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ABSTRACT
With the advent of Bitcoin, the interest of the database com-
munity in blockchain systems has steadily grown. Many
existing blockchain applications use blockchains as a plat-
form for monetary transactions, however. We deviate from
this philosophy and present ResilientDB, which can serve in
a suite of non-monetary data-processing blockchain appli-
cations. Our ResilientDB uses state-of-the-art technologies
and includes a novel visualization that helps in monitoring
the state of the blockchain application.
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1. INTRODUCTION
With the advent of Bitcoin [20], the interest of the dis-

tributed and database community has steadily grown to-
wards blockchain applications. A blockchain in its simplest
form is an immutable ledger. Initial blockchain applications
envisioned blockchain as a platform for monetary transac-
tions [20, 21]. The key aim of these applications is to provide
a monetary unit of exchange, a cryptocurrency, which can be
covertly exchanged between two or more parties. This covert
exchange requires these applications to allow any user to
participate (permissionless) and hide identities of the par-
ticipants. As a result, these applications suffer from low
throughputs (around 10 txn/s), high latencies, and face sev-
eral vulnerabilities [7, 8].

Evidently, permissionless applications do not satisfy the
needs of secure industry-grade applications. This led to the
rise of permissioned blockchain applications, which require
the identity of each participant to be known a priori. At the
core of any permissioned blockchain application is a Byzan-
tine Fault-Tolerant (Bft) consensus protocol that helps to
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achieve a single order of transactions among the partici-
pants [5, 10, 11, 12, 15, 16, 22, 18].

Contrary to their potential, existing permissioned block-
chain systems are limited by their design choices as they (i)
require exchange of a monetary transaction [2, 19]; (ii) ad-
here to a specific order-execute [4, 9] or execute-order design
paradigm [2]; (iii) achieve very low throughput and do not
scale beyond a small set of replicas replicas [1, 2, 7, 9]; (iv)
are in-flexible in their choice of Bft protocol [1, 4, 19]; and
(v) lack support for introducing thread parallelism and task
pipelining [1, 2, 3, 4, 9].

In this demo, we introduce ResilientDB, a high-throughput
permissioned blockchain fabric [13, 14]. ResilientDB1 is a
modular open-source system for deploying and operating
permissioned blockchain applications. With ResilientDB,
we envision data-management beyond mere cryptocurren-
cies via Blockchain-as-a-Service. ResilientDB enables devel-
opers with the power to implement and test any Bft proto-
col. Moreover, our fabric, which is built from scratch, em-
ploys state-of-the-art software engineering principles, sup-
ports a lean design, and eases application deployment.

ResilientDB includes multi-threaded deep pipelines that
allow it to achieve high-throughput consensus among its
replicas. Any developer can easily configure the number of
threads and stages of the pipeline. ResilientDB also allows
application developers to test their applications using both
YCSB [6] transactions and Smart Contracts. Further, Re-
silientDB provides its users with a Graphical User Interface
(GUI) to compile, deploy, and run the platform and analyze
the results, all with just one click. This GUI is designed to
tightly monitor the performance of each individual replica.

Despite these features of ResilientDB, our focus remains
at designing a high-performance permissioned blockchain
fabric. We claim that such a design is possible by adopting
a system-centric view rather than the protocol-centric view
employed by existing fabrics. Our system-centric view is mo-
tivated twofold: (i) no one Bft protocol fits all settings, and
(ii) there is much more to a blockchain system than just its
Bft protocol. To illustrate the impact of our system-centric
view, we compare in Figure 1 the throughput of ResilientDB
employing the PBFT [5] consensus protocol against a per-
missioned blockchain that uses the Zyzzyva [18] consensus
protocol and adopts practices suggested in BFTSmart [3].
Note that PBFT requires three phases, of which two phases
necessitate quadratic communication among the replicas,

1 ResilientDB is open-sourced at https://resilientdb.com
and code is available at https://github.com/resilientdb.
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Figure 1: Two permissioned applications employing
distinct Bft protocols (80 k clients per experiment).

while Zyzzyva only requires a single linear phase. Despite
using the costlier PBFT consensus protocol, ResilientDB
outperforms the other system. We discuss reasons for the
high throughput of ResilientDB in Section 2.

