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In [4], Majer and Pelǐs proposed a relevant logic for epistemic agents, providing a novel extension of the
relevant logic R with a distinctive epistemic modality K, which is at the one and the same time factive
(Kϕ → ϕ is a theorem) and an existential normal modal operator (K(ϕ ∨ ψ) → (Kϕ ∨Kψ) is also a
theorem). The intended interpretation is that Kϕ holds (relative to a situation s) if there is a resource
available at s, confirming ϕ. In this article we expand the class of models to the broader class of ‘general
epistemic frames’. With this generalisation we provide a sound and complete axiomatisation for the
logic of general relevant epistemic frames. We also show, that each of the modal axioms characterises
some natural subclasses of general frames.

Keywords: Modal Logic, Epistemic Logic, Relevant Logic, Substructural Logic, Frame Semantics.

1 The work of the first and the third author was supported by the grant ICC/08/E018 of the Grant
Agency of the Czech Republic (a part of ESF Eurocores-LogICCC project FP006). The work of the
second author was supported by grant no. IAA900090703 of the Grant Agency of the Academy of
Sciences of the Czech Republic.
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1 Introduction

Representation of epistemic states of a rational agent and their changes has been for a
long time an important issue in both logic and computer science. The majority solu-
tion represents the knowledge operator as a standard necessity-like modal operator; the
standard modal axioms (K, T, 4, 5) then reflect epistemic properties (closure, truth,
positive and negative introspection). The most popular representation (widely used also
in computer science) is based on the epistemic version of S5, in which knowledge turns
out to be an indistinguishability between epistemic states. The S5-representation has
been extensively criticized (see, e.g., [3,2]) for being unrealistically strong. The agents
represented here are ‘too perfect’—they are, among other things, logically omniscient
(they know all the logical truths) and fully introspective (they are explicitly aware of
their both positive and negative knowledge).

Some of the strong properties can be avoided using modal systems weaker than S5.
Other ones, like the logical omniscience, require a more essential change of framework—
in recent literature we can find solutions based on the framework of dynamic epistemic
logic. 2

Our way to solve the problem of unrealistically strong properties is to employ a sys-
tem weaker than that of a normal modal logic—the framework of distributive relevant
logic. 3 The main reason for choosing relevant logic is that it fits very well our motiva-
tions. From a technical point of view we could use even weaker systems, see the section
Conclusion. There is a number of ways to introduce modalities in the relevant frame-
work (see [8] for a general overview). However we shall not add epistemic modality quite
as an external independent operator; instead we define our knowledge operator using
ingredients already contained in the relevant framework. The main reason is that we can
provide an intuitively acceptable interpretation of the relational frames for distributive
relevant logic and the definition of the epistemic operator naturally follows from this
interpretation.

1.1 Rational agent

We assume that formulas of our epistemic language represent some collections of data.
Data are typically incomplete and it can well happen they are inconsistent, but we
still can work with them - we use them to make decisions and draw conclusions. Our
prototypical agent is a scientist dealing with scientific data. Typically, she has to deal
with data which are both theoretical and empirical and which are obtained from var-
ious sources (results of experiments, articles, books, technical reports etc.) Obviously
different experiments might give results which contradict each other (due to an error of
either equipment or experimenter) and even theories might explain some phenomena in
a ways that are incompatible. Various data might be of a different quality. Obviously

2 Duc in [2] provides a solution based on modifications of standard Kripke semantics (awareness and
impossible worlds) as well as solutions based on a combination of temporal and epistemic logic and
complexity approaches (algorithmic knowledge).
3 The idea of combining epistemic and relevant frameworks has been used in the literature, however
with a different aim—see, e.g., [1] and [9].
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there is little use of inconsistent parts, but even consistent data are not on the same
level - some of them might be results of experiments with a more reliable equipment,
some might come from more respectable authorities etc. It is clear that our agent has to
discriminate among the available data. Typically she prefers data which are confirmed.

1.2 Information states

Our basic entity will be an information state of an agent. It consists of local
information—a collection of data immediately available to the agent (e.g. results of
her experiments, observations...) and ’remote information’—collections of local data of
another information states (e.g. data obtained by some other scientists or even by herself
in past).

Local information consists of two basic kinds: experimental data (’facts’)—inputs
and outputs of experiments/observations and ’theories/laws’-generalizations extracted
from the experimental data. If we consider these two kinds of data from the point of view
of a logical framework, we can, with some simplification, see that basic data are typically
represented by atoms, their conjunctions and disjunctions, while ’laws’ are represented
by conditionals (and their combinations).

The agent accepts data as knowledge if they are confirmed by some source (we require
at least one confirmation, which makes our operator possibility-like). 4 As we shall see
in the section 2.4, the relation of confirmation also deals with inconsistency of data as
an inconsistent piece of data is never confirmed.

We assume that information states evolve. However, no information is lost—the evo-
lution is in fact an accumulation of information—in this sense it reminds the persistence
relation in intuitionistic logic.

2 Frame Semantics

There are more formal systems that can be called relevant logic. Our point of departure
will be the distributive relevant logic R of Anderson and Belnap. We base our framework
on the relational semantics for this logic, as developed by [5,6,7] and others. Before we
give a formal definition, we discuss the elements of the relational semantics from the
point of view of our epistemic motivation.

