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ABSTRACT

Due to the popularity of social networks, many proposals have been
proposed to protect the privacy of the networks. All these works as-
sume that the attacks use the same background knowledge. How-
ever, in practice, different users have different privacy protect re-
quirements. Thus, assuming the attacks with the same background
knowledge does not meet the personalized privacy requirements,
meanwhile, it looses the chance to achieve better utility by taking
advantage of differences of users’ privacy requirements. In this pa-
per, we introduce a framework which provides privacy preserving
services based on the user’s personal privacy requests. Specifically,
we define three levels of protection requirements based on the grad-
ually increasing attacker’s background knowledge and combine the
label generalization protection and the structure protection tech-
niques (i.e. adding noise edge or nodes) together to satisfy different
users’ protection requirements. We verify the effectiveness of the
framework through extensive experiments.

1. INTRODUCTION
Nowadays, more and more people join multiple social networks

on the Web, such as Facebook, Linkedin, and Livespace, to share
their own information and at the same time to monitor or participate
in different activities. Meanwhile, the information stored in the so-
cial networks are under high risk of attack by various malicious
users, in other words, people’s privacy could be easily breached
via some domain knowledge. Thus, as a service provider, such
as Facebook and Linkedin, it is essential to protect users’ privacy
and at the same time provide “useful” data. Many proposals have
been proposed to protect the privacy of published social networks
including some clustering-based approaches [6][16][3] and graph
editing methods [8][15][17][19]. However, all the previous works
have overlooked a very important fact, that is, different users may
have different privacy preferences. Therefore, providing the same
level privacy protection to all the users may not be fair and in addi-
tion may cause the published social network data useless.

To address the shortcomings of single level privacy protection,
in this work, we define different levels of protection for users and
incorporate them into the same published social network. In fact,
current social network websites allow each user to set how much
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of his information can be observed by others. For example, in
Facebook, a user can set what part of his profile or his connec-
tion information can be viewed by others. A user can have a clear
estimation of the knowledge that an attacker can know about him.
The knowledge an attacker uses to find the privacy information of a
user is called the background knowledge. To provide different lev-
els of privacy protection, we allow users to set personalized privacy
requirements based on their own assumptions about the attacker’s
background knowledge. Specifically, for a node u in a published la-
beled graph1, starting from the weakest background knowledge that
an attacker only knows u’s label information without any structure
information, we define three levels of attacks to u by gradually in-
creasing the strength of the attacker’s background knowledge:

Level 1: An attacker only knows u’s labels. For example, an at-
tacker knows Bob is a 26-year old guy;

Level 2: An attacker knows u’s labels and degree. For example, an
attacker knows Bob is a 26-year old guy with degree 3;

Level 3: An attacker knows u’s labels, degree and the labels on
the edges adjacent to u. For example, an attacker knows
Bob is a 26-year old guy with degree 3 and Bob’s three
connections’ types are classmate, roommate, roommate;

We extract these three levels of background knowledge due to the
fact that the three kinds of settings are also supported by Facebook.
We noticed that there exist much stronger attacks such as knowing
the neighborhood of u [18] with label information. However, in
this work, our focus is to demonstrate a framework which can pub-
lish a social network to satisfy different levels of privacy protection
requirements, thus, we will not enumerate all the possible attacks.
In the rest part of this paper, we use “Level x’s background knowl-
edge” to represent the corresponding background knowledge used
in Level x’s attack.

To achieve the goal of protecting each user to the level that is
equal to or stronger than his own setting, we can simply protect all
users in a graph to the strongest protection level requested by the
users. This naive method assumes that the worst case happens to
each node, which decreases the utility of the published graph. Here,
the utility refers to the closeness between the published graph and
the original graph. For example, Figure 1(a) is a graph which con-
tains seven nodes. Each node has three labels: name, area, and age.
Assume that we have two protection objectives for publishing this
graph, which are: the probability that an attacker finds a person
P is node u in the published graph (a.k.a. node re-identification)
should be less than 50%, and the probability that an attacker finds
person P1 and P2 have a connection (a.k.a. link re-identification)
is less than 50%. For Figure 1(a), we could publish Figure 1(b)
which provides Level 1 protection for all the nodes according to

1
In this paper, we also call social network as graph for the sake of simplicity and each

user is represented as a node in the graph.
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Figure 1: Naive Protection

the naive method discussed above. Nodes are divided into three
groups ((a, d), (b, e, g) and (c, f)) as shown in the table of Figure
1(b). Since each group’s size (the number of nodes in a group)
is equal to or larger than 2, the success ratio of re-identifying a
node using Level 1’s knowledge is less than 50%. There’s no edge
between two nodes in the same group and the number of edges
between the nodes in two groups is at most 3, which guarantees
that the probability to find two nodes having a connection less than
50%. We give a comprehensive analysis of this probability in Sec-
tion 3. The graphs that provide Level 2 and Level 3 protection are
shown in Figure 1(c) and Figure 1(d) respectively. In Figure 1(c)
no node/link could be re-identified with confidence larger than 50%
even under an attack using nodes’ label and degree information. We
generalize the labels (on edges) in Figure 1(c) and guarantee that
the attacker could not re-identify the nodes/links even with extra
knowledge about edge labels as shown in Figure 1(d).
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Figure 2: Personalized Protection

Figure 1(c) and 1(d) assume all the users either need Level 2 or
Level 3 protections, respectively. However, as we stated earlier,
within the same social network, different users may have different
requests on privacy protection levels. For example, if only Leo and
Tom need Level 2 protection, Figure 2(a) can satisfy all users’ pri-
vacy settings. In Figure 2(a), the nodes, c and f , have the same
node labels and degree as Tom in Figure 1(a). This guarantees
that the re-identification probability of Tom is 50%. Similarly, the
number of candidate nodes for Leo is 3 which is also bigger than
2 = 1

50%
. We have to add 4 nodes and 6 edges to Figure 1(a) to

derive Figure 1(c), but only need to add 1 edge to get Figure 2(a).
Comparing the changes made to the original graph, Figure 2(a) is
much more similar to the original graph than Figure 1(c). If Leo
needs Level 2 protection and Tom needs Level 3 protection, Fig-
ure 2(b) can be published, which only generalizes 2 edges’ labels.
However, Figure 1(d) generalizes 7 edges’ labels to make all nodes
have Level 3 protection. Figure 2(b) is also more similar to Figure
1(a) than Figure 1(d). The two examples show that utility of the
published graph increases when allowing personalized protections.

