Bayesian Deep Learning for Integrated Intelligence: Bridging the Gap between Perception and Inference

Dit-Yan Yeung Department of Computer Science and Engineering

Joint work with Hao Wang, Naiyan Wang, and Xingjian Shi

Bayesian Deep Learning

Bayesian deep learning

Deep Learning & Graphical Models

Inference & Reasoning: Recommendation

Movie Recommendation

Inference & Reasoning: Social Network Analysis

- Community Detection
- Link Prediction
- Information Diffusion

Bayesian Deep Learning: Under a Principled Framework

Wang et al. 2015 (KDD)

Recommender Systems

Recommender Systems with Content

Content information: Plots, directors, actors, etc.

Modeling the Content Information

Handcrafted features

Automatically learn features and adapt for ratings

Modeling the Content Information

1. Powerful features for content information

2. Feedback from rating information Non-i.i.d.

Collaborative deep learning

Deep Learning

Stacked denoisingConvolutional neuralRecurrent neuralautoencodersnetworksnetworks

Deep learning allows **computational models** that are composed of **multiple processing layers** to learn representations of data with **multiple levels of abstraction**.

Bengio et al. 2015

Deep Learning

Stacked denoising autoencoders

Convolutional neural networks

Recurrent neural networks

Typically for i.i.d. data

Modeling the Content Information

1. Powerful features for content information

Deep learning

2. Feedback from rating information Non-i.i.d.

Collaborative deep learning (CDL)

Contribution

•Collaborative deep learning:

- * deep learning for non-i.i.d. data
- * joint representation learning and collaborative filtering

Contribution

- •Collaborative deep learning
- •Complex target:
 - * beyond targets like classification and regression
 - * to complete a low-rank matrix

Contribution

- •Collaborative deep learning
- Complex target
- First hierarchical Bayesian models for hybrid deep recommender system

Stacked Denoising Autoencoders (SDAE)

Corrupted input

Clean input

SDAE solves the following optimization problem:

$$\min_{\{\mathbf{W}_l\},\{\mathbf{b}_l\}} \|\mathbf{X}_c - \mathbf{X}_L\|_F^2 + \lambda \sum_l \|\mathbf{W}_l\|_F^2,$$

where λ is a regularization parameter and $\|\cdot\|_F$ denotes the Frobenius norm.

Vincent et al. 2010

$$E = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} I_{ij} \left(R_{ij} - U_i^T V_j \right)^2 + \frac{\lambda_U}{2} \sum_{i=1}^{N} \| U_i \|_{Fro}^2 + \frac{\lambda_V}{2} \sum_{j=1}^{M} \| V_j \|_{Fro}^2$$

Salakhutdinov et al. 2008

Probabilistic SDAE

Graphical model:

Generative process:

Graphical model:

Collaborative deep learning

SDAE

Two-way interaction

More powerful representation
Infer missing ratings from content
Infer missing content from ratings

Neural network representation for degenerated CDL

corrupted

maximizing the posterior probability is equivalent to maximizing the joint log-likelihood

$$\mathcal{L} = -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$$
$$-\frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - \mathbf{X}_{\frac{L}{2},j*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_j \|\mathbf{X}_{L,j*} - \mathbf{X}_{c,j*}\|_2^2$$
$$-\frac{\lambda_s}{2} \sum_l \sum_j \|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,j*}\|_2^2$$
$$-\sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2.$$

Prior (regularization) for user latent vectors, weights, and biases

$$\mathcal{L} = -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$$
$$-\frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - \mathbf{X}_{\frac{L}{2},j*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_j \|\mathbf{X}_{L,j*} - \mathbf{X}_{c,j*}\|_2^2$$
$$-\frac{\lambda_s}{2} \sum_l \sum_j \|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,j*}\|_2^2$$
$$-\sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2.$$

Generating item latent vectors from content representation with Gaussian offset $-\frac{\lambda_u}{2}\sum_{i} \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2}\sum_{i} (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$ $\frac{\lambda_{v}}{2} \sum_{i} \|\mathbf{v}_{j} - \mathbf{X}_{\frac{L}{2}, j*}^{T}\|_{2}^{2} - \frac{\lambda_{n}}{2} \sum_{i} \|\mathbf{X}_{L, j*} - \mathbf{X}_{c, j*}\|_{2}^{2}$ $-\frac{\lambda_s}{2}\sum_{l}\sum_{l}\left\|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l+\mathbf{b}_l)-\mathbf{X}_{l,j*}\right\|_2^2$ $-\sum_{i=1}^{\infty}\frac{\mathbf{C}_{ij}}{2}(\mathbf{R}_{ij}-\mathbf{u}_i^T\mathbf{v}_j)^2.$