The universe of our semantics consists of information states (sometimes also called
situations)—they play in our framework the same role as possible worlds in Kripke
frames. We interpret a current state as data immediately available to our prototypical
agent. Unlike possible worlds, states might be incomplete (neither ϕ nor ¬ϕ is true in
s) or inconsistent (both ϕ and ¬ϕ are true in s).

As we said above, information states evolve. The relation tracing this process (or
rather various ways the evolution can proceed) is traditionally called involvement and
modelled by a partial order.

4 It might seem that we use the term knowledge in rather specific sense, but let us point out, that
there is no universal agreement about the criteria a logical representations of knowledge should obey.
Various systems capture some features of knowledge while they leave some other unexplained—modal
representation not being an exception.
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Formulas are defined in the usual way in the language of relevant logic with a modality
K:

ϕ ::= p | > | t | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | Kϕ

Strong logical connectives ⊗ (group conjunction, fusion) and ⊕ (group disjunction) are
definable by implication and negation, as well as the constants f and ⊥:

(ϕ⊕ ψ) ≡def (¬ϕ→ ψ) (1)

(ϕ⊗ ψ) ≡def ¬(ϕ→ ¬ψ) (2)

f ≡def ¬t (3)

⊥≡def ¬> (4)

Classical (weak, lattice) conjunction and disjunction correspond to the situation
when the agent combines local data, i.e., data immediately available in the current
state.

Implication is a modal connective in the sense that it depends on a neighborhood of a
current state, which is given by a ternary relevance relation R. In fact it is analogous to
the strong (necessary) implication in a standard Kripke frame except the neighborhood
of a state s is given by pairs of states (y, z) such that Rsyz. The relation R reflects in our
interpretation actual experimental setups. Let us call y, z the antecedent and the conse-
quent state, respectively. Antecedent states correspond to some initial data (outcome of
measurements or observations) of some experiment, while the related consequent states
correspond to the corresponding resulting data of the experiment. Implication then cor-
responds to a (simple) kind of a rule: if I observe in my current state, that at every
experiment (represented by a couple antecedent–consequent state) each observation of
ϕ is followed by an observation of ψ, then I accept ‘ψ follows ϕ’ as a rule.

In Kripke models the negation of a formula ϕ is true at a world iff ϕ is not true
there. As states can be incomplete and/or inconsistent, this is not an option any more
if one deals with substructural logics. Negation becomes a modal connective and its
meaning depends on the states related to the given state by compatibility relation C.
Informally we can see the compatible states as collections of data our scientist wants to
be consistent with (e.g. becuse of their reliabilty, impact etc.) Relevant negation does
not correspond straightforwardly to ‘necessary false’. We do not require that the negated
formula in question is false in the neighborhood of the given state, we just require no
state in the neighborhood contains a positive instance of this formula.

From the point of view of our motivation the interpretation of negation is rather
straightforward—an agent can explicitly deny some information (a piece of data) only if
its negation does not contradict any collection of data she wants to be consistent with.
This condition also has a normative side: she has to be skeptical in the sense that she
denies everything not positively supported by any of the compatible collection of data.
If we want to have negative facts at the same basic level as positive facts, we can read
the clause for the definition of compatibility relation in the other direction: the agent
can relate her actual state just to the states which do not contradict her negative facts.

Properties of the compatibility relation obviously determine the kind of negation ob-
tained, but as we shall see they moreover influence properties of the epistemic modality
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defined below. In standard relevant frameworks it is usually assumed that compati-
bility is symmetric, but it is in general neither reflexive (inconsistent states are not
self-compatible) nor transitive.

One of the tricky points in the definition of relational semantics is the definition of
truth in a relevant frame (model). If we take a hint from Kripke frames, we should equate
truth in a frame with truth in every state. But this would gives us an extremely weak
system with some very unpleasant properties [7]. For example the almost uniformly
accepted identity axiom (α→ α) and the Modus Ponens rule fail to hold in every state.
Designers of relevant logics took a different route; instead of requiring truth in all states,
they identify truth in a frame with truth in all logically ‘well behaved’ states. These
states are called logical. In order to satisfy the ‘good behavior’ it is enough to require in
a state l that all the information in any antecedent situation related to l is contained in
the corresponding consequent situation as well. This is ensured by a half of the following
condition: x is below y in the involvement relation if and only if there is a logical state l
such that Rlxy. It is easy to see that logical situations validate both the identity axiom
and (implicative) Modus Ponens.

We proceed to the formal definitions now.

Definition 2.1 A relevant frame is a tuple F = (W,L,≤, C,R), where W is a nonempty
set of situations and

• ≤ is an involvement relation which is a partial order on W

• R is a ternary relevance relation on W satisfying the conditions 5 (where R2xyzw

means (∃s)(Rxys and Rszw)):

Rxyz and x′ ≤ x, y′ ≤ y, z′ ≥ z implies Rx′y′z′ (5)

Rxyz implies Ryxz (6)

Rxxx (7)

R2(xy)zw implies R2(xz)yw (8)

• L, the set of logical situations, is a nonempty upwards closed subset of (W,≤), satis-
fying

x ≤ y iff there is z ∈ L such that Rzxy (9)
• C is a binary compatibility relation on W satisfying the conditions

Rxyz implies (∀z′)z′Cz(∃y′)y′Cy where Rxz′y′ (10)

xCy and x′ ≤ x and y′ ≤ y implies x′Cy′ (11)

xCy implies yCx (12)

(∀x)(∃y)xCy (13)

∀x(∃u)(xCu and ∀z(xCz implies z ≤ u)) (14)

