
K-Anonymization as Spatial Indexing: Toward Scalable and
Incremental Anonymization

Tochukwu Iwuchukwu
University of Wisconsin

1210 West Dayton Street
Madison, WI 53706

tochukwu@cs.wisc.edu

Jeffrey F. Naughton
University of Wisconsin

1210 West Dayton Street
Madison, WI 53706

naughton@cs.wisc.edu

ABSTRACT
In this paper we observe thatk-anonymizing a data set is strikingly
similar to building a spatial index over the data set, so similar in fact
that classical spatial indexing techniques can be used to anonymize
data sets. We use this observation to leverage over 20 years of work
on database indexing to provide efficient and dynamic anonymiza-
tion techniques. Experiments with our implementation show that
the R-tree index-based approach yields a batch anonymization al-
gorithm that is orders of magnitude more efficient than previously
proposed algorithms and has the advantage of supporting incremen-
tal updates. Finally, we show that the anonymizations generated by
the R-tree approach do not sacrifice quality in their search for effi-
ciency; in fact, by several previously proposed quality metrics, the
compact partitioning properties of R-trees generate anonymizations
superior to those generated by previously proposed anonymization
algorithms.

1. INTRODUCTION
The problem of anonymity in published data has been widely

studied in recent years. Organizations may release private data for
the purposes of facilitating useful data analysis and research, for ex-
ample, patients’ medical records may be released by a clinic to aid
a medical study. While such data sharing has its benefits, we must,
however, contend with the issue of privacy for those individuals to
whom information in the shared data pertain.K-anonymity[24,
25, 26, 29, 30] has been proposed as a means to preserving pri-
vacy in data releases. Put simply, the private data set is modified
so that each record is indistinguishable from at leastk− 1 other
records. Indistinguishability is defined in terms of any set of at-
tributes that can be used to uniquely identify an individual. This set
of attributes has been called aquasi-identifier[7] in the literature.
An example of a quasi-identifier is the set of attributes comprising
Age, SexandZipcode[28]. Figure 1 illustrates how private data can
be transformed to preserve anonymity. The 2-anonymous table in
Figure 1(b) has three quasi-identifier attributes: Age, Sex and Zip-
code and one sensitive attribute: Ailment. Each record in this table
has the same quasi-identifier values as at least one other record.

Since the original definition ofk-anonymity, there has been a

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

great deal of research along two orthogonal lines: first, how to
refine the definition ofk-anonymity to provide different guaran-
tees about the data (for example, augmenting the definition withl -
diversity [21]); second, how to efficiently generate anonymizations
of data sets that are as precise as possible while still respecting the
definition of anonymity (for example, using heuristic algorithms
with multidimensional partitioning [19].) Our work is an example
of the second class of research.

We present an anonymization algorithm that substantially im-
proves upon previously presented algorithms both with respect to
efficiency and with respect to the quality of the anonymization pro-
duced. Specifically, the algorithm we present in this paper allows
us to anonymize data sets containing at least 100 million records;
also, by a recently presented metric for the quality of anonymiza-
tion (“certainty” [33]), the anonymizations produced by our algo-
rithm are approximately a factor of two better than previous algo-
rithms.

The key to our algorithm is to exploit a striking parallel between
the “classical” area of database indexing and the relatively new data
privacy research domain,k-anonymity. LetT be a table withn
quasi-identifier attributesA1, A2, . . ., An. First, we observe that the
eventual goal of allk-anonymization algorithms is to transformT
by partitioningT into groups of records so that each group contains
a minimum ofk records. To illustrate the connection between in-
dexing and anonymization, assume thatBT is a B+-tree index on
the quasi-identifier attributeA1. Note that every path from the root
node inBT to a leaf nodeL produces a set of records inT whoseA1
values satisfy the constraint imposed by the path followed to reach
L. Note then that theA1 values for the records contained inL fall in
the range [a, b] where a and b are the left and right separator values
in L’s parent node that border the “pointer” toL. When we apply
this concept to every leaf node inBT, we can transformT into a
new tableT1 by replacing every record’s value inA1 by the appro-
priate range of values — records in the same leaf node will have
the same newA1 value. Going one step further, a B+-tree index
places an occupancy constraint on all nodes in the tree, as such ev-
ery leaf node inBT must contain betweenNmin andNmax records.
With these properties ofBT, namely, an implicit partitioning of the
underlying table and a bounded occupancy constraint on all parti-
tions, we get a “k-anonymous” table wherek = Nmin. Figure 1(c)
shows an example of a B+-tree index on the Age attribute of the
original table in Figure 1(a) and corresponding to the 2-anonymous
table in Figure 1(b).

In general, however, the table to be published may contain more
than one quasi-identifier attribute, so rather than use B+-trees, we
suggest multidimensional spatial indexing, and the R-tree in par-
ticular, as the basis for anonymization. In Section 2, we discuss in
greater detail how a variant of R-tree indexes provide algorithms for

746

RID Age Sex Zipcode Ailment
R1 21 M 53706 anemia
R2 26 M 53706 flu
R3 32 F 53710 cancer
R4 36 F 53715 torn acl
R5 48 M 52108 flu
R6 56 F 52100 whiplash

(a) Private Patient Table

Age Sex Zipcode Ailment
[20 – 30] M 53706 anemia
[20 – 30] M 53706 flu
[30 – 40] F [53710 – 53715] cancer
[30 – 40] F [53710 – 53715] torn acl
[45 – 60] * [52100 – 52108] flu
[45 – 60] * [52100 – 52108] whiplash

(b) A 2-anonymous Patient Table (c) B+-tree index on the Age attribute

Figure 1: A 2-anonymous representation and database indexing ofa patient table.

k-anonymizing a multi-attribute table. We discuss R-tree style in-
dexes [5, 10, 27] and how these indexes are useful fork-anonymizing
a data set, and properties that give them advantages over other types
of indexing mechanisms. In particular, we focus on the variants
of the R-tree that do not overlap partitions, for example, the R+-
tree [27]. This is due to the universally adopted practice in existing
k-anonymization algorithms of generating only non-overlapping par-
titions in the anonymized data.

The connection between anonymization and spatial indexing is
perhaps not entirely surprising, as [22] used a new special-purpose
spatial index structure (the “pyramid tree”) to anonymize objects
moving in the spatial domain. However, to the best of our knowl-
edge, ours is the first work to propose anonymization of non-spatial
data by the use of a classical spatial index that is already imple-
mented and distributed in commercial and open-source RDBMS
products.

The indexing-anonymizing connection gives us a different per-
spective in thek-anonymization domain, has several advantages
over previously proposedk-anonymization algorithms, and unifies
several desired goals for anonymization into a single approach:

• An R-tree index-based approach tok-anonymization furnishes
us with efficient index-construction algorithms that enable
faster bulk anonymization times than previous techniques,
even for memory-resident data sets.

• We further show that applying R-tree bulk-loading algorithms
to anonymizing yields anonymization algorithms that per-
form well even on data sets much larger than main mem-
ory. This enables us to anonymize a data set of 100,000,000
records.

• We observe that minimal bounding boxes from the indexing
domain [5, 10, 27] suggest anonymizations that leave gaps in
the domain. This can yield far more precise anonymizations
than previously proposed anonymization techniques, none
of which consider leaving gaps. This opens up an interest-
ing and novel aspect of the always-present tension between
anonymization and precision that has not been previously ex-
plored in thek-anonymization literature.

