
MILC: Inverted List Compression in Memory

Jianguo Wang Chunbin Lin Ruining He Moojin Chae
Yannis Papakonstantinou Steven Swanson

Department of Computer Science and Engineering
University of California, San Diego

{csjgwang, chunbinlin, r4he, mochae, yannis, swanson}@cs.ucsd.edu

ABSTRACT

Inverted list compression is a topic that has been studied
for 50 years due to its fundamental importance in numer-
ous applications including information retrieval, databases,
and graph analytics. Typically, an inverted list compression
algorithm is evaluated on its space overhead and query pro-
cessing time. Earlier list compression designs mainly focused
on minimizing the space overhead to reduce expensive disk
I/O time in disk-oriented systems. But the recent trend is
shifted towards reducing query processing time because the
underlying systems tend to be memory-resident. Although
there are many highly optimized compression approaches in
main memory, there is still a considerable performance gap
between query processing over compressed lists and uncom-
pressed lists, which motivates this work.

In this work, we set out to bridge this performance gap
for the first time by proposing a new compression scheme,
namely, MILC (memory inverted list compression). MILC re-
lies on a series of techniques including offset-oriented fixed-
bit encoding, dynamic partitioning, in-block compression,
cache-aware optimization, and SIMD acceleration. We con-
duct experiments on three real-world datasets in information
retrieval, databases, and graph analytics to demonstrate the
high performance and low space overhead of MILC. We com-
pareMILC with 12 recent compression algorithms and exper-
imentally show that MILC improves the query performance
by up to 13.2× and reduces the space overhead by up to
4.7×.

1. INTRODUCTION
An inverted list is a sorted list of integers. Although sim-

ple, it is the standard structure in a wide range of applica-
tions. For instance, search engines usually rely on inverted
lists to find relevant documents. Databases also heavily need
inverted lists to accelerate SQL processing [3].

Inverted list compression is a topic that has been studied
for 50 years due to its benefits in disk-oriented systems as

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 8
Copyright 2017 VLDB Endowment 21508097/17/04.

 0

 20

 40

 60

 80

 100

 120

 140

Uncompressed

PforDelta

SIMDPforDelta

PEF

a
vg

.
ex

ec
.

ti
m

e
(m

s)

compression algorithms

Figure 1: Executing queries over compressed
(PforDelta [43], SIMDPforDelta [18], and PEF [25])
and uncompressed lists

well as recent memory-oriented systems. In disk-centric sys-
tems, compression can reduce expensive I/O time by short-
ening lists’ sizes. Thus, list compression algorithms designed
for disks (e.g., VB [32], Rice [28], Elias gamma [12]) mainly
focus on reducing space overhead. The CPU decompression
overhead is negligible compared to the saved I/O time due to
the giant performance gap between disk and CPU. In recent
memory-oriented systems, compression is also beneficial be-
cause it makes the system accommodate much more data
than the physical memory capacity. For example, 100GB’s
raw data can be pushed to a server with 32GB DRAM.
This reduces the total cost of ownership (TCO) since main
memory is still an expensive resource. As a result, many
compression algorithms have been developed for in-memory
inverted lists, e.g., PforDelta [43], SIMDPforDelta [18], and
PEF [25].

Motivation. We observe that there is still a considerable
performance gap for query processing over compressed lists
(with state-of-the-art compression algorithms) versus un-
compressed lists in memory. For example, Figure 1 shows
the (average) execution time of running 1000 real-world search
engine queries over 300GB data.1 It shows that the perfor-
mance gap is 2.1× to 6.4×.

This raises an interesting question: Is it possible to bridge

this performance gap when operating on compressed data

while still keeping low space overhead? This work gives a
positive answer to this question by proposing a new compres-
sion algorithm, namely, MILC (memory inverted list com-
pression). Compared with uncompressed lists, MILC achieves
a compression ratio up to 4.7× and executes queries nearly

1We use the Web data described in Section 9.

853

as fast as that on uncompressed lists according to our ex-
periments. Before diving into the technical descriptions, we
define the problem first.

Problem statement. Given a sorted list L of n positive
integers, the problem of inverted list compression is to com-
press L with as few as possible bits (smaller than the original
list) while supporting query processing on compressed data
as fast as possible. We mainly focus on supporting efficient
membership testing – checking whether an element appears
in a compressed list – because it is the core of many op-
erations, e.g., intersection, union, difference, selection, join,
successor finding, and top-k query processing.

Limitations of existing compression solutions. Exist-
ing compression algorithms for inverted lists, e.g., VB [32],
Simple8b [2], GroupVB [9], and PforDelta [43], usually fol-
low a golden rule that is to compute the differences (called
d-gaps) between two consecutive integers (since all integers
are sorted), and only encode the small d-gaps using fewer
bits to save space. For example, let L = {8, 15, 20, 25,
35, 40, 52, 60, 65, 78, 90}, then existing solutions usually
convert L to L′ = {8, 7, 5, 5, 10, 5, 12, 8, 5, 13, 12}, where
L′[0] = L[0] and L′[i] = L[i] − L[i − 1] (i ≥ 1). But this
is exactly why existing approaches cannot support member-
ship testing efficiently: They have to decompress the entire
list. Even with skip pointers as suggested in [24], still, they
need to decompress at least one block of data on the fly.
Moreover, the decompression overhead is high because they
need to traverse the data at least twice in order to recover
the original values: (1) decode each individual d-gap; (2)
calculate prefix sums. Some compression algorithms may
need more rounds, e.g., PforDelta requires another round
of traversal to recover the exception values. Another im-
portant drawback of d-gap-based compression algorithms is
that they are unfriendly to SIMD (single instruction multi-
ple data) due to the inherent data dependencies in comput-
ing prefix sums [18]. Those compression algorithms that do
not explicitly rely on d-gaps (such as EF [11,34], PEF [25])
also have problems in dealing with membership testing effi-
ciently as we explain more in related work.

Challenges. It is challenging to design a new compression
approach to achieve similar query performance as uncom-
pressed lists while keeping low space overhead, considering
the problem has been studied for many years. This particu-
larly holds today because the underlying hardware (e.g., big
memory, new processors with large CPU caches and wide
SIMDs) has changed significantly. The compression format
should also be compliant with CPU cache lines and SIMD
instructions such that membership testing can be executed
even more efficiently. To solve the problem, we need to break
the traditional rule by abandoning d-gaps. This will increase
the space overhead naturally. Therefore, we need to design
new techniques to reduce space overhead while maintaining
high query performance.

Technical overview. To address the above challenges, we
develop a novel compression scheme MILC (memory inverted
list compression) that achieves similar membership testing
performance with uncompressed lists. The basic idea of
MILC is that it partitions an input list into different blocks,
then it applies offset-based (instead of delta-based) encoding
and uses the same number of bits to encode all the elements
within the block (Section 4). This is crucial to the success of

MILC

List

VB

Simple9

PforDelta

NewPforDelta

OptPforDelta

Simple16

GroupVB

Simple8b

PEF

SIMDPforDelta

SIMDBP128

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45

ti
m

e
(m

s)

space (GB)

MILC

Uncompressed

Figure 2: Experiments overview of MILC vs exist-
ing compression approaches on 300GB Web data in
executing 1000 queries

MILC because it enables MILC to support membership test-
ing directly on compressed data as we show in Section 4.

To further reduce space overhead and improve query per-
formance, MILC employs four optimizations: (1) Dynamic

partitioning (Section 5). It partitions a list into variable-
sized blocks based on dynamic programming to minimize
exception values in each block, i.e., elements in a block have
low variance. This effectively reduces the space overhead
because exceptions need more bits to represent, and all the
other elements end up using the same high number of bits.
(2) In-block compression (Section 6). MILC further splits ev-
ery block into sub-blocks by smartly plugging in lightweight
skip pointers to reduce the space overhead. (3) Cache-

aware optimization (Section 7). MILC reorganizes data in
a way that considers CPU cache line alignment. It can im-
prove the performance of membership testing because CPU
cache misses are reduced. (4) SIMD acceleration (Section 8).
MILC also leverages SIMD for fast query processing.

Contribution. The main contribution of this work is a new
compression scheme MILC that achieves similar membership
testing performance with uncompressed lists while keeping
low space overhead. MILC is tailored for modern computing
hardware including big memory, fast CPU caches, and wide
SIMD processing capabilities. To the best of our knowledge,
this is the first inverted list compression algorithm that has
such high query performance with low space overhead.

