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ABSTRACT great deal of research along two orthogonal lines: first, how to

In this paper we observe thieanonymizing a data set is strikingly refine the definition ok-anonymity to provi_de dif'feren_t guaran-
¢ tees about the data (for example, augmenting the definitionlwith

similar to building a spatial index over the data set, so similar in fac di ity 121): 4 h Hiciont] o
that classical spatial indexing techniques can be used to anonymize iversity [21]); second, how t_o N |C|enty_ generate a_nonymlza_tlons
f data sets that are as precise as possible while still respecting the

data sets. We use this observation to leverage over 20 years of worlO! datd - . L -
on database indexing to provide efficient and dynamic anonymiza- d?f'n't'on. o_f anor_1ym|ty (fo_r_ ex_ample, using heun;tlc algorithms
tion techniques. Experiments with our implementation show that with multidimensional partitioning [19].) Our work is an example
the R-tree index-based approach yields a batch anonymization al-°f the second class of research. . .
gorithm that is orders of magnitude more efficient than previously We present an_anonymlzatlon algorlt_hm that subs_tantlally Im-
proposed algorithms and has the advantage of supporting incremenPrOVes upon previously presented algorithms both with respect to
tal updates. Finally, we show that the anonymizations generated byefﬁuency and with respect to the quality of the anonymization pro-
the R-tree approach do not sacrifice quality in their search for effi- duced. Specnjcally, the algorlthm we present in this paper allows
ciency; in fact, by several previously proposed quality metrics, the US 0 @nonymize data sets containing at least 100 million records;
compact partitioning properties of R-trees generate anonymizationsalso' by a recently presented metric for the quality of anonymiza-

superior to those generated by previously proposed anonymizationtion (“cértainty” [33]), the anonymizations produced by our algo-
rithm are approximately a factor of two better than previous algo-

algorithms. .
rithms.
The key to our algorithm is to exploit a striking parallel between
1. INTRODUCTION the “classical” area of database indexing and the relatively new data

The problem of anonymity in published data has been widely privacy research domairk-anonymity. LetT be a table withn
studied in recent years. Organizations may release private data forquasi-identifier attribute8,, A, ..., An. First, we observe that the
the purposes of facilitating useful data analysis and research, for ex-eventual goal of alk-anonymization algorithms is to transforin
ample, patients’ medical records may be released by a clinic to aid by partitioningT into groups of records so that each group contains
a medical study. While such data sharing has its benefits, we must,a minimum ofk records. To illustrate the connection between in-
however, contend with the issue of privacy for those individuals to dexing and anonymization, assume tBatis a B"-tree index on
whom information in the shared data pertail-anonymity[24, the quasi-identifier attributd;. Note that every path from the root
25, 26, 29, 30] has been proposed as a means to preserving prifiode inBT to a leaf node. produces a set of recordsTrwhoseA;
vacy in data releases. Put simply, the private data set is modifiedvalues satisfy the constraint imposed by the path followed to reach
so that each record is indistinguishable from at ldastl other L. Note then that thé; values for the records containedliriall in
records. Indistinguishability is defined in terms of any set of at- the range [a, b] where a and b are the left and right separator values
tributes that can be used to uniquely identify an individual. This set in L's parent node that border the “pointer” to When we apply
of attributes has been calledjaasi-identifier{7] in the literature. this concept to every leaf node BIl, we can transfornT into a
An example of a quasi-identifier is the set of attributes comprising new tableT; by replacing every record’s value Ay by the appro-
Age, Se:andZipcode[28]. Figure 1 illustrates how private data can  priate range of values — records in the same leaf node will have
be transformed to preserve anonymity. The 2-anonymous table inthe same new\; value. Going one step further, a'Bree index
Figure 1(b) has three quasi-identifier attributes: Age, Sex and Zip- places an occupancy constraint on all nodes in the tree, as such ev-
code and one sensitive attribute: Ailment. Each record in this table ery leaf node irBT must contain betweeNmin andNmax records.
has the same quasi-identifier values as at least one other record. With these properties &T, namely, an implicit partitioning of the
Since the original definition ok-anonymity, there has been a  underlying table and a bounded occupancy constraint on all parti-
tions, we get ak-anonymous” table where= Npyin. Figure 1(c)
shows an example of a'Btree index on the Age attribute of the
Permission to copy without fee all or part of this material srged provided original table in Figure 1(a) and corresponding to the 2-anonymous
that the copies are not made or distributed for direct commieadisantage, table in Figure 1(b).
the VLDB copyright notice and the title of the publicatiortits date appear, In general, however, the table to be published may contain more
and notice is given that copying is by permission of the VerygeaData  than one quasi-identifier attribute, so rather than usetrBes, we
Base Endowment. To copy otherwise, or to republish, to postemers suggest multidimensional spatial indexing, and the R-tree in par-
or to redistribute to lists, requires a fee and/or speciahfgsion from the . - o . . .
publisher, ACM. ticular, as th_e basis for_anonymlzatlo_n. In Sect|or_1 2, we d_|scuss in
VLDB ‘07, September 23-28, 2007, Vienna, Austria. greater detail how a variant of R-tree indexes provide algorithms for
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/(/0
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RID | Age | Sex | Zipcode | Ailment Age Sex Zipcode Ailment

Ry 21 | M 53706 | anemia || [20-3Q | M 53706 anemia

Ro 26 | M 53706 flu 20-30 | M 53706 flu

Rs | 32 F 53710 | cancer 30-4Q | F | [63710-5371p| cancer

Ry | 36 | F 53715 | tornacl 30-4Q | F | [53710-5371p| torn acl

Rs | 48 | M 52108 flu 45-6Q | * | [52100-5210B flu

Re | 56 | F | 52100 | whiplash|| [45-6Q | * | [52100-52108| whiplash (R R [ R [ R | [R[R

(a) Private Patient Table (b) A 2-anonymous Patient Table (c) B*-tree index on the Age attribute
Figure 1: A 2-anonymous representation and database indexing af patient table.

k-anonymizing a multi-attribute table. We discuss R-tree style in- the danger of privacy violation in the presence of collusion,
dexes [5, 10, 27] and how these indexes are usefld-&aronymizing we exploit the tree structure of a spatial index for automatic
a data set, and properties that give them advantages over other types generation ofmulti-granularanonymized data sets that pre-
of indexing mechanisms. In particular, we focus on the variants servesk-anonymity.