• Spatial indexes are well-suited to exploit anticipated work-
loads while anonymizing data sets. Selecting specific quasi-
identifier attributes on which to build an index and biased
splitting algorithms are two ways that we can incorporate
query workloads into the anonymization.

• A database owner may wish to distribute anonymized tables
of different “granularity” to separate groups, reflecting her
trust. For example, she may deliver a 5-anonymization of
her table to a medical research group while delivering a 10-
anonymous version to an insurance research group. Rather
than re-anonymize the original table for each group, facing

the danger of privacy violation in the presence of collusion,
we exploit the tree structure of a spatial index for automatic
generation ofmulti-granularanonymized data sets that pre-
servesk-anonymity.

Since database indexes are specifically designed for record in-
sertions, deletions and updates, by using them for anonymization,
we automatically get a mechanism for incremental anonymization.
However, incremental anonymization raises issues with respect to
the preservation of privacy. If an attacker has external knowledge of
which individual’s records are being inserted, deleted or updated in
a data set, then the attacker may be able to issue a series of queries
over time and deduce sensitive information. While providing an in-
crementally updatable anonymization technique does not solve the
inference problem, it is a much better platform for updates than cur-
rent techniques, which could potentially require re-anonymization
of the entire data set after each update.

Finally, the index-based approach to anonymization can exploit
the efficiency inherent in index update and bulk-loading algorithms.
Previous research ink-anonymizing algorithms has focused almost
exclusively on the quality of the resulting anonymization, rather
than on the speed with which that anonymization is achieved. An
exception is the Mondrian algorithm from [19], where the authors
present a polynomial time algorithm, thus making it practical to
consider anonymizing large data sets. While absolute performance
was not the goal of that paper, it is interesting to note that the ap-
proach suggested in that paper constitutes a top-down multidimen-
sional spatial partitioning algorithm, whereas spatial index building
algorithms represent a bottom-up spatial partitioning approach.

To investigate the quality and efficiency of both approaches, we
reimplemented the Mondrian algorithm described in [19], and com-
pared it to bottom-up index-based algorithms. We found that the
bottom-up approach gave better quality as measured by the dis-
cernibility penalty [4], KL divergence [15] and the “certainty met-
ric” [33]. Furthermore, experiments with our implementation also
showed that the bottom-up approach adopted by index bulk-loading
algorithms is an order of magnitude faster than the top-down Mon-
drian approach. It is an interesting area for future research to de-
termine whether this is a fundamental property of all top-down vs.
bottom-up approaches.

Note that our use of “top-down” vs. “bottom-up” methods differs
from the usage in [33], where they use the terms to refer to two new
O(n2) algorithms. While we did not have access to their code in or-
der to do a comparison of these new algorithms with ours, as the
authors of that paper note, it is not as efficient as the Mondrian algo-
rithm (6X slower on 100,000 records), and it will not scale to large
n (no n2 algorithm can). Our experiments show that our bottom-
up algorithm scales well at least for another factor of 1000 (up to
100 million records.) The issue of quality of the anonymizations
produced is less clear, since while that paper reports better results
than the Mondrian algorithm, it does not consider anything like our

747

“compaction” procedure, which we found essential for good cer-
tainty metric scores.

2. R-TREE SPATIAL INDEXING
R-tree spatial indexes bring with them several desirable proper-

ties when applied to the problem ofk-anonymization.

2.1 Scalability to Large Data Sets
To date, thek-anonymization literature has not considered algo-

rithms for anonymizing data sets that do not fit in memory. Bulk-
loading database indexes has almost by definition focused on such
data sets. A number of bulk-loading techniques have been proposed
for spatial indexes. Some of these techniques require spatial sort-
ing based on space-filling curves [12, 13, 14] (e.g, the Hilbert curve
or Z-ordering). While we experimented with such approaches, we
found in our implementation that non-sorting bulk-loading tech-
niques based on the “buffer-tree” [2, 6] worked better for higher
dimensional data sets.

The buffer-tree is based on the idea of inserting multiple records
simultaneously into the tree. Each internal node of the tree has an
external buffer where records are temporarily stored. Multiple in-
sertions are processed in the following way. An index node keeps
and “blocks” arriving insertions in its buffer. When the number
of records in the buffer exceeds a pre-defined threshold, all of the
records are “re-activated” and advanced to the next level of the tree.
Records are “terminated” when they are inserted into a leaf page.
Figure 2 shows an example of a buffer-tree after a series of inser-
tions have been processed. The buffer-tree consists of three nodes
N1, N2, N3 and five leaf pages P1, . . ., P5. Assume that node buffers
contain at most two pages and that a page has a maximum capac-
ity of three records. Consider the insertion of recordr25. Since
the root buffer is full, the insertions of the six records in the root
buffer are “re-activated” and “pushed down” to the next level of the
buffer-tree. After clearing a buffer, it may happen that buffers atthe
next level also become full. These overflows are again eliminated
by clearing these buffers.

Figure 2: Example buffer-tree after inserting 24 records, a full
root buffer and record r25 waiting to be inserted

A feature of the buffer-tree is that insertions traverse the tree
from root to leaf while restructuring operations traverse the tree
from the leaf backwards to the root. A restructuring operation con-
sists of a split of an overflowing node (a node whose buffers are
full) and an insertion of a new entry in its parent node. A restruc-

Figure 3: Splitting of the index node N3 after clearing the root
buffer

turing operation is first triggered by the split of a full leaf page. Just
as for record insertions, multiple restructuring operations are also
processed simultaneously — an internal node defers an incoming
insertion of an entry. When all subtrees of the node have finished
their restructuring operations, the entries are then stored in the rout-
ing table of the node. This may again produce overflow and further
restructuring operations. Figure 3 shows an example of a restruc-
turing process after the records in the root buffer are cleared into
the buffers of nodes N2 and N3.

We can gain insight into the performance of the buffer tree algo-
rithm by assuming an I/O model with the following parameters:

N = number of records in input data set
M = maximum number of records that the available memory can

hold
B = maximum number of records that a page can hold
The authors in [6] show that the I/O cost for bulk-loading a

buffer-tree for a data set ofN records isO
(

N/BlogM/B N/B
)

. Thus,
buffer-trees achieve similar I/O cost bounds to external sorting. We
also expect buffer-trees to have “good” performance when the in-
put data set fits in memory. The buffer-tree amortizes the cost of
inserting a set of records by deferring operations on the tree. This
contrasts the tuple-loading approach that inserts records one by one
into the index typically resulting in long load times (for example,
each newly inserted record may cause a node split that increases
the height of the tree index.)

Our experiments show reasonable performance for the buffer-
tree algorithms ink-anonymizing larger-than-memory as well as
memory-resident data sets using a spatial index.

2.2 Incremental Utility
In a dynamic environment, the spatial index is a natural mecha-

nism for allowing changes to be made on a data set while maintain-
ing a k-anonymous view. The prior anonymization algorithms in

748

the literature work on a data set as a complete whole — they start
with the complete (non-anonymized) data set as input, and produce
a complete anonymized data set as output. If an anonymized data
set is to be updated using these algorithms, the only option is to
re-anonymize the original data set plus the new data records. This
will be inefficient in scenarios with frequent updates.

Again, database indexes are designed to be incrementally up-
dated. One concern that arises is whether using the incremental
anonymization that results from processing updates one record at
a time using an R-tree is of worse quality than one that would
result from anonymizing the entire data set at once. Our experi-
ments show that this is not the case — the incrementally updated
anonymized data set has quality (measured by discernibility penalty,
KL-divergence and certainty penalty) comparable to that of the
bulk-anonymized data set.