Experimental overview. We conduct experiments on
datasets from information retrieval, databases, and graph
analytics to demonstrate the advantages of MILC with a
spectrum of 12 compression algorithms in terms of query
performance and space overhead. Figure 2 shows a preview
on 300GB Web data in answering 1000 user queries,2 and
Section 9 describes more details. It shows that MILC runs
faster than existing compression approaches and consumes
low space also. Thus, MILC represents the best tradeoff for
inverted list compression in main memory in terms of time
and space.

2We report the membership testing time to measure the
effectiveness of MILC as described in Section 9.

854

SELECT d_year, s_nation, p_category,

sum(lo_revenue - lo_supplycost) as profit

FROM date, customer, supplier, part, lineorder

WHERE lo_custkey = c_custkey

AND lo_suppkey = s_suppkey

AND lo_partkey = p_partkey

AND lo_orderdate = d_datekey

AND c_region = ’AMERICA’
AND s_region = ’AMERICA’
AND d_year = 1997

AND p_mfgr = ’MFGR#1’

SELECT d_year, s_nation, p_category,

sum(lo_revenue - lo_supplycost) as profit

FROM lineorderfull

WHERE c_region = ’AMERICA’
AND s_region = ’AMERICA’
AND d_year = 1997

AND p_mfgr = ’MFGR#1’

(a) star schema join

(b) intersection

Figure 3: An example of star schema join and inter-
section

Paper organization. The rest of the paper is organized
as follows. Section 2 presents the applications that require
inverted list compression. Section 3 describes the existing
work on inverted list compression. Section 4 presents the
basic idea of MILC. Section 5 to Section 8 develop four op-
timizations used in MILC. Section 9 evaluates MILC experi-
mentally. Section 10 concludes the work.

2. APPLICATIONS
In this section, we provide motivating applications that

rely on inverted lists for efficient query processing. This
means that a large range of applications can benefit from
this work on inverted list compression.

2.1 Information retrieval
Information retrieval (IR) is a killer application of inverted

lists to answer user queries with multiple terms [23]. IR
systems store an inverted list for each term all the documents
that contain the term. Taking the intersection or union of
the lists for a set of query terms identifies those documents
that contain all or at least one of the terms.

2.2 Database query processing
Inverted lists are also helpful in SQL databases, especially

if there is logically one huge table and the query involves
many predicates, e.g., a conjunction of predicates as shown
in Figure 3b. In this case, most databases would precompute
a list of matching row IDs for each predicate to facilitate the
conjunction (or intersection) query [26].

Besides that, many star schema joins can also be framed
as conjunctive queries as suggested in prior works [3,26]. For
instance, the star schema join in Figure 3a can be converted
to the intersection query in Figure 3b where lineorderfull
is a logical huge table that is created offline as follows [3,
26]: (1) lineorderfull = lineorder ✶ date ✶ customer

✶ supplier ✶ part; (2) add an additional id column to
lineorderfull. Note that lineorderfull and lineorder

have the same number of tuples due to many-to-one map-
ping.3 Then the star schema join in Figure 3a can be re-
duced to the intersection query in Figure 3b as L1 ∩ L2 ∩
L3 ∩ L4 where:
L1 = πidσc region=′AMERICA′ (lineorderfull)
L2 = πidσs region=′AMERICA′ (lineorderfull)
L3 = πidσd year=1997 (lineorderfull)
L4 = πidσp mfgr=′MFGR#1′ (lineorderfull)

Since all the lists are precomputed and stored in an index
structure such as B-tree, then the query plan can be exe-
cuted as follows: L1 and L2 are intersected first, then the
results of L1 ∩L2 are intersected with L3, finally the results
of L1 ∩ L2 ∩ L3 are intersected with L4.

2.3 Graph analytics
Graph databases represent another family of advocates of

inverted lists. There are usually two types of inverted lists
in graph databases: adjacency lists and association lists.
An adjacency list is dedicated for a vertex to maintain all
neighborhood vertices connected with it. An association list
is dedicated for an object (e.g., a Facebook page) to keep all
relevant associations where an association is specified by a
source object, destination object, and association type (e.g.,
tagged-in, likers) [33]. Many queries over these graphs
can be answered efficiently using inverted lists. For exam-
ple, finding “Restaurants in San Francisco liked by Mike’s
friends” reduces to finding the intersection of the adjacency
list of “Mike” and the association lists of “Restaurants” and
“San Francisco”; discovering common friends among a group
of people transforms to computing the intersection of several
adjacency lists.

2.4 More applications
In addition, there are many other applications that heav-

ily use inverted lists for fast query processing. For exam-
ple, data integration systems build inverted lists for q-grams
to find the most similar strings [15]. Data mining systems
deploy inverted lists for fast data cube operations such as
slicing, dicing, rolling up and drilling down [19, 21]. XML
databases depend on inverted lists to find twig patterns ef-
ficiently [4]. Key-value stores also organize data elements
falling into the same bucket (hash collision) with a chained
list, which is essentially an inverted list [10].

3. RELATED WORK
In this section, we take a retrospective look at the ma-

jor inverted list compression algorithms developed so far.
Figure 4 shows a brief history.
As mentioned in Section 1, the common wisdom of a de-

cent inverted list compression algorithm is to compute the
deltas (a.k.a d-gaps) between two consecutive integers first
and only encode the d-gaps to save space.4 To prevent from
decompressing the entire list during query processing, it or-
ganizes those d-gaps into blocks (of say 128 elements per

3The many-to-one mapping is from a foreign key in the fact
table to the primary key in the dimension table.
4Early compression algorithms (before 1990) do not follow
this rule and encode each element of a list individually, e.g.,
Rice [28] and Elias gamma [12]. However, they are far
worse than today’s compression algorithms, e.g., PforDelta,
in terms of both query execution time and space overhead.
Thus, we ignore them in this work.

855

1966

U
n
co
m
p
re
ss
ed

[2
2
]

1971

R
ic
e
[2
8
]

1974
E
F

[1
1
]

1975

E
li
a
s
g
a
m
m
a
[1
2
]

1990

d
-g
a
p
[8
]

V
B

[8
]

1996

S
k
ip
p
in
g
[2
4
]

2005

S
im

p
le
9
[1
]

2006

P
fo
rD

el
ta

[4
3
]

2008

O
p
tP

fo
rD

el
ta

[4
1
]

N
ew

P
fo
rD

el
ta

[4
1
]

2009

G
ro
u
p
V
B

[9
]

S
im

p
le
1
6
[4
0
]

2010

S
im

p
le
8
b
[2
]

2013

Q
S
(E

F
)
[3
4
]

2014

P
E
F

[2
5
]

2015

S
IM

D
B
P
1
2
8
[1
8
]

S
IM

D
P
fo
rD

el
ta

[1
8
]

2016

G
M
R
u
n
[4
2
]

Figure 4: A brief history of representative inverted list compression approaches

block5) and builds a skip pointer per block such that only
a block of data needs to be decompressed. Today, most ex-
cellent compression methods exactly follow this convention,
including PforDelta [43] (and its descendants such as NewP-
forDelta [41] and OptPforDelta [40]), VB [8], GroupVB [9],
Simple9 [1], Simple16 [40], and Simple8b [2].

Among them, PforDelta is a mature algorithm that is
commonly used because it has a good tradeoff between query
execution time (or decompression speed) and space over-
head [40, 41]. The basic idea is that it compresses a block
of 128 d-gaps by choosing the smallest b in the block such
that a majority of elements (say 90%) can be encoded in b
bits (called regular values). It then encodes the 128 values
by allocating 128 b-bit slots, plus some extra space at the
end to store the values that cannot be represented in b bits
(called exceptions). Each exception takes 32 bits while each
regular value takes b bits. In order to indicate which slots
are exceptions, it uses the unused b-bit slots from the pre-
allocated 128 b-bit slots to construct a linked list, such that
the b-bit slot of one exception stores the offset to the next
exception. In the case where two exceptions are more than
2b slots apart, it adds additional forced exceptions between
the two slots. Besides PforDelta, there are many variations,
e.g., NewPforDelta [41] and OptPforDelta [41]. For exam-
ple, OptPforDelta was designed to reduce the space over-
head of PforDelta but at the expense of more decompression
overhead.
However, PforDelta (as well as its variations) still takes

considerable time to decompress a block of data, because it
usually takes three phases for decompression: (1) It needs
to copy the 128 b-bit values from the slots into an integer
array via bit manipulations; (2) It then walks through the
linked list of exceptions and copies their values into the cor-
responding array slots; (3) It also goes through the integer
array again to perform prefix sums to recover the original
values.
Recently, there is a resurgence of EF encoding [34] which

is not directly based on d-gaps. Actually, EF encoding was
originally proposed in 1974 [11], but it did not attract too
much attention until 2013 when Vigna discovered that EF
encoding can be competitive with PforDelta [34]. It encodes
a sequence of integers using a low-bit array and a high-bit
array. The low-bit array stores the lower b = log U

n
bits of

each element contiguously where U is the maximum pos-
sible element and n is the number of elements in the list.