2. ARCHITECTURE
In this section, we present the architecture and capabil-

ities of our ResilientDB fabric. ResilientDB is written en-
tirely in C++ and provides a GUI to ease user interaction
with the system. Further, we also provide a Dockerized de-
ployment that allows any user to experience and test the Re-
silientDB fabric (comprising of multiple replicas and clients)
on its local machine. In Figure 2, we illustrate the overall
architecture, which we describe in detail next.

• Transport Layer. Permissioned blockchains use com-
munication-intensive Bft consensus protocols. Hence, they
expect an efficient transport layer to facilitate exchange of
messages between replicas.2 ResilientDB employs Nanomsg
sockets to facilitate communication among clients and repli-
cas via TCP or UDP (depending on the choice of the devel-
oper). We also provide support for fast RDMA communica-
tion for replicas with RDMA capabilities.

To facilitate efficient communication, ResilientDB employs
multiple input/output threads with dedicated sockets. Note
that the number of input/output threads can be readily ad-
justed based on the network requirements and buffering bot-
tlenecks. ResilientDB also provides access to distinct mes-
sage queues. Depending on the type of a message, these
queues can be used by different threads to communicate with
each other and to place the message on the network.

• Crypto Layer. Blockchains typically are designed to
deal with malicious adversaries. To secure communication
and prevent message tampering, ResilientDB employs NIST-
recommended cryptographic constructs from the Crypto++
library. Depending on specific needs, replicas and clients
can digitally sign their messages using either (i) asymmetric-
key cryptographic schemes such as ED25519 or RSA; or (ii)
symmetric-key cryptographic schemes such as CMAC and
AES [17]. ResilientDB also provides message digests via
either SHA256 or SHA3 hashes.

• Parallel Pipelined Consensus Layer. At the core of
any permissioned blockchain application lies a Bft consen-
sus protocol that safely replicates client transactions among
all replicas. Decades of research has brought forth several
such protocols. No one protocol is the best-fit in all en-
vironments, however. For example, Zyzzyva achieves high
throughput if none of the replicas are faulty, HotStuff [22]
works well if latency is not critical, GeoBFT [13] scales well

2 Permissionless systems are compute-intensive as they run
consensus by solving a complex cryptographic puzzle.
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Figure 2: Architecture of the ResilientDB fabric.

when replicas are geographically distant, and PBFT, al-
though typically-considered too slow, is most robust against
failures. These characteristics of existing Bft protocols per-
mit us to conclude that any resilient permissioned blockchain
fabric should facilitate testing and implementation of differ-
ent Bft protocols. ResilientDB’s consensus layer allows this
and to support this claim we provide implementation of all
of the aforementioned protocols (among many others).

Furthermore, as we argued in Section 1, there is more to
a blockchain system than just its Bft protocol. In specific,
we showed that a permissioned blockchain fabric adopting
a system-centric design and employing a slow Bft protocol
outperforms a protocol-centric fabric that uses a fast pro-
tocol. To yield such a system-centric design, ResilientDB
employs transaction batching, multi-threading, pipelining,
out-of-order processing, and memory pooling.

Batching. Prior works have batched client transactions
to reduce the cost of consensus [5, 18]. We permit batching
of transactions at both clients and replicas and developers
can specify any size for such batches. Batching reduces both
communication costs and computation costs by reducing the
number of messages that are exchanged (which also reduced
the number of message signatures necessary).

Transactions and Smart Contracts. ResilientDB sup-
ports YCSB transactions and customized Smart Contracts.
YCSB transactions can be used for benchmarking perfor-
mance and developers can easily vary the skew (read/write
percentage) of these transaction. ResilientDB also provides
APIs for designing and testing Smart Contracts, which are
similar to stored procedures in databases [7]. To demon-
strate this, we implemented Ethereum’s account-based smart
contracts for banking applications [21] (see Section 3.2).

We associate each transaction with a transaction manager
that manages the resources required for handling transac-
tions. We provide fast lookup of transaction managers via
indices on transaction identifier and batch identifier. Fur-
thermore, transaction managers are pooled and reused to
save on allocation and deallocation costs.