'Generating' clean input from the output of probabilistic SDAE with Gaussian offset

$$\mathcal{L} = -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$$
$$-\frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - \mathbf{X}_{\frac{L}{2},j*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_j \|\mathbf{X}_{L,j*} - \mathbf{X}_{c,j*}\|_2^2$$
$$-\frac{\lambda_s}{2} \sum_l \sum_j \|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,j*}\|_2^2$$
$$-\sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2.$$

Generating the input of Layer I from the output of Layer I-1 with Gaussian offset

$$\mathscr{L} = -\frac{\lambda_{u}}{2} \sum_{i} \|\mathbf{u}_{i}\|_{2}^{2} - \frac{\lambda_{w}}{2} \sum_{l} (\|\mathbf{W}_{l}\|_{F}^{2} + \|\mathbf{b}_{l}\|_{2}^{2})$$

$$-\frac{\lambda_{v}}{2} \sum_{j} \|\mathbf{v}_{j} - \mathbf{X}_{\frac{L}{2},j*}^{T}\|_{2}^{2} - \frac{\lambda_{n}}{2} \sum_{j} \|\mathbf{X}_{L,j*} - \mathbf{X}_{c,j*}\|_{2}^{2}$$

$$-\frac{\lambda_{s}}{2} \sum_{l} \sum_{j} \|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_{l} + \mathbf{b}_{l}) - \mathbf{X}_{l,j*}\|_{2}^{2}$$

$$-\sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_{i}^{T}\mathbf{v}_{j})^{2}.$$

measures the error of predicted ratings

$$\mathscr{L} = -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$$
$$-\frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - \mathbf{X}_{\frac{L}{2},j*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_j \|\mathbf{X}_{L,j*} - \mathbf{X}_{c,j*}\|_2^2$$
$$-\frac{\lambda_s}{2} \sum_l \sum_j \|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,j*}\|_2^2$$
$$-\sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2.$$

 $\langle \lambda_u \rangle$

→(**u**),

X

If λ_s goes to infinity, the likelihood becomes

$$\begin{aligned} \mathscr{L} &= -\frac{\lambda_{u}}{2} \sum_{i} \|\mathbf{u}_{i}\|_{2}^{2} - \frac{\lambda_{w}}{2} \sum_{l} (\|\mathbf{W}_{l}\|_{F}^{2} + \|\mathbf{b}_{l}\|_{2}^{2}) \\ &- \frac{\lambda_{v}}{2} \sum_{j} \|\mathbf{v}_{j} - f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T}\|_{2}^{2} \\ &- \frac{\lambda_{n}}{2} \sum_{j} \|f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+}) - \mathbf{X}_{c,j*}\|_{2}^{2} \\ &- \sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_{i}^{T}\mathbf{v}_{j})^{2}, \end{aligned}$$

Update Rules

For U and V, use block coordinate descent:

$$\begin{split} \mathbf{u}_{i} \leftarrow (\mathbf{V}\mathbf{C}_{i}\mathbf{V}^{T} + \lambda_{u}\mathbf{I}_{K})^{-1}\mathbf{V}\mathbf{C}_{i}\mathbf{R}_{i} \\ \mathbf{v}_{j} \leftarrow (\mathbf{U}\mathbf{C}_{i}\mathbf{U}^{T} + \lambda_{v}\mathbf{I}_{K})^{-1}(\mathbf{U}\mathbf{C}_{j}\mathbf{R}_{j} + \lambda_{v}f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T}) \\ \\ \hline \mathbf{For W and b, use a modified version of backpropagations} \\ \nabla_{\mathbf{W}_{l}}\mathscr{L} = -\lambda_{w}\mathbf{W}_{l} \\ -\lambda_{v}\sum_{j}\nabla_{\mathbf{W}_{l}}f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T}(f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T} - \mathbf{v}_{j}) \\ -\lambda_{v}\sum_{j}\nabla_{\mathbf{W}_{l}}f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})(f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+}) - \mathbf{X}_{c,j*}) \\ \nabla_{\mathbf{b}_{l}}\mathscr{L} = -\lambda_{w}\mathbf{b}_{l} \\ -\lambda_{v}\sum_{j}\nabla_{\mathbf{b}_{l}}f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T}(f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T} - \mathbf{v}_{j}) \end{split}$$