To achieve personalized privacy protection in social networks,
in this work, we design different methods for different privacy re-
quirements. Specifically, For Level 1 protection, we use node la-
bel generalization. For Level 2 protection, we combine the noise
node/edge adding methods based on the protection at Level 1. For
Level 3 protection, we further use the edge label generalization to
achieve the protection objectives.

The rest of the paper is organized as follows: Section 2 defines
the problems. Sections 3 - 5 describe the details of the protection

framework design. We report the experimental results on some data
sets in section 6. Comparison of our work with previous proposals
is given in Section 7, followed by the conclusion in Section 8.

2. PROBLEM DEFINITION
In this paper, we focus on the privacy preserving problem for

an un-weighted graph with labels on both nodes and edges2. Each
node in the graph has several labels, which represent the attributes
of the node. Each edge in the graph has one label, which represents
the type of the edge. Since one node may have several labels, we
call the labels on node u as u’s label list. We use G(V, E) to simply
represent the original graph where V stands for the node set and E

stands for the edge set. We design a framework that allows users
to set three different privacy protection requirements introduced in
Section 1. The protection objectives guaranteed by this framework
are: Given a constant k,

1. For each node u, the probability that an attacker re-identifies
u is at most 1

k
. For the attacker, re-identifying u is to find

which node is u in the published graph using certain back-
ground knowledge about u;

2. For any edge e in the published graph, the probability that an
attacker identifies a node ux involved in e is at most 1

k
;

3. For any two nodes ux and uy , the probability that an attacker
identifies these two nodes having a connection is at most 1

k
.

For example, the probability that the attacker concludes Tim
and Tom have a connection from the published graph should
be equal to or less than 1

k
;
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problem

There are many proposals to avoid node re-identification from struc-
tural attacks3 using graph editing techniques, such as k-degree anon-
ymous[8], k-neighborhood anonymous[17], k-automorphism[19].
However, in this work, other than node re-identification, we would
like to protect the connections (links) between nodes as stated in
the above protection objectives. Thus, simply combining the graph
editing techniques with micro data protection methods will not of-
fer satisfactory results.

Take k-automorphism as an example, k-automorphism requires
each node having at least k-1 other nodes with the same struc-
ture in the published graph. Directly generalizing the labels on the
nodes with same structure cannot protect the connection informa-
tion well. For example, for Figure 1(a), if ignoring the edge labels,

2
The formal definition of the graph model is shown in the Appendix A

3
Structural attack stands for the attack based on connection information
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a 2-automorphism graph can be constructed as shown in Figure 3
(nodes with the same color have the same structure). Figure 3 is
first constructed by changing the graph to be a 2-automorphism
graph based on structure information, then generalizing labels of
nodes that have the identical structure to be the same. When an
attacker uses the Level 2’s background knowledge to re-identify a
node, there are always two candidates. However, some connection
information is still released. If the attacker knows Tim is 31 years
old from American and Tom is 35 years old from Africa, he can find
Tim and Tom has a connection with probability 100% from Figure
3, which is exactly the information that Tim and Tom do not want
others to know. While in Figure 1(d), Tim is one of b, e and g. Tom

is one of c and f . There are two edges between (b, e, g) and (c, f),
thus the probability that an attacker concludes Tim and Tom has an
edge is 2

3×2
= 33%. The above example indicates that satisfying

different levels of privacy protection requirements is not trivial. In
fact, we have proven the problem to implement the personalized
protections is NP-hard even with a simple optimal objective.

THEOREM 1. Suppose cost =
∑

node label generalization cost

+
∑

edge label generalization cost. For a graph G, the problem

to create a graph GA that satisfies each user’s personal privacy

requirement with minimum cost is a NP-hard problem4.

The proof can be found in Appendix B. The three levels of back-
ground knowledge are defined from the weakest to the strongest, a
user who needs a higher level protection by default needs the lower
level protections. So, in our framework, we implement the per-
sonalized protections from the lowest level to the highest level. In
the rest part, we use setl1 to represent the set of nodes that needs
Level 1 or stronger protection, setl2 to represent the set of nodes
that needs Level 2 or stronger protection, and setl3 to denote the
set of nodes that needs Level 3 protection.

3. LEVEL 1 PROTECTION
The Level 1’s background knowledge is about node label list,

thus, we can use a generalization method to provide Level 1 protec-
tion. Simply speaking, generalization is to group nodes and make
the nodes within each group have one generalized node label list.
In order to keep the node labels distribution of each group in the
published graph unchanged, we do not generalize all the label lists
to be the same for a group of nodes. Instead, for each group, we
publish all the label lists of the nodes in the group without the map-
ping5. Figure 1(b) gives an example of the published graph after
generalization the graph in Figure 1(a). This method is the same
as the Anatomy for tabular data proposed by Xiao et al. [14] and
has the same effect as the full list pattern permutation proposed by
Cormode et al.[2].

In order to achieve Level 1 protection, we need to divide all
nodes into groups and these groups must guarantee the three pri-
vacy objectives are satisfied. As shown in [2], if each group’s size
is at least k, the first objective is achieved. To satisfy objectives (2)
and (3), the following condition[2] must be satisfied:

THEOREM 2. A division of nodes V into groups satisfies objec-

tives (2) and (3) if for any node u ∈ V and any group g ⊂ V :

• ∀(u, w), (u, z) ∈ E : w ∈ g ∧ z ∈ g ⇒ z = w.

• ∀(u, w) ∈ E : u ∈ g ∧ w ∈ g ⇒ u = w.

The first condition constrains that any two nodes in the same group
do not connect to a same node. The second condition constrains

4
Here the cost stands for the sum of label generalization levels. For example, in

Figure 1(d), if let the labels in the group {a,d} to be the same, they become [(Africa,
American), 2*], thus the node label generalization cost of this group is 4.
5
The generalization cost can still be computed as the sum of label generalization levels

when making all the labels of the nodes in each group to be the same.

that no edges within a group. Theorem 2 ensures that the two ob-
jectives (2) and (3) are satisfied, but it is too restrictive. The fol-
lowing Theorem states that we can obtain the groups that satisfy
objectives (2) and (3) easily by relaxing the constraints.

THEOREM 3. Objectives (2) and (3) in Level 1 can be guaran-

teed, if

• ∀(v, w) ∈ E : v ∈ g ∧ w ∈ g ⇒ v = w.

• ∀ group gx, gy , x is the number of edges between gx and gy ,

x ≤
|gx||gy|

k
.