Order-Execute vs. Execute-Order Paradigm. Tradi-
tional permissioned blockchain systems employ the order-
execute paradigm, which states that a transaction needs to
be ordered across all replicas prior to its execution [4, 9].
This is in contrast with the execute-order paradigm pro-
posed by Hyperledger [2], which advocates to first execute
and then order the transaction. Both of these paradigms
have their pros and cons. Our ResilientDB fabric provides
support for both paradigms and allows developers to select
the paradigm that best fits their applications.
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Figure 3: Demo Platform Architecture.

Multi-Threaded Deep Pipeline. As stated before, per-
missioned blockchain systems are communication-intensive.
Hence, we ensure that our ResilientDB fabric is not under-
utilizing hardware and will only be limited by network ca-
pacity. To do so, we designed the consensus protocols in
ResilientDB such that the critical path is as simple as possi-
ble and all other tasks are split of in their separate threads.
E.g., threads to deal with message sending, with message
receiving, signing messages, verifying signatures, creating
transaction batches, performing checkpoints, and executing
transactions. Users can easily adjust the number of required
threads depending on the specific needs of their applications.

• Memory Pool. Blockchain systems that process thou-
sands of transactions, smart contracts, and messages per
second require high-performance management of memory
resources. For ResilientDB’s memory management, we em-
ploy Jemalloc. Further, we minimize memory allocation and
deallocation by using distinct memory pools for messages,
transaction managers, and smart contracts. Depending on
the size of an allocation, each thread accesses the required
pool and fetches an unallocated memory object. At the time
of garbage collection, obsolete objects are marked as released
and placed back in the respective memory pool for reuse.

• Chain Storage. ResilientDB provides support for se-
cure ledger (blockchain) management. To enable efficient ex-
ecution of client transactions, we also support efficient read
and write accesses to client records. In specific, each replica
can use popular databases such as SQLite and LevelDB to
achieve data persistence for the ledger and client records un-
der failure. ResilientDB provides several simple APIs that
allow developers to read and write to these databases and
modify their schema if necessary.

3. DEMONSTRATION SCENARIO
During our demonstration, each user will get access to a

graphical web-based interface of ResilientDB. Figure 3 illus-
trates the architecture of our demonstration environment.
We provide a web-based UI for specifying experiment pa-
rameters, for monitoring the real-time throughput and la-
tency of the system, and for the analysis of collected data.

In specific, users can specify their choice of parameters
on our React Web Dashboard, which uses REST APIs to
forward these parameters to our Nginx back end. The back
end compiles the code and deploys the executables on the
Google Cloud Platform (GCP). Once the executables start
running, any emitted result is continuously stored in In-
fluxDB. Throughout this process, our dashboard shows the
user the current state of the system. If the user wants to
visualize the ongoing results, our dashboard asks the back
end to fetch the data from InfluxDB and plot the required
graphs. This allows us to show the user real-time system

Parameter Options
Bft Protocol PBFT, Zyzzyva, GeoBFT, HotStuff
Transactions YCSB, Banking Smart Contracts
Requests/Txn 1, 5, 15, 50
Batch Size 1, 10, 100, 500, 1000, 4000
Message Size 0 kB, 100 kB, 200 kB, 400 kB
Pipeline Enable or Disable
Threads I/O, Worker, Execute Sign, Checkpoint
Storage In-memory, SQLite, LevelDB

Signatures
Disable

Only Asymmetric ED25519, RSA
Only Symmetric CMAC, VMAC
Mix Use both

Hash Schemes SHA256, SHA3

Figure 4: ResilientDB parameters.

Figure 5: The interactive WebUI dashboard.

throughput and latency metrics. We employ React (open-
source), Nginx (performance), and InfluxDB (eases manage-
ment of time-series data) for their associated advantages.

We provide our users access to two demonstration sce-
narios. The first demonstration scenario focuses on making
users understand the different parameters that affect the
performance of a blockchain fabric. The second demonstra-
tion scenario allows interested users to create and deploy
their own smart contracts on-the-fly. We explain these next.