5The block size represents a tradeoff between space and time
and several existing works suggest 128 as the block size [2,
41].

The high-bit array then stores the remaining higher bits of
each element as a sequence of unary-coded d-gaps. Later on,
Giuseppe and Rossano improved it by leveraging the clus-
tering property of a list, making it outperform PforDelta
for some intersection queries but not union queries [25]. We
call it PEF (Partitioned Elias Fano) in this paper. The fun-
damental problem of EF encoding (and its descendants in-
cluding PEF) is that query processing is still not as efficient
as it can be due to two reasons: (1) It needs to sequentially

go through every bit in the high-bit array until a match
is found, which requires many bit manipulations; (2) After
that, it also needs to sequentially examine 2b possible ties
in the lower-bit array which can be slow if b is large.
In the literature, there were also proposals about reorder-

ing document IDs for better compression ratio, e.g., [40,42].
This is orthogonal to this work and we do not consider them
in this work. Besides that, this work focuses on data com-
pression for inverted lists, which is also orthogonal to data
compression in databases [20].

Currently, there is also a trend of leveraging SIMD to
accelerate the decompression speed of existing compression
methods, such as SIMDPforDelta [18]. The main idea is to
reorganize data elements in a way such that a single SIMD
operation processes multiple elements. However, for d-gap
based compression approaches, computing prefix sums usu-
ally cannot leverage SIMD efficiently because of the intrinsic
data dependencies [18].

Finally, we comment on the compression approaches used
in Vertica [17] and Brighthouse [31] that are also relevant to
this work. The main idea of both approaches is to partition
a list into blocks and maintain metadata for each block to
support query processing. However, MILC is significantly
different from them in (1) how to compress the elements
within a block; (2) how to partition the list into different
blocks; and (3) how to store the metadata information.

4. BASIC COMPRESSION STRUCTURE
In this section, we present the basic compression structure

as a starting point of MILC.

Storage structure. MILC’s basic structure follows the
PforDelta compression algorithm in partitioning the list L
into blocks but is different in compressing the data elements
within a block. It splits L into ⌈ n

m+1
⌉ partitions where

(m + 1) is the size of each partition except the last par-
tition if n is not divisible by (m+ 1). The choice of m will
be discussed later on. The first element (i.e., the minimal
value) of each block serves as a skip pointer and all the skip

856

80 150 300 700 200 300 360 480 180 360 600

Word 0 Word 1 Word 2 Word 3

Block B0

120 860 1800Metadata block

Data blocks

10 bits 9 bits 10 bits

Block B1 Block B2

(skip pointers)

10 bits 10 bits 10 bits 9 bits 9 bits 9 bits 10 bits 10 bits

Figure 5: An example of storage format for L = {120,
200, 270, 420, 820, 860, 1060, 1160, 1220, 1340, 1800,
1980, 2160, 2400} and m = 4

pointers are stored in a metadata block. Thus, each parti-
tion except the last one contains exactly m elements, called
a data block. The metadata block contains ⌈ n

m+1
⌉ elements

(skip pointers); each element points to a data block.
MILC stores a data block as follows. Suppose the block

contains the following m elements: {a0, a1..., am−1} and β
is its skip pointer. MILC stores each element ai as the dif-
ference between ai and the skip pointer, i.e., ai − β, instead
of ai − ai−1 as in PforDelta [43]. We call it offset-based
encoding instead of delta-based encoding. So the maxi-
mum difference is (am−1 − β), which can be encoded in
b = ⌈log(am−1 − β + 1)⌉ bits. Indeed, every element in the
same data block is represented in b bits – unlike PforDelta,
MILC does not use exceptions. Different blocks may use
different number of bits to represent their values. To save
space, MILC fully utilizes the 32 bits of a word by packing
as many values as possible and padding the residual bits of
the word (if any) with the next value if possible.

MILC stores the metadata block in the same format as
PforDelta. Each entry in the metadata block contains the
metadata information of a data block including the start
value (32 bits), offset (32 bits), and the number of bits b (8
bits) to encode the data block.

Example. As an example, Figure 5 depicts the structure
and storage format of L = {120, 200, 270, 420, 820, 860,
1060, 1160, 1220, 1340, 1800, 1980, 2160, 2400} consisting
of 14 elements and m = 4. It stores the list as follows: (1)
It divides L into ⌈ 14

4+1
⌉ = 3 partitions where each parti-

tion (except the last one) has 5 elements: {120, 200, 270,
420, 820}; {860, 1060, 1160, 1220, 1340}; {1800, 1980, 2160,
2400}. (2) It extracts the first element from each partition
and puts it to the metadata block: {120, 860, 1800}. As a
result, the data blocks are: {200, 270, 420, 820} (the skip
pointer is 120), {1060, 1160, 1220, 1340} (the skip pointer
is 860), and {1980, 2160, 2400} (the skip pointer is 1800).
(3) It subtracts the skip pointer from each data block. For
example, for the first data block (B0), since its skip pointer
is 120, then it is stored a sequence of values by subtracting
120, i.e., {80, 150, 300, 700}. (4) It determines the smallest
b in each block such that all the elements can be encoded in
b bits, e.g., for block B0, the maximum number 700 can be
encoded in 10 bits, thus, it uses 10 bits to represent every
element in B0. (5) It serializes each data block as compact
as possible (Figure 5). For example, B0 has four 10-bit el-
ements, but only the first three elements can be entirely
packed into a 32-bit word. The fourth 10-bit element needs
to span two words: the lower 2 bits are stored in the current
word and the higher 8 bits are stored in a new word. Then
B1 is stored immediately after B0 by sharing the last word
in B0 without wasting a single bit as is shown in Figure 5.

Next, we discuss the choice of m. If m is large, then
it needs more bits to encode the data blocks because each
data block spans a wide range, thus the overall space tends
to be high. On the other hand, if m is small, then there
will be more elements in the metadata block, which incurs
high space overhead. Following the convention of PforDelta,
we set m to 128 but other values are also possible. Later
on in Section 5, we discuss the choice of m dynamically to
minimize the overall space.

Supporting membership testing. MILC’s storage struc-
ture supports membership testing over a compressed list di-
rectly without decompressing a whole block, because MILC

uses fixed-bit encoding to represent each element in the
block using the same number of bits while preserving the
order. Let e be a search key, then it performs binary search
in the metadata block and jumps to the potential data block
and runs another binary search but using a new key (e− β)
where β is the skip pointer of the data block.

Next, we explain how to implement binary search within
a data block (as it is trivial to perform binary search in the
metadata block as it is uncompressed). The problem re-
quires bit manipulations because each element takes b bits,
which are not necessarily 8 bits – byte type, 16 bits – short

type, or 32 bits – int type that are natively accessible by a
programming language. Observe that the core of binary
search is obtaining the k-th value because binary search
needs to consistently compare the search key with the middle
value within a search range. Conventionally on the integer
array, it is A[k] to access the k-th value of an array A. But
on the bit array, it requires a few bit manipulations to con-
vert a b-bit value to a 32-bit value. For example in Figure
5, assume b = 10 and A be the compressed data blocks, then
the first four values are:
1st: (A[0] & 0X03FF)

2nd: (A[0] >> 10) & 0X03FF

3rd: (A[0] >> 20) & 0X03FF

4th: (A[0] >> 30) | ((A[1] & 0X00FF) << 2)

Space overhead analysis. It is evident that the space
overhead of the storage format is high compared with PforDelta.
Let us roughly analyze how high it is by assuming the ele-
ments in a list are equally apart to facilitate the analysis. Let
θ be the gap between two consecutive elements in a block,
m be the block size (e.g., m = 128), p be the exception ratio
(e.g., p = 10% [40]), then PforDelta requires the following
b bits to represent an element:

b = ⌈log(θ + 1)⌉+ 32× p ≈ log θ + 3.2

Then for the basic compression structure, the gap now
becomes m × θ. Thus, it requires the following b′ bits to
represent an element in the block:

b′ = ⌈log(m× θ + 1)⌉ ≈ log(128× θ) = log θ + 7

That means the basic compression incurs 7 − 3.2 = 3.8
more bits per element compared to PforDelta (but with
much higher performance). Thus, in next sections, we present
techniques to reduce the space overhead while keeping fast
query performance.