of the R-tree that do not overlap partitions, for example, tHe R

tree [27]. This is due to the universally adopted practice in existing  gince database indexes are specifically designed for record in-
k-anonymization algorithms of generating only non-overlapping par-sertions, deletions and updates, by using them for anonymization,
titions in the anonymized data. o o _ . we automatically get a mechanism for incremental anonymization.
The connection between anonymization and spatial indexing is However, incremental anonymization raises issues with respect to
perhaps not entirely surprising, as [22] used a new special-purposehe preservation of privacy. If an attacker has external knowletige o
spatial index structure (the “pyramid tree”) to anonymize objects \yhich individual's records are being inserted, deleted or updated in
moving in the spatial domain. However, to the best of our knowl- 5 gata set, then the attacker may be able to issue a series of queries
edge, ours is the first work to propose anonymization of non-spatial gyer time and deduce sensitive information. While providing an in-
data by the use of a classical spatial index that is already imple- crementally updatable anonymization technique does not solve the
mented and distributed in commercial and open-source RDBMS jnference problem, it is a much better platform for updates than cur-

produc_ts. _ o ] ) ) rent techniques, which could potentially require re-anonymization
The indexing-anonymizing connection gives us a different per- of the entire data set after each update.

spective in thek-anonymization domain, has several advantages  Finally, the index-based approach to anonymization can exploit
over previously proposektanonymization algorithms, and unifies  tne efficiency inherent in index update and bulk-loading algorithms.
several desired goals for anonymization into a single approach:  preyious research kranonymizing algorithms has focused almost
exclusively on the quality of the resulting anonymization, rather
than on the speed with which that anonymization is achieved. An
exception is the Mondrian algorithm from [19], where the authors
present a polynomial time algorithm, thus making it practical to
consider anonymizing large data sets. While absolute performance
o We further show that applying R-tree bulk-loading algorithms was not the goal of that paper, it is interesting to note that the ap-
to anonymizing yields anonymization algorithms that per- proach suggested in that paper constitutes a top-down multidimen-
form well even on data sets much larger than main mem- sional spatial partitioning algorithm, whereas spatial index building
ory. This enables us to anonymize a data set of 100,000,000 algorithms represent a bottom-up spatial partitioning approach.
records. To investigate the quality and efficiency of both approaches, we
L ) . . reimplemented the Mondrian algorithm described in [19], and com-
* We observe that minimal bounding boxes from the indexing hareq it to bottom-up index-based algorithms. We found that the
domain [5, 10, 27] suggest anonymizations that leave gaps in pqttom.up approach gave better quality as measured by the dis-
the domain. This can yield far more precise anonymizations cemipility penalty [4], KL divergence [15] and the “certainty met-
than previously proposed anonymization techniques, none jq» [33]. Furthermore, experiments with our implementation also
of which consider leaving gaps. This opens up an interest- gpqyed that the bottom-up approach adopted by index bulk-loading
ing and novel aspect of the always-present tension between 4 4qrithms is an order of magnitude faster than the top-down Mon-
anonymization and precision that has not been previously ex- yjan approach. It is an interesting area for future research to de-
plored in thek-anonymization literature. termine whether this is a fundamental property of all top-down vs.

« Spatial indexes are well-suited to exploit anticipated work- Pottom-up approaches. o ) _
loads while anonymizing data sets. Selecting specific quasi- . NOte that our use of “top-down” vs. “bottom-up” methods differs
identifier attributes on which to build an index and biased [1oM the usage in [33], where they use the terms to refer to two new

splitting algorithms are two ways that we can incorporate O(n?) algorithms. While we did not have access to their code in or-
query workloads into the anonymization. der to do a comparison of_these new a_lgorlthms with ours, as the
authors of that paper note, it is not as efficient as the Mondrian algo-

e A database owner may wish to distribute anonymized tables rithm (6X slower on 100,000 records), and it will not scale to large

of different “granularity” to separate groups, reflecting her n (no n? algorithm can). Our experiments show that our bottom-

trust. For example, she may deliver a 5-anonymization of up algorithm scales well at least for another factor of 1000 (up to

her table to a medical research group while delivering a 10- 100 million records.) The issue of quality of the anonymizations
anonymous version to an insurance research group. Ratherproduced is less clear, since while that paper reports better results

than re-anonymize the original table for each group, facing than the Mondrian algorithm, it does not consider anything like our

e An R-tree index-based approactktanonymization furnishes
us with efficient index-construction algorithms that enable
faster bulk anonymization times than previous techniques,
even for memory-resident data sets.
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“compaction” procedure, which we found essential for good cer-

. . g
ta|nty metric scores.

N3

2. R-TREE SPATIAL INDEXING

R-tree spatial indexes bring with them several desirable proper-
ties when applied to the problem kfanonymization.

2.1 Scalability to Large Data Sets

To date, th&k-anonymization literature has not considered algo- rz
rithms for anonymizing data sets that do not fit in memory. Bulk- Pal rs | Psirs| Pelrp, re |P7
loading database indexes has almost by definition focused on such Ig ls
data sets. A number of bulk-loading techniques have been proposed l

for spatial indexes. Some of these techniques require spatial sort-
ing based on space-filling curves [12, 13, 14] (e.qg, the Hilbert curve
or Z-ordering). While we experimented with such approaches, we
found in our implementation that non-sorting bulk-loading tech- N3 N
niques based on the “buffer-tree” [2, 6] worked better for higher 4

dimensional data sets. elle E E e:lle 9 E
The buffer-tree is based on the idea of inserting multiple records

simultaneously into the tree. Each internal node of the tree has an
extgrnal buffer where re.cords are te_mporarily stc_)red. Multiple in- Pl | |rolp .| Ta ra | p
sertions are processed in the following way. An index node keeps g f | - 6| [ rs |/
and “blocks” arriving insertions in its buffer. When the number [ It rs
of records in the buffer exceeds a pre-defined threshold, all of the
records are “re-activated” and advanced to the next level of the tree
Records are “terminated” when they are inserted into a leaf page. Figure 3: Splitting of the index node N; after clearing the root
Figure 2 shows an example of a buffer-tree after a series of inser- buffer

tions have been processed. The buffer-tree consists of three nodes

N1, N2, N3 and five leaf pagesiP.. ., Ps. Assume that node buffers

contain at most two pages and that a page has a maximum capac- . ) .
ity of three records. Consider the insertion of recosg Since turing operation is first triggered by the split of a full leaf page. Just

the root buffer is full, the insertions of the six records in the root @S for record insertions, multiple restructuring operations are also
buffer are “re-activated” and “pushed down” to the next level of the Processed simultaneously — an internal node defers an incoming
buffer-tree. After clearing a buffer, it may happen that buffetbat insertion of an entry. When all subtrees of the node have finished

next level also become full. These overflows are again eliminated their restructuring operations, the entries are then stored in the rout-
by clearing these buffers. ing table of the node. This may again produce overflow and further

restructuring operations. Figure 3 shows an example of a restruc-
turing process after the records in the root buffer are cleared into
Mo | | 2z the buffers of nodes Nand Ns.