3.1 Mix-and-Match
The key takeaway of the mix-and-match demonstration

is to make users experiment and observe the different pa-
rameters that affect throughput (transactions per second)
and latency (time from the client request to the response)
of a permissioned blockchain application. We give users a
GUI (see Figure 5) and ask them to mix-and-match the pa-
rameters listed in Figure 4.

We first require the user to Sign-up/Sign-in to our Re-
silientDB portal. Next, the user can Configure experiments
of its choice. To do so, the user first selects a BFT proto-
col. At present, we have already implemented four state-of-
the-art protocols. Next, the user decides whether it wants
clients to send YCSB transactions or to run Banking Smart
Contracts. The user can set the number of requests each
client includes in its transactions and the size of the batch
(if batching is employed by replicas). To test the limit of
the network, we also provide capability to add a predefined
load to messages.

We allow our users to select whether they want to enable
or disable pipelining. Enabling pipelining in ResilientDB al-
lows the various phases of a Bft protocol to be executed in
parallel. For example, PBFT is a three-phase preprepare-
prepare-commit protocol. If we pipeline PBFT, then one
transaction is prepared while previous transactions are com-
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1 /∗ return : 1 f o r commit , 0 f o r abort ∗/
2
3 in t TransferMoney : : execute ( )
4 {
5 in t s ou r c e ba l = db−>Get ( th i s−>source ) ;
6 i n t d e s t ba l = db−>Get ( th i s−>dest ) ;
7 i f ( th i s−>amount <= source ) {
8 db−>Set ( th i s−>source , s ou r c e ba l − amount ) ;
9 db−>Set ( th i s−>dest , d e s t ba l + amount ) ;

10 return 1 ;
11 }
12 return 0 ;
13 }

Figure 6: Transfer Smart Contract in ResilientDB.

mitted and executed. To ensure safety, the ordering is de-
layed until execution [5, 13]. In similar ways, the phases
of other protocols can be pipelined. As stated earlier, Re-
silientDB also divides tasks across threads. We allow users
to choose the number of threads needed to create batches, to
sign messages, to fetch data from the network and to place
output on the network. Further, we allow users to select the
type of storage for their blockchain ledger and client records.
At present, we support the in-memory databases SQLite and
LevelDB for storing the ledger and client records. Finally,
users can decide the type of cryptographic constructs, signa-
tures and digests, they want to employ. Note that a user
need not specify all parameters. In such a case, the system
will proceed with the default parameters.

Finally, the user can deploy the experiment via the Run
button, which initiates the script that will compile, deploy,
and run the experiment. The user is presented with a web-
page that tracks the experiment progress. The user also
has an option of monitoring the results in real-time. Once
the experiment completes, the user can query the InfluxDB
database holding all results.

3.2 Deploying Smart-Contract
The key takeaway of the Deploying Smart-Contract demon-

stration is to show how users can design their own applica-
tions in ResilientDB. We believe that demonstrating users
the ease with which they can use ResilientDB to create new
applications illustrates ResilientDB’s general applicability.

Say we want to design a banking application. The trans-
fer transaction is a key utility, as it allows movement of
money from one account to another. To support transfers,
we create a smart contract that allows a user Bob to trans-
fer an amount X from his account to the account of Alice
(see Figure 6). Prior to transferring X, the smart contract
also needs to check if Bob (source) has at least amount X
(source bal) in his account. The smart contract needs ac-
cess to the database with client records, for which we use
GET and PUT APIs.

We provide a base class (SmartContract) that developers
can inherit to define their functionalities. Further, the client
needs to provide the required parameters for the new smart
contract. For example, the client specifies the source, des-
tination and the amount. Note that these changes do not
affect the process of compiling, deploying, and running the
code, which can still be done through our GUI. Hence, with
simple changes, users can build their own applications using
our ResilientDB fabric.

4. CONCLUSIONS
In this demonstration, we present ResilientDB, a high-

throughput permissioned blockchain fabric. The key aim of
this demonstration is to make users understand the different
parameters that affect the throughput of a blockchain fabric.

We allow users to mix-and-match different parameters and
illustrate how easy it is for users to make their applications
around ResilientDB.
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