The first condition constrains no edge within a group and the
second condition constrains the number of edges between any two
groups. The proof of this theorem is shown in Appendix C. The
conditions in Theorem 3 is less restrictive than those in Theorem
2, which depend on the sparse property of social networks. As a
consequence, groups are easier to be found based on the conditions
in Theorem 3. For example, for Figure 1(a), if using the conditions
in Theorem 2, no solution can be found. If using the conditions in
Theorem 3, Figure 1(b) can be constructed. We call the two condi-
tions in Theorem 3 as “the Safety Grouping Condition (SGC)”.

Algorithm 1: Generate safe groups

while |V | > 0 do1

us = the node with maximum degree in V ;2

V = V − us;3

group g = new group {us};4

C = C ∪ {g};5

while |g| < k do6

Set candidates = {};7

for Each node u in V do8

if Adding u into g does not violate SGC then9

candidates = candidates ∪ {u};10

if |candidates| > 0 then11

for Each node u in candidates do12

u.cost = the cost to add u into g;13

u′ = u in candidates with minimum u.cost;14

g = g ∪ {u′}; V = V − {u′};15

else16

break;17

for each g in C with |g| < k do18

C = C − {g};19

for each node u in g do20

g′ = the group in C with the min. cost to add u under SGC;21

g′ = g′ ∪ {u};22

Algorithm 1 computes the groups with size at least k. The al-
gorithm targets on generating the groups under SGC with the mini-
mum cost defined in Theorem 1. This algorithm has a similar struc-
ture as the algorithms in [3][2] which also group a graph’s nodes
with certain cost function. Each time, we select a node with the
maximum degree that has not been grouped and create a new group
for this node (line 2-5). Then in line 6-18, we repeatedly add nodes
into the group with the minimum cost (estimated) under SGC until
the group reaches size k. For any group which cannot reach size k,
in line 19-23, we first delete this group. Then for each node in the
group, we add it into a suitable group which has the minimum cost
for the insertion operation.

Finally, Algorithm 1 gets the node group set C. Then, based on
C, a graph like Figure 1(b) can be generated, which offers Level 1
protection for all the nodes. We use GL1

to represent the generated
graph at Level 1 protection.

4. LEVEL 2 PROTECTION
At Level 1, the label-node mapping is hidden by generalization.

However, if an attacker knows both the label and the degree infor-
mation of some nodes, he can still successfully re-identify some
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nodes in GA. For example, if an attacker knows Bob’s degree is 3,
he can immediately find that node d is Bob in Figure 1(b). There-
fore, in order to achieve the three protection objectives, the node
re-identification using node label and degree information should be
avoided for the nodes in setl2 .

We generate a new published graph based on GL1
. The target is

to make sure that for each node in setl2 , there are at least another
k-1 nodes in GA identical to this node with respect to the attacker’s
background knowledge. At Level 2, we assume that an attacker also
uses degree information, thus, the k-degree anonymous model [8]
is needed to prevent the attack. k-degree anonymous model guaran-
tees that the degree of each node in setl2 appears at least k times in
the published graph. However, when node label information is also
obtained by the attacker, the nodes having the same degree cannot
be arbitrarily selected. For example, the graph G′ in Figure 4 is a
graph generated from Figure 1(b) which satisfies 2-degree anony-
mous model. In G′, each degree appears at least twice. Assume
that an attacker knows Tim is from Africa with degree 1, since only
nodes a and g have degree 1 in G′, g cannot have the label “Africa”,
the attacker immediately knows a is Tim. This situation happens
since the node label lists still provide some information, although
they have already been generalized at Level 1. To implement k-
degree anonymous model based on GL1

, for any node u in setl2 ,
there should exist k nodes with the same degree as u and having
u’s label list. In this paper, we call a graph that satisfies the above
property k-degree anonymous graph. We can construct a k-degree
anonymous graph by making the nodes in the same group have the
same degree if that group contains nodes in setl2 .
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Figure 5: The example of degree anonymous process

In order to guarantee the privacy objectives (2) and (3), dur-
ing the process of modifying GL1

to a k-degree anonymous graph,
SGC should be maintained. The k-degree anonymous graph gen-
eration method introduced in [8] does not satisfy the safe grouping
constraint, thus we design a noise node/edge adding algorithm to
construct the k-degree anonymous graph under SGC. The algorithm
contains two steps:

• Generate a k-degree anonymous graph by adding nodes/edges
under SGC;

• Since the new created nodes/edges do not have labels, assign
labels to them.

We call the newly created nodes/edges “noise nodes/edges”, next
we discuss the detailed steps of adding noise nodes/edges.

4.1 Adding nodes/edges into GL1

To construct a k-degree anonymous graph, we first make the
nodes in the same group have the same degree if that group con-
tains nodes in setl2 by adding nodes/edges. Specifically, we use
the following three steps to perform the node/edge adding.

The first step is to set a target degree for each node. For a node
u, if the group g that u belongs to contains at least one node in
setl2 , we set the target degree of u to be the largest degree in g.
Otherwise, we set u’s target degree as its original degree. For a
group g that contains at least one node in setl2 , since all the nodes

in g need to have the same target degree, we also call this target
degree as g’s target degree (g.target). For example, in Figure 5(a),
the number in each node stands for the degree of it. Then the target
degrees of the two groups are set as 4. The number beside each
node is the number of degree this node needs to be increased.

After each node has a target degree, the second step is to ran-
domly create edges between the nodes which need to increase their
degrees under SGC. For example, an edge may be created between
two nodes as shown in Figure 5(b). If all the nodes reach their tar-
get degrees, we get a k-degree anonymous graph and finish the con-
struction. Otherwise, we continue to construct the graph by adding
some noise nodes, which is the next step.