2.3 Query Performance
In a traditional database setting, the performance of a query on an

index is typically determined by factors such as the time it takes to
execute the query or how many nodes need to be searched to find
all records that satisfy this query. Fork-anonymity, we associate
query performance with the number of records that are included in
the answer that would not satisfy the same query on the original
data. This is similar in spirit to the “precision” metric used in the
Information Retrieval literature.

DenoteW to be the set of leaf nodes (or partitions) in a database
index that is searched due to a queryQ1 posed on the original data.
Let Q2 denote the same query on the anonymized data. Note that if
a partitionP is contained inW, thenP is a candidate partition that
maycontain a record that satisfiesQ1. If P /∈W, then it is certain
that P does not to contain any record that satisfiesQ1. Consider,
for example, the following query on a table T:
SELECT COUNT(*)

FROM T

WHERE T.Age ≥ 25 AND T.Age ≤ 35

If the age interval forP is given as [40 – 50] thenP will not be in-
cluded inW. On the other hand, if the age interval is [20 – 30] then
P will be included inW. Note that it is still possible thatP does not
contain any record that satisfies the query. The age values inP may
actually range from 20 to 24. Nevertheless, since we have precise
record values in the unanonymized data, the candidate partitions
will be examined and the relevant records returned. On the other
hand, the queryQ2 on anonymized data may return all records inW
since we do not have exact information in this case. We define the
error for Q2 asC2−C1/C1 whereC1 andC2 are the cardinalities
of the result sets forQ1 andQ2 respectively. Intuitively, the error
for Q2 can be reduced ifW contains fewer partitions. The entries
in R-tree style indexes are maintained in minimum bounding rect-
angles (MBRs), giving the minimal extents of its entries. MBRs
allow search and range queries on a spatial data set to be executed
efficiently. By using MBRs, we increase the likelihood that a par-
tition will not be included inW. In the example given above, using
MBRs, the range on the Age attribute forP will be [20 – 24] thus
P will not be included inW.

We note that the exact behavior of queries on anonymized data
may differ for different applications. One may choose to take the
data distribution into consideration when computing query results.
DenoteP.Age andQ.Age as the age interval for the partitionP and
query Q respectively. Denote (P∩Q).Age to be the intersection
of the age intervals onP andQ. If Q.Age is (25≤ age≤ 35) and
P.Age = [30 – 40] then (P∩Q).Age = [30 – 35]. Now, if we assume
that the original data set is uniformly distributed on Age then we
may compute the result forQ onP as|P|× |(P∩Q).Age|/|P.Age|.

53710 53711 53712 53713

20

21

22

23

(a) Unbiased R+-tree
anonymized data

53710 53711 53712 53713

20

21

22

23

(b) Biased R+-tree
anonymized data

Figure 4: Targeting the R+-tree to the Zipcode quasi-identifier
attribute of a data set

If P contains 10 tuples, then the query result forP is 10× (35−
30)/(40−30) = 5 tuples.

However, regardless of the method used to evaluate query results,
these results must be computed based on the set of all partitions, the
setW, that may contain a satisfying record.

2.4 Query Workload Bias
Recent works [9, 11, 20, 31] have considered incorporating tar-

get query workloads into the anonymization of a data set. We can
also tailor a spatial index to take advantage of advanced knowl-
edge of the types of workload that will use the anonymized data.
Consider a very simple scenario where majority of the data min-
ing workloads are interested in the single quasi-identifier attribute
A0. If we build the index onA0 (a one-dimensional index), then
thek-anonymized data is clustered onA0. Under a sort-based bulk-
loading scheme, this results in sorting the data set onA0. For our
non-sort spatial index bulk-loading technique, preference is given
to a pre-selected subsetS of the quasi-identifier attributes when
splitting partitions.

Consider the two sets of anonymized data in Figure 4. A query
of the form
SELECT COUNT(*)

FROM T

WHERE T.Zipcode = z
will return more accurate results on the anonymized data gener-
ated by the biased R+-tree (see Figure 4(b)) than identical queries
on anonymized data generated by the unbiased R+-tree (see Fig-
ure 4(a)). For the query type given above and the example data in
Figure 4, queries on the biased anonymized data in Figure 4(b) will
be twice as accurate as queries on the unbiased anonymized data in
Figure 4(a) (assuming that aCOUNT query on a partition returns the
cardinality of that partition if the query region intersects with the
partition). We find, in experiments, that when we build the R+-tree
with biased splitting policies for a subsetSof the quasi-identifier at-
tributes, queries onShave relatively higher accuracies than queries
on anonymized data generated by another R+-tree with an unbiased
algorithm. Spatial indexes can hence be useful tools for anonymiz-
ing data sets when the types of query workloads that will use the
data are known beforehand. Taking a cue from [33] that proposes
a weighted certainty penalty metric, a spatial index can also in-
corporate query workloads into its splitting policies by assigning
higher weights to the “more important” quasi-identifier attributes.
As a consequence, it benefits the spatial index to split the more im-
portant attributes than the less important ones to arrive at a lower
penalty score for the new partitions.

749

3. MULTI-GRANULAR K-ANONYMITY
While a primary goal of the privacy-preserving techniques ink-

anonymity is to prevent re-identification of records, it may also be
useful to control the precision orgranularity of the information
that the data owner releases to different entities, to limit the linking
abilities of unknown adversaries.

DEFINITION 1. (GRANULARITY) We say that a k-anonymous
data set is an anonymous data set of granularity k.

Suppose the administrators of a university hospital have agreed
to deliver anonymized medical records to the following three en-
tities; Entity 1: researchers at the same university as the hospital,
Entity 2: researchers at a different university, Entity 3: the Inter-
net. One may expect that the hospital administrators place more
“trust” in Entity 1 than in Entity 2, Entity 3 being the least trusted.
The notion of trust is subjective and may be associated with factors
such as the data owner’s perception of the target entity’s ability or
intent to re-identify records (Data released on the Web is probably
more likely in danger of being compromised than data released to
a small, local group of researchers.)

We wish to be able to produce multi-granular anonymizations
T
′
= {T

′

1, . . . ,T
′

n} of the original data setT while preservingk-
anonymity for every individual inT in the presence of an adver-
sary who is able to gain access to more than one anonymized table.
Note that eachT

′

i is an anonymization of the same tableT, that
is, T is unchanged between anonymizations. While a full discus-
sion of the inference problem that arises from releasing multiple
anonymizations of the same data set is beyond the scope of this pa-
per, in what follows we give a condition that, if satisfied, guarantees
k-anonymity for any set of multi-granular anonymizationsT

′
of T.

DEFINITION 2. (k-BOUND) We say that the record ri is k-bound
in the original table T if there exists a subset of records R⊆ T such
that |R| ≥ k and given any partition or equivalence class P in an
anonymization of T , if ri ∈ P, then R⊆ P.

LEMMA 1. Let T
′
= {T

′

1, . . . ,T
′

n} be a set of ki-anonymizations

of the table T , ki ≥ k. k-anonymity is preserved over T
′

if every
record rj ∈ T is k-bound in T .

PROOF. (SKETCH) Given anyki-anonymizationT
′

i of T, r j can
not be linked to fewer thank records (ki ≥ k) usingT

′

i alone. An
adversary may however be able to circumventk-anonymity forr j

using the set of anonymizationsT
′

to narrow down the candidate
records forr j to a setC containing fewer thank records.