We can gain insight into the performance of the buffer tree algo-
rithm by assuming an I/O model with the following parameters:

N = number of records in input data set

M = maximum number of records that the available memory can
hold

B = maximum number of records that a page can hold

The authors in [6] show that the I/O cost for bulk-loading a
buffer-tree for a data set df records i<O(N/Blogy 5 N/B). Thus,
buffer-trees achieve similar I/O cost bounds to external sorting. We
also expect buffer-trees to have “good” performance when the in-
put data set fits in memory. The buffer-tree amortizes the cost of

24

r r r r7 g inserting a set of records by deferring operations on the tree. This
P PPy 2 P P ; i
o |72 g |73 s 4 rg ro | 2 contrasts the tuple-loading approach that inserts records one by one
I ro into the index typically resulting in long load times (for example,

each newly inserted record may cause a node split that increases
the height of the tree index.)

Our experiments show reasonable performance for the buffer-
tree algorithms irk-anonymizing larger-than-memory as well as
memory-resident data sets using a spatial index.

A feature of the buffer-tree is that insertions traverse the tree -
from root to leaf while restructuring operations traverse the tree 2.2 Incremental Ut”'ty
from the leaf backwards to the root. A restructuring operation con-  In a dynamic environment, the spatial index is a natural mecha-
sists of a split of an overflowing node (a node whose buffers are nism for allowing changes to be made on a data set while maintain-
full) and an insertion of a new entry in its parent node. A restruc- ing ak-anonymous view. The prior anonymization algorithms in

Figure 2: Example buffer-tree after inserting 24 records, a full
root buffer and record r,5 waiting to be inserted
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the literature work on a data set as a complete whole — they start
with the complete (hon-anonymized) data set as input, and produce
a complete anonymized data set as output. If an anonymized data
set is to be updated using these algorithms, the only option is to

re-anonymize the original data set plus the new data records. This
will be inefficient in scenarios with frequent updates.

Again, database indexes are designed to be incrementally up-
dated. One concern that arises is whether using the incremental
anonymization that results from processing updates one record at
a time using an R-tree is of worse quality than one that would
result from anonymizing the entire data set at once. Our experi-
ments show that this is not the case — the incrementally updated
anonymized data set has quality (measured by discernibility penalty,
KL-divergence and certainty penalty) comparable to that of the
bulk-anonymized data set.

23 23

22 22

21 21

20 20

(b) Biased
anonymized data

R -tree

(a) Unbiased R-tree

anonymized data

Figure 4: Targeting the R™-tree to the Zipcode quasi-identifier
attribute of a data set

2.3 Query Performance

In atraditional database setting, the performance of aquery onanj; p contains 10 tuples, then the query result fois 10x (35—
index is typically determined by factors such as the time it takes to 30)/(40—30) =5 tuples’.

execute the query or how many nodes need to be searched to find Hoyever, regardless of the method used to evaluate query results,

all records that satisfy this query. Fkranonymity, we associate
query performance with the number of records that are included in
the answer that would not satisfy the same query on the original
data. This is similar in spirit to the “precision” metric used in the
Information Retrieval literature.

DenoteW to be the set of leaf nodes (or partitions) in a database
index that is searched due to a qu&yposed on the original data.

these results must be computed based on the set of all partitions, the
setW, that may contain a satisfying record.

2.4 Query Workload Bias

Recent works [9, 11, 20, 31] have considered incorporating tar-
get query workloads into the anonymization of a data set. We can

Let Q, denote the same query on the anonymized data. Note that if also tailor a spatial index to take advantage of advanced knowl-

a partitionP is contained iV, thenP is a candidate partition that
maycontain a record that satisfi€y. If P ¢ W, then it is certain
that P does not to contain any record that satisfigs Consider,
for example, the following query on a table T:

SELECT COUNT (*)

FROM T

WHERE T.Age > 25 AND T.Age < 35

If the age interval foP is given as [40 — 50] theR will not be in-
cluded inW. On the other hand, if the age interval is [20 — 30] then
P will be included inW. Note that it is still possible th& does not
contain any record that satisfies the query. The age valuesiay

edge of the types of workload that will use the anonymized data.
Consider a very simple scenario where majority of the data min-
ing workloads are interested in the single quasi-identifier attribute
Ao. If we build the index ordg (a one-dimensional index), then
thek-anonymized data is clustered Ag. Under a sort-based bulk-
loading scheme, this results in sorting the data seAg@nFor our
non-sort spatial index bulk-loading technique, preference is given
to a pre-selected subs8tof the quasi-identifier attributes when
splitting partitions.