In the third step, we add noise nodes to enable all the nodes in
GL1

have their target degrees by connecting them with noise nodes
under SGC. When we add noise nodes, these noise nodes should be
involved in certain groups to make them indistinguishable from the
original nodes in GL1

. In order to achieve this, we can let the noise
nodes form groups with size k themselves, meanwhile, we need
to hide the noise nodes by making their degree to a pre-selected
value degreetarget. degreetarget is the degree that the maximum
number of groups of size k in GL1

have6.
Next, we first introduce Algorithm 2 which can make all the

nodes in GL1
reach their target degrees using several groups of

same degree noise nodes. Then we prove an important property of
this algorithm about the number of added noise nodes and the target
degrees. Based on this property, we finally show how to set input
parameters of Algorithm 2 to make all noise nodes exactly have
degree degreetarget without violating SGC. In this part, we’ll use
two constants: Changetotal and Changemax. Changetotal rep-
resents the sum of degree needs to be increased for all the nodes in
GL1

. Changemax stands for the maximum sum of degree needs
to be increased in each group of GL1

.
Algorithm 2 has four inputs: graph GL1

, groups C, privacy pa-
rameter k and X , where X is the number of noise node groups that
will be used to construct the new graph. In Algorithm 2, we create
X groups of noise nodes and arrange them as an X × k array A.
Each row of this array is a group of noise nodes. We use A[i][j]
to represent the noise node at position [i, j] in A. New edges are
created between the noise nodes in A and the nodes whose degrees
need to be increased in GL1

. Each time, we let all the nodes in
one group reach their target degrees by creating edges from the
nodes in this group to the noise nodes in A in a column by column
style (line 4-12). Column by column means if an edge is connected
with the noise node A[i][j], then the next edge created will con-
nect to A[i + 1][j]. If A[i + 1][j] does not exist (i + 1 == X),
the edge is connected to the first noise node in the next column
(A[0][(j + 1)%k]). The first created edge is linked to A[0][0]. Af-
ter we complete these steps, all the nodes in GL1

reach their target
degrees. It is easy to see all the noise nodes either have the de-

gree d =
⌊

Changetotal

X×k

⌋

+ 1 or (d − 1) now. To let all the noise

nodes have the same degree d, next we use the following method
to build connections between noise nodes: 1) Select two rows with
the maximum number of (d − 1) degree nodes in A; 2) Randomly
select two nodes with the degree (d − 1) in each row and create
an edge between them; 3) Repeat the above two steps until all the
rows only contain nodes with degree d.

Let’s use an example to show how Algorithm 2 works. In Figure
6, Changetotal = 8, k = 2 and X = 2. Algorithm 2 first creates
two noise node groups and arranges them as a 2× 2 (X × k) array.

6
If all the noise nodes have degree degreetarget, they are hidden into those groups

who have the maximum number of original groups with the same degree. This makes
the noise nodes mixed with as many original nodes as possible to avoid the filtering.

144



The number in each noise node represents this noise node’s id in
the 2 × 2 array. Then Algorithm 2 begins to create edges between
the nodes in GL1

and the noise nodes. The number on each edge
stands for the adding order of this edge. The edges 1-8 are created
sequentially. After doing this, all the nodes in GL1

reach their

target degrees. Here Changetotal = 8, d =
⌊

Changetotal

X×k

⌋

+1 =

3. All the noise nodes have degree 2 now (In this example, all noise
nodes have degree d − 1. In normal case, some noise nodes may
have degree d). Algorithm 2 finally adds edges 9 and 10 to make
all the noise nodes have the same degree 3.

Algorithm 2: Degree Anonymizing Algorithm with X

Create X × k new nodes and store them in a X × k array A;1

Set each line of nodes in A as a new group;2

int i = 0, j = 0;3

while ¬(each node in GL1
reaches its target degree) do4

Random select a g ∈ C that ∃ u ∈ g, u.degree < g.target;5

while ¬(each node in g reaches its target degree) do6

Random select a u ∈ g with u.degree < g.target;7

Create an edge between u and A[i][j];8

i = i + 1;9

if i == X then10

i = 0;11

j = (j + 1)%k;12

d =
⌊

Changetotal
X×k

⌋

+ 1;13

while A contains node with degree d − 1 do14

Random select two rows l1 and l2 in A with maximum number of d − 115

degree nodes;
Random select u1 ∈ l1, u2 ∈ l2 that16

u1.degree = u2.degree = d − 1;
Create an edge between u1 and u2;17

By analyzing Algorithm 2, we find it has the following property:

THEOREM 4. Algorithm 2 constructs a k-degree anonymous gr-
aph without violating SGC and all the noise nodes have the degree
degreetarget, if

degreetarget =

⌊

Changetotal

X × k

⌋

+ 1 (1)

X ≥ max(

⌈

Changemax

k

⌉

, 2) (2)

(degreetarget × k × X + Changetotal)%2 ≡ 0 (3)

The proof of Theorem 4 can be found in the Appendix D.
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Figure 6: A running example of Algorithm 2

After the second step of the node/edge adding, Changetotal

and Changemax are both constants. As we introduced at the be-
ginning of the third step, degreetarget is selected as the degree
that the maximum number of groups of size k in GL1

have, thus,
degreetarget is also a constant. By solving the formulas in Theo-
rem 4, we can derive X for Algorithm 2. If an integer X does not
exist for Equation 1 or the Equation 2/3 cannot be satisfied, we can
get a proper X by increasing the value of Changetotal. There are
several methods to increase the value of Changetotal. Increasing
the target degree of a group that contains the odd number of nodes
by 1 can increase Changetotal by an odd number7. Increasing the

7
We can force the grouping algorithm to generate at least one group with the odd

number of nodes that contains nodes in setl2
.

target degree of a group that contains the even number of nodes by 1
or a group that contains the odd number of nodes by 2 can increase
Changetotal by an even number. Delete one noise edge added in
the previous step can also increase Changetotal by 2. Figure 5 (c)
shows an example to get a suitable X by increasing Changetotal.
Suppose degreetarget = 3, at the beginning, Changetotal is 1
which is an odd number. So we let group 2’s target degree increase
by 1 since group 2 contains odd number of nodes. By doing this,
Changetotal is increased to 4. However, we still cannot get an in-
teger X . Then we can increase the Changetotal to 8 by deleting
the added edge in the second step and increasing group 1’s target
degree by 1. Finally, X = 2 is found and Algorithm 2 can be in-
voked. A degree anonymous graph is constructed under SGC where
all the noise nodes have degree 3.

After completing the three steps, for each node u in GL1
that

needs to increase its degree by x, we connect u with x nodes which
belong to either GL1

or newly added noise nodes. All the noise
nodes connected with u are in different groups. Since the degree
of the noise node groups is the same as the degree of some existing
groups, the noise nodes are hidden into those original nodes. In
order to show the hidden effects, we did three tests in the Appendix
G. The results showed that the number of the noise node groups
is much fewer than the number of existing groups with the same
degree and the neighborhoods of the noise nodes are not special
comparing with those of the original nodes in GL1

.

4.2 Label Assignment
After adding the noise nodes/edges, we should assign labels to

them. Suppose Nocon(A1, A2, l)) is the number of edges in the
original graph that connect label A1 with A2 through an edge with
label lx, for all A1, A2 and l, a node/edge label assignment with
less Nocon(A1, A2, l) changes is preferred. So we use the follow-
ing heuristic method to do the assignment.