Pick any recordr j ∈ T, for any new anonymization ofT, the
adversary may be able to produce a new set of candidate recordsC

′

for r j such that|C
′
| ≤ |C| whereC is the previous set of candidate

records forr j as determined by the adversary. We know that|C
′
| ≥

1 sinceC
′

must at least containr j . If r j is k-bound inT, thenR

is always a candidate set forr j , R⊆C
′
, |C

′
| ≥ k. Thus correlating

any new anonymization ofT will result in at leastk records being
candidates forr j .

One may view a record that isk-bound in a table as being in a
group that always “sticks together” in any newk-anonymization of
that table.

3.1 A Hierarchical Algorithm for Generating
Multi-Granular Anonymized Data Sets

A straightforward approach to generating anonymized data sets
of different granularity is to re-anonymizeT to obtainT

′

1, . . . ,T
′

n.

Algorithm LeafScan
INPUT: Set oforderedleaf nodesN, granularity parameterk1
OUTPUT: A new set of partitionsS
LS1. S← empty set of partitions
LS2. whileN 6= /0
LS3. P← empty partition

while |P| ≤ k1
L← nextleaf node inN
Add all records inL to P
N← N−L

LS4. if the total number of records in the remaining leaf nodes
in N is less thank1, then remove these records fromN
and add them toP

LS5. update generalized quasi-identifier values for every record
in P

LS6. S← S∪P. Continue LS2
LS7. ReturnS

Figure 5: Leaf scan algorithm

One must then verify thatk-anonymity is preserved for each record
over all anonymizations ofT.

We can, however, take advantage of the tree structure of spatial
indexes to generate data sets of different granularity that automat-
ically guarantees thatk-anonymity is maintained for the collection
of anonymized data sets. This technique exploits Lemma 1 by ef-
fectively binding each recordr to some pre-determined set ofk
records.

Let SI be a multi-dimensional spatial index on the original data
set with the following properties.

• Leaf nodes inSI contain betweenk and ck records, some
constantc.

• Internal nodes inSI contain betweenl andmentries.

From each level inSI, we can automatically generate anonymized
data sets of granularityk, lk, l2k, . . . , lhk, whereh is the height ofSI.
To generate an anonymized table of granularityl ik, we map each
nodeNj at leveli to each partitionPj in the anonymized table. The
records inPj are all the records contained in the set of leaf nodes in
the subtree rooted atNj .

Using thishierarchical algorithm for generating multi-granular
anonymized data sets guaranteesk-anonymity over all anonymiza-
tions of T. To see why, pick any recordr i in T and letPj be any
partition from an anonymization ofT. If Pj containsr i , thenPj
contains the leaf nodeL in the subtree for whichPj is the root.
Thus, from Lemma 1, every record inL is k-bound,r i is k-bound.

In generating multi-granular anonymized data sets via the hier-
archical algorithm on a spatial index, the data set owner can, at
the very least, guarantee the anonymity generated by the leaf nodes
in the spatial index. In other words, if the leaf nodes produce a
k-anonymous data set (every leaf node contains a minimum ofk
records), then it can be guaranteed that releasing other data sets
at other granularityk1 > k will not violate k-anonymity. If an
adversary manages to obtain multiple versions of anonymized ta-
bles, with the goal of re-identifying individuals, she can only re-
cover the information revealed in the finest granular (most precise)
anonymized data set in her possession.

3.2 A Leaf Scan Algorithm for Generating
Multi-Granular Anonymized Data Sets

In this section, we describe an algorithm that rather than generate
anonymized tables in a hierarchical fashion, utilizes the “sequential

750

ordering” of nodes on the same tree level. The granularity of the
data sets that can be generated using a hierarchical algorithm is re-
stricted by the threshold on the minimum number of records in any
leaf node in the tree. This minimum occupancy threshold on leaf
nodes enforces the property that every subtree contain a minimum
number of records. Assume that all nodes (including leaf nodes)
in the spatial indexSI contain between two and four entries. Then,
at best, we can have anonymous data sets of granularity,k, 2k, 4k,
8k, . . . ,2hk. Using the hierarchical algorithm, we will be unable
to generate a 6-anonymous data set say, the best we can do is an
8-anonymous data set. (Of course by definition ofk-anonymity, an
8-anonymous table is also 6-anonymous.) Given a request for a
data set of granularityk1, we can further improve on the hierarchi-
cal algorithm by scanning the leaf nodes in order and partitioning
the leaf nodes in groups ofk1/k. In our current example, since ev-
ery leaf node contains at least two records, ifk1 = 6, we scan the
leaf nodes, forming groups of three leaf nodes each except for the
last group that may contain between three and five nodes.

Figure 5 shows theleaf scanalgorithm for performing multi-
granular anonymizations of a data set. Note that since each leaf
node may contain betweenk and ck records, we may be able to
form groups containing less thank1/k leaf nodes. The algorithm
initializes a new group or partition with the next leaf node; if this
group contains at leastk1 records, we are done with this group and
start a new one. Otherwise a new leaf is added to the current group.
The algorithm stops adding leaf nodes to a group when the total
number of records in the group is at leastk1. New groups are itera-
tively created until the last step, when the records in the remaining
leaf nodes is less thank1, we add these leaf nodes to the current and
last group, terminating the algorithm. Since the records in a group
may span multiple leaf nodes, the algorithm recomputes new gen-
eralized quasi-identifier values based on all the records in a group.
We use this approach in our implementation to generate data sets
of different granularity. As the results in Section 5 will show, exe-
cution times for anonymizing a data set is independent of the actual
anonymity parameterk since generating an anonymous data set of
any granularity requires one full scan of all the leaf nodes (after
building the index on a basek value).

By Lemma 1,k-anonymity is also preserved when we generate
multi-granular anonymized data sets with the leaf scan algorithm.
To see why, we observe that the leaf scan algorithm always forms
partitions fromwhole leaf nodes. IfPj is any partition from an
anonymization ofT andr i ∈ Pj thenPj contains the leaf node par-
tition L that containsr i , thusr i is always “bound” to the records in
L and|L| ≥ k.

4. A COMPACTION PROCEDURE
In the process of treating thek-anonymization problem as an in-

dexing problem, we recognized that we could dramatically increase
the precision of anonymized data sets by employing some of the
techniques for improving query performance on the R-tree style in-
dexes. By using minimum bounding boxes, these spatial indexes
leave gaps in the domain where gaps correspond to spatial portions
of the domain that do not contain any record. We, thus, propose a
compactionprocedure to increase the precision of an anonymized
data set generated for any index, such as the grid file [23], that does
not maintain MBRs for its records. Since everyk-anonymization
algorithm, whether viewed as an indexing technique or not, essen-
tially creates partitions in the original data set, the compaction tech-
nique can be retrofitted to previously proposed non-index-based ap-
proaches to give dramatic improvements as well.

The goal of the compaction procedure is to regenerate, for each
partitionP in a k-anonymous data setD, another partitionP1 with

(a) uncompacted data (b) compacted data

Figure 6: Applying the compaction procedure to partitions

a possibly “more precise” description about the records inP. The
compaction algorithm is a simple one — it scans each partition
P∈ D and creates the minimum bounding boxes. For each numer-
ical quasi-identifier attribute, the compaction algorithm generates
a new range where the end points are the minimum and maximum
values that occur for records inP. For each categorical attribute,
the procedure removes all values from the set that do not occur
in P. Where generalization hierarchies are used in place of sets,
the procedure chooses the lowest common ancestor in the hierar-
chy for all the values inP. The old generalized values for every
record inP are then replaced with the new, more compact values.
Figure 6(b) depicts an example application of the compaction pro-
cedure to anonymized data in Figure 6(a).