Consider the two sets of anonymized data in Figure 4. A query
of the form

actually range from 20 to 24. Nevertheless, since we have precise SELECT COUNT (*)
record values in the unanonymized data, the candidate partitions FROM T

will be examined and the relevant records returned. On the other
hand, the quer®), on anonymized data may return all recordgvn
since we do not have exact information in this case. We define the
error for Q; asCy — Cy/Cy whereCy andC; are the cardinalities

of the result sets fof; andQ, respectively. Intuitively, the error

for Q, can be reduced W contains fewer partitions. The entries

in R-tree style indexes are maintained in minimum bounding rect-
angles (MBRs), giving the minimal extents of its entries. MBRs

WHERE T.Zipcode = Z
will return more accurate results on the anonymized data gener-
ated by the biased Rtree (see Figure 4(b)) than identical queries
on anonymized data generated by the unbiasédrBe (see Fig-
ure 4(a)). For the query type given above and the example data in
Figure 4, queries on the biased anonymized data in Figure 4(b) will
be twice as accurate as queries on the unbiased anonymized data in
Figure 4(a) (assuming thattaUNT query on a partition returns the

allow search and range queries on a spatial data set to be executedardinality of that partition if the query region intersects with the

efficiently. By using MBRs, we increase the likelihood that a par-
tition will not be included ilW. In the example given above, using
MBRs, the range on the Age attribute fewill be [20 — 24] thus

P will not be included inw.

partition). We find, in experiments, that when we build the-Ree
with biased splitting policies for a subsgof the quasi-identifier at-
tributes, queries o8 have relatively higher accuracies than queries
on anonymized data generated by anothestRe with an unbiased

We note that the exact behavior of queries on anonymized dataalgorithm. Spatial indexes can hence be useful tools for anonymiz-

may differ for different applications. One may choose to take the
data distribution into consideration when computing query results.
DenoteP.Age andQ.Age as the age interval for the partiti®rand
query Q respectively. DenoteR(N Q).Age to be the intersection

of the age intervals oR andQ. If Q.Age is (25< age< 35) and
P.Age =[30 - 40] thenRPN Q).Age = [30 — 35]. Now, if we assume
that the original data set is uniformly distributed on Age then we
may compute the result f@ on P as|P| x |(PNQ).Age|/|P.Age|.
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ing data sets when the types of query workloads that will use the
data are known beforehand. Taking a cue from [33] that proposes
a weighted certainty penalty metric, a spatial index can also in-
corporate query workloads into its splitting policies by assigning
higher weights to the “more important” quasi-identifier attributes.
As a consequence, it benefits the spatial index to split the more im-
portant attributes than the less important ones to arrive at a lower
penalty score for the new partitions.



3. MULTI-GRANULAR K-ANONYMITY

While a primary goal of the privacy-preserving techniquek-in
anonymity is to prevent re-identification of records, it may also be
useful to control the precision aranularity of the information
that the data owner releases to different entities, to limit the linking
abilities of unknown adversaries.

DEFINITION 1. (GRANULARITY ) We say that a k-anonymous
data set is an anonymous data set of granularity k.

Suppose the administrators of a university hospital have agreed
to deliver anonymized medical records to the following three en-
tities; Entity 1: researchers at the same university as the hospital,
Entity 2: researchers at a different university, Entity 3: the Inter-
net. One may expect that the hospital administrators place more
“trust” in Entity 1 than in Entity 2, Entity 3 being the least trusted.
The notion of trust is subjective and may be associated with factors
such as the data owner’s perception of the target entity’s ability or
intent to re-identify records (Data released on the Web is probably
more likely in danger of being compromised than data released to
a small, local group of researchers.)

We wish to be able to produce multi-granular anonymizations
T ={T,,..., Ty} of the original data seT while preservingk-
anonymity for every individual inT in the presence of an adver-
sary who is able to gain access to more than one anonymized table
Note that eachl; is an anonymization of the same taffle that
is, T is unchanged between anonymizations. While a full discus-
sion of the inference problem that arises from releasing multiple
anonymizations of the same data set is beyond the scope of this pa
per, in what follows we give a condition that, if satisfied, guarantees
k-anonymity for any set of multi-granular anonymizatidnsof T.

DEFINITION 2. (k-BOUND) We say that the record is k-bound
in the original table T if there exists a subset of records R such
that |R| > k and given any partition or equivalence class P in an
anonymization of T, ifire P, then RC P.

LEMMA 1. LetT ={T;,...,T,} be a set of kanonymizations

of the table T, k> k. k-anonymity is preserved over T every
recordrj € T isk-boundin T.

PROOF (SKETCH) Given anyk; -anonymization‘l’i' of T, rj can

not be linked to fewer thak records ki > k) usingTi’ alone. An
adversary may however be able to circumvesinonymity forr

using the set of anonymizatiofs to narrow down the candidate
records forrj to a selC containing fewer thak records.
Pick any recordj € T, for any new anonymization of, the

adversary may bg able to produce a new set of candidate re@ords
for rj such thafC | < |C| whereC is the previous set of candidate

records forrj as determined by the adversary. We know taat>
1 sinceC’ must at least containj. If rj is k-bound inT, thenR

is always a candidate set fof, RC c, \C’| > k. Thus correlating
any new anonymization of will result in at leask records being
candidates forj. []

One may view a record that Isbound in a table as being in a
group that always “sticks together” in any n&anonymization of
that table.

3.1 A Hierarchical Algorithm for Generating
Multi-Granular Anonymized Data Sets

A straightforward approach to generating anonymi;ed da/ta sets
of different granularity is to re-anonymizZe to obtainT;, ..., T,.
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Algorithm LeafScan
INPUT: Set oforderedleaf nodesN, granularity parametéq
OUTPUT: A new set of partitionS
LS1. S« empty set of partitions
LS2. whileN # 0
LS3. P« empty partition
while |P| <kj
L < nextleaf node inN
Add all records in_to P
N—N-L
if the total number of records in the remaining leaf nodes
in N is less tharky, then remove these records frdin
and add them t®
update generalized quasi-identifier values for every record
inP
LS6. S« SUP. Continue LS2
LS7. ReturnS

LS4.

LS5.

Figure 5: Leaf scan algorithm

One must then verify tha&anonymity is preserved for each record
over all anonymizations of .

We can, however, take advantage of the tree structure of spatial
indexes to generate data sets of different granularity that automat-
ically guarantees thatanonymity is maintained for the collection
of anonymized data sets. This technique exploits Lemma 1 by ef-
fectively binding each record to some pre-determined set bf
records.

Let Sl be a multi-dimensional spatial index on the original data
set with the following properties.

e Leaf nodes inSl contain betweerk and ck records, some
constant.

e Internal nodes ir8l contain betweehandm entries.

From each level i8I, we can automatically generate anonymized
data sets of granularity Ik, 12k, ... ., 1"k, whereh is the height oBI.

To generate an anonymized table of granuldriky we map each
nodeN; at leveli to each partitiorP; in the anonymized table. The
records inP; are all the records contained in the set of leaf nodes in
the subtree rooted &f;.