Definition 2.2 A relevant model is M = (F, V ), where F is a relevant frame and
V : Prop 7→ P(W ), such that each V (p) is an upper subset of (W,≤), is a persistent

5 We use the stronger versions of the relation conditions, called ’plump’ in [8], because they correspond
to structural axioms and we are interested in modal characterizability as well.
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valuation of propositional formulas. The valuation generates the following satisfaction
relation between states and formulas:

• x 
 p iff x ∈ V (p)
• x 
 t iff x ∈ L
• x 
 >
• x 
 ϕ ∧ ψ iff x 
 ϕ and x 
 ψ

• x 
 ϕ ∨ ψ iff x 
 ϕ or x 
 ψ

• x 
 ¬ϕ iff for all y, xCy implies y 1 ϕ
• x 
 ϕ→ ψ iff for all y, z, Rxyz and y 
 ϕ implies z 
 ψ

The relation between implication and fusion is that they form an adjoint pair (im-
plication is the residuum of the fusion in algebraic terms):

ϕ→ (ψ → χ) ≡ ϕ⊗ ψ → χ

thus, semantically

x 
 ϕ⊗ ψ iff there are y, z such that Ryzx and y 
 ϕ and z 
 ψ.

The validity of formulas in a model, a frame, or in a class of models or frames is
defined via validity in all logical states.

The results of persistency for all formulas, soundness and completeness of the seman-
tics for the relevant logic R can be extracted as a special case from general definitions
and proofs contained in [8].

The original motivation behind an epistemic modality in the framework of experi-
mental data is that data can be accepted as knowledge only if they are confirmed by a
source. As there are several possibilities what can be counted as a reliable source, we
explicitly represent the relation of being a source by a new binary relation S on W and
use it to define our epistemic modality K:

x 
 Kϕ iff for some s where sSx, s 
 ϕ (15)

Kϕ thus meaning that ϕ is supported by at least one source.
Next we explore some possibilities how to define the S-relation and introduce corre-

sponding classes of relevant frames.

2.1 Classic relevant frames

The S relation can be seen as determining which states are to be counted as reliable
sources. The first attempt uses the ingredients already contained in a frame to define S.
Following motivations presented in [4], we start with a requirement that a source state
confirming data in a current state shall be compatible with the current state and it should
(strictly) precede the current state in the involvement ordering (the second condition
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was supposed to make the confirmation ’independent’—to exclude the possibility that a
state is a source for itself)

sSx iff s < x and sCx (16)

Moreover, it is reasonable to require that modal formulas are persistent, this is
guaranteed by the following condition:

sSx and x ≤ x′ then (∃s′)(s ≤ s′ ∧ s′Sx′) (17)

The class of frames defined this way however doesn’t seem a good candidate to work
with since it is an open question how to axiomatize the logic of classical frames in
the modal language we have fixed. We conjecture it coincides with the logic of General
frames defined below, and that the class of classical frames is not modally definable in the
current language due to the presence of an anti-property 6= contained in the definition
of S in (16).

We call the class of frames satisfying conditions (16) and (17) the class of Classic
frames and denote it Fc.

Let us remind that validity in a class of frames is defined as a validity in all logical
states in all models based on the frames from the class. Thus:

Fc 
 ϕ iff (∀F ∈ Fc)(∀x ∈ L)(x 
 ϕ) (18)

We can also weaken our requirements on available sources and admit that in some
cases a state can be a source for itself, so we work with ≤ instead of <. We define a
class of Weak Classic frames Fwc weakening the property (16) to:

sSx iff s ≤ x and sCx (19)

This class turns out to be distinguishable from the other two by the validity of
the introspection axiom Kϕ → KKϕ. This was one of the axioms we criticised in the
introduction and the validity of which we tried to avoid. We shall comment on this later.

2.2 General relevant frames

Providing an axiomatisation for the logic of classic (and weak classic) relevant epistemic
frames is an open problem. Upon reflection, however, it is not clear that this class of
epistemic frames is the natural target. To count every lower compatible state under the
current state as a resource for use may be more restrictive than we need. For a more
general class of frames, we allow for slightly more variation in the interpretation of K,
by generalising the accessibility relation S. It is now required to satisfy the following
two conditions: the condition (17) remains unchanged, while we replace ’iff’ in the other
condition with ’only if’:

sSx then s ≤ x and sCx (20)

We denote the class of general frames Fg and provide in the next section an axioma-
tisation of this class. Validity of formulas in the class is defined:

Fg 
 ϕ iff (∀F ∈ Fg)(∀x ∈ L)(x 
 ϕ) (21)
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2.3 Relating the classes of frames

We start with stating some basic properties of all the three classes defined above.

Lemma 2.3 (Persistency for formulas) x 
 ϕ and x ≤ y implies y 
 ϕ.

Proof. We concentrate on the case of Kϕ only. Suppose that x 
 Kϕ and x ≤ y. We
show that y 
 Kϕ. Since x 
 Kϕ there is some sSx satsifying ϕ. From the condition
(17) (∃s′)(s ≤ s′ ∧ s′Sy). From the induction hypothesis s′ 
 ϕ, but then y 
 Kϕ as
desired. 2

Lemma 2.4 (Selfcompatibility of sources) sSx implies sCs.