Remark. It is worth noting that the basic structure of
MILC presented in this section is based on PforDelta but
with two important modifications. (1) Instead of computing
deltas, MILC stores the offset values. (2) Instead of setting b
such that a majority of elements are within 2b, MILC deter-

857

mines b such that all elements are within 2b, i.e., fixed-bit
encoding. We also note that the basic structure of MILC is
different from FOR [13], which also applies fixed-bit encod-
ing. FOR was designed for storing a page of non-sorted ele-
ments. Thus, it needs to decompress the entire page during
query processing. However, MILC can support membership
testing directly over compressed data without even decom-
pressing a whole block.

5. DYNAMIC PARTITIONING
In this section, we present a technique of dynamic par-

titioning to reduce the space overhead while keeping high
query performance.

Why dynamic partitioning? The reason why the basic
compression structure in Section 4 consumes much space is
that it evenly partitions an input list into blocks (we call it
static partitioning). So, if there are some exceptions6 in the
block, then all the elements within the block have to use the
same high number of bits to represent. In other words, static
partitioning is vulnerable to data skew. As an example, if
a data block is {3, 8, 10, 15, 150}, then it requires 8 bits
just because of 150 (an exception) while the other values
actually only need 4 bits to represent. Thus, it could save a
lot of space if we can dynamically split a list in a way that
similar (or close) elements are stored together to minimize
exceptions.7

Thus, the problem is: Given a sorted list L of integers,
how to split L into blocks such that the overall space over-
head is minimized? The representation of each individual
block still follows the fixed-bit encoding (Section 4) in order
to support membership testing efficiently.

Dynamic partitioning. We propose a partitioning scheme
by converting the problem to a dynamic programming prob-
lem for minimizing the overall space overhead. Dynamic
programming can model the space overhead of partitioning
a list at different positions such that it picks up a partition-
ing strategy with the lowest space overhead. Let Ei be the
space overhead of representing L[0 : i], then it splits L[0 : i]
at the j-th (j < i) position: L[0 : j] and L[j + 1 : i]. There-
fore, the space overhead of L[0 : i] is the summation of the
space overhead of L[0 : j] and L[j + 1 : i]. Let c(j, i) (j ≤ i)
be the space overhead of representing L[j : i] and ℓ be the
maximal size of a block, then,

Ei =
i−1

min
j=max{0,i−ℓ}

(Ej + c(j + 1, i)) (1)

Next, we analyze c(j, i) used in Equation 1. Since the first
element of the partition (i.e., L[j]) is stored in the metadata
block as a skip pointer and the remaining values L[j +1 : i]
are stored in a data block, then we compute the overhead of
the two parts separately.

First of all, we analyze the space overhead of the skipping
information (metadata block), which requires the following
information per data block: (1) start value (32 bits), i.e.,
L[j]; (2) offset (32 bits) indicating where the data block
starts from; (3) number of elements in the block (8 bits);

6A value is called an exception value if it is obviously larger
than most other values in the block.
7Note that PforDelta does not have this issue because it
uses different number of bits to represent regular elements
and exceptions, but PforDelta cannot support membership
testing directly on compressed data.

4 120

(a) static partitioning

block 0

(128 elements)

900500 600

block 1

(128 elements)

605

4 120

(b) dynamic partitioning

block 0

(108 elements)

900500

block 1

(148 elements)

Figure 6: An example of dynamic partitioning

(4) number of bits to encode the block (8 bits). Thus, the
skipping information per data block needs 32+32+8+8 = 80
bits.

Second, we consider the space overhead of the data block
L[j + 1 : i]. Recall that each element in the block is stored
as the difference between it and L[j]. Among them, the
maximal gap is L[i]−L[j], which requires ⌈log(Li−Lj +1)⌉
bits. And there are (i − j) elements in the block, thus, it
requires ⌈log(Li −Lj +1)⌉× (i− j) bits in total. Therefore,
c(j, i) can be computed as follows:

c(j, i) = ⌈log(Li − Lj + 1)⌉ × (i− j) + 80 (2)

Example. Figure 6 shows an example where L contains 256
elements and L = {4, · · · , 120, 500, · · · , 600, 605, · · · , 900}.
Using the fixed-length partitioning (or static partitioning)
with the block size being 128 (Figure 6a), then L is parti-
tioned into two blocks and the last element in the first block
is 600. For the first block, each element takes ⌈log(600−4+
1)⌉ = 10 bits. While the dynamic partitioning (Figure 6b)
can determine that the first 108 elements are similar and
thus group them together. As a result, each element in the
first block requires only ⌈log(120 − 4 + 1)⌉ = 7 bits. For
each element in the second block, it takes 9 bits for both
static and dynamic partitioning. As a result, static parti-
tioning takes 10× 128 + 9× 128 = 2432 bits while dynamic
partitioning takes 7× 108 + 9× 148 = 2088 bits.

Determining the maximal block size ℓ. The maximal
group size ℓ is very important in MILC’s dynamic partition-
ing scheme: if it is too small (say ℓ = 1), then the optimal
partitioning can be missed; if it is too large (say ℓ = |L|),
it takes too much time to find the optimal partitioning. In
Theorem 1, we show that the maximal block size after dy-
namic partitioning is less than 2λ, where λ is the number
of bits to maintain the skipping information per block (i.e.,
λ = 80). As a result, we set ℓ = 160 in Equation 1. Note
that Theorem 1 is also very useful in Section 6, in determin-
ing lightweight skip pointers.

Theorem 1. A data block has at most 2λ elements after

dynamic partitioning, where λ is the number of bits needed

to store the skipping information per block.

Proof. We show that after partitioning, if a block still
has more than 2λ elements, then we can always find a lower
space cost by splitting the block into two parts, which con-
tradicts with the optimality property achieved by dynamic
programming. Without loss of generality, suppose a block
contains m elements (Figure 7): a0, a1, ..., am−1 and β is the
skip pointer of the block. We assume m ≥ 2λ, next, we show

858

𝛽
𝑎 𝑎ଵ 𝑎𝑚−ଵ…

𝛽
𝑎 𝑎ଵ 𝑎𝑠−ଵ…

𝑎𝑠
𝑎𝑠+ଵ 𝑎𝑚−ଵ…

(a) Before partitioning (b) After partitioning

(skip pointer)

Figure 7: An example of illustrating the maximal
size of a data block

that there always exists a lower cost by splitting the block
into two.

Before partitioning, the total number of bits X required
is (Figure 7a):

X = ⌈log(am−1 − β + 1)⌉ ×m

Then we split the block into two parts by picking up the
middle value a[s] (where s = ⌊m

2
⌋) as a skip pointer. There-

fore the partitions are [0 : s − 1] and [s + 1 : m − 1]. Then
the total number of bits X ′ is (Figure 7b):

X ′ = ⌈log(as−1 − β + 1)⌉ × s
︸ ︷︷ ︸

1st block

+ ⌈log(am−1 − as + 1)⌉ × (m− 1− s)
︸ ︷︷ ︸

2nd block

+ λ
︸︷︷︸

skip pointer as

Next we show X ′ ≤ X if m ≥ 2λ by introducing an inter-
mediate variable Y :

Y = ⌈log(as−1−β+1)⌉×
m

2
+⌈log(am−1−as+1)⌉×

m

2
+λ

Since X ′ < Y no matter whether m is even or odd. Next,
we show Y ≤ X if m ≥ 2λ. Y ≤ X is equivalent to:

m× (2⌈log(am−1 − β + 1)⌉ − ⌈log(am−1 − as + 1)⌉

− ⌈log(as−1 − β + 1)⌉) ≥ 2λ

So, the remaining proof is to show f = 2⌈log(am−1 − β +
1)⌉ − ⌈log(am−1 − as + 1)⌉ − ⌈log(as−1 − β + 1)⌉ ≥ 1 since
m ≥ 2λ. We prove it by contradiction. Thus, we assume
that f = 0 (as f ≥ 0 and f is an integer).