Using thishierarchical algorithm for generating multi-granular
anonymized data sets guarantkemonymity over all anonymiza-
tions of T. To see why, pick any recond in T and letPj be any
partition from an anonymization of. If P; containsr;, thenP;
contains the leaf nodk in the subtree for whichP; is the root.
Thus, from Lemma 1, every record linis k-bound,r; is k-bound.

In generating multi-granular anonymized data sets via the hier-
archical algorithm on a spatial index, the data set owner can, at
the very least, guarantee the anonymity generated by the leaf nodes
in the spatial index. In other words, if the leaf nodes produce a
k-anonymous data set (every leaf node contains a minimuin of
records), then it can be guaranteed that releasing other data sets
at other granularityk; > k will not violate k-anonymity. If an
adversary manages to obtain multiple versions of anonymized ta-
bles, with the goal of re-identifying individuals, she can only re-
cover the information revealed in the finest granular (most precise)
anonymized data set in her possession.

3.2 A Leaf Scan Algorithm for Generating
Multi-Granular Anonymized Data Sets

In this section, we describe an algorithm that rather than generate
anonymized tables in a hierarchical fashion, utilizes the “sequential



ordering” of nodes on the same tree level. The granularity of the
data sets that can be generated using a hierarchical algorithm is re-
stricted by the threshold on the minimum number of records in any
leaf node in the tree. This minimum occupancy threshold on leaf
nodes enforces the property that every subtree contain a minimum
number of records. Assume that all nodes (including leaf nodes)
in the spatial indeXsI contain between two and four entries. Then,

at best, we can have anonymous data sets of granular2iy, 4k,

8k, .. .,2hk. Using the hierarchical algorithm, we will be unable (a) uncompacted data (b) Compacted data
to generate a 6-anonymous data set say, the best we can do is an

8-anonymous data set. (Of course by definitiok-aihonymity, an
8-anonymous table is also 6-anonymous.) Given a request for a
data set of granularity;, we can further improve on the hierarchi-
cal algorithm by scanning the leaf nodes in order and partitioning
the leaf nodes in groups &f /k. In our current example, since ev-
ery leaf node contains at least two recordsg;if= 6, we scan the

leaf nodes, forming groups of three leaf nodes each except for the
last group that may contain between three and five nodes.

Figure 6: Applying the compaction procedure to partitions

a possibly “more precise” description about the recordB.iffhe
compaction algorithm is a simple one — it scans each partition
P € D and creates the minimum bounding boxes. For each numer-

Fiqure 5 shows théeaf scanalgorithm for performing multi- ical quasi-identifier attribute, the compaction algorithm generates
9 L 9 P ing a new range where the end points are the minimum and maximum
granular anonymizations of a data set. Note that since each leaf

node mav contain betwednand ck records. we mav be able to values that occur for records . For each categorical attribute,
Y e ' Y . the procedure removes all values from the set that do not occur
form groups containing less thda/k leaf nodes. The algorithm . h lization hi hi din ol f
initializes a new group or partition with the next leaf node; if this in P. Where generalization hierarchies are used in place of sets,
roup contains at leakj records, we are done with this I’Ol'J and the procedure chooses the lowest common ancestor in the hierar-
gtartzl new one. Otherwise a ne,w leaf is added to the cgrrenﬁ rou chy for all the values irP. The old generalized values for every
The algorithm éto s adding leaf nodes to a aroup when thegtotaﬁ'record inP are then replaced with the new, more compact values.
Y P g lea group . Figure 6(b) depicts an example application of the compaction pro-
number of records in the group is at lelast New groups are itera- . S
. ) . . . cedure to anonymized data in Figure 6(a).
tively created until the last step, when the records in the remaining

) In the rest of the paper, we will refer to the data before applying
leaf nodes is Ies_s th_dq, we add these Iea}f nodes to the cu_rrent and the compaction process as tmcompacteddata and the data after
last group, terminating the algorithm. Since the records in a group

may span multiple leaf nodes, the algorithm recomputes new gen-"’IpIOIyIng the compaction process as dompacteddata. A bene-

eralized quasi-identifier values based on all the records in a group.m of the compaction procedure is that, when compared to results

We use this approach in our implementation to generate data setsfrom the same queries on the original data, query results on com-

. . i ) ) pacted data are more accurate than queries on uncompacted data.
of different granularity. As the results in Section 5 will show, exe- he introducti f in th ized d :
cution times for anonymizing a data set is independent of the actual Due to the introduction of gaps in the anonymized data, queries

: : ; that would have otherwise returned non-empty result sets for one
anonymity parametek since generating an anonymous data set of

any granularity requires one full scan of all the leaf nodes (after or more partitions now return results that are more in tune with the
Vg . ty req original data set. In experiments, we see dramatic improvements
building the index on a badevalue).

o in accuracy for queries on compacted data over the same queries
By Lemma 1,k-anonymity is also preserved when we generate dd hould hat the simol fth
multi-granular anonymized data sets with the leaf scan algorithm on uncompacted data. We should note that the simple nature of the
; " compaction procedure facilitates its application to data generated
To see why, we observe that the leaf scan algorithm always forms

partitions fromwhole leaf nodes. IfP; is any partition from an by anyk-anonymization algorithm.

anonymization off andr: € P: thenP: contains the leaf node par- It is also reasonable to expect the execution costs for the com-
inony - ' I ,, pa paction process to be relatively small when compared to actual
tition L that containg;, thusr; is always “bound” to the records in

L and|L| > k anop_ymization cos_ts as i_ts_basic operatior_1 is a single pass over each
= partition to determine minimum and maximum values for numer-
ical attributes and minimal sets for categorical attributes. These
4. A COMPACTION PROCEDURE relatively small compaction costs are verified through experimen-
In the process of treating thkeanonymization problem as anin-  tal results shown in Section 5 by running the compaction proce-
dexing problem, we recognized that we could dramatically increase dure on anonymized data generated by a previously propoesed
the precision of anonymized data sets by employing some of the anonymization algorithm.
techniques for improving query performance on the R-tree style in-  This compaction process may lead one to an uneasy feeling that
dexes. By using minimum bounding boxes, these spatial indexes“more is being revealed” than would be revealed if the anonymized
leave gaps in the domain where gaps correspond to spatial portiondata set were not compacted. This is actually true. For example,
of the domain that do not contain any record. We, thus, propose aan adversary can “know” that there is no individual in a “gap” area,
compactionprocedure to increase the precision of an anonymized something they could not deduce without compaction. This is an
data set generated for any index, such as the grid file [23], that doesexample of the tension between anonymization procedures and data
not maintain MBRs for its records. Since evéaanonymization utility. But this is really an issue in ak-anonymization research.
algorithm, whether viewed as an indexing technique or not, essen- For example, the discernibility penalty [4] rewards anonymiza-
tially creates partitions in the original data set, the compaction tech- tion procedures that do a good job of putting no more thdata
nique can be retrofitted to previously proposed non-index-based ap-points in a partition. This reveals more information than another