We first assign labels to the noise edges. For the edges that con-
nect with at least one noise node, we randomly assign labels to them
following the edge label distribution in the original graph. For an
edge between two nodes u1 and u2 in GL1

, denote u1’s label list as
(Au1,1, Au1,2, ..., Au1,t) and u2’s label list as (Au2,1, Au2,2, ...,
Au2,t), we select the edge label lx that satisfies:

max(

t
∑

j=1

Nocon(Au1,j , Au2,j , lx)), (4)

where Nocon(Au1,j , Au2,j , lx) is the number of edges in the orig-
inal graph that connect label Au1,j with Au2,j through an edge
with label lx. Since the new created connections between labels
appear the maximum number of times in the original graph, se-
lecting lx tends to change the connection between labels as less as
possible.

After each noise edge obtains a label, we decide the labels of
noise nodes according to the assigned edge labels and the original
graph’s connectivities. For a noise node u, suppose the labels on
the edges adjacent to u are: {l1, l2, ..., ld}, the selection rule of u’s
label list (Au,1, Au,2, ..., Au,t) is:

max(

d
∑

i=1

t
∑

j=1

Nocon(Au,j , Auei
,j , li)), (5)

where uei is the node connecting with u through edge i, Auei
,j

is uei ’s label on dimension j, and Nocon(Au,j , Auei
,j , li) is the

number of edges in the original graph that connect label Au,j with
Auei

,j through an edge with label li. We use formula 5 to select
the node labels which make the new created connections between
labels appear the maximum number of times in the original graph.
When all the noise nodes have labels, the graph can be published
by generalizing the node labels of each noise node group, which is
denoted as GL2

.

145



5. LEVEL 3 PROTECTION
At Level 3, an attacker also knows the labels on the edges adja-

cent to setl3 . Then, in this case, the anonymous graph generated
at Level 2 cannot prevent the node from re-identification if the at-
tacker also uses the edge label information. For example, in Figure
1(c), c and f are assigned to the same group and have the same
degree. If an attacker knows that Tom is a 35 year-old man from
Africa who has two neighbors both with type 1 (roommate), he can
use this information to re-identify that c is Tom. In order to prevent
such an attack, at level 3, when an attacker uses node label list, de-
gree and edge label information of any node in setl3 to search the
published graph, the real matching node should be mixed with at
least k − 1 other nodes. We call a graph that satisfies the above
property k-degree-label anonymous graph. We call the vector of
labels on the edges adjacent to a node u as u’s degree label se-

quence. For example, Figure 1(d) is a 2-degree-label anonymous
graph. The degree label sequence of node d is [1, (0, 1), (0, 1)].

We can change a k-degree anonymous graph to be a k-degree-
label anonymous graph by generalizing the labels on edges. That is,
if a group contains at least one node that needs Level 3 protection,
for any two nodes in it, change their degree label sequence to be
the same by generalizing edge labels. Figure 2(b) shows the results
of applying edge label generalization when Tom requires Level 3
and Leo requires Level 2 protection. In Figure 2(a), c’s degree
label sequence is [0, 1] and f ’s degree label sequence is [0, 0]. By
generalizing edge e(c, d) and e(f, g)’s labels to be (0, 1), both c

and f ’s degree label sequences become [0, (0, 1)].
Algorithm 3 shows how to generate a k-degree-label anonymous

graph from GL2
. In order to generalize the edge labels with the

minimum level of edge label generalization, in line 6-8, we sort the
labels in the degree label sequence using the same sorting rule8. In
line 9-14, we generalize the labels appearing at the same position
of their corresponding degree label sequences in a group to be the
same. We repeatedly adjust each group that needs Level 3 protec-
tion until GL2

becomes a k-degree-label anonymous graph.

6. EXPERIMENTS

6.1 Utilities
The analysis in our algorithm description part proves the privacy

preserving effect. Another important question is: how to measure
the quality of the published graph. For the labeled graphs, peo-
ple use the change of certain queries’ results to measure the qual-
ity[17][2]. In this paper, we test two kinds of queries:

• One hop query (1 hop)
This query is: “The number of node pairs (u1, u2), where u1

has label l1, u2 has label l2, and u1/u2 are directly connected
with edge label le”. A one hop query can be represented by
(l1, le, l2). If each node has more than one label, the query is
represented by (d, l1, le, l2), where l1 and l2 are the labels on
dimension d. For example, in Figure 1(a), each node has two
kinds of labels (area, age), query (1, Asia, 1, Africa) means
the number of directly connected pairs with edge type “1”
and the two endpoints of this pair have location (dimension
1) labels “Asia” and “Africa” respectively.

• Two hop query (2 hop)
This query is “The number of node tuple (u1, u2, u3), where
u1 has label l1, u2 has label l2, u3 has label l3. u1 and u2

are directly connected with edge label le1
, and u2 and u3 are

directly connected with edge label le2
”. A two hop query

can also be represented as (l1, le1
, l2, le2

, l3), and extended

8
The label in a lower level is less than the label in a higher level (0 < (0, 1)). For

the labels in the same level, define an order between them.

to form (d, l1, le1
, l2, le2

, l3) with a dimension parameter if
each node has more than one label.

[2] used the above two types of queries to check information change
of direct and indirect connections, respectively. We measure the
utility using the average relative query error of all possible basic

form queries. For a query q, its relative error is
|n−n′|

n
. Where n

and n′ are the results of executing query q on the original and the
privacy-preserved published graph, respectively.

Algorithm 3: Generate degree label anonymous graph

while true do1

if GL2
is a degree label anonymous graph then2

break;3

for each group g in C do4

if g contains a node in setl3
then5

for each node u in g do6

Sort the degree label sequence of u;7

Vector general = the degree label sequence of u0 (u0 ∈ g);8

for each node u in g, u 6= u0 do9

for each edge label L in u’s degree label sequence do10

Find the mapping label L′ of L in general;11

L′ = L ∪ L′;12

for each node u in g do13

Set u’s degree label sequence = general;14

Degree Distribution (DD)[8, 19], as one of the basic graph char-
acteristics, is considered by nearly all social network analysis works.
We also tested the DD’s change between the original graph and the
published graph to show the structure difference. Li [7] showed
the EMD (Earth Mover Distance) is a good measure of the dif-
ference between two distributions and used EMD to define the t-

closeness model. So in this paper, we use the EMD between the
original graph’s DD and published graph’s DD to represent the
DD’s change. The larger the EMD is, the larger DD changes. We
give the detailed EMD between two distributions in Appendix E.

