spells out the Kripke-Joyal semantics in Sh(A), see
[MM92, Section VI.6]. The interpretation of disjunction, negation and exis-
tential quantification is simpler than the usual one due to the simple nature
of the coproduct topology on the site (A).

Theorem 2.20 Let X,Y € Sh(A), and let
z: X | ¢(z) z: X | Y(x) v:X,y:Y | p(z,y)

be formulas in the internal language of Sh(A). Let A € (A) and a € X A.
The Kripke-Joyal forcing relation |= is interpreted as follows:

1. AE ¢(a) AN(a) if, and only if, A = ¢(a) and A = (a).

2. A | ¢(a) V(a) if, and only if, there exist Ay, Az € (A) such that
A=Ay + Ay, with Ay = ¢(a-11) and Ay = p(a-12).

3. A = ¢(a) — (a) if, and only if, for all f: B — A in (A), if
B ola- f) then B k= (a- f).

4. A= —¢(a) if, and only if, for all f: B — A in (A), if B = ¢(a- f)
then B = 0.

5. AEVYyeY.pla,y) if, and only if, for all f: B — A in (A) and all
beYB, one has B = p(a- f,b).

6. A JyeY . pla,y) if, and only if, A = [[,c; Ai in (A), [I] < w(A),
and for each i € I there exist b; € Y A; such that A; = p(a - i, b;).

Proof. We only need to show that the standard interpretations of dis-
junction, negation, and existential quantification simplify to the forms stated
in the theorem. This follows easily from the characterization of the topology
via the disjoint sum basis.

Let us first consider disjunction. Suppose A = ¢(a) V ¢(a). Then there
exists a family {s;: A; — A}, such that [1];: Ay +--- + Ay — Ais an
isomorphism and, for every i € I, A; = ¢(a- ;) or A; =1(a-1;). Define the
sets J and K by

J={iel| E¢la-u)}, K=I\J.

11



Let A} = [[;c; Aj and Ay = [[cx Ak- Then it is clear that A = A} + A3,
Let k1 = [¢j]jes: A1 — A and kg = [1g)kex : A2 — A be the isomorphisms.
It is now clear that A = ¢(a - k1) and Ay = ¥(a - ke), as required. The
converse holds, since if A = A; + A2, A1 = ¢(a-11) and A = 9¥(a-12), then
A = ¢(a)Vip(a) because the sum of canonical inclusions [t1, t2]: A1+A43 — A
is an isomorphism, thus it covers A.

The interpretation of negation is correct because an object is covered by
the empty family {} if, and only if, it is the initial object 0.

Suppose A |= Jy€Y .p(a,y). Then there is a family {s;: A; — A},
such that A = Hie 7 Ak, it A; — A is the canonical inclusion for every
i € I, and there exists b; € Y A; such that A; = p(a -, b;). This proves one
direction. The converse is proved easily as well. [

If Mod(A) has countable coproducts a clause involving countable disjunc-
tions can be added. The forcing semantics can be restricted to the modest
sets, as long as the formulas are restricted to first-order logic with exponen-
tials, dependent types, subset types, and quotients of =—-stable equivalence
relations. It is a consequence of Corollary 2.15 that such a formula is valid
in the forcing semantics above if, and only if, it is valid in the realizability
interpretation.

2.5 A Transfer Principle for Modest Sets

Suppose (n 4 4): E 2L Fis an applicative retraction such that 5 is +-
preserving. The transfer principle from Awodey et. al. [ABS99] can be
applied to the induced local map of toposes,

*

n

P

S~ O
We say that a formula @ in the internal language of a topos is local?® if it
is built from atomic predicates, including equations, using first-order logic,
and if in every subformula of the form ¢ — 1, there is no V or — in ¢.

If 0 is a local sentence in the internal logic of Sh(F), we write Sh(F) = 6

when the canonical interpretation of € is valid in Sh(FF). The sentence 6 can
also be interpreted in Sh(E) by mapping the types and relations occurring
in 6 over to Sh(E) with n*. The transfer principle from [ABS99] then tells
us that for such a local sentence 9,

Sh(E) =6 ifand only if Sh(F) 6.

Sh(E) Sh(F) .

It follows that if only types and relations from Mod(F) occur in 6 then the
transfer principle restricts to the categories of modest sets:

Mod(E) =6 if and only if  Mod(F) =6 .

*In [ABS99] such a formula is called “stable”.
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Here we interpret 6 in Mod(E) by mapping all types and relations that occur
in 0 over to Mod(E) by 7. The notation Mod(E) |= 6 means that the sen-
tence 6 is valid in the standard realizability interpretation, or equivalently,
in the forcing semantics as described in Theorem 2.20. The following the-
orem explains why Mod(P) and Mod(B) appear to be very similar, at least
as far as simple types are concerned.

Theorem 2.21 Let (¢ 4 §): P L. B be the applicative retraction from
Example 2.19. Let 0 be a local sentence such that all variables occurring
in 0 have types N, NN, or R. Then

Mod(P) =6 if and only if Mod(B) 6,

where N is interpreted as the natural numbers object, NN is interpreted as
the obvious exponential, and R is interpreted as the object of Cauchy real
numbers.

Proof. The theorem holds because the functor 7: Mod(B) — Mod(P)
preserves the natural numbers object N, its function space NN, and the
real numbers object R. It is not hard to see that § preserves countable
coproducts, which are precisely the coproducts that Mod(P) has. u

In Theorem 2.21 we cannot allow variables of higher types such as NV
and R® to occur, because it is well known that the following local sentence
involving NN is valid in Mod(B) but not in Mod(P):

VEeNY 3aeNV.vBeNY. FB = (a|f). (2)

The sentence states that every functional F' € NN has an associate o € NN
in the sense of Kleene [Kle59]. Here «|f is Kleene’s continuous function
application. The statement n = («|f3) is equivalent to

ImeN. (a(Bm) =n+1AVEkeN. (k <m — «a(Bk) =0)) .