proaches to give dramatic improvements as well. anonymization that has partitions with more thadata points. To
The goal of the compaction procedure is to regenerate, for eachsee this, suppose that anonymization A gits k data points in a
partition P in a k-anonymous data s&, another partitiorP; with number of partitions, but anonymization B puts okl each par-
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Category Description sign records to regions as they are processed. By comparison, the
Compiler gcc3.2.2 polynomial-time algorithm suggested in the Mondrian paper [19]
Operating system  Tao Linux release 1 can be viewed as top-down, because its first step is to partition
CPU Intel Pentium 4 3.00Ghz the entire space, then to partition the resulting sub-regions, and so
Memory 1GB forth. Although the goal of the Mondrian algorithm was not ab-
Hard Disk Seagate ATA/ATAPI-6 solute performance, we implemented their top-down algorithm to
compare the efficiency and quality of the top-down approach with
Table 1: System configuration the bottom-up approach inherent in spatial indexing. We are grate-

ful to the authors of that paper for providing us with a copy of their
Java prototype implementation of the algorithm, as well as the data
tition. Then with anonymization B, the “attacker” knows for every  sets they used in their experiments.
data record that the sensitive value associated with that record must The first data set we used was a real world data set, the Lands
be one of the alternatives appearing inkhecords in the partition.  End data set. The configuration for this data set was identical
On the other hand, with anonymization A, for any data element in to [18]. The Lands End data set contained customer sale informa-
a “large” partition, the attacker only knows that the data record has tion and 4,591,581 records. It had eight attributes comprizipg
a sensitive value among the values found inkhe k records in code, order date, gender, style, price, quantity, @sishipment
the partition, which in general may be a larger set. Another way Unlike [18] however, hierarchical constraints were eliminated by
of putting this is that if a procedure reduces the number of records imposing an intuitive ordering on the values for each categorical
in a partition fromk' to k, it has “revealed” information, but the  attribute in the data set. Each record in the resulting data was 32
discernibility penalty says that the quality of the anonymization bytes and the entire data set was approximately 147 MB in size.
has improved. In an extreme casekif= N, the number of ele-  The second data set was synthetically generated and had nine at-
ments in the data set, the attacker gains almost no information from tributes Comprisingmary, commission, age, education level, car,
the anonymized data; but of course, then the anonymized data iszipcode, house value, house yearsiloan. The configuration for
not useful for any non-trivial analysis. The discernibility penalty the synthetic data was based on the generator introduced in [1]. We
tries to “penalize” the anonymization algorithm for this; one way generated 100 million records, each record was 36 bytes, resulting
of viewing it is that it tries to encourage disclosing as much infor- jn a data set size of 3.6 GB.
mation as possible while still not violatinganonymity. We built the R -trees on all eight and nine attributes for the

The recently proposed “certainty metric” [33] has the same char- Lands End and synthetic data sets respectively (every attribute was
acter. It rewards anonymization procedures for creating partitions part of the quasi-identifier). As a result of the numerical recoding
with small perimeters. Intuitively, a smaller perimeter for a parti- on the original data sets, the schema for an anonymized table is
tion P means that the quasi-identifier for the elementB iran be as follows: each quasi-identifier value for a recorid the origi-
known from the outside to be restricted to a smaller set of values nal data set is replaced, in the anonymized data, by the interval, on
than would be the case if the perimeter were larger. Once again,that quasi-identifier, of the MBR containirig As a consequence,
the goal is to reveal as precise information as possible without vi- we were also able to perform query experiments described in Sec-
olating k-anonymity. Our “shrinking” or “compaction” procedure  tion 5.4 by specifying numerical ranges in the query predicates.
is yet another step in this direction. It tries to bound partitions  Table 1 gives a description of the system configurations used in
of k-elements as tightly as possible while still not violating ke all experiments.
anonymity requirement.

We note that recently there has been work on augmenting the 5.1 Performance Evaluation
definitions ofk-anonymity to provide stronger guarantees. For ex-
ample, inl-diversity [21], thek-anonymity requirement is extended
to require a certain degree of diversity in the sensitive values of the
records in a partition. Our shrinking procedure is orthogonal to this
kind of requirement — whatever the requirement, it tries to find
the smallest bounding box on tlkeelements that still satisfies the
requirementsk-anonymity, ork-anonymity and-diversity.)

We argue that this is the correct way to deal with information dis-
closure in thek-anonymous framework. If one thinks too much in-
formation is being revealed, one should strengthen the restrictions
on the definition of what constitutes an allowable partition (for ex-
ample, addind-diversity tok-anonymity) rather than trust that the
anonymization procedure will only generate “loose” or “imprecise”
partitionings in some uncontrolled way. To reiterate, our philoso-
phy is that the definition of what is an allowable partition is taken
as input; the goal of an anonymization procedure is to produce the
“best” or “most precise” partitioning that respects the definition.
That is what the shrinking procedure attempts to do.

We used the Lands End data for the first set of experiments to
compare running times for the'Rtree bulk-loading to a top-down
multi-dimensional partitioning approach. We also ran experiments
to evaluate incremental anonymization performance for the R
tree. For these experiments, both algorithms were each allocated
a maximum buffer size of 256 MB. Each experiment was carried
out five times while flushing the system file buffers between runs,
and we report average cold running times.