Proof. Suppose sSx. Then (in Fc,Fwc, and Fg) s ≤ x and sCx. From the condition
(11) it follows that sCs. 2

Since every classic (weak classic) frame is a general frame, we have Fc ⊆ Fg and
Fwc ⊆ Fg, and thus, for the logics of the classes, the inclusions L(Fg) ⊆ L(Fc) and
L(Fg) ⊆ L(Fwc) hold. The other inclusions are open question.

We can however distinguish the class Fwc from Fg (and from Fc as well) with validity
of the axiom of introspection Kϕ → KKϕ. Thus in particular L(Fg) ⊂ L(Fwc) is a
proper inclusion.

Lemma 2.5 Kϕ→ KKϕ fails in Fg and Fc, while it holds in Fwc.

Proof. To show Kϕ → KKϕ holds in Fwc consider u ∈ L, Ruxy where x 
 Kϕ. We
show y 
 KKϕ. Since x 
 Kϕ, then there is s such that sSx and s 
 ϕ. Because of
sCs (Lemma 2.4) and s ≤ s, we obtain sSs. The situation s is a source for itself. From
s 
 Kϕ we get x 
 KKϕ. By persistence (Lemma 2.3) y 
 KKϕ.

To show Kϕ→ KKϕ fails in the class Fc and in the class Fg, we consider the follow-
ing counterexample: W = L = {x, s} and sSx (thus in particular s < x and sCx, and
sCs by the Lemma 2.4. Moreover we have Rsxx (and many others by the conditions
for L and R to be satisfied). But we do not have sSs (as we would be forced in Fwc
by s ≤ s and sCs). Now we put V (p) = {s, x}. Then x 
 Kp but x 1 KKp, thus
Kp→ KKp fails in a logical state s. 2

We are not interested much in the class Fwc itself, but the introspection axiom is
interesting from another point of view—we show which class of relevant frames corre-
sponds to the axiom of introspection in Section 4.

One more definition needed to state strong completeness is the (local) consequence
over the class of frames Fg. It is defined as follows (so that logical validity Fg 
 ϕ

corresponds to t �Fg
ϕ):

Γ �Fg
ϕ iff (∀F ∈ Fg)(∀V )(∀x)((∀γ ∈ Γ)(F, V ), x 
 γ implies (F, V ), x 
 ϕ) (22)

2.4 Basic properties of the modality K

The following examples of valid and invalid schemes hold for the validity in the class of
general epistemic frames Fg, as well as in the class of classic epistemic frames Fc. Thus
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we use the symbol |= and do not mention the class explicitly. We are so far not able to
provide any example distinguishing these two classes.

Lemma 2.6 (Monotonicity of K) |= ϕ→ ψ implies |= Kϕ→ Kψ

Proof. Consider x ∈ L , we show x 
 Kϕ → Kψ. Consider any y, z, such that Rxyz
and y 
 Kϕ. We show that z 
 Kψ.

y 
 Kϕ implies there is s such that (sSy and s 
 ϕ). s ≤ s implies there is t ∈ L
such that Rtss and Rsts (by the condition for L). Since in such t 
 ϕ→ ψ and s 
 ϕ,
we conclude s 
 ψ. Thus y 
 Kψ.

But y ≤ z (since x ∈ L and Rxyz), and finally z 
 Kψ. 2

It is to be expected that the proposed semantics based on the class of general frames
blocks all the undesirable properties of both material and strict implication. Moreover,
we ruled out (at least for some classes of frames) the validity of majority of the properties
of standard epistemic logics that we have criticized, in particular, both positive and
negative introspection, as well as some closure properties.

The two core modal principles valid in general frames (see Theorem 3.2) are factivity

Kϕ→ ϕ (23)
and strong factivity

¬ϕ ∧Kϕ→ ⊥ (24)
We call the second condition strong factivity, as it says not only that only information
warranted here can be known, but that anything ‘diswarranted’ here is excluded from
knowledge.

Factivity vs. strong factivity. Factivity does not follow from strong factivity. For
factivity, we would need ¬ϕ⊗Kϕ→ ⊥ whence we could residuate to get Kϕ→ (¬ϕ→
⊥), and then contrapose the consequent Kϕ → (> → ϕ) and use the entailment from
(> → ϕ) to ϕ.

Of course, the claim that ⊥ follows from the fusion of ¬ϕ with Kϕ is a stronger
claim than it following from their conjunction. In the presence of weakening, however,
factivity would follow from strong factivity.

Material factivity. It is worth observing that we also have validity of the weaker claim
which we call material factivity :

¬(¬ϕ ∧Kϕ), or equivalently, ¬Kϕ ∨ ϕ (25)

Material factivity is a weaker condition than factivity since ϕ → ψ entails ¬ϕ ∨ ψ
in R. It is also weaker then strong factivity since (ϕ → ⊥) → ¬ϕ is a theorem of R:
¬ϕ↔ (ϕ→ f) is a theorem, and we can prefix ϕ→ on the theorem ⊥ → f in the usual
manner. But in logics weaker than R, in which the law of excluded middle is rejected,
material factivity remains a consequence of strong factivity, but no longer weak factivity.