In the rest of the paper, we will refer to the data before applying
the compaction process as theuncompacteddata and the data after
applying the compaction process as thecompacteddata. A bene-
fit of the compaction procedure is that, when compared to results
from the same queries on the original data, query results on com-
pacted data are more accurate than queries on uncompacted data.
Due to the introduction of gaps in the anonymized data, queries
that would have otherwise returned non-empty result sets for one
or more partitions now return results that are more in tune with the
original data set. In experiments, we see dramatic improvements
in accuracy for queries on compacted data over the same queries
on uncompacted data. We should note that the simple nature of the
compaction procedure facilitates its application to data generated
by anyk-anonymization algorithm.

It is also reasonable to expect the execution costs for the com-
paction process to be relatively small when compared to actual
anonymization costs as its basic operation is a single pass over each
partition to determine minimum and maximum values for numer-
ical attributes and minimal sets for categorical attributes. These
relatively small compaction costs are verified through experimen-
tal results shown in Section 5 by running the compaction proce-
dure on anonymized data generated by a previously proposedk-
anonymization algorithm.

This compaction process may lead one to an uneasy feeling that
“more is being revealed” than would be revealed if the anonymized
data set were not compacted. This is actually true. For example,
an adversary can “know” that there is no individual in a “gap” area,
something they could not deduce without compaction. This is an
example of the tension between anonymization procedures and data
utility. But this is really an issue in allk-anonymization research.

For example, the discernibility penalty [4] rewards anonymiza-
tion procedures that do a good job of putting no more thank data
points in a partition. This reveals more information than another
anonymization that has partitions with more thank data points. To
see this, suppose that anonymization A putsk′ > k data points in a
number of partitions, but anonymization B puts onlyk in each par-

751

Category Description
Compiler gcc 3.2.2

Operating system Tao Linux release 1
CPU Intel Pentium 4 3.00Ghz

Memory 1GB
Hard Disk Seagate ATA/ATAPI-6

Table 1: System configuration

tition. Then with anonymization B, the “attacker” knows for every
data record that the sensitive value associated with that record must
be one of the alternatives appearing in thek records in the partition.
On the other hand, with anonymization A, for any data element in
a “large” partition, the attacker only knows that the data record has
a sensitive value among the values found in thek′ > k records in
the partition, which in general may be a larger set. Another way
of putting this is that if a procedure reduces the number of records
in a partition fromk′ to k, it has “revealed” information, but the
discernibility penalty says that the quality of the anonymization
has improved. In an extreme case, ifk′ = N, the number of ele-
ments in the data set, the attacker gains almost no information from
the anonymized data; but of course, then the anonymized data is
not useful for any non-trivial analysis. The discernibility penalty
tries to “penalize” the anonymization algorithm for this; one way
of viewing it is that it tries to encourage disclosing as much infor-
mation as possible while still not violatingk-anonymity.

The recently proposed “certainty metric” [33] has the same char-
acter. It rewards anonymization procedures for creating partitions
with small perimeters. Intuitively, a smaller perimeter for a parti-
tion P means that the quasi-identifier for the elements inP can be
known from the outside to be restricted to a smaller set of values
than would be the case if the perimeter were larger. Once again,
the goal is to reveal as precise information as possible without vi-
olating k-anonymity. Our “shrinking” or “compaction” procedure
is yet another step in this direction. It tries to bound partitions
of k-elements as tightly as possible while still not violating thek-
anonymity requirement.

We note that recently there has been work on augmenting the
definitions ofk-anonymity to provide stronger guarantees. For ex-
ample, inl -diversity [21], thek-anonymity requirement is extended
to require a certain degree of diversity in the sensitive values of the
records in a partition. Our shrinking procedure is orthogonal to this
kind of requirement — whatever the requirement, it tries to find
the smallest bounding box on thek-elements that still satisfies the
requirements (k-anonymity, ork-anonymity andl -diversity.)

We argue that this is the correct way to deal with information dis-
closure in thek-anonymous framework. If one thinks too much in-
formation is being revealed, one should strengthen the restrictions
on the definition of what constitutes an allowable partition (for ex-
ample, addingl -diversity tok-anonymity) rather than trust that the
anonymization procedure will only generate “loose” or “imprecise”
partitionings in some uncontrolled way. To reiterate, our philoso-
phy is that the definition of what is an allowable partition is taken
as input; the goal of an anonymization procedure is to produce the
“best” or “most precise” partitioning that respects the definition.
That is what the shrinking procedure attempts to do.

5. EXPERIMENTS AND RESULTS
We carried out experiments on two data sets for empirical eval-

uation of k-anonymization with spatial indexes. A spatial index
bulk-loading algorithm, such as the buffer-tree algorithm we used,
can be viewed as a bottom-up algorithm because it attempts to as-

sign records to regions as they are processed. By comparison, the
polynomial-time algorithm suggested in the Mondrian paper [19]
can be viewed as top-down, because its first step is to partition
the entire space, then to partition the resulting sub-regions, and so
forth. Although the goal of the Mondrian algorithm was not ab-
solute performance, we implemented their top-down algorithm to
compare the efficiency and quality of the top-down approach with
the bottom-up approach inherent in spatial indexing. We are grate-
ful to the authors of that paper for providing us with a copy of their
Java prototype implementation of the algorithm, as well as the data
sets they used in their experiments.

The first data set we used was a real world data set, the Lands
End data set. The configuration for this data set was identical
to [18]. The Lands End data set contained customer sale informa-
tion and 4,591,581 records. It had eight attributes comprisingzip-
code, order date, gender, style, price, quantity, costandshipment.
Unlike [18] however, hierarchical constraints were eliminated by
imposing an intuitive ordering on the values for each categorical
attribute in the data set. Each record in the resulting data was 32
bytes and the entire data set was approximately 147 MB in size.
The second data set was synthetically generated and had nine at-
tributes comprisingsalary, commission, age, education level, car,
zipcode, house value, house yearsandloan. The configuration for
the synthetic data was based on the generator introduced in [1]. We
generated 100 million records, each record was 36 bytes, resulting
in a data set size of 3.6 GB.

We built the R+-trees on all eight and nine attributes for the
Lands End and synthetic data sets respectively (every attribute was
part of the quasi-identifier). As a result of the numerical recoding
on the original data sets, the schema for an anonymized table is
as follows: each quasi-identifier value for a recordt in the origi-
nal data set is replaced, in the anonymized data, by the interval, on
that quasi-identifier, of the MBR containingt. As a consequence,
we were also able to perform query experiments described in Sec-
tion 5.4 by specifying numerical ranges in the query predicates.

Table 1 gives a description of the system configurations used in
all experiments.

5.1 Performance Evaluation
We used the Lands End data for the first set of experiments to

compare running times for the R+-tree bulk-loading to a top-down
multi-dimensional partitioning approach. We also ran experiments
to evaluate incremental anonymization performance for the R+-
tree. For these experiments, both algorithms were each allocated
a maximum buffer size of 256 MB. Each experiment was carried
out five times while flushing the system file buffers between runs,
and we report average cold running times.