Figure 7(a) shows execution times fof Rree bulkload and top-
down approach on the Lands End data set for different anonymity
levelsk =5, 10, 25, 50, 100, 250, 500, 1000. Rmcreases, the ex-
ecution times for the top-down algorithm decreases since there are
fewer recursive partitioning steps. Results show that the spatial in-
dexing approach consistently outperforms the top-down technique
suggesting that the former is more efficient than a top-down recur-
sive partitioning scheme even for bulk anonymization. Notice that
the execution times for the'Rtree is independent & This is due
to the fact that we choose a baséor the bulkload process. For
these experiments, we selected blkse5. For the actual input
5. EXPERIMENTS AND RESULTS parameter, we used the leaf scan algorithm described in Section 3.2

We carried out experiments on two data sets for empirical eval- to construct the final partitions. For examplé i 5, then the map-
uation of k-anonymization with spatial indexes. A spatial index ping is one or more leaf nodes to one partitionk ¥ 10, then we
bulk-loading algorithm, such as the buffer-tree algorithm we used, map two or more leaf nodes to one partition.
can be viewed as a bottom-up algorithm because it attempts to as- We start the incremental anonymization experiments by first bulk-
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Figure 7: Execution times on the Lands End database
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Figure 8: R*-tree anonymization scaling to large data sets

loading and anonymizing the first 0.5 million records from the Lands (about 180MB). Figure 8(a) shows that our algorithms adapt grace-
End data set. Then we subsequently select new batches of 0.5 milfully as the size of the input data is increased.

lion records to be anonymized. Figure 7(b) shows the running We also conducted experiments to ascertain the effect of avail-
times for the R -tree for incrementally anonymizing each batch. able computer memory on the performance of our algorithms. Fig-
Since a top-down approach is not incremental, it would have to re- ure 8(b) shows the total number of explicit I/O system calls made

anonymize the entire data set on each batch insert. during the anonymization process while varying the size of mem-
. ory allotted to the process. These results show that 1/0 costs in-
5.2 Scalability crease by less than a factor of two when the allotted memory is

The synthetic data set was used for the second set of experimentgeduced by a factor of two, also indicating that the buffer tree al-
to show that our spatial indexing techniques scale well to the size gorithm performs well as a spatial indexing bulk-loading algorithm
of the input data set. We did not test the top-down approach for for larger-than-memory data sets.

scaling to larger-than-memory data sets because the version of the5 . . . .
Mondrian algorithm described in [19] was not designed to handle ©-3 Anonymization Quality Experiments

such data sets. Since anonymization quality is an essential property of leny
We used the R-tree tok-anonymize data sets of different sizes anonymization algorithm, we conducted a third set of experiments
ranging from one million (0.036 GB) to 100 million records (3.6 — quality experiments on anonymized data generated by the R

GB). We evaluate how the spatial index performs when the data tree and the top-down approach proposed in [19]. We also evalu-
set is too large to fit in main memory. We allotted 256MB to the ated the quality of anonymized data after executing compaction as
anonymization process and from the allotted memory, we use 4MB a post-processing step on data generated by that approach.

to buffer the input data and the remaining memory was used for In choosing algorithms with which to compare our algorithm,
the index buffers. The index was able to hold a major portion of the we were guided by the following considerations. First, since we
records in its buffers when the data set is less than 5 million records had access to the code of the Mondrian algorithm, it was a logical
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Figure 10 shows that exploiting the minimum bounding rectan-
gle property of the R-tree clearly pays off as it generates much
better anonymized data quality than the top-down approach with-
out compaction. The Mondrian partitioning is based on the heuris-
tic that it should split the quasi-identifier attribute with the largest
range of values, whereas the R-tree splits by trying to minimize
the area of the resulting partitions. For the data set used in our
candidate for comparison. Second, we did not consider comparingexperiments, minimizing area results in better discernibility, KL-
against any algorithm that had already been shown to produce lowerdivergence and certainty penalty. Results in Figures 10(b) and 10(c)
quality anonymizations than Mondrian. This eliminated [4, 18, 24]. show that after compaction, the anonymized data quality for the
Finally, since our focus in this paper is on scalable anonymiza- top-down approach greatly improves, suggesting that one of the
tion algorithms, we did not consider algorithms with running times main differences between the anonymization quality produced by
greater thar®(n?). This eliminated [4, 11, 18, 24, 26, 33]. the top-down and spatial index approaches arises from the com-

First, we measured the running times for compaction relative to paction implicit in the spatial index.
total anonymization times while choosing samples of different sizes  We also observe from Figure 10(a) that the discernibility scores
ranging from 0.5 million to 4.5 million records from the Lands End  for uncompacted and compacted Mondrian-anonymized data are
data set. Figure 9 shows that the times for compaction are smallidentical. The compacted and uncompacted anonymized data com-
relative to the anonymization times. prise the same partitions with the same number of records per par-

We used the discernibility metric [4], KL divergence [15] and the tition, although the former may describe these partitions with more
certainty metric proposed in [33] to measure and compare quality precision on the quasi-identifier attributes. As a consequence of the
with anonymized data generated from the Lands End data set by thediscernibility penalty measuring quality based on the cardinalities
top-down approach proposed in [19]. Before continuing with the of partitions alone, this metric is unable to measure differences be-
anonymization quality experiments, we define these three quality tween compacted and uncompacted anonymized data. This shows

0.00% T T T T T T T
0.5 1 15 2 25 3 3.5 4 45
data set size (millions of records)

Figure 9: Compaction cost as a percentage of total anonymiza-
tion execution time (k = 10)

measures. that the certainty penalty and KL-divergence measures can identify

Let T be ak-anonymous table witm quasi-identifier attributes, differences in quality in data anonymization that escape the dis-
Ay,...,An, and comprisingn partitions or equivalence classes, cernibility penalty. Of course, while we did not see any in our ex-

P,...,Pn. periments, it is also possible that there are examples of anonymiza-

tions in which certainty penalty detects differences that are also

DEFINITION 3. (DISCERNIBILITY PENALTY). The disceri-  missed by KL-divergence and vice versa, in which case these met-

bility penalty score for T, DNIT) = 5, |R|? rics are incommensurate and future study would be warranted to

determine the strengths and limitations of each.