$$-\lambda_n \sum_j \nabla_{\mathbf{b}_l} f_r(\mathbf{X}_{0,j*}, \mathbf{W}^+) (f_r(\mathbf{X}_{0,j*}, \mathbf{W}^+) - \mathbf{X}_{c,j*})$$

Datasets

	citeulike-a	citeulike-t	Netflix
#users	5551	7947	407261
#items	16980	25975	9228
#ratings	204987	134860	15348808

Collaborative Deep Learning for Recommender Systems ABSTRACT

ABSTRUCE Collaboration Witting (CD) is a successful approach nor-many und by many recommender system. Conventional CP lossed nethods on the rading given to items by usery any applications, using CP lossed nethods to degrade any applications, using CP lossed nethods to degrade draw the sparsity problem, and the system of the system model of the sparsity problem, and the system of the system of the system of the system of the system is application of the system of the system

Collaborative Deep Learning for Recommender Systems ABSTRACT

ABTRUCT Collaborations through the same model approach com-mody and by many recommender systems. Conventional CF based multicols are the rating greater to trues by assess numericalism. However, the ratings are afree very pursue in summary applications, omits (CF should multicols to degrade the system) of the system of the system of the system of the spectra problem, and the system of the system the approach which tightly couples the two components that parts from the system of the system of the system were applied with the system of the syst

The four must learn to harness their new abilities and work together to save Earth from a former friend turned enemy.

Titles and abstracts Titles and abstracts

Movie plots

Wang et al. 2011 Wang et al. 2013

Content information

Evaluation Metrics

Recall:

recall@ $M = \frac{\text{number of items that the user likes among the top } M}{\text{total number of items that the user likes}}$

Mean Average Precision (mAP):

$$mAP = \frac{\sum_{q=1}^{Q} AveP(q)}{Q}$$
$$AveP = \frac{\sum_{k=1}^{n} (P(k) \times rel(k))}{\text{number of relevant items}}$$

Higher recall and mAP indicate better recommendation performance

Comparing Methods

- **CMF**: Collective Matrix Factorization (Singh et al. 2008) is a model incorporating different sources of information by simultaneously factorizing multiple matrices.
- **SVDFeature**: SVDFeature (Chen et al. 2012) is a model for feature-based collaborative filtering.
- **DeepMusic**: DeepMusic (Oord et al. 2013) is a model for music recommendation.
- **CTR**: Collaborative Topic Regression (Wang et al. 2011) is a model performing topic modeling and collaborative filtering simultaneously.

Hybrid methods using BOW and ratings

Loosely coupled; interaction is not two-way

PMF+LDA

citeulike-t, dense setting

Netflix, dense setting

Mean Average Precision (mAP)

	citeulike-a	citeulike-t	Netflix
CDL	0.0514	0.0453	0.0312
CTR	0.0236	0.0175	0.0223
DeepMusic	0.0159	0.0118	0.0167
CMF	0.0164	0.0104	0.0158
SVDFeature	0.0152	0.0103	0.0187

Exactly the same as Oord et al. 2013, we set the cutoff point at 500 for each user.

A relative performance boost of about 50%

Number of Layers

Sparse Setting

#layers	1	2	3
citeulike-a	27.89	31.06	30.70
citeulike-t	32.58	34.67	35.48
Netflix	29.20	30.50	31.01

Dense Setting

#layers	1	2	3
citeulike- a	58.35	59.43	59.31
citeulike-t	52.68	53.81	54.48
Netflix	69.26	70.40	70.42

The best performance is achieved when the number of layers is **2 or 3** (**4 or 6** layers of generalized neural networks).