6.2 Querying Anonymized Data
The published graph’s degree distribution can be directly com-

puted. In order to perform queries on the published graph with
generalized labels, we can use Sampling Consistent Graphs method
[2] to randomly sample a graph that is consistent with the published
data, and analyze the sampled graph. When conducting sampling,
we choose an assignment of labels to nodes for each group, which
is consistent with the published graph. For each edge, we assign
a label that is consistent with the generalized one. The query can
be operated on the sampled graph. Normally, an “expected” answer
can be evaluated by computing the mean of query results on several
consistent sampling graphs.

6.3 Results
We test our algorithms on two real data sets and one synthetic

data set: Speed Dating data (SD, 552 nodes), ArXiv data (AX,
19835 nodes) and ArXiv Data with uniform labels (AXU). Ap-
pendix F presents the details about these three data sets. In this
part, “I. Level x” is used to show the utility of the published graph
in which all the nodes have Level x protection (naive protection).
“D. Level x” stands for the result of the published graph in which
different nodes have different protection requirements.

We set all the nodes need Level 1 protection, 5% nodes need
Level 2 protection and 5% nodes need Level 3 protection. The
nodes that need Level 2 and Level 3 protections are randomly se-
lected. We call the random setting of Level 2 and Level 3 protection
nodes as random privacy selection. Since all the nodes need Level
1 protection, “I. Level 1” and “D. Level 1” have the same results,
we use “I. Level 1” to represent both of them.
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Figure 7: Average relative error on all possible one hop queries
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Figure 8: Average relative error on all possible two hop queries
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Figure 9: Average change of the degree distribution

In order to avoid the influence of the random privacy requirement
selection of nodes, we randomly divide the nodes in each graph to
10 non-overlapping folds. Each time, the nodes that need Level
2 and Level 3 protection are randomly selected in one fold. Thus
totally 10 random selections that do not have any overlapping are
tested for each graph. This kind of selection has the same spirit as
the cross-violation sampling selection in the AI field [11].

Figures 7 and 8 shows the average relative errors of one hop
queries and two hop queries respectively. Each point in the figures
is the mean result on the corresponding published graphs of the
10 different random privacy requirement selections. For each pub-
lished graph of one random privacy selection, we generate 20 con-
sistent sampling graphs to get the “expected” result. From the re-
sults, we can observe that the graphs allowing personalized protec-
tions have higher utility than the ones that make all nodes achieve
the highest protection level. We also find that for each protection
situation, in most cases the mean of the average relative error in-
creases with the increasing of k. This satisfies the intuition, since
the published graph with large k has more difference to the original
graph than the one with small k. However, at several points, such
as the point k = 7 of in Figure 8(a), the utility of some methods de-
creases a little suddenly. One reason is the random characteristics

of the algorithms, which might make the consistent graph sampling
sometimes generate a better result for a large k. Another reason is
the effect of the noise nodes/edges. If the generalization at Level 1
is not good enough, some connections disappear during the mod-
ification. The noise nodes/edges create some new connections in
the graph, which could possibly add some disappeared connections
back. A larger k adds more noise nodes/edges, thus more missing
connections are added back.

Since only Level 2 protection changes the degree, we show de-
gree distribution’s change of “I. Level 2” and “D. Level 2”. Figure
9 shows the EMD between the original graph’s DD and the pub-
lished graph’s DD. In Figure 9, each point is the mean result on
the corresponding published graphs of 10 different random privacy
requirement selections. From the result we can see, “D. Level 2”
performs much better than “I. Level 2”. This is because allowing
personalized protection changes the original graph’s structure much
less than the method that protects all nodes with the highest level.

Next we do the significant testing for random privacy selections
to show the benefit is not because of the bias of the privacy require-
ment selections. We define the research hypothesis as “The person-
alized protection always gets better utility than naive protection”.
The corresponding null hypothesis is “The personalized protection
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does not always get better utility than naive protection”. We do
paired t-test (p=0.05) for each k based on the 10 random privacy
selections. The testing is conducted for both Level 2 and Level 3
respectively. For Level 2, we compare “I. Level 2” and “D. Level
2”. For Level 3, we compare “I. Level 3” and “D. Level 3”. The
results are shown in Table 1. In the table, 5/6 means the null hy-
pothesis has been successfully disproved for 5 times in the 6 testing
for k from 5 to 10. In Table 1, totally 84 testing are operated and
only 8 of them failed. From the results we can see, in most cases,
the research hypothesis can be proven to be true, especially for two
hop queries and degree distribution.

Table 1: The result of significant testing
SD AX AXU

Level 2 Level 3 Level 2 Level 2 Level 2 Level 3
1 Hop 4/6 4/6 5/6 5/6 5/6 6/6
2 Hop 6/6 6/6 5/6 6/6 6/6 6/6

DD 6/6 / 6/6 / 6/6 /

We also test the time efficiency of our algorithms, the details can
be found in the Appendix G. The results show our algorithms have
good time performance. For a graph with around 20000 nodes, the
algorithms can finish computation within 10 minutes.

7. RELATED WORK
When publishing an anonymized social network, the unique pat-

terns such as node degree or subgraph can be used to re-identify
the nodes/links [6]. The attack that only uses certain background
knowledge and doesn’t “actively” change the graph is called pas-
sive attack, and the one “actively” changes the graph when social
networks are collecting data is called active attack. Most current
works can be categorized into two classes: to prevent passive at-
tack [8, 6, 4, 16, 3, 15, 17] and to prevent active attack [13].

Most works focused on preventing passive attack. Hay[6] pro-
posed a clustering algorithm to prevent privacy leakage using ver-
tex refinement, subgraph, and hub-print queries. Zheleva[16] de-
veloped algorithms to prevent the sensitive link leakage by mining
observed links in published network. Campan[3] discussed how
to implement k-anonymous when consider both node labels and
structure information. Cormode[4][2] introduced (k, l)-groupings
for bipartite graph and social networks to do the protection respec-
tively. Liu[8] defined and implemented k-degree anonymity model
on network structure, that is for a published network, for any node,
there exists at least k-1 other nodes have the same degree as this
node. Zhou[17] considered stricter model: for every node there ex-
ist at least k-1 other nodes share isomorphic neighborhoods when
taking node labels into account. Zou[19] considered the strongest
structure protection model: A graph is k-Automorphism if and only
if for every node there exist at least k-1 other nodes do not have
any structure difference with this node. Ying[15] studied how ran-
dom deleting and swapping edges changes graph properties and
proposed an eigenvalues oriented random graph change algorithm.