⌈log(am−1 − β + 1)⌉ − ⌈log(am−1 − as + 1)⌉ = 0

⌈log(am−1 − β + 1)⌉ − ⌈log(as−1 − β + 1)⌉ = 0

In order to hold:

log(am−1 − β + 1)− log(am−1 − as + 1) < 1 = log 2

log(am−1 − β + 1)− log(as−1 − β + 1) < 1 = log 2

That is,

log
am−1 − β + 1

am−1 − as + 1
< log 2

log
am−1 − β + 1

as−1 − β + 1
< log 2

That is,

am−1 − β + 1 < 2(am−1 − as + 1)

am−1 − β + 1 < 2(as−1 − β + 1)

Summing up the left sides gives 2(am−1−β+1) < 2(am−1−
as + 1 + as−1 − β + 1), i.e., as − as−1 < 1, which is a con-
tradiction since any two consecutive numbers differ at least
1.

a0 as-1

SB0

as a2s-1 a(k-2)s a(k-1)s-1 a(k-1)s am-1

mini skip pointers

SB1 SBk-2 SBk-1

...

...

Figure 8: Split a data block into sub-blocks

Time complexity. Let n be the list size, then the time
complexity of finding the optimal partitioning isO(ℓn), which
can be regarded as O(n) since ℓ is a small constant (ℓ ≤ 160),
as shown by Theorem 1.

Supporting membership testing. With dynamic par-
titioning, the structure supports membership testing effi-
ciently in the same way as presented in Section 4, because
a data block is still represented using fixed-bit encoding.

Remark. MILC is different from VSEncoding [30] because
VSEncoding applies dynamic partitioning for PforDelta, i.e.,
it applies dynamic partitioning to a list of delta values. How-
ever, as we have shown in Section 4, this is exactly why
membership testing is not supported efficiently due to the in-
evitable high decompression overhead. Besides that, VSEn-
coding chooses the maximal block size ℓ arbitrarily, which
can either miss the optimal result or incur more preprocess-
ing time. However, MILC solves the problem in an elegant
way by proving in Theorem 1 that the maximal block will
not exceed 2λ (which is 160).

6. IN-BLOCK COMPRESSION
In this section, we further reduce the space overhead of

the compression from another angle while keeping fast query
performance.

Why in-block compression? The dynamic partitioning
groups similar elements to the same data block. However, all
the elements in the same block have to use the number of bits
based on the maximal element (i.e., the rightmost element)
in the block in order to support fast search. But this on
the other hand wastes some space for smaller elements. As
an example in Figure 6b, after dynamic partitioning, the
first block needs 7 bits to encode every element because the
maximal value is 120. However, many smaller elements such
as 10 and 20 do not necessarily need 7 bits. Therefore, in-
block compression aims to use fewer bits to encode each
element within a block to reduce the overall space overhead.

In-block compression structure. The main idea of in-
block compression is to treat the elements in a data block
as a micro inverted list and compress them using the ap-
proaches described in previous sections (with modifications)
by splitting a block into sub-blocks. Before presenting the
partitioning details, we answer the following question first:
If partitioning a block into sub-blocks can reduce the over-
all space overhead, why previous dynamic partitioning (Sec-
tion 5) – supposed to return a partitioning scheme with the
lowest space cost – fails to capture such partitioning? That
is because the overhead of maintaining a skip pointer within
the block is much smaller than that outside the block. For
example, it needs 80 bits to maintain a skip pointer outside
the block as described in Section 5, but it only needs b (say
10) bits to maintain a skip pointer within the block (called
a mini or lightweight skip pointer) as we explain below.

859

In particular, in-block compression applies the static par-
titioning method presented in Section 4 to evenly (except the
last sub-block) split the elements into sub-blocks. Note that
MILC does not apply the dynamic partitioning approach
(Section 5) for in-block compression because that will in-
cur more space as we explain later in the discussion part
at the end of this section. Formally, suppose a block con-
tains m elements (Figure 8): {a0, a1, · · · , am−1}, and let
k be the number of sub-blocks, then the in-block compres-
sion partitions the block into the following k sub-blocks:
{a0, a1, ..., as−1}, {as, as+1, ..., a2s−1}, ..., {a(k−2)s, a(k−2)s+1,
..., a(k−1)s−1}, {a(k−1)s, a(k−1)s+1, ..., am−1}, where s =
⌊m

k
⌋. The first element of each sub-block serves as a mini

skip pointer and all the mini skip pointers are stored to-
gether. Then, for every mini skip pointer in the block, it
uses ⌈log(am−1 − β + 1)⌉ bits where β is the skip pointer of
the block. For every other element in the block, it uses the
following number of bits b to encode:

b = max{⌈log(as−1−a0+1)⌉, · · · , ⌈log(am−1−a(k−1)s+1)⌉}
(3)

Note that without in-block compression, each element orig-
inally takes b′ = ⌈log(am−1 − β + 1)⌉ bits and b′ ≥ b.

Besides that, in-block compression needs to maintain an
extra 16-bit global information for all the sub-blocks: num-
ber of bits for encoding the sub-blocks (8 bits) and number
of sub-blocks k (8 bits).

Example. Figure 9 illustrates an example of a list L with
two data blocks B0 and B1. Thus there are two skip pointers
(stored in the format explained in Section 4) in the metadata
block. Within each data block, it is further partitioned into
sub-blocks. For example, the block B0 consists of two sub-
blocks and the block B1 contains three sub-blocks. For all
the sub-blocks within B0, it uses the same b0 bits to encode
each element, which it originally requires b′0 bits (b′0 ≥ b0).
For all the sub-blocks within B1, it instead uses b1 bits to
represent each element. Figure 9 also highlights the 16-bit
global information for each block B0 and B1.

Determining the optimal number of skip pointers.
The next question is: How many mini skip pointers to add

for a data block? We solve the problem by analyzing the
relationship of the overall space overhead Tk with k in order
to find the optimal k.

Tk = max{⌈log(as−1 − a0 + 1)⌉, ⌈log(a2s−1 − as + 1)⌉, · · · ,

⌈log(am−1 − a(k−1)s + 1)⌉} × (m− k)
︸ ︷︷ ︸

sub-blocks

+ ⌈log(am−1 − β + 1)⌉ × k
︸ ︷︷ ︸

mini skip pointers

+ 16
︸︷︷︸

global information

(4)
To find the optimal number k∗, we can enumerate all pos-

sible solutions to find which value leads to the minimal space
overhead. Since we do not want a sub-block contain too few
elements, say it should contain at least 4 elements. Then,
we can search k from 2 to m/4. Thus,

k∗ =
m/4

arg min
k=2

Tk (5)

Time complexity. The time complexity of finding the op-

timal partitioning (off-line) is
∑m/4

k=2 k = O(m
2

32
) = O(800) =

O(1) since m ≤ 160 from Theorem 1.

skip pointers

start value 1

offset 1

#bits 1

start value 0

offset 0

#bits 0

start value 1start value 0

mini skip pointers

Data block B0

sub-block 0

Metadata block

b0 b0 b0 b0 b0 b0 b0 b0

sub-block 1

start value 1start value 0 start value 2

b1 b1 b1 b1 b1 b1 b1 b1 b1

mini skip pointers

sub-block 0 sub-block 1 sub-block 2

Data block B1

b0, #sub-blocks b1, #sub-blocks

(16 bits) (16 bits)

#bits: #bits:

Figure 9: In-block compression

Supporting membership testing. It is a three-level struc-
ture where each level supports membership testing by using
a revised key within a data block or a sub-block.

Discussion. We close this section by discussing two more
questions: (1) Why not using dynamic partitioning to parti-
tion a block? (2) Can we further reduce the space overhead
by partitioning a sub-block into sub-sub-blocks?

For the first question, it needs to maintain more skipping
information to dynamically partition a data block into sub-
blocks. The skipping information should at least contain:
start value (⌈log(am−1 −β + 1)⌉ bits where β is the skip
pointer of the block), number of elements (8 bits), offset (16
bits), and number of bits used to encode a sub-block (8 bits).
Thus, a skip pointer needs (⌈log(am−1 − β + 1)⌉+ 32) bits,
which is much higher since the current solution only needs
⌈log(am−1 − β + 1)⌉ bits. On the other hand, it may not
save too much space overhead in the sub-blocks because all
data elements in a data block are very similar.
For the second question, it may not reduce the overall

space anymore. That is because there is an extra space over-
head associated with each split, i.e., 16 bits as highlighted
in Figure 9. However, when there are few elements and each
element uses very few bits, it is extremely difficult to save
16 bits anymore with further partitioning because in-block
compression works if and only if (m − k)(b′ − b) ≥ 16. For
example, suppose a block contains 8 elements: {10, 20, 30,
40, 50, 60, 70, 80}. Without partitioning, it takes 7×8 = 56
bits. With two partitions, i.e., 10 and 50 are promoted as
mini skip pointers (taking 7 × 2 = 14 bits). The two sub-
blocks become (after subtracting the skip pointer): {10, 20,
30} and {10, 20, 30}. They take 3 × 5 + 3 × 5 = 30 bits.
Together with the mini skip pointers, the overall space over-
head is 30 + 14 = 44 bits, saving 56 − 44 = 12 bits, which
is less than 16 bits. Thus, we do not recommend further
partitioning anymore.