Example User

Romance Moonstruck

Movies

True Romance

# training samples	2
	Swordfish
	A Fish Called Wanda
	Terminator 2
	A Clockwork Orange
Top 10 recommended	Sling Blade
movies by \mathbf{CTR}	Bridget Jones's Diary
	Raising Arizona
	A Streetcar Named Desire
	The Untouchables
	The Full Monty
# training samples	2
# training samples	2 Snatch
# training samples	2 Snatch The Big Lebowski
# training samples	2 Snatch The Big Lebowski Pulp Fiction
# training samples	2 Snatch The Big Lebowski Pulp Fiction Kill Bill
# training samples Top 10 recommended	2 Snatch The Big Lebowski Pulp Fiction Kill Bill Raising Arizona
# training samples Top 10 recommended movies by CDL	2 Snatch The Big Lebowski Pulp Fiction Kill Bill Raising Arizona The Big Chill
# training samples Top 10 recommended movies by CDL	2 Snatch The Big Lebowski Pulp Fiction Kill Bill Raising Arizona The Big Chill Tootsie
# training samples Top 10 recommended movies by CDL	2 Snatch The Big Lebowski Pulp Fiction Kill Bill Raising Arizona The Big Chill Tootsie Sense and Sensibility
# training samples Top 10 recommended movies by CDL	2 Snatch The Big Lebowski Pulp Fiction Kill Bill Raising Arizona The Big Chill Tootsie Sense and Sensibility Sling Blade

Precision: 30% VS 20%

Example User

training samples 4Pulp Fiction A Clockwork Orange Being John Malkovich Raising Arizona Sling Blade Top 10 recommended movies by **CTR** Swordfish A Fish Called Wanda 51/016 Saving Grace COLLECTION The Graduate Action & Monster's Ball **Johnny English** # training samples 4 Drama Pulp Fiction Movies Snatch The Usual Suspect Kill Bill KEVIN SI Top 10 recommended Momento movies by CDL The Big Lebowski One Flew Over the Cuckoo's Nest As Good as It Gets Goodfellas AMERICAN The Matrix

American Beauty

Precision: 50% VS 20%

Example User

TOP GUN

P

# training samples	10
	Best in Snow
	Chocolat
	Good Will Hunting
	Monty Python and the Holy Grail
Top 10 recommended	Being John Malkovich
movies by CTR	Raising Arizona
	The Graduate
	Swordfish
	Tootsie
	Saving Private Ryan
# training complex	10
# training samples	10
# training samples	Good Will Hunting
# training samples	Good Will Hunting Best in Show
# training samples	Good Will Hunting Best in Show The Big Lebowski
# training samples	Good Will Hunting Best in Show The Big Lebowski A Few Good Men
Top 10 recommended	Good Will Hunting Best in Show The Big Lebowski A Few Good Men Monty Python and the Holy Grail
Top 10 recommended movies by CDL	Good Will Hunting Best in Show The Big Lebowski A Few Good Men Monty Python and the Holy Grail Pulp Fiction
Top 10 recommended movies by CDL	Good Will Hunting Best in Show The Big Lebowski A Few Good Men Monty Python and the Holy Grail Pulp Fiction The Matrix
Top 10 recommended movies by CDL	Good Will Hunting Best in Show The Big Lebowski A Few Good Men Monty Python and the Holy Grail Pulp Fiction The Matrix Chocolat
Top 10 recommended movies by CDL	Good Will Hunting Best in Show The Big Lebowski A Few Good Men Monty Python and the Holy Grail Pulp Fiction The Matrix Chocolat The Usual Suspect

Precision: 90% VS 50%

Summary: Collaborative Deep Learning

- Non-i.i.d (collaborative) deep learning
- •With a complex target
- First hierarchical Bayesian models for
 - hybrid deep recommender system
- •Significantly advance the state of the art

Extension of CDL

•Word2vec, tf-idf

- •Sampling-based, variational inference
- Tagging information, networks

Relational Stacked Denoising Autoencoders

Wang et al. 2015 (AAAI)

Motivation

- Unsupervised representation learning
- Enhance representation power with relational information

Stacked Denoising Autoencoders (SDAE)

Corrupted input

Clean input

SDAE solves the following optimization problem:

$$\min_{\{\mathbf{W}_l\},\{\mathbf{b}_l\}} \|\mathbf{X}_c - \mathbf{X}_L\|_F^2 + \lambda \sum_l \|\mathbf{W}_l\|_F^2,$$

where λ is a regularization parameter and $\|\cdot\|_F$ denotes the Frobenius norm.