K-axiom. K (in implicational form) would in fact correspond to a ‘distribution of
confirmation’: if an implication is confirmed, then the confirmation of the antecedent
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implies the confirmation of the consequent. But the S relation is not connected to the
R relation in any straightforward way, so existence of sources for K(α→ β) and for Kα
does not force existence of a source for Kβ. Hence

6|= K(α→ β)→ (Kα→ Kβ)

Introspection. We defined knowledge as independently confirmed data. In this reading
the axioms 4 and 5 rather than to introspection correspond to a ‘second order confir-
mation’ (if α is confirmed then the confirmation of α is confirmed as well, similarly for
the negative introspection). We showed in Lemma 2.5, that positive introspection fails
in Fg and Fc, while it holds in Fwc. It is easy to see that negative introspection fails
for all frames:

6|= ¬Kα→ K¬Kα
Necessity and negation. There is a difference between s 6
 Kϕ and s 
 ¬Kϕ. The
former simply says that ϕ is not confirmed at the current situation s, while the latter is
stronger (at least in the case of selfcompatible situations), it says that ϕ is not confirmed
in any situation compatible with s. From this point of view it is uncontroversial that
both Kϕ (confirmation in the current situation) and ¬Kϕ (the lack of confirmation
in the compatible situations) might be true in some situation s (in this case s is not
compatible with itself).

Closure properties. In the introduction we criticized too strong closure properties
of the standard modal representations of knowledge. In fact the question how strong
conditions shall be imposed on epistemic states to obtain an adequate representation is
one of the crucial choices of the knowledge representation. It is also closely related to
the problem of logical omniscience.

We can see the machinery of ‘logical expansion’ as having two basic ingredients. One
is knowledge of all the tautologies of the logical system in question guaranteed by the
Necessitation rule. The other is Modal Modus Ponens, which produces all consequences
of any new piece of (non-logical) information. Our system turns out to be extremely
weak and avoids both of these closure properties and some more. It can be seen as
anti-logical and pragmatic—in a sense that our agent believes (accepts) just what is (or
was) observed. Even the data corresponding to logical laws have to be confirmed.

Necessitation rule. The rule
ϕ

Kϕ

common to all normal epistemic logics, guarantees among other things that all the
tautologies of the logical system in question are known. In our framework this would
mean that all the logical truths are confirmed. This is in general not the case. Let us
assume that ϕ is a valid formula (i.e., l 
 ϕ, for every logical situation l). The necessity
rule would imply the validity of Kϕ. However, for l 
 Kϕ we need a confirmation from
a resource and the conditions for the relation S do not guarantee, that l has a logical
situation as a resource (in fact it does not need to have a resource at all), so even if
there is a source situation s for l, this situation does not have to be logical and hence
the validity of ψ in s is not guaranteed.
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Modal Modus Ponens. Closure of knowledge with respect to logical consequence,
which is a part of logical omniscience (if an agent knows both ϕ and ϕ → ψ, then she
knows ψ as well) is forced by the validity of the modal Modus Ponens:

Kα K(α→ β)
Kβ

It is easy to see that it does not hold in our system. As we noted above, K is in fact a
‘distribution of confirmation’. If both an implication and its antecedent are confirmed,
there is no reason the consequent needs to be confirmed as well.

Let us note, that the weaker version of modal Modus Ponens holds

Kα K(α→ β)
β

however, it cannot be considered as any kind of omniscience. It just says that if both α
and (α→ β) are confirmed, then β is a part of currently available data.

This rule holds not only in logical situations, but in all situations. If Kα and K(α→
β) are true in an s ∈ S, then s 
 α and s 
 α → β because of T axiom (factivity). It
follows from the assumption Rsss and the definition of implication, that s 
 β as well.

Contradiction. Contradiction in relevant logic is non-explosive: ϕ and ¬ϕ might hold
in a contradictory situation, but it does not entail an arbitrary formula ψ. (This would
require an R-connection to situation where ψ holds.) 6

6|= (ϕ ∧ ¬ϕ)→ ψ

As we noted above, a contradiction cannot be known (it is never confirmed).

6|= K(ϕ ∧ ¬ϕ)

This has a trivial consequence, that knowledge of contradiction implies anything (|=
K(ϕ ∧ ¬ϕ) → ψ), so, in particular knowledge of contradiction implies knowledge of
anything (|= K(ϕ ∧ ¬ϕ) → K(ψ)). Nevertheless this does not lead to any kind of
explosion as there is no such situation in which the antecedent is true. In standard
models, K(ϕ∧¬ϕ) is never true either, but the reason is that ϕ∧¬ϕ is not true in any
state (possible world). In our framework the situation is different: ϕ ∧ ¬ϕ can be true
in some situation (the agent obtained contradictory data), but K(ϕ ∧ ¬ϕ) cannot.

Adjunction. Modal adjunction also does not hold—if Kα and Kβ are true in s, then
obviously (α ∧ β) is true there, but K(α ∧ β) need not be. 7 Our agent is really careful
here. Even if each of α and β are confirmed separately, their conjunction is not accepted
as knowledge, unless there is a single resource confirming both of them (which in general
does not need to be the case).

6 The explosion does not occur even in the case of the strong conjunction; (ϕ⊗¬ϕ)→ ψ does not hold.
7 The same negative result holds also for strong conjunction. If Kα and Kβ are true in s, then (α⊗β)
is true in s (because of factivity and Rsss), but K(α⊗ β) need not be true in s.
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Modal disjunction rule. In our system knowledge distributes with disjunction (see
Theorem 3.2). It holds that

K(α ∨ β)
Kα ∨Kβ

One of the disjuncts has to be confirmed by the same source as the whole disjunction,
because a disjunction is true at a source if at least one of the disjuncts is.

3 Axiomatics, Soundness, Completeness

We extend a standard Hilbert style axiomatisation of R in the language →,∧,∨,¬,⊥,
which can be adopted e.g. from [5], with aditional axioms for the constants t and > and
the modality K. The remaining logical operators are definable as we noted in Section 2.