Figure 7(a) shows execution times for R+-tree bulkload and top-
down approach on the Lands End data set for different anonymity
levelsk = 5, 10, 25, 50, 100, 250, 500, 1000. Ask increases, the ex-
ecution times for the top-down algorithm decreases since there are
fewer recursive partitioning steps. Results show that the spatial in-
dexing approach consistently outperforms the top-down technique
suggesting that the former is more efficient than a top-down recur-
sive partitioning scheme even for bulk anonymization. Notice that
the execution times for the R+-tree is independent ofk. This is due
to the fact that we choose a basek for the bulkload process. For
these experiments, we selected basek = 5. For the actual inputk
parameter, we used the leaf scan algorithm described in Section 3.2
to construct the final partitions. For example ifk = 5, then the map-
ping is one or more leaf nodes to one partition. Ifk = 10, then we
map two or more leaf nodes to one partition.

We start the incremental anonymization experiments by first bulk-

752

5 10 25 50 100 250 500 1000
10

20

30

40

50

60

70

80

90

100

110

anonymity level k

ex
ec

ut
io

n
tim

e
(s

ec
s)

Lands End database

R+−tree
Top−down partitioning

(a) Anonymization execution time comparison

0.5 1 1.5 2 2.5 3 3.5 4 4.5
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

total number of anonymized records (millions)

ex
ec

ut
io

n
tim

e
(s

ec
s)

Lands End database

(b) R+-tree incremental anonymization times us-
ing batch size of 0.5 million records (k = 10)

Figure 7: Execution times on the Lands End database

0.036 0.18 0.36 0.9 1.8 3.6
10

0

10
1

10
2

10
3

data size (GB)

ex
ec

ut
io

n
tim

e
(s

ec
s)

Synthetic data

(a) Execution times for varied data set sizes, allo-
cated memory = 256 MB

32 64 128 256 512
10

4.1

10
4.2

10
4.3

10
4.4

Allocated memory (MB)

di
sk

 IO
s

Synthetic data

(b) IO costs, data set size = 3.6GB

Figure 8: R+-tree anonymization scaling to large data sets

loading and anonymizing the first 0.5 million records from the Lands
End data set. Then we subsequently select new batches of 0.5 mil-
lion records to be anonymized. Figure 7(b) shows the running
times for the R+-tree for incrementally anonymizing each batch.
Since a top-down approach is not incremental, it would have to re-
anonymize the entire data set on each batch insert.

5.2 Scalability
The synthetic data set was used for the second set of experiments

to show that our spatial indexing techniques scale well to the size
of the input data set. We did not test the top-down approach for
scaling to larger-than-memory data sets because the version of the
Mondrian algorithm described in [19] was not designed to handle
such data sets.

We used the R+-tree tok-anonymize data sets of different sizes
ranging from one million (0.036 GB) to 100 million records (3.6
GB). We evaluate how the spatial index performs when the data
set is too large to fit in main memory. We allotted 256MB to the
anonymization process and from the allotted memory, we use 4MB
to buffer the input data and the remaining memory was used for
the index buffers. The index was able to hold a major portion of the
records in its buffers when the data set is less than 5 million records

(about 180MB). Figure 8(a) shows that our algorithms adapt grace-
fully as the size of the input data is increased.

We also conducted experiments to ascertain the effect of avail-
able computer memory on the performance of our algorithms. Fig-
ure 8(b) shows the total number of explicit I/O system calls made
during the anonymization process while varying the size of mem-
ory allotted to the process. These results show that I/O costs in-
crease by less than a factor of two when the allotted memory is
reduced by a factor of two, also indicating that the buffer tree al-
gorithm performs well as a spatial indexing bulk-loading algorithm
for larger-than-memory data sets.

5.3 Anonymization Quality Experiments
Since anonymization quality is an essential property of anyk-

anonymization algorithm, we conducted a third set of experiments
— quality experiments on anonymized data generated by the R+-
tree and the top-down approach proposed in [19]. We also evalu-
ated the quality of anonymized data after executing compaction as
a post-processing step on data generated by that approach.

In choosing algorithms with which to compare our algorithm,
we were guided by the following considerations. First, since we
had access to the code of the Mondrian algorithm, it was a logical

753

Figure 9: Compaction cost as a percentage of total anonymiza-
tion execution time (k = 10)

candidate for comparison. Second, we did not consider comparing
against any algorithm that had already been shown to produce lower
quality anonymizations than Mondrian. This eliminated [4, 18, 24].
Finally, since our focus in this paper is on scalable anonymiza-
tion algorithms, we did not consider algorithms with running times
greater thanO(n2). This eliminated [4, 11, 18, 24, 26, 33].

First, we measured the running times for compaction relative to
total anonymization times while choosing samples of different sizes
ranging from 0.5 million to 4.5 million records from the Lands End
data set. Figure 9 shows that the times for compaction are small
relative to the anonymization times.

We used the discernibility metric [4], KL divergence [15] and the
certainty metric proposed in [33] to measure and compare quality
with anonymized data generated from the Lands End data set by the
top-down approach proposed in [19]. Before continuing with the
anonymization quality experiments, we define these three quality
measures.

Let T be ak-anonymous table withm quasi-identifier attributes,
A1, . . . ,Am, and comprisingn partitions or equivalence classes,
P1, . . . ,Pn.

DEFINITION 3. (DISCERNIBILITY PENALTY). The discerni-
bility penalty score for T , DM(T) = ∑n

i=1 |Pi |
2

The discernibility measure, in effect, assigns a penalty to each tuple
t ∈ T based on the size of the partitionPi , given thatt ∈ Pi .

DEFINITION 4. (CERTAINTY PENALTY). The certainty penalty
score for T is

CM(T) = ∑
t∈T

NCP(t)

where NCP(t) is the weighted normalized certainty penalty assigned
to the tuple t.

NCP(t) =
m

∑
i=1

(

wi ×
|t.Ai |

|T.Ai |

)

wi is the weight associated with the quasi-identifier attributeAi
to reflect itsimportancein the anonymized data. In our quality ex-
periments, we set the weights for all quasi-identifier attributes to 1.
If Ai is a numerical attribute then|t.Ai | is the range of the general-
ized value fort onAi . For example, ift.Age = [20 – 30], then|t.Ai |
= 10. |T.Ai | is the range of all tuples inT on Ai . OtherwiseAi is a
categorical attribute and assuming the existence of a generalization
hierarchy treeH for Ai , |t.Ai | is the number of leaf nodes in the

subtree ofH for which the node for the generalized valuet.Ai is
root. |T.Ai | is the total number of leaf nodes inH.

DEFINITION 5. (KL-DIVERGENCE). The KL divergence for

T , KL(T) = ∑t∈T p(1)
t log p(1)

t

p(2)
t

where p(1)
t and p(2)

t are the prob-

abilities of the tuple t according to the original and anonymized
tables respectively.

See [15] for more detailed descriptions on the computation ofp(1)
t

andp(2)
t .

Figure 10 shows that exploiting the minimum bounding rectan-
gle property of the R+-tree clearly pays off as it generates much
better anonymized data quality than the top-down approach with-
out compaction. The Mondrian partitioning is based on the heuris-
tic that it should split the quasi-identifier attribute with the largest
range of values, whereas the R-tree splits by trying to minimize
the area of the resulting partitions. For the data set used in our
experiments, minimizing area results in better discernibility, KL-
divergence and certainty penalty. Results in Figures 10(b) and 10(c)
show that after compaction, the anonymized data quality for the
top-down approach greatly improves, suggesting that one of the
main differences between the anonymization quality produced by
the top-down and spatial index approaches arises from the com-
paction implicit in the spatial index.