Vincent et al. 2010

Probabilistic SDAE

Graphical model:

Generative process:

Relational SDAE: Generative Process

Oraw the relational latent matrix S from a matrix variate normal distribution:

$$\mathbf{S} \sim \mathcal{N}_{K,J}(0, \mathbf{I}_K \otimes (\lambda_l \mathscr{L}_a)^{-1}).$$

- **2** For layer l of the SDAE where $l = 1, 2, \ldots, \frac{L}{2} 1$,
 - For each column n of the weight matrix \mathbf{W}_l , draw $\mathbf{W}_{l,*n} \sim \mathcal{N}(0, \lambda_w^{-1} \mathbf{I}_{K_l})$.
 - **2** Draw the bias vector $\mathbf{b}_l \sim \mathcal{N}(0, \lambda_w^{-1} \mathbf{I}_{K_l})$.
 - For each row j of X_l , draw

$$\mathbf{X}_{l,j*} \sim \mathcal{N}(\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l), \lambda_s^{-1}\mathbf{I}_{K_l}).$$

Solution For layer $\frac{L}{2}$ of the SDAE network, draw the representation vector for item j from the product of two Gaussians (PoG):

$$\mathbf{X}_{\frac{L}{2},j*} \sim \mathsf{PoG}(\sigma(\mathbf{X}_{\frac{L}{2}-1,j*}\mathbf{W}_l + \mathbf{b}_l), \mathbf{s}_j^T, \lambda_s^{-1}\mathbf{I}_K, \lambda_r^{-1}\mathbf{I}_K).$$

Relational SDAE : Generative Process

• For layer l of the SDAE network where $l = \frac{L}{2} + 1, \frac{L}{2} + 2, \dots, L$,

- For each column n of the weight matrix \mathbf{W}_l , draw $\mathbf{W}_{l,*n} \sim \mathcal{N}(0, \lambda_w^{-1} \mathbf{I}_{K_l})$.
- Draw the bias vector $\mathbf{b}_l \sim \mathcal{N}(0, \lambda_w^{-1} \mathbf{I}_{K_l})$.
- **3** For each row j of \mathbf{X}_l , draw

$$\mathbf{X}_{l,j*} \sim \mathcal{N}(\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l), \lambda_s^{-1}\mathbf{I}_{K_l}).$$

2 For each item j, draw a clean input

$$\mathbf{X}_{c,j*} \sim \mathcal{N}(\mathbf{X}_{L,j*}, \lambda_n^{-1} \mathbf{I}_B).$$

Relational SDAE: Graphical Model

Multi-Relational SDAE : Graphical Model

Relational SDAE: Objective Function

The log-likelihood:

$$\begin{aligned} \mathscr{L} &= -\frac{\lambda_l}{2} \operatorname{tr}(\mathbf{S}\mathscr{L}_a \mathbf{S}^T) - \frac{\lambda_r}{2} \sum_j \| (\mathbf{s}_j^T - \mathbf{X}_{\frac{L}{2}, j*}) \|_2^2 \\ &- \frac{\lambda_w}{2} \sum_l (\| \mathbf{W}_l \|_F^2 + \| \mathbf{b}_l \|_2^2) \\ &- \frac{\lambda_n}{2} \sum_j \| \mathbf{X}_{L, j*} - \mathbf{X}_{c, j*} \|_2^2 \\ &- \frac{\lambda_s}{2} \sum_l \sum_j \| \sigma(\mathbf{X}_{l-1, j*} \mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l, j*} \|_2^2, \end{aligned}$$

where $\mathbf{X}_{l,j*} = \sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l)$. Similar to the generalized SDAE, taking λ_s to infinity, the last term of the joint log-likelihood will vanish.

Update Rules

For S:

$$\mathbf{S}_{k*}(t+1) \leftarrow \mathbf{S}_{k*}(t) + \delta(t)r(t)$$
$$r(t) \leftarrow \lambda_r \mathbf{X}_{\frac{L}{2},*k}^T - (\lambda_l \mathscr{L}_a + \lambda_r \mathbf{I}_J)\mathbf{S}_{k*}(t)$$
$$\delta(t) \leftarrow \frac{r(t)^T r(t)}{r(t)^T (\lambda_l \mathscr{L}_a + \lambda_r \mathbf{I}_J)r(t)}.$$

For \mathbf{X} , \mathbf{W} , and \mathbf{b} : Use Back Propagation.