Definition 3.1 Calculus RK consists of axiom schemes

ϕ→ ϕ (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

ϕ→ ((ϕ→ ψ)→ ψ) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ)

(ϕ ∧ ψ)→ ϕ (ϕ ∧ ψ)→ ψ

ϕ→ (ϕ ∨ ψ) ψ → (ϕ ∨ ψ)

((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ)) (ϕ ∧ (ψ ∨ χ))→ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))

¬¬ϕ→ ϕ (ϕ→ ¬ψ)→ (ψ → ¬ϕ)

(t→ ϕ)↔ ϕ ϕ→ >
Kϕ→ ϕ ¬ϕ ∧Kϕ→ ⊥
K(ϕ ∨ ψ)→ Kϕ ∨Kψ

and the rules
ϕ ψ
ϕ∧ψ

ϕ ϕ→ψ
ψ

ϕ→ψ
Kϕ→Kψ

Our first result is that this is an axiomatisation of the logic of general frames.

Theorem 3.2 (Soundness) Any formula provable in RK is valid in all general frames.

Proof. We spell out only soundness of the modal axioms, the soundness of the mono-
tonicity rule has been established in Lemma 2.6.
(factivity) Kϕ → ϕ holds, since, whenever sSx and s 
 ϕ then by the condition (20)
s ≤ x and thus x 
 ϕ.
(strong factivity) ¬ϕ∧Kϕ→ ⊥ (note that x 
 ϕ→ ⊥ iff x 6
 ϕ) holds in a logical state
u, since if any x 
 ¬ϕ ∧Kϕ, then for some s where sSx, s 
 ϕ, but from the definition
of sSx we have sCx: so since x 
 ¬ϕ, we have s 1 ϕ, a contradiction. So there is no
such x where ¬ϕ ∧Kϕ holds.
(K commuting with ∨) Suppose x ∈ L, Rxyz and y 
 K(ϕ ∨ ψ) we show that z 

Kϕ ∨Kψ. There is sSy satisfying ϕ ∨ ψ, suppose, e.g., s 
 ϕ. From Rxyz and x ∈ L
we know y ≤ z. By the condition (17) there is s′ such that s ≤ s′ and s′Sz. Now s′ 
 ϕ

and z 
 Kϕ. Then z 
 Kϕ ∨Kψ. 2

We prove that the axiomatization RK is strongly complete with respect to the class
of general frames, i.e. Γ 0 ϕ implies Γ 2Fg

ϕ. We shall adopt the standard technique of
canonical model construction.
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Working with the logic R the natural concept of a theory (or a theory of a state in
a model) is given by the notion of prime theory. A set of formulas Γ is a theory iff it is
closed under provability: if ϕ ` ψ and ϕ ∈ Γ then ψ ∈ Γ, is closed under conjunction: if
ϕ∧ψ ∈ Γ then both ϕ,ψ ∈ Γ. Warning: in relevant logic, theories do not automatically
contain all theorems. (If so, such theory is often called regular.) A theory is prime if it
is moreover closed under disjunctions: if ϕ ∨ ψ ∈ Γ then ϕ ∈ Γ or ψ ∈ Γ.

We use the set of all prime theories over RK as the canonical set of points. Note that
the canonical model defined this way may contain points in which t is not included, thus
it contains nonlogical situations. It is not surprising since e.g. to violate the weakening
axiom we need some nonlogical situations included.

To show that any invalid consequence Γ 0 ϕ can be falsified in a state of the canonical
model we need to know that Γ can be expanded to a prime theory in such a way that
ϕ is not included in the expansion. In R this is done extending simultaneously two
sets—a pair 〈Γ, {ϕ}〉—keeping track on what should and what shouldn’t be included
simultaneously. (Showing ϕ is not a theorem corresponds to invalid consequence t 0 ϕ,
thus we want to falsify ϕ in a logical state.)

Definition 3.3 Let Γ,∆ denote sets of formulas. P = 〈Γ,∆〉 is called a pair if no
conjunction (∧) of formulas in Γ entails any disjunction (∨) of formulas in ∆.

According to Pair Extension Theorem [8, p. 94] we can extend a pair P to a full
pair P ′ = 〈Γ′,∆′〉 which is maximal in the sense that Γ′ ∪∆′ is the whole language. It
follows, that in a full pair Γ′ is always a prime theory [8, p. 93].

Theorem 3.4 (Strong Completeness) The axiomatization RK is strongly complete
with respect to the class Fg of general frames.

Proof. We take the usual Henkin-style construction of a canonical model, from [8,
Sections 11.3 and 11.4]. To this construction of canonical model for RK, we must pay
attention to the behaviour of K, and the accessibility relation S defined on the canonical
model, to verify that this model satisfies the frame conditions for S, and hence, is a
general frame.

Following the proof in [8], we take the points Wr in the canonical frame to be all
the prime theories of the logic RK, and define the canonical frame to be Fr = (Wr, Lr,≤r
, Cr, Rr), where canonical relations are defined:

• Lr = {x | t ∈ x}
• Rrxyz iff for each ϕ→ ψ ∈ x where ϕ ∈ y;ψ ∈ z
• xCry iff for each ¬ϕ ∈ x, ϕ 6∈ y
• xSry iff for each ϕ ∈ x,Kϕ ∈ y

Adding valuation V such that V (p) = {x | p ∈ x} we get a canonical model Mr.
It is immediate that membership in the prime theory satisfies the modelling condi-

tions for ∧ and ∨, and half of the modelling conditions for the conditional, negation and
for K. We have

• if ϕ→ ψ ∈ x, then if Rrxyz, and ϕ ∈ y, then ψ ∈ z
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• if ¬ϕ ∈ x, then if xCry, then ϕ 6∈ y
• if ϕ ∈ x, then if xSry, then Kϕ ∈ y.