We also observe from Figure 10(a) that the discernibility scores
for uncompacted and compacted Mondrian-anonymized data are
identical. The compacted and uncompacted anonymized data com-
prise the same partitions with the same number of records per par-
tition, although the former may describe these partitions with more
precision on the quasi-identifier attributes. As a consequence of the
discernibility penalty measuring quality based on the cardinalities
of partitions alone, this metric is unable to measure differences be-
tween compacted and uncompacted anonymized data. This shows
that the certainty penalty and KL-divergence measures can identify
differences in quality in data anonymization that escape the dis-
cernibility penalty. Of course, while we did not see any in our ex-
periments, it is also possible that there are examples of anonymiza-
tions in which certainty penalty detects differences that are also
missed by KL-divergence and vice versa, in which case these met-
rics are incommensurate and future study would be warranted to
determine the strengths and limitations of each.

Since a benefit of spatial indexes is that it is incremental, we also
conducted tests to ascertain the effects, on quality, of anonymizing
new records incrementally as opposed to a re-anonymization ap-
proach. (Earlier we discussed the impact of incremental anonymiza-
tion on the efficiency of anonymization.) For the R+-tree index,
we first loaded a portion of the data (500,000 records), anonymized
them, then incrementally anonymized additional batches of 500,000
records by inserting these records into the index. For Mondrian, we
reanonymized the entire set of records. Results from our experi-
ments validate our assertion that the R+-tree’s technique of adding
new records to the index in such a way that the total area cov-
ered by the resulting MBRs is minimized is appropriate for main-
taining good data quality. Figure 11 shows that anonymized data
quality does not suffer from incremental anonymization, in fact,
the R+-tree anonymized data is still of higher quality than the re-
anonymized data.

5.4 Query Accuracy
Since the KL-divergence and certainty penalty measures suggest

that compacted data is at least as “good” or “better” than uncom-
pacted data, we carried out a fourth set of experiments to evaluate
the relative accuracy for queries on both types of anonymized data

754

(a) Discernibility penalty (b) KL Divergence (c) Certainty penalty

Figure 10: Quality comparisons on the Lands End database

(a) Discernibility penalty (b) KL Divergence (c) Certainty penalty

Figure 11: Incremental quality comparisons on the Lands End database (k = 10)

on the Lands End data set. We also compare accuracy for the same
queries on the R+-tree anonymized data. We executed 1000 ran-
domly generated range queries over all eight attributes of the Lands
End data set. These queries were of the form
SELECT COUNT(*)

FROM T

WHERE T.A1 ≥ a1 AND T.A1 ≤ b1
...
AND
...
T.A8 ≥ a8 AND T.A8 ≤ b8
Note that in the above eight-dimensional range query, each of

the eight attributes A1 . . . Am has both an upper and lower bound
on its range. These bounds are set in the following manner: for
each query, we pick two recordsr1 and r2 at random from the
unanonymized data set and set eachai , i = 1, . . . ,8, to the smaller
of r1.Ai andr2.Ai , andbi to the larger value.

A COUNT queryQ on the anonymized data setT returns a count
of the records inT that matchQ. A recordr ∈T is said tomatchthe
queryQ if the region defined byr has a non-null intersection with
the query region —r intersects withQ on every quasi-identifier
attribute. For example, ifT has two quasi-identifier attributes, Age
and Zipcode, the recordr = ([40 – 50], [53710 – 53720]) matches
the queryQ =

(

(45≤ age≤ 55)∧ (53700≤ zipcode≤ 53715)
)

.
The recordr = ([30 – 35], [53700 – 53715]) does not match this
query. Queries on the original, unanonymized data set work in the
traditional way.r matchesQ on the original data if the point defined
by r lies within the query region.

We compute the error for the queryQ, Error(Q), as the normal-
ized difference between the results of evaluatingQ on the original
and anonymized data sets.

Error(Q) =
count(anonymized) - count(original)

count(original)

In our experiments, we report the average normalized error over
the batch of 1000 queries. Figure 12(a) shows the average errors
for different k values. The accuracy for queries on compacted-
anonymized data is seen to improve over the accuracy for the same
queries on uncompacted-anonymized data. Queries on the R+-tree
anonymized data have even smaller errors than on the Mondrian-
compacted anonymized data suggesting that the spatial index does
a good job of partitioning the original data even for an arbitrary
query workload.

Figure 12(b) shows results when we vary the selectivity of the
query on the data set. In general, the larger the cardinality of
the query result, the smaller the error generated by running the
query on anonymized data versus the original data. This will in
turn tend to diminish differences between the accuracy of query re-
sults generated by queries run over data anonymized by different
anonymization procedures. Even the benefit of compaction is seen
to drop for large query results.

To show that we could indeed use a spatial index to integrate an-
ticipated workloads into the anonymization, we constructed a query
workload that generated random queries on the Zipcode attribute of
the Lands End data set. These queries were of the form
SELECT COUNT(*)

FROM T

WHERE T.Zipcode ≥ z1 AND T.Zipcode ≤ z2
The bounds for a range query on the Zipcode attribute are set

in the following manner: we pick two recordsr1 andr2 at random
from the unanonymized data set and setz1 andz2 to r1.Zipcode and
r2.Zipcode such thatz1 ≤ z2.

We also built another R+-tree, but this time, biased our node

755

5 10 25 50 100 250 500 1000
0

5

10

15

20

25

30

k

er
ro

r

R+−tree
Mondrian−compacted
Mondrian−uncompacted

(a) Varyingk

0.001 0.01 0.1 1 10 25 50
0

10

20

30

40

50

60

selectivity (%)

er
ro

r

R+−tree
Mondrian−compacted
Mondrian−uncompacted

(b) Query selectivity (k = 10)

5 10 25 50 100 250 500 1000
0

0.4

0.8

1.2

1.6

2

2.4

2.8

k

er
ro

r

Biased R+−tree
Unbiased R+−tree

(c) Varyingk

0.001 0.01 0.1 1 10 25 50
0

1

2

3

4

5

6

7

8

9

selectivity (%)

er
ro

r

Biased R+−tree
Unbiased R+−tree

(d) Query selectivity (k = 10)

Figure 12: Query error comparisons on the Lands End database

splitting algorithm to the Zipcode attribute. The biased splitting
algorithm selects the Zipcode attribute as the splitting attribute for
every split. Subsequently, we generated 1000 random queries from
the workload and ran these queries on the anonymized Lands End
data generated by the original (unbiased) R+-tree index and the
new (biased) R+-tree index. From Figure 12(c), we see that by
favoring one attribute, we were able to achieve significantly bet-
ter query results than the index that did not account for the query
workload. This suggests that we can use spatial indexes to exploit
advanced knowledge of expected query workloads to generate “bet-
ter” anonymized data. Finally, results in Figure 12(d) show that, al-
though the biased R+-tree outperforms its unbiased counterpart for
various query selectivity, the differences diminish as we increase
the selectivity on the original data set.