From Representation to Tag Recommendation

Objective function:

$$\mathscr{L} = -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - \mathbf{X}_{\frac{L}{2},j*}^T\|_2^2$$
$$-\sum_{i,j} \frac{c_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2,$$

where λ_u and λ_v are hyperparameters. c_{ij} is set to 1 for the existing ratings and 0.01 for the missing entries.

Algorithm

1. Learning representation:

repeat Update S using the updating rules Update X, W, and b until convergence Get resulting representation $X_{\frac{L}{2}, j*}$

2. Learning u_i and v_j :

Optimize the objective function \mathscr{L}

3. Recommend tags to items according to the predicted \mathbf{R}_{ij} : $\mathbf{R}_{ij} = \mathbf{u}_i^T \mathbf{v}_j$ Rank $\mathbf{R}_{1j}, \mathbf{R}_{2j}, \dots, \mathbf{R}_{Ij}$ Recommend tags with largest \mathbf{R}_{ij} to item j

Datasets

Description of datasets

	citeulike-a	citeulike-t	movielens-plot
#items	16980	25975	7261
#tags	7386	8311	2988
#tag-item paris	204987	134860	51301
#relations	44709	32665	543621

Sparse Setting, citeulike-a

Dense Setting, citeulike-a

Sparse Setting, movielens-plot

Dense Setting, movielens-plot

Tagging Scientific Articles

An example article with recommended tags

_	Title: Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews			
Example Article	Top topic 1: language, text, mining, representation, semantic, concept words, relations, processing, categories			
	SDAE True? RSDAE True?			
	1. instance	no	1. sentiment_analysis	no
	2. consumer	yes	2. instance	no
	sentiment_analysis	no	3. consumer	yes
	4. summary	no	4. summary	no
Top 10 tags	5. 31july09	no	5. sentiment	yes
	6. medline	no	6. product_review_mining	yes
	7. eit2	no	7. sentiment_classification	yes
	8. l2r	no	8. 31july09	no
	9. exploration	no	9. opinion_mining	yes
	10. biomedical	no	10. product	yes

Tagging Movies

An example movie with recommended tags

	Title: E.T. the Extra-Terrestrial		
Example Movie	Top topic 1: crew, must, on, earth, human, save, ship, rescue,		
	by, find, scientist, planet		
	SDAE	True tag?	
	1. Saturn Award (Best Special Effects)	yes	
	2. Want	no	
	3. Saturn Award (Best Fantasy Film)	no	
	4. Saturn Award (Best Writing)	yes	
Top 10 recommended tags	5. Cool but freaky	no	
	6. Saturn Award (Best Director)	no	
	7. Oscar (Best Editing)	no	
	8. almost favorite	no	
	9. Steven Spielberg	yes	
	10. sequel better than original	no	

Tagging Movies

An example movie with recommended tags

	Title: E.T. the Extra-Terrestrial		
Example Movie	Top topic 1: crew, must, on, earth, human, save, ship, rescue,		
	by, find, scientist, planet		
	RSDAE	True tag?	
	1. Steven Spielberg	yes	
	2. Saturn Award (Best Special Effects)	yes	
	3. Saturn Award (Best Writing)	yes	
	4. Oscar (Best Editing)	no	
Top 10 recommended tags	5. Want	no	
	6. Liam Neeson	no	
	7. AFI 100 (Cheers)	yes	
	8. Oscar (Best Sound)	yes	
	9. Saturn Award (Best Director)	no	
	10. Oscar (Best Music - Original Score)	yes	

Summary: Relational SDAE

- Adapt SDAE for tag recommendation
- A probabilistic relational model for relational deep learning
- State-of-the-art performance

Bayesian Deep Learning: Under a Principled Framework

Take-home Messages

- Probabilistic graphical models for formulating both representation learning and inference/reasoning components
- Learnable representation serving as a bridge
- Tight, two-way interaction is crucial

Future Goals

General Framework:

- 1. Ability of understanding text, images, and videos
- 2. Ability of inference and planning under uncertainty
- 3. Close the gap between human intelligence and artificial intelligence

Thanks! Q&A