7. CACHE-CONSCIOUS COMPRESSION
In this section, we further improve the layout of MILC such

that it is more friendly to CPU cache lines for minimizing
cache misses during membership testing.

What is cache-aware and why? Modern CPUs dedicate
several layers of very fast caches (L1/L2/L3 cache) to alle-
viate the growing disparity between CPU clock speed and
memory latency (a.k.a memory wall). Whenever a CPU in-
struction encounters a memory access, it first checks whether
the accessed data resides in the caches. If yes, it accesses the
data from the caches directly. Otherwise, a cache line (typ-
ically 64 bytes) of data is loaded from main memory to the
caches. This will potentially evict other cache lines that are

860

in the caches. Thus, the goal of the cache-conscious design is
to reduce cache misses by ensuring that a cache line brought
from memory is fully utilized before it is being evicted.

Cache-aware design. We explain how to turn the com-
pression structure presented in the previous section (Sec-
tion 6) into a cache-aware structure. We classify the mem-
bership testing into two categories: within a metadata block
(storing uncompressed skip pointers) and within a data block
(storing compressed data).

For the membership testing within a metadata block, it
is essentially the conventional binary search over an array.
Previous studies have investigated it [16,27]. The main idea
is to organize the elements into a B-tree structure with the
node size being a CPU cache line (64 bytes). Note that
the B-tree is materialized as an array using a level-order
traversal manner without explicit storing any tree pointers,
for saving space overhead. Thus, search can be efficiently
executed by traversing the B-tree. However, there are two
unique challenges in incorporating them into a fully func-
tional compression structure: (1) The number of elements
(i.e., skip pointers) may not form a perfect tree8 but most
previous studies made such an assumption to save space
overhead by not explicitly storing the tree pointers. We
observe that only a collection of 17h − 1 elements can be
converted to a h-level perfect tree. That is because a cache
line contains 64/4 = 16 elements (i.e., 17 children), then the
total number of elements in a h-level perfect tree is:

16
︸︷︷︸

level 1

+16× 17
︸ ︷︷ ︸

level 2

+16× 172
︸ ︷︷ ︸

level 3

+ · · ·+ 16× 17h−1

︸ ︷︷ ︸

level h

= 17h − 1

However, there are many inverted lists and each inverted
list has a different number of skip pointers that may not be
17h − 1. (2) Another unique challenge is how to find the
corresponding data block after a skip pointer is located in
the metadata block. This was not an issue for the non-cache-
aware structure because the skip pointers and data blocks
are stored in the same order. That is, a skip pointer and
its data block have the same index number. However, if the
skip pointers are stored in a cache-aware manner, the index
numbers become completely different.

To solve the first challenge, we convert an array of sorted
elements (i.e., skip pointers, non-cache-aware) to a complete
tree instead of a perfect tree. A h-level complete tree [5]
ensures that (1) only the last level is not full and all the
elements in the last level are stored from left to right; (2)
if the last level is removed, then it becomes a (h − 1)-level
perfect tree. We are not aware of any previous cache-aware
designs having solved the problem, probably because they
simply assumed the number of elements can form a perfect
tree. But Schlegel et al. presented a solution in the SIMD
area [29] that can be extended to cache-aware designs. The
main idea is to determine for any element from the old non-
cache-aware array the position in the new cache-aware array
by developing a one-to-one mapping. Formally, let n be
the number of elements (skip pointers), k be the number of
elements that a cache line can accommodate (k = 16), H be
the number of levels (H = ⌈logk(n + 1)⌉), i be the element
position in the old non-cache-aware array, and gn(i) be the

8A perfect tree (i.e., balanced and full) has three require-
ments [5]: (1) every node has precisely k entries where k is
the fanout; (2) every intermediate node has exactly k + 1
children nodes; (3) every leaf node has the same depth.

...

cache line (64 bytes)

Ag (0) Ag (1) ... Ag (15) Ag (16) Ag (17) ... Ag (31)

cache line (64 bytes)

Data blocks

g (0) g (1) g (15) g (16) g (17) g (31)

...

Metadata

blocks

..................

mini skip ptrs

sub-blocks

Figure 10: Cache-aware layout

position in the new cache-aware array. Then,

gn(i) =

{
fH(i) if i ≤ f∗

H(n)
fH−1(i− o∗H(n)− 1) otherwise

(6)

We omit the explanations and proofs of these equations due
to space constraints and refer interested readers to [29].

Next, we discuss how to tackle the second challenge. A
simple solution is to compute a reverse mapping from the
(new) position in the cache-aware array to the (old) posi-
tion in the non-cache-aware array. However, that will take
considerable time as the mapping has to be computed on
the fly. MILC’s solution is to change the storage of the data
blocks such that they have the same order with their cor-
responding skip pointers. Figure 10 illustrates the design.
The data blocks (as well as the skip pointers) are stored in
the order of g(0), g(1), g(2) and so on.

Next, we comment on the second type of membership test-
ing that happens within a data block. It turns out that the
existing design presented in the previous section is actually
cache-aware. That is because each data block is organized as
a two-level tree structure with the mini skip pointers being
stored as the root node while the sub-blocks being stored as
children nodes.

Supporting membership testing. The membership test-
ing is executed efficiently by traversing an array of cache-
aware skip pointers in the metadata block. Then it goes
to the right data block to continue membership testing by
using a revised key.

8. SIMD ACCELERATION
In this section, we discuss how to further improve the

performance of MILC by leveraging the SIMD instructions.

What is SIMD-aware and why? A SIMD instruction
operates on a s-bit register where s depends on different pro-
cessors. Typically, s is 128, but more recent processors also
support 256-bit or 512-bit SIMD operations. In this work,
we use 128-bit SIMD instructions for a fair comparison with
existing works [18]. The benefit of using SIMD instructions
is to improve performance by processing multiple elements
at a time.

Note that although compilers can automatically optimize
some simple code with SIMD instructions, the optimizations
are very limited, e.g., only for simple loops [14]. Thus, to
fully exploit the SIMD instructions, we need to explicitly
design a new storage structure that are amenable to SIMD.

SIMD-aware design. Recall in the previous discussions,
the framework of MILC has two categories of blocks: meta-
data block and data blocks. The data elements in the meta-
data block are uncompressed while the data elements in the
data blocks are compressed. Next, we discuss how to orga-
nize the data elements in both types of blocks into a SIMD-
efficient structure.

861

For the elements (skip pointers) in the metadata block,
they are stored as a contiguous sequence of cache lines. We
store the data elements within the same cache line following
the k-ary approach [29]. In this way, a SIMD operation can
be applied to quickly find out which child node to visit [29].

For the elements in the data blocks, MILC basically follows
the design in the previous section to support efficient mem-
bership testing while keeping a low space overhead. That
is because a SIMD operation interacts with a s-bit SIMD
register as a vector of banks, where a bank is a continuous
section of b bits. For example, in SSE (Streaming SIMD
Extensions) and AVX (Advanced Vector Extensions), b is 8
(byte type), 16 (short type), or 32 (int type). However, for
inverted list compression, each element can be encoded in
arbitrary number of bits b (not necessarily 8, 16, or 32 bits).
Note that, there are other options if the space overhead is
not a problem, e.g., by rounding up b to 8, 16, and 32.

Supporting membership testing. Given a search key,
the first level of uncompressed data (skip pointers) will be
accessed in a SIMD-aware manner following [29] to find out
which block that potentially contains the key; then perform
membership testing within the block.

9. EXPERIMENTS
In this section, we experimentally compare MILC against

state-of-the-art inverted list compression schemes in terms
of membership testing time and space overhead.

9.1 Experimental setting

Experimental platform. We conduct experiments on a
commodity machine (Intel i7-4770 quad-core 3.40 GHz CPU,
64GB DRAM) with Ubuntu 14.04 installed. The CPU’s L1,
L2, and L3 cache sizes are 32KB, 256KB, and 8MB. The
CPU is based on Haswell microarchitecture which supports
AVX2 instruction set. We use mavx2 optimization flag for
the SIMD optimization. We implement MILC in C++ and
compile the code using GCC 4.4.7 with O3 enabled.