To ensure that we have the converse of these, we appeal to Pair Extension Theorem
[8]. The proof for Rr and Cr is standard [8, pp. 256, 261], but the proof for Sr we
reiterate here:

Lemma 3.5 (Extension of the valuation to formulas) x 
 ϕ iff ϕ ∈ x

Proof. Everything is clear except of x 
 Kϕ iff Kϕ ∈ x:
From left to right: x 
 Kϕ, thus there is sSrx satisfying ϕ. From the definition of

Sr, Kϕ ∈ x.
From right to left: Let us assume Kϕ ∈ x, we need an s ∈ Wr such that sSrx and

ϕ ∈ s.
P = 〈{ϕ}; {ψ : Kψ 6∈ x}〉 is a pair. Because if not, then ϕ ` ψ1 ∨ ... ∨ ψn, hence

Kϕ ` K(ψ1 ∨ ... ∨ ψn) (monotonicity of K), and Kϕ ` Kψ1 ∨ ... ∨Kψn (K commuting
with ∨ axiom). But as Kϕ ∈ x, then Kψ1 ∨ ... ∨ Kψn ∈ x (as x is a theory), hence
Kψi ∈ x (as x is prime), which is a contradiction with the definition of P .
According to Pair Extension Theorem [8] we can extend P to a full pair P ′ = 〈s, r〉. It
follows, that s is prime. It remains to show that sSrx. Assume α ∈ s. If Kα 6∈ x, then
α ∈ r (definition of P ), so α 6∈ s. Contradiction. 2

So, the canonical model satisfies the general conditions for a model. It remains to
show the canonical frame falls within the class of general frames, checking the canonical
relations satisfy the required conditions.

Lemma 3.6 Fr ∈ Fg

Proof. It is almost immediate that Rr, Cr and Sr, so defined, satisfy the plump versions
of conditions which we have used in this paper to define general frames. We skip these
cases here and refer to [8] where they can be easily extracted from the general proof.

To make clear the situation of logical states we however show that Lr satisfy the required
conditions. First observe that Lr is clearly an upper set w.r.t. inclusion. We show it
satisfies the condition (9).

Suppose Rrxyz and x ∈ Lr. To show y ⊆ z suppose ϕ ∈ y. Since t ∈ x and
t ` ϕ→ ϕ, we have ϕ→ ϕ ∈ x. Since Rrxyz and ϕ ∈ y, we obtain ϕ ∈ z as desired.

For the converse suppose y ⊆ z. We have to find a prime theory x such that t ∈ x
and Rrxyz holds. First observe that P = 〈{t}, {ϕ → ψ | ϕ ∈ y, ψ /∈ z}〉 is a pair: if
not, t `

∨
i∈I

(ϕi → ψi) for some disjunction of implications from the left set in the pair

P . Then
∧
i∈I

ϕi `
∨
i∈I

ψi. But since all ϕi ∈ y, we have
∨
i∈I

ψi ∈ y and thus some ψi ∈ y

– a contradiction.
According to Pair Extension Theorem [8] we can extend P to a full pair P ′ =

〈x, u〉 where x is a prime theory. Moreover, we have t ∈ x and x ∈ Lr. Rrxyz holds
immediatelly from the definition of P : if ϕ ∈ y and ψ /∈ z then, from the definition of
P , ϕ→ ψ ∈ u and thus ϕ→ ψ /∈ x.
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We show that Sr satisfies the modelling condition (20):
Suppose sSrx. To show that s ≤ x, reason as follows: If ϕ ∈ s, then Kϕ ∈ x

(by the definition of Sr) and by factivity (any prime theory containing Kϕ is closed
under factivity because Kϕ ` ϕ), ϕ ∈ x too. Since inclusion on the canonical model is
subsethood, we have s ≤ x.

Suppose sSrx. We know from the general proof in [8] that Cr is symmetric. It is
therefore enough to show that xCrs. Reason as follows: If ¬ϕ ∈ x, then suppose ϕ were
in s. Then since sSrx, we have Kϕ ∈ x. But we have ¬ϕ ∈ x. Thus, ¬ϕ∧Kϕ ∈ x, which
by strong factivity is impossible (x is a prime theory, and no prime theories contain ⊥).
So, if ¬ϕ ∈ x, then ϕ /∈ s, and hence, xCrs. From symmetry sSrx as desired.