One method to prevent an active attack is to recognize the fake
nodes added by attackers and remove them before publishing the
data. Shrivastava[13] proposed an algorithm that can identify fake
nodes based on the neighborhood graph difference between normal
nodes and fake nodes.

There are also some other related works. Backstrom[1] described
active attacks based on randomness analysis and demonstrated that
an attacker may plant some constructed substructures associated
with the target entities. Liu[9] treated weights on the edges as sen-
sitive values and proposed a method to preserve shortest paths be-
tween most pairs of nodes in the graph.

The works to prevent the passive attack are most relevant to our
work. Compared with those works, ours is the first that tries to

allow users to provide the personal privacy setting in social net-
works. This provides a new opportunity to achieve higher utilities
when publishing a graph. We also considered the link protection
besides preventing the node re-identification.

8. CONCLUSION
In this paper, we design a comprehensive privacy protection fram-

ework for the labeled social networks. This framework allows dif-
ferent users to set different privacy protection requirements. With
the framework, we increase the utilities of the published graph and
at the same time satisfy all user’s privacy requests. The framework
combines the structure protection techniques (such as graph edit-
ing) and micro data protection techniques (such as generalization).
Our method provides the possibility of offering different services to
different users. We prove the effectiveness of the proposed frame-
work through extensive experiments.
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APPENDIX

A. GRAPH MODEL
The graph model used in this paper is defined as follows:

DEFINITION 1. Published Graph: a published graph for a so-

cial network is defined as a six-tuple G(V, E, σ, λ, β, λ′), where V

is a set of nodes and each node represents a node in a social net-

work. E ⊆ V × V is a set of edges between nodes. σ is an array,

each of its dimensions represents a set of labels that nodes have. λ

is an array that ∀i, λ[i] : V −→ σ[i] maps nodes to their labels.

β is a set of labels that edges have. λ′ : E −→ β maps edges to

their labels.

In this graph model, both nodes and edges have labels.

B. NP HARD PROOF

PROOF. The k-anonymous problem of the micro data [10] is
NP-hard. We build an empty graph G and let each item in the
micro data as a node. The quasi-identifiers of each item are set as
the labels of the item’s corresponding node. We do not build any
connections between nodes. Thus all the nodes in G have the same
degree 0. Then the second part of the cost function is 0. The per-
sonalized protection problem is exactly the k-anonymous problem
of the micro data. So this problem is a NP-Hard problem.

C. SAFE GROUPING CONDITION PROOF

PROOF. We first prove under the condition in Theorem 3, for
any edge e in the published graph, the probability that the attacker
knows a node ux is involved in this edge is less than 1

k
. If the

condition in Theorem 3 is satisfied, for any edge e(ux, uy), there
are more than k candidates for ux and also more than k candidates
for uy . Since there is no overlapping between the candidate sets of
ux and uy (the first condition), the probability that an attacker can
successfully find whether a node is an endpoint of an edge is less
than or equal to 1

k
.

Next we prove that the probability that the attacker knows a node
ux and a node uy having a connection is less than or equal to 1

k
.

Suppose node ux is in group gx and node uy is in group gy . Let
ax and ay denote the number of all possible label list assignments
for gx and gy respectively. a′

x and a′
y are the possible label list

assignment numbers when one node has been assigned with a cer-
tain label list. Since gx and gy are two non-overlapping groups,
the probability that the attacker finds ux and uy having connection
P (e(ux, uy)) is:

P (e(nx, ny)) =
ne × a′

x × a′
y

ax × ay

,

where ne is the number of edges whose two endpoints might
be ux and uy (ux’s label list appears in the label list set of one
endpoint and uy’s appears in that of the other one).

With generalization, a node may have the label list of any node
in the same group. So ne = x, ax = |gx|!, ay = |gy|!, a′

x =
(|gx| − 1)! and a′

y = (|gy| − 1)!,

P (e(nx, ny)) =
ne × (|gx| − 1)! × (|gy| − 1)!

|gx|! × |gy|!
=

ne

|gx||gy|

According to Theorem 3, ne = x ≤
|gx||gy|

k
, then

P (e(nx, ny)) ≤
|gx||gy|

k × |gx||gy|
=

1

k

So, conditions in Theorem 3 can guarantee the privacy objectives
(2) and (3).

D. ALGORITHM PROPERTY PROOF

PROOF. It is obvious all the nodes in GL1
can reach their tar-

get degrees using Algorithm 2. Next, we show SGC is guaran-
teed when building connections between the original nodes and the
noise nodes. When adding edges between nodes in GL1

and A, the
algorithm selects a group g in GL1

. Then the algorithm repeatedly
adds edges between the nodes in g and A until g becomes a group
with all the nodes in it having the same degree. The nodes in A are
selected column by column to add edges. Each row of nodes in A

is a group that only contains noise nodes. Since X ≥ Changemax

k
,

we get Changemax

X
≤ k. The number of edges x between any

group gx in GL1
and any group gy in A is at most k after this step.

Since |gx| ≥ k and |gy| = k, we have
|gx||gy|

k
≥ k ≥ x. This op-

eration also does not create any edge within a group, the conditions
in Theorem3 are satisfied.

We then show the algorithm let all the noise nodes have the
degree degreetarget without violating the safe group condition.
Since Algorithm 2 adds edges to noise nodes’ array A column by

column. degreetarget =
⌊

Changetotal

X×k

⌋

+ 1, all the noise nodes

can only have the degree degreetarget or (degreetarget − 1) after
the first step. And all the nodes with the degree (degreetarget −1)
appear at the bottom part of the array. That is if A[i][j] has degree
(degreetarget − 1), A[i + 1][j], A[i][j + 1] and A[i + 1][j + 1]
all have the degree (degreetarget − 1).

• At the beginning, the difference between the numbers of
(degreetarget − 1) degree nodes in any two rows is at most
1;

• Each time, either the selected two rows have the same number
of (degreetarget − 1) degree nodes or one row has one more
(degreetarget − 1) degree node than the other.

• The numbers of (degreetarget − 1) degree nodes in the two
rows of the last step can only be (1, 1) or (2, 1);

• Since degreetarget ×X × k and Changetotal are both even
numbers, the number of (degreetarget − 1) degree nodes is
(degreetarget×X×k - Changetotal) at the beginning. Each
step we remove 2 nodes with the degree (degreetarget − 1).
Since both (degreetarget × X × k − Changetotal)

9 and 2
are even numbers, only (1, 1) case can appear in the last step.