Datasets. In this work, we use the datasets from informa-
tion retrieval, databases, and graph analytics.
(1) Web data. It is a collection of 41 million Web documents
(around 300GB) crawled in 2012.9 It is a standard bench-
mark in the information retrieval community. We parse the
documents and build inverted lists for each term. The query
log contains 1000 real queries randomly selected from the
TREC10 2005 and 2006 (efficiency track).
(2) DB data. It is a star schema benchmark (SSB),11 which
includes one fact table (LINEORDER) and four dimension
tables (CUSTOMER, SUPPLIER, PART, and DATE). We
set the scale factor as 10 so the number of rows in the fact
table is around 60 million. We use the query described in
Section 2.2 for evaluation. Each list is allocated for a predi-
cate on a logical huge table as described in Section 2.2. The
list sizes are 11916634, 12028431, 9098421, and 11997098.
Note that MILC is also applicable to other SSB queries. We
use one single query for evaluation due to space limitation.
(3) Graph data. It is the twitter dataset crawled in 2009,
which consists of 52,579,682 vertices and 1,963,263,821 edges.
The data is widely used in graph analytics. Each list is

9http://www.lemurproject.org/clueweb12.php
10http://trec.nist.gov/
11http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

 0

 50

 100

 150

 200

 250

 300

 350

M
ILC

U
ncom

pressed

V
B

Sim
ple9

PforD
elta

N
ew

PforD
elta

O
ptPforD

elta

Sim
ple16

G
roupV

B

Sim
ple8b

PEF
SIM

D
PforD

elta

SIM
D

B
P128

a
vg

.
ex

ec
.

ti
m

e
(m

s)

compression algorithms

(a) Execution time

 0

 5

 10

 15

 20

 25

 30

 35

 40

M
ILC

U
ncom

pressed

V
B

Sim
ple9

PforD
elta

N
ew

PforD
elta

O
ptPforD

elta

Sim
ple16

G
roupV

B

Sim
ple8b

PEF
SIM

D
PforD

elta

SIM
D

B
P128

sp
a

ce
 (

G
B

)

compression algorithms

(b) Space overhead

Figure 11: Comparing against existing compression
approaches on Web data

an adjacency list of a vertex. We follow the methodology
in [7] to evaluate the following query: “find out the com-
mon friends between a group of people”. Note that other
queries could also be applied. The list sizes are 423640,
507777, 526292, and 779957, respectively.

Competitors. We compare MILC with a wide range of
recent compression approaches: Uncompressed, VB [32],
PforDelta [43], OptPforDelta [41], NewPforDelta [41], Sim-
ple8b [2], Simple9 [1], Simple16 [40], GroupVB (a.k.a Var-
intGB) [9], SIMDBP128 [18], SIMDPforDelta [18], PEF [25].
We implement PEF from scratch and implement the other
above-mentioned compression algorithms based on the source
codes provided from [18]. For the uncompressed lists, we
use conventional binary search. Note that we do not com-
pare with some obviously low-performance encodings, such
as Golomb, Rice, and Elias gamma. We also ignore those
general purpose encoding schemes such as Snappy, LZ, LZ4,
LZO, or gzip, because they are much slower than PforDelta [18].

Evaluation methodology. In this work, we mainly use
the following measurements for evaluation.
(1) Execution time. For each compression algorithm, we
measure how fast it supports membership testing. In par-
ticular, we report the intersection time of each query since
list intersection is essentially a series of membership testing
operations to consistently find whether an element appears
in a list. We use an SvS [6] that has been widely used in
practice including Lucene. Assuming there are k lists L1,
L2, · · · , Lk (|L1| ≤ |L2| ≤ · · · |Lk|) that are compressed.
SvS decompresses the shortest list L1 first. Then for each
element e ∈ L1, SvS checks whether e appears in L2 (i.e.,
membership testing). Note that SvS does not need to de-
compress the entire L2 due to skip pointers and it only needs
to decompress a block of data that potentially contains e for
membership testing. Then the results of L1 and L2 will be

862

http://www.lemurproject.org/clueweb12.php
http://trec.nist.gov/
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

 0

 2000

 4000

 6000

 8000

 10000

M
ILC

U
ncom

pressed

V
B

Sim
ple9

PforD
elta

N
ew

PforD
elta

O
ptPforD

elta

Sim
ple16

G
roupV

B

Sim
ple8b

PEF
SIM

D
PforD

elta

SIM
D

B
P128

ex
ec

u
ti

o
n

 t
im

e
(m

s)

compression algorithms

(a) Execution time

 0

 50

 100

 150

 200

M
ILC

U
ncom

pressed

V
B

Sim
ple9

PforD
elta

N
ew

PforD
elta

O
ptPforD

elta

Sim
ple16

G
roupV

B

Sim
ple8b

PEF
SIM

D
PforD

elta

SIM
D

B
P128

sp
a

ce
 (

M
B

)

compression algorithms

(b) Space overhead

Figure 12: Comparing against existing compression
approaches on DB data

intersected with L3 and the process continues until Lk.
(2) Space overhead. We also measure the space overhead
that a compression algorithm takes.

9.2 Comparing against existing compression
approaches

In this experiment, we compare MILC with existing com-
pression approaches on the two datasets. Note that MILC

incorporates all the optimizations presented in Section 4,
Section 5, Section 6, Section 7, and Section 8.

Figure 11 compares the average execution time and space
overhead of on Web data. The execution time is measured
by the average time (ms) of running those queries. Fig-
ure 11 shows that, (1) Compared with uncompressed lists,
MILC achieves almost the same query performance but with
a 3.7× lower space overhead. The high performance is be-
cause MILC relies on fixed-bit encoding (instead of d-gaps as
in most other compression algorithms) to support member-
ship testing directly over compressed lists without decom-
pressing even a whole block. MILC also relies on efficient
architectural-aware data organizations such as cache-aware
and SIMD-aware optimizations to achieve high query perfor-
mance. The small space overhead is that MILC applies dy-
namic partitioning to store similar elements together. MILC

also leverages the novel in-block compression technique to
further reduce the space overhead. Figure 11 shows that,
query processing on compressed lists can be (sometimes)
executed as fast as that on uncompressed lists while keeping
a low space overhead at the same time. (2) Compared with
PforDelta, MILC is 5.75× faster in execution time and 7.8%
less in space overhead. The execution time saving is because
PforDelta needs to decompress a whole block of data during
membership testing because it is based on d-gaps but MILC

does not need to do so. The space overhead saving is because

 0

 50

 100

 150

 200

 250

 300

 350

 400

M
ILC

U
ncom

pressed

V
B

Sim
ple9

PforD
elta

N
ew

PforD
elta

O
ptPforD

elta

Sim
ple16

G
roupV

B

Sim
ple8b

PEF
SIM

D
PforD

elta

SIM
D

B
P128

ex
ec

u
ti

o
n

 t
im

e
(m

s)

compression algorithms

(a) Execution time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

M
ILC

U
ncom

pressed

V
B

Sim
ple9

PforD
elta

N
ew

PforD
elta

O
ptPforD

elta

Sim
ple16

G
roupV

B

Sim
ple8b

PEF
SIM

D
PforD

elta

SIM
D

B
P128

sp
a

ce
 (

M
B

)

compression algorithms

(b) Space overhead

Figure 13: Comparing against existing compression
approaches on Graph data

PforDelta partitions a list statically while MILC partitions a
list dynamically. And also, MILC applies in-block compres-
sion to further reduce the space overhead. (3) Compared
with the variants of PforDelta, e.g., OptPforDelta and New-
PforDelta, MILC has many advantages too. For example,
MILC is 13.2× faster (in execution time) than OptPforDelta
while only incurring 44% more space. MILC is 9.1× faster
than NewPforDelta while only taking 13.8% more space. (4)
Compared with Simple9 [1], Simple16 [40], and Simple8b [2],
MILC is 7.9×, 9.0×, and 4.3× faster but only consumes
24.4%, 30.4%, and 16.3% more space. (5) Compared with
PEF [25], MILC is 1.9× faster in execution time, while only
consuming 13.8% more space. (5) Compared with the other
compression algorithms, e.g., VB, GroupVB, SIMDBP128,
and SIMDPforDelta, MILC runs 1.4× to 4.6× faster in query
processing and takes 6.5% to 56.1% less space also.
Figure 12 shows the results of evaluating MILC on DB

data. It shows that, (1) Compared with uncompressed lists,
MILC needs similar execution time but only requires 3.7×
lower space overhead. (2) Compared with PforDelta, MILC

is 5.65× faster in execution time but MILC takes less space
overhead. (3) Compared with OptPforDelta, MILC is 10.3×
faster in execution time but OptPforDelta only takes 38%
less space overhead. (4) Compared with NewPforDelta,
MILC is 8.2× faster in execution time but NewPforDelta
only incurs 16% less space overhead. (5) Compared with
Simple9 [1], Simple16 [40], and Simple8b [2], MILC is 6.7×,
8.1×, and 3.9× faster but only consumes 17.1%, 14.6%, and
14.3% more space. (6) Compared with PEF [25], MILC is
1.7× faster in execution time, while only consuming 22.7%
more space. (7) Compared with the other compression al-
gorithms, e.g., VB, GroupVB, SIMDBP128, and SIMDP-
forDelta, MILC is 1.22× to 3.5× faster in query processing
and takes 2.6% to 68.5% less space also.