6. CONCLUSION
We have observed that since building an index over a data set

leads to a natural partitioning of the data set,k-anonymity can be
introduced by enforcing a minimum occupancy threshold on parti-
tions. Moreover, we can take advantage of these indexes as a means
for producing dynamick-anonymous data sets. Experiments indi-
cate that the spatial indexing approach tok-anonymization is scal-
able for very large data sets, is faster than previously proposed algo-
rithms even for in-memory data sets and produces anonymizations
with better quality as measured by the discernibility penalty [4],
KL-divergence [15] and certainty metric [33]. Experiments with
random queries over these anonymized data sets also show that
the accuracy of the queries on the R+-tree anonymized data have
higher accuracy than the same queries on data anonymized by a

previously proposed algorithm.
Substantial room for future work remains. Recently, [17] has

extended the top-down approach to work for large data sets, in
which case it would be again interesting to compare the top-down
approach with the spatial index bulk-loading approach. Also, the
compaction procedure raises interesting questions as in a sense it
“reveals” more information about the data records than uncom-
pacted anonymizations. This is just another example of the tension
between anonymizing data and exposing the useful information
therein. The philosophy behindk-anonymization is that prevent-
ing any attacker from isolating any individual fromk−1 others is
sufficient for privacy, and the compaction procedure maintains that
philosophy.

Hence one can interpret our results on compaction as demon-
strating that given current definitions ofk-anonymity, compaction
is important to producing high quality anonymization. However,
if one is convinced that compaction reveals too much informa-
tion, then our results indicate that the definitions of anonymity
need to be augmented to prevent disclosures that result from “over-
compaction,” because compaction respects whatever definition of
anonymity the R-tree building procedure is given as input. (That
is, the R-tree splitting routine can incorporate, for example,(α,k)-
anonymity [32] or l -diversity [21] just as easily as “vanilla”k-
anonymity.) Deciding whether or not compaction is desirable is
an interesting challenge area for future work.

While this paper makes a case for R-trees as a means fork-
anonymizing data sets, we do not lay claim to R-trees as the panacea
for k-anonymization as spatial indexing. Several R-tree variants [2,
3, 5, 6, 12, 13, 14] have been proposed to address different index-

756

ing issues and these issues and solutions may well translate into
the anonymization domain. For example, long index construction
times, especially for very large data sets, are addressed through
the use of bulk-loading algorithms. This translates to fast data
anonymization times. Packing algorithms [12, 13] have been em-
ployed to improve bulk load times while producing a good cluster-
ing of the data in the index. Good data clustering will result in bet-
ter anonymized data quality. The authors in [8] describe methods
for bulk-loading a database that are resilient to different spatial data
distributions, improving the spatial clustering of nodes in the index.
Such techniques may be employed in devisingk-anonymization al-
gorithms that generate “good quality” anonymized data for a wide
variety of data sets with different distributions. Recent work [16]
makes a case for quad-trees as indexes for multi-dimensional data
sets. The choice of one type of index over another for indexing a
data set may likely be reason enough for using the same index for
k-anonymizing the data set.

7. ACKNOWLEDGMENTS
We would like to thank David DeWitt for many helpful com-

ments and discussions.

8. REFERENCES
[1] R. Agrawal, S. Ghosh, T. Imielinski, and A. Swami.

Database mining: A performance perspective. InIEEE
Transactions on Knowledge and Data Engineering,
volume 5, 1993.

[2] L. Arge. The buffer tree: A New Technique for Optimal
Algorithms (Extended Abstract). InWADS, pages 334–345,
1995.

[3] L. Arge, M. de Berg, and H. J. Haverkort. The priority r-tree:
A pratically efficient and worst-case optimal r-tree. In
SIGMOD, 2004.

[4] R. Bayardo and R. Agrawal. Data privacy through optimal
k-anonymity. InICDE, 2005.

[5] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The
R∗-tree: An efficient and robust access method for points and
rectangles. InACM SIGMOD, pages 322–331, 1990.

[6] J. Bercken, B. Seeger, and P. Widmayer. A generic approach
to bulk loading multidimensional index structures. InVLDB,
1997.

[7] T. Dalenius. Finding a needle in a haystack or identifying
anonymous census records.Journal of Official Statistics,
2(3):329–336, 1986.

[8] D. J. DeWitt, N. Kabra, J. Luo, J. Patel, and J. Yu. Client
server paradise. InVLDB, pages 558–569, 1994.

[9] B. Fung, K. Wang, and P. Yu. Top-down specialization for
information and privacy preservation. InICDE, 2005.

[10] A. Guttman. R-trees: A dynamic index structure for spatial
searching. InACM SIGMOD, pages 47–57, 1984.

[11] V. Iyengar. Transforming data to satisfy privacy constraints.
In ACM SIGKDD, 2002.

[12] H. Jagadish. Linear clustering of objects with multiple
attributes. InACM SIGMOD, 1990.

[13] I. Kamel and C. Faloutsos. On packing R-trees. In
International Conference on Information and Knowledge
Management, pages 490–499, 1993.

[14] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved
R-tree using fractals. InVLDB, 1994.

[15] D. Kifer and J. Gehrke. Injecting utility into anonymized
datasets. InSIGMOD, 2006.

[16] Y. Kim and J. Patel. Rethinking choices for
multi-dimensional point indexing: Making the case for the
often ignored quadtree. InCIDR, 2007.

[17] K. LeFevre and D. DeWitt. Scalable anonymization
algorithms for large data sets. Technical report, University of
Wisconsin, Madison, 2007.

[18] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito:
Efficient full-domaink-anonymity. InACM SIGMOD, 2005.

[19] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian
multidimensionalk-anonymity. InICDE, 2006.

[20] K. LeFevre, D. DeWitt, and R. Ramakrishnan.
Workload-aware anonymization. InACM SIGKDD, 2006.

[21] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam.l -diversity: Privacy beyond
k-anonymity. InICDE, 2006.

[22] M. F. Mokbel, C. Chow, and W. G. Aref. The New Casper:
Query processing for location services without
compromising privacy. InVLDB, 2006.

[23] J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid file:
An adaptable, symmetric mulitkey file structure. InACM
Transactions on Database Systems, 1984.

[24] P. Samarati. Protecting respondents’ identities in microdata
release.IEEE Transactions on Knowledge and Data
Engineering, 13(6):1010–1027, 2001.

[25] P. Samarati and L. Sweeney. Generalizing data to provide
anonymity when disclosing information. InProc. of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 1998.

[26] P. Samarati and L. Sweeney. Protecting privacy when
disclosing information:k-anonymity and its enforcement
through generalization and suppression. Technical Report
SRI-CSL-98-04, SRI Computer Science Laboratory, 1998.

[27] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A
dynamic index for multi-dimensional objects. InVLDB,
pages 507–518, 1987.

[28] L. Sweeney. Uniqueness of simple demographics in the U.S.
population. Technical report, Carnegie Mellon University,
2000.

[29] L. Sweeney. Achievingk-anonymity privacy protection using
generalization and suppression.International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems,
10(5):571–588, 2002.

[30] L. Sweeney.k-anonymity: A model for protecting privacy.
International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):557–570, 2002.

[31] K. Wang, P. Yu, and S. Chakraborty. Bottom-up
generalization: A data mining solution to privacy solution. In
ICDM, 2004.

[32] R. C. Wong, J. Li, A. W. Fu, and K. Wang. (α, k)-anonymity:
An enhancedk-anonymity model for privacy-preserving data
publishing. InACM SIGKDD, 2006.

[33] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W. Fu.
Utility-based anonymization using local recoding. InACM
SIGKDD, 2006.

757