Since a benefit of spatial indexes is that it is incremental, we also
conducted tests to ascertain the effects, on quality, of anonymizing
new records incrementally as opposed to a re-anonymization ap-
proach. (Earlier we discussed the impact of incremental anonymiza-
tion on the efficiency of anonymization.) For the Rree index,

CM(T) = Z NCR(t) we first loaded a portion of the data (500,000 records), anonymized
te them, then incrementally anonymized additional batches of 500,000
where NCP(t) is the weighted normalized certainty penalty assignedrecords by inserting these records into the index. For Mondrian, we
to the tuple t. reanonymized the entire set of records. Results from our experi-
ments validate our assertion that thé-Ree’s technigque of adding
new records to the index in such a way that the total area cov-
m t.A] ered by the resulting MBRs is minimized is appropriate for main-
NCH(t) = Z <W| x T Ai\) taining good data quality. Figure 11 shows that anonymized data
= ' quality does not suffer from incremental anonymization, in fact,

w; is the weight associated with the quasi-identifier attribijte the R"-tree anonymized data is still of higher quality than the re-
to reflect itsimportancein the anonymized data. In our quality ex-  anonymized data.
periments, we set the weights for all quasi-identifier attributes to 1.

If A is a numerical attribute theih A | is the range of the general- 5.4 Query Accuracy

ized value fort on A;. For example, if.Age = [20 — 30], therit.Aj| Since the KL-divergence and certainty penalty measures suggest
=10. |T.Aj| is the range of all tuples il on A;. OtherwiseA; is a that compacted data is at least as “good” or “better” than uncom-
categorical attribute and assuming the existence of a generalizationpacted data, we carried out a fourth set of experiments to evaluate
hierarchy treeH for A;, |t.Aj] is the number of leaf nodes in the  the relative accuracy for queries on both types of anonymized data

The discernibility measure, in effect, assigns a penalty to each tuple
t € T based on the size of the partitiéh given that € R.

DEFINITION 4. (CERTAINTY PENALTY). The certainty penalty
score for T is
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Figure 10: Quality comparisons on the Lands End database
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Figure 11: Incremental quality comparisons on the Lands End dathase k = 10)

on the Lands End data set. We also compare accuracy for the same

queries on the R-tree anonymized data. We executed 1000 ran- count(anonymized) - count(original)

domly generated range queries over all eight attributes of the Lands Error(Q) = count(original)

End data set. These queries were of the form
SELECT COUNT (*) In our experiments, we report the average normalized error over
FROM T the batch of 1000 queries. Figure 12(a) shows the average errors
WHERE T.A;>a; AND T.A; <bj for different k values. The accuracy for queries on compacted-

anonymized data is seen to improve over the accuracy for the same
: queries on uncompacted-anonymized data. Queries on'trec®
AND anonymized data have even smaller errors than on the Mondrian-
: compacted anonymized data suggesting that the spatial index does
a good job of partitioning the original data even for an arbitrary
§ query workload.

Figure 12(b) shows results when we vary the selectivity of the
query on the data set. In general, the larger the cardinality of
the query result, the smaller the error generated by running the
query on anonymized data versus the original data. This will in
turn tend to diminish differences between the accuracy of query re-
sults generated by queries run over data anonymized by different
anonymization procedures. Even the benefit of compaction is seen
to drop for large query results.

To show that we could indeed use a spatial index to integrate an-
ticipated workloads into the anonymization, we constructed a query
workload that generated random queries on the Zipcode attribute of
the Lands End data set. These queries were of the form

SELECT COUNT (*)

FROM T

WHERE T.Zipcode >2Z3 AND T.Zipcode <2

The bounds for a range query on the Zipcode attribute are set
in the following manner: we pick two records andr, at random
from the unanonymized data set andzeindz, to r;.Zipcode and
ro.Zipcode such that; < z.

We also built another R-tree, but this time, biased our node

T.Ag>ag AND T.Ag < bg

Note that in the above eight-dimensional range query, each o
the eight attributes A .. Ay has both an upper and lower bound
on its range. These bounds are set in the following manner: for
each query, we pick two recoradg andr, at random from the
unanonymized data set and set eagh = 1,...,8, to the smaller
of r1.Aj andro.Aj, andb; to the larger value.

A COUNT queryQ on the anonymized data SEtreturns a count
of the records i that matchQ. A recordr € T is said tomatchthe
queryQ if the region defined by has a non-null intersection with
the query region — intersects withQ on every quasi-identifier
attribute. For example, it has two quasi-identifier attributes, Age
and Zipcode, the recond= ([40 — 50], [53710 — 53720]) matches
the queryQ = ((45 < age< 55) A (53700< zipcode< 53715).
The recordr = ([30 — 35], [53700 — 53715]) does not match this
query. Queries on the original, unanonymized data set work in the
traditional way.r matche<Q on the original data if the point defined
by r lies within the query region.

We compute the error for the que®;, Error(@), as the normal-
ized difference between the results of evaluatihgn the original
and anonymized data sets.
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Figure 12: Query error comparisons on the Lands End database

splitting algorithm to the Zipcode attribute. The biased splitting previously proposed algorithm.
algorithm selects the Zipcode attribute as the splitting attribute for

Substantial room for future work remains. Recently, [17] has
every split. Subsequently, we generated 1000 random queries fromextended the top-down approach to work for large data sets, in
the workload and ran these queries on the anonymized Lands Endwhich case it would be again interesting to compare the top-down
data generated by the original (unbiased)-fRee index and the approach with the spatial index bulk-loading approach. Also, the
new (biased) R-tree index. From Figure 12(c), we see that by compaction procedure raises interesting questions as in a sense it
favoring one attribute, we were able to achieve significantly bet- “reveals” more information about the data records than uncom-
ter query results than the index that did not account for the query pacted anonymizations. This is just another example of the tension
workload. This suggests that we can use spatial indexes to exploitbetween anonymizing data and exposing the useful information
advanced knowledge of expected query workloads to generate “bet-therein. The philosophy behirldanonymization is that prevent-
ter” anonymized data. Finally, results in Figure 12(d) show that, al- ing any attacker from isolating any individual froka- 1 others is
though the biased Rtree outperforms its unbiased counterpart for  sufficient for privacy, and the compaction procedure maintains that
various query selectivity, the differences diminish as we increase philosophy.
the selectivity on the original data set.

Hence one can interpret our results on compaction as demon-
strating that given current definitions kfanonymity, compaction
6. CONCLUSION

is important to producing high quality anonymization. However,
if one is convinced that compaction reveals too much informa-

We have observed that since building an index over a data settion, then our results indicate that the definitions of anonymity
leads to a natural partitioning of the data segnonymity can be need to be augmented to prevent disclosures that result from “over-
introduced by enforcing a minimum occupancy threshold on parti- compaction,” because compaction