Next we make sure that Sr satisfies the other condition (17). Suppose sSrx and
x ⊆ x′. We need a prime theory s′ such that s ⊆ s′ and s′Srx

′. We claim we can take
s′ = s. We show sSrx

′: suppose ϕ ∈ s, then by sSrx and definition of Sr, Kϕ ∈ x.
Since x ⊆ x′, we have Kϕ ∈ x′ as well. 2

This finishes the proof of Theorem 3.4. 2

4 Correspondence

We address a question of modal correspondence in this section. Not only are factivity
and strong factivity consequences of the modelling conditions (20) and (17), we can
strengthen this to a correspondence result. The modal axioms of factivity and strong
factivity characterize the class of general frames Fg (they hold in a frame F if and only
if F ∈ Fg). We even obtain a more subtle view on the conditions we put on the relation
S: factivity corresponds, on frames, to the first half of the condition (20): sSx→ s ≤ x.
Strong factivity corresponds to the other half of condition (20): sSx → sCx. We may
split the condition (20) into two conditions:

(S1) sSx implies s ≤ x
(S2) sSx implies sCx

If we now define two classes of frames FS1 and FS2 (so that their intersection is Fg)
as those relevant frames with S added and satisfying (S1) and (17), (or (S2) and (17)
respectivelly), we obtain immediatelly sound and complete axiomatizations of the two
logics L(FS1) (using factivity) and L(FS2) (using strong factivity).

Theorem 4.1 (Correspondence)

• Kϕ→ ϕ characterizes the class FS1.
• ¬ϕ ∧Kϕ→ ⊥ characterizes the class FS2.

Proof. Soundness theorem 3.2 supplies one half of the correspondence result.
For the other half of the correspondence condition for factivity, suppose we have a

frame in which the condition sSx → s ≤ x fails. That is, we have a pair of points
s, x where sSx and s � x. Let V (p) be the set of all points in which s is included:
V (p) = {u | s ≤ u}. This is clearly an upper set. Then s ∈ V (p) but x /∈ V (p). It
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follows that Kp holds at x, since sSx, but p does not. Thus, since by the condition (9)
there is some u ∈ L such that Ruxx, we have u 1 Kp→ p.

For strong factivity, suppose sSx → sCx fails. That is, we have a pair of points
s, x where sSx and not sCx. Let V (p) be the set of all points not compatible with x:
V (p) = {u | ¬uCx}. This is upward closed from the conditions posed on C: if not uCx
and u ≤ v, then not vCx by (11). So, p is true at no point compatible with x, hence ¬p
holds at x. However, since s is not compatible with x, s ∈ V (p), and hence Kp holds at
x. Thus we have x 
 ¬p ∧Kp and since by the condition (9) there is some u ∈ L such
that Ruxx, strong factivity cannot hold in u. 2

The following condition (implied by (19) using the fact sSx → sSs) corresponds to
the introspection axiom:

sSx→ (∃y ≥ s)(∃t)(yStSx) (26)

Theorem 4.2 The class of relevant frames with S satisfying conditions (17) and (26)
corresponds to Kϕ→ KKϕ.

Proof. Suppose (26) holds in a frame. Suppose x 
 Kϕ. Then there is sSx and s 
 ϕ.
From (26) there is y ≥ s, thus y 
 ϕ from persistency. There is t such that yStSx. Thus
t 
 Kϕ and x 
 KKϕ.

Suppose (26) doesn’t hold in a frame. Then there is sSx and for no y ≥ s and no t
we have yStSx. Define V (p) = {u | u ≥ s}. Now x 
 Kp. No t such that tSx sees a
p source via S (we have ¬yStSx for each y), thus no such t satisfies Kp and x doesn’t
satisfy KKp. There must be a logical state u with Ruxx and u 1 Kp→ KKp. 2

5 Conclusion

Our aim was to provide an axiomatisation and completeness for relevant frames with
an epistemic modality proposed in [4]. The motivation of the original operator allows
for some natural generalisations and we provided an axiomatisation for the generalised
operator (the logic of the class Fg), while the axiomatisation for the original one (the
logic of the class Fc) is still an open problem. Moreover, we showed that the class of
general frames is an intersection of the classes of frames satisfying factivity and the class
of frames satisfying strong factivity. We also gave a modal characterisation of the class
of epistemic relevant frames in which the introspection axiom holds.

There are several topics related to the subject we did not address here. We shall
explore the proof theory of relevant epistemic modalities and define a display calculus
for them.

Another thing we did not pay attention to is the modality I adjoint to K (i.e.
` Kϕ→ ψ iff ` ϕ→ Iψ). It has a natural interpretation in our epistemic framework, it
corresponds to what we can call implicit knowledge (a formula is implicit knowledge in
a state iff it is true in all the states, for which the current state is a potential source.)
We obtain ϕ → Iϕ as a theorem (everything explicitly waranted is implicitly known)
and ϕ → IKϕ (all that holds in a state is at least implicitly known there) as well as
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KIϕ→ ϕ (nothing else can be known to be implicit then facts warranted in the state)
are theorems.

Other modalities can of course be considered as e.g. another adjoint pair of natu-
ral semantical duals of diamond-like K and box-like I (i.e. a box-like modality acting
backwards along S, and a diamond-like modality acting forward along S). To obtain
persistent meanings of formulas we would have to add another half of condition (17).
Such modalities do not have natural epistemic interpretation in our framework and as
such are not a part of the current work, however we conjecture they are not definable
from the old two and as such can increase the expressivity of the modal language. We
conjecture we would be able e.g. to distinguish between the classes of classical frames,
and the class of general frames using them, as well as extend our definability results.

Last we remark we could start with a logic weaker then R without loosing much
from our original motivations. Obvious candidates would be logics with a weaker nega-
tion obtained, e.g., by weakening conditions for the compatibility relation. This would
of course influence the properties the modality K. Another option is to give up the
contraction or exchange (commutativity of fusion). A challenging option is to give up
distributivity, but this would mean to use more complicated frame semantics.
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