Similarly, a statement that all functions f € RR® are continuous is valid
in Mod(B) but not in Mod(lP). Thus, in a roundabout way, we obtain the
following result.

Corollary 2.22 The functor 7: Mod(B) — Mod(P) does not preserve expo-

nentials. In particular, (NN is not isomorphic to the object NN in Mod(P),
and T(R®) is not isomorphic to the object RR in Mod(P).

We can in fact prove Corollary 2.22 directly as follows. Let X = N be
the object of type 2 functionals in OEqu, which is equivalent to Mod(B), and
let Y = NN be the object of type 2 functionals in Equ. Both X and Y are
equilogical spaces. The space | X| is a Hausdorff space. The space |Y| is the
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subspace of the total elements of the Scott domain D = [N;“ — N, |. The
equivalence relation on |Y'| is the consistency relation of D restricted to |Y].
Suppose f: |Y| — |X]| represented an isomorphism, and let g: | X| — |Y|
represent its inverse. Because f is monotone in the specialization order and
|X| has a trivial specialization order, a =y b implies fz = fy. Therefore,
go f: Y| — |Y|is an equivariant retraction. By [Bau00, Proposition 4.1.8],
Y is a topological object. By [Bau00, Corollary 4.1.9], this would mean that
the topological quotient |Y|/=y is countably based, but it is not, as is well
known.

Another way to see that Y cannot be topological is to observe that Y is
an exponential of the Baire space, but the Baire space is not exponentiable
in wTopg, and in particular N is not a topological object.

Finally, we remark that statement (2) is of course valid in Mod(PP) if NN
is replaced by T(NNN). But then it becomes a simple truism, since it can be
shown that in Mod(P) the space Z\(NNN) is just the set of those functionals
that have an associate:

N = {FGNNN | 3aeNY.V3eNY. F3 = (a|ﬁ)} .

Corollary 2.22 should be contrasted with the fact that there is an epi-
mono T(NNN) — NN that is not iso but nevertheless induces a natural
bijection between the global points of T(NNN) and the global points of NV
In this sense, the finite types over N in Mod(P) and Mod(B) are equivalent
as far as the cartesian closed structure is concerned, but here we see that
they have different logical properties.

References

[ABS99] S. Awodey, L. Birkedal, and D.S. Scott. Local realizability toposes
and a modal logic for computability. In L. Birkedal, J. van Oosten,
G. Rosolini, and D.S. Scott, editors, Tutorial Workshop on Re-
alizability Semantics, FLoC’99, Trento, Italy, 1999, volume 23 of
Electronic Notes in Theoretical Computer Science. Elsevier, 1999.
To appear in Math. Stru. Comp. Sci.

[Bau00] A. Bauer. The Realizability Approach to Computable Analysis and
Topology. PhD thesis, Carnegie Mellon University, 2000. Available
as CMU technical report CMU-CS-00-164 and at http://andrej.
com/thesis.

[BBS98] A. Bauer, L. Birkedal, and D.S. Scott. Equilogical spaces. Preprint
submitted to Elsevier, 1998.

[Bir99] L. Birkedal. Developing Theories of Types and Computability. PhD
thesis, School of Computer Science, Carnegie Mellon University,

14



[Bir00]

[Jec9T]
[JM&9]

[Kle59]

[KV65]

[Lon94|

[MM92]

[Mul82]

[Rog87]

[Ros86]

[RS99]

[ScoT6]

[Wei00]

December 1999. Available as CMU Technical Report: CMU-CS-
99-173.

L. Birkedal. Developing theories of types and com-
putability via realizability. Electronic  Notes in The-
oretical Computer Science, 34,  2000. Available at

http://www.elsevier.nl/locate/entcs/volume34.html.
T. Jech. Set Theory, Second Edition. Springer, 1997.

P.T. Johnstone and I. Moerdijk. Local maps of toposes. Proc.
London Math. Soc., 3(58):281-305, 1989.

S.C. Kleene. Countable functionals. In Constructivity in Mathe-
matics, pages 81-100, 1959.

S.C. Kleene and R.E. Vesley. The Foundations of Intuitionistic
Mathematics, especially in relation to recursive functions. North-
Holland Publishing Company, 1965.

J.R. Longley. Realizability Toposes and Language Semantics. PhD
thesis, University of Edinburgh, 1994.

S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. A
First Introduction to Topos Theory. Springer-Verlag, New York,
1992.

P. Mulry. Generalized Banach-Mazur functionals in the topos of
recursive sets. Journal of Pure and Applied Algebra, 26:71-83,
1982.

H. Rogers. Theory of Recursive Functions and Effective Com-
putability. The MIT Press, 1987.

G. Rosolini. Continuity and Effectiveness in Topoi. PhD thesis,
University of Oxford, 1986.

P. Rosolini and Th. Streicher. Comparing models of higher type
computation. In L. Birkedal, J. van Oosten, G. Rosolini, and
D.S. Scott, editors, Tutorial Workshop on Realizability Semantics,
FLoC"99, Trento, Italy, 1999, volume 23 of Electronic Notes in
Theoretical Computer Science. Elsevier, 1999.

D.S. Scott. Data types as lattices. SIAM Journal of Computing,
5(3):522-587, 1976.

Klaus Weihrauch.  An Introduction to Computable Analysis.
Springer, Berlin, 2000.

15