863

Figure 13 shows the results of evaluating MILC on Graph
data. We omit the descriptions of the results since they are
largely similar to Figure 11 and Figure 12.

Overall, MILC represents the best tradeoff for inverted list
compression especially in main memory databases compared
among a spectrum of 12 existing compression algorithms.

10. CONCLUSION
In this work, we proposed a new compression approach

MILC for encoding inverted lists in main memory. MILC

is the first compression scheme that achieves similar query
performance compared with uncompressed lists. Also, MILC

is significantly faster than existing compression algorithms
while keeping low space overhead. In the future, we plan to
extend MILC to other storage devices including non-volatile
main memory (NVMM) [39], SSDs [35,36], and HDDs. An-
other direction is to tailor MILC for supporting in-storage
computing [37, 38]. Besides that, it is also interesting to
extend MILC to support more operations and queries, e.g.,
intersection, union, top-k query processing.

11. REFERENCES
[1] V. N. Anh and A. Moffat. Inverted index compression using

word-aligned binary codes. IR, 8(1):151–166, 2005.
[2] V. N. Anh and A. Moffat. Index compression using 64-bit

words. SPE, 40(2):131–147, 2010.
[3] T. A. Bjørklund, N. Grimsmo, J. Gehrke, and

O. Torbjørnsen. Inverted indexes vs. bitmap indexes in
decision support systems. In CIKM, pages 1509–1512, 2009.

[4] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: Optimal xml pattern matching. In SIGMOD, pages
310–321, 2002.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 3rd edition,
2009.

[6] J. S. Culpepper and A. Moffat. Efficient set intersection for
inverted indexing. TOIS, 29(1):1–25, 2010.

[7] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko,
L. Grijincu, T. Jackson, S. Kunnatur, S. Lassen, P. Pronin,
S. Sankar, G. Shen, G. Woss, C. Yang, and N. Zhang.
Unicorn: A system for searching the social graph. PVLDB,
6(11):1150–1161, 2013.

[8] D. R. Cutting and J. O. Pedersen. Optimizations for
dynamic inverted index maintenance. In SIGIR, pages
405–411, 1990.

[9] J. Dean. Challenges in building large-scale information
retrieval systems: Invited talk. In WSDM, page 1, 2009.

[10] B. Debnath, S. Sengupta, and J. Li. Skimpystash: Ram
space skimpy key-value store on flash-based storage. In
SIGMOD, pages 25–36, 2011.

[11] P. Elias. Efficient storage and retrieval by content and
address of static files. JACM, 21(2):246–260, 1974.

[12] P. Elias. Universal codeword sets and representations of the
integers. TOIT, 21(2):194–203, 1975.

[13] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing
relations and indexes. In ICDE, pages 370–379, 1998.

[14] Intel Corporation. IntelR© 64 and IA-32 Architectures
Optimization Reference Manual. 2012.

[15] Y. Jiang, G. Li, J. Feng, and W.-S. Li. String similarity
joins: An experimental evaluation. PVLDB, 7(8):625–636,
2014.

[16] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen,
T. Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey. Fast:
Fast architecture sensitive tree search on modern cpus and
gpus. In SIGMOD, pages 339–350, 2010.

[17] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver,
L. Doshi, and C. Bear. The vertica analytic database:
C-store 7 years later. PVLDB, 5(12):1790–1801, 2012.

[18] D. Lemire and L. Boytsov. Decoding billions of integers per
second through vectorization. SPE, 45(1):1–29, 2015.

[19] X. Li, J. Han, and H. Gonzalez. High-dimensional olap: A
minimal cubing approach. In VLDB, pages 528–539, 2004.

[20] C. Lin, J. Wang, and Y. Papakonstantinou. Data
compression for analytics over large-scale in-memory
column databases (summary paper). CoRR,
abs/1606.09315, 2016.

[21] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W.
Cheung. Olap on sequence data. In SIGMOD, pages
649–660, 2008.

[22] T. C. Lowe. Design principles for an on-line information
retrieval system. Technical report, University of
Pennsylvania, 1966.

[23] C. D. Manning, P. Raghavan, and H. Schütze. Introduction
to Information Retrieval. Cambridge University Press,
2008.

[24] A. Moffat and J. Zobel. Self-indexing inverted files for fast
text retrieval. TOIS, 14(4):349–379, 1996.

[25] G. Ottaviano and R. Venturini. Partitioned elias-fano
indexes. In SIGIR, pages 273–282, 2014.

[26] V. Raman, L. Qiao, W. Han, I. Narang, Y.-L. Chen, K.-H.
Yang, and F.-L. Ling. Lazy, adaptive rid-list intersection,
and its application to index anding. In SIGMOD, pages
773–784, 2007.

[27] J. Rao and K. A. Ross. Cache conscious indexing for
decision-support in main memory. In VLDB, pages 78–89,
1999.

[28] R. Rice and J. Plaunt. Adaptive variable-length coding for
efficient compression of spacecraft television data. TOCT,
19(6):889–897, 1971.

[29] B. Schlegel, R. Gemulla, and W. Lehner. K-ary search on
modern processors. In DaMoN, pages 52–60, 2009.

[30] F. Silvestri and R. Venturini. Vsencoding: Efficient coding
and fast decoding of integer lists via dynamic
programming. In CIKM, pages 1219–1228, 2010.

[31] D. Ślȩzak, J. Wróblewski, V. Eastwood, and P. Synak.
Brighthouse: An analytic data warehouse for ad-hoc
queries. PVLDB, 1(2):1337–1345, 2008.

[32] L. Thiel and H. Heaps. Program design for retrospective
searches on large data bases. IPM, 8(1):1 – 20, 1972.

[33] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III,
P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo,
J. Hoon, S. Kulkarni, N. Lawrence, M. Marchukov,
D. Petrov, and L. Puzar. Tao: How facebook serves the
social graph. In SIGMOD, pages 791–792, 2012.

[34] S. Vigna. Quasi-succinct indices. In WSDM, pages 83–92,
2013.

[35] J. Wang, E. Lo, M. L. Yiu, J. Tong, G. Wang, and X. Liu.
The impact of solid state drive on search engine cache
management. In SIGIR, pages 693–702, 2013.

[36] J. Wang, E. Lo, M. L. Yiu, J. Tong, G. Wang, and X. Liu.
Cache design of ssd-based search engine architectures: An
experimental study. TOIS, 32(4):1–26, 2014.

[37] J. Wang, D. Park, Y.-S. Kee, Y. Papakonstantinou, and
S. Swanson. Ssd in-storage computing for list intersection.
In DaMoN, pages 1–7, 2016.

[38] J. Wang, D. Park, Y. Papakonstantinou, and S. Swanson.
Ssd in-storage computing for search engines. TC, 2016.

[39] J. Xu and S. Swanson. NOVA: A log-structured file system
for hybrid volatile/non-volatile main memories. In FAST,
pages 323–338, 2016.

[40] H. Yan, S. Ding, and T. Suel. Inverted index compression
and query processing with optimized document ordering. In
WWW, pages 401–410, 2009.

[41] J. Zhang, X. Long, and T. Suel. Performance of compressed
inverted list caching in search engines. In WWW, pages
387–396, 2008.

[42] Z. Zhang, J. Tong, H. Huang, J. Liang, T. Li, R. J. Stones,
G. Wang, and X. Liu. Leveraging context-free grammar for
efficient inverted index compression. In SIGIR, pages
275–284, 2016.

[43] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar ram-cpu cache compression. In ICDE, 2006.

864

	Introduction
	Applications
	Information retrieval
	Database query processing
	Graph analytics
	More applications

	Related Work
	Basic compression structure
	Dynamic Partitioning
	In-block Compression
	Cache-conscious Compression
	SIMD Acceleration
	Experiments
	Experimental setting
	Comparing against existing compression approaches

	Conclusion
	References