From the above analysis, we can see Algorithm 2 could finally ad-
just all the nodes’ degrees in A to be degreetarget. This operation
would not add any edge within a group in A. The number of edges

created between any two groups in A is at most k, where k ≤ k2

k
.

So the algorithm satisfies SGC.

E. DISTANCE BETWEEN DEGREE DISTRI­

BUTIONS
As shown in paper [7], for two distributions on continuous nu-

merical values P [(v1, p1), (v2, p2), ...(vm, pm)] and Q[(v1, q1), (v2,
q2), ...(vm, qm)] (vi is the numerical value, pi and qi are distribu-
tion values), let ri = pi − qi, (i = 1, 2, ..., m), the earth mover
distance between P and Q can be calculated as:

EMD[P, Q] =
1

m − 1
(|r1| + |r1 + r2| + ... + |r1 + r2 + ... + rm|)

=
1

m − 1

m
∑

i=1

|

i
∑

j=1

rj |

In our case, suppose mind and maxd are the minimum and
maximum degree of the original graph. According to our algo-
rithms, all node degrees in the published graph also falls into range

9
Since (degreetarget × X × k + Changetotal) is even, (degreetarget ×

X × k − Changetotal) is also even.
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Figure 10: Running Time

[mind, maxd]. So we can generate the degree distributions of
the original graph and the published graph on [mind, maxd] and
compute their distance directly. For example, the degree distribu-
tions of Figure 1(a) and Figure 1(d) are [(3, 1

7
), (2, 3

7
), (1, 3

7
)] and

[(3, 2

11
), (2, 9

11
), (1, 0

11
)] respectively.

F. DATASETS

• Speed Dating Data: We extract a graph from Speed Dating
(flowingdata.com) with 552 nodes and 4194 edges. The aver-
age degree of this graph is 15.2. Each node has 19 labels, and
these labels represent 4 types of information: age, race, field
and hobbies, where hobbies contain 16 items. Each edge de-
notes a ”date” between two people. We use the same method
as [2] to set the edge labels. If both people were positive
about their counterpart, the edge label is set to ”match”; oth-
erwise it is set to ”unmatch”. The numbers of edges with type
”match”/”unmatch” are 3504 and 690 respectively.

• ArXiv Data: ArXiv(arXiv.org) is an e-print service system in
Physics, Mathematics, Computer Science, Quantitative Biol-
ogy, Quantitative Finance and Statistics. We extract a sub-
set of co-author graph in Computer Science, which contains
19835 nodes and 40221 edges. Each node denotes an author,
and each edge means two authors have at least 1 co-author
paper. The average degree of this graph is 4.06. Each edge
has an integer weight that represents the number of papers
co-authored by the two endpoints. We set label ”seldom” to
edges with weight 1, ”normal” to edges with weight 2 - 5 and
”frequent” to edges with weight larger than 5. The numbers
of edges with these three labels are 33856, 6058 and 312 re-
spectively. We set each author’s research field as his/her node
label. The research field is set as the category of papers he/she
published most. There are totally 37 different values of node
labels.

• ArXiv Data with uniform labels: We also generate a syn-
thetic graph based on the ArXiv graph by uniformly set node
labels and edge labels. Each node has one label selected from
20 different values. Each edge has one label selected from 3
different values. All the values are uniformly distributed.

G. MORE EXPERIMENTS
We test the running time of our algorithms. The results are shown

in Figure 10. From the results, we can see the personalized privacy
protection do not introduce extra computation time. The algorithms
introduced in this paper have good time efficiency. For a graph with
around 20000 nodes, the algorithms can finish computation within
10 minutes.

In order to show the noise nodes are well mixed with the nor-
mal nodes in the published graph, we conduct three tests. For the

first one, we suppose an attacker already knows the degree and the
group size of the noise nodes’ groups. We test the ratio of real noise
nodes in the selected nodes if the attacker uses this information to
filter the published graph. Table 2 shows the results. In the table,
“I.” stands for the protection using the naive method (protecting all
nodes to the highest level). “D.” stands for the personalized protec-
tion. From the table, we can see the real noise node is the minority
in the selected nodes. Even an attacker already knows the degree
of the noise nodes, he still cannot filter them out. The results of
AX and AXU are very small since the graphs are sparse (average
degree = 4) which makes most of the degree change can be han-
dled by connecting the original nodes. In the second test, we use

Table 2: Correct filtering ratio using the degree information
SD (%) AX (%) AXU (%)

K I. D. I. D. I. D.

5 8.70 8.54 0.00 0.16 0.00 0.15

6 9.52 8.45 0.24 0.22 0.24 0.23

7 36.25 29.93 0.00 0.35 0.00 0.49

8 0.00 25.56 0.32 0.27 0.32 0.29

9 18.75 19.82 0.36 0.31 0.00 0.56

10 0.00 19.98 0.40 0.44 0.40 0.41

Clustering Coefficient (CC) of a vertex, which is commonly used
[8][19] to represent the vertex’s neighborhood graph. CC is defined
as the actual number of edges between the vertex’s directed neigh-
bors divides the max possible number of edges between these di-
rected neighbors. We assume that an attacker knows the CC value’s
range of each noise node. Suppose the CC value of a noise node u

is c, an attacker uses the range [c(1 − 10%), c(1 + 10%)] to filter
u. We show the ratios of noise nodes in the filtered results in Table
3. From the results, we can see the CC values of the noise nodes
are not special comparing with the normal nodes.

Table 3: Correct filtering ratio using the CC information
SD (%) AX (%) AXU (%)

K I. D. I. D. I. D.

5 5.05 4.68 0.00 0.00 0.00 0.11

6 4.78 4.55 0.85 0.85 0.84 0.38

7 11.07 9.09 0.00 0.00 0.00 0.32

8 0.00 8.49 1.12 1.12 1.13 0.24

9 9.82 8.76 1.27 1.27 0.00 0.51

10 0.00 12.06 1.40 1.40 1.40 0.38

There are also some works[12][5] to detect abnormal structures
in graph databases. Thus, in the third test, for each degree that
contains noise nodes, we extract all the neighborhood graphs of the
nodes with this degree in the published graph. We use the tool in [5]
to detect abnormal structures in the graph database formed by these
neighborhood graphs. The interesting result is, for all the cases,
either no abnormal structure is found or the abnormal structures
found out are all in the neighborhood graphs of normal nodes. The
results show that the neighborhood graphs of the noise nodes do
not have any special characters to be filtered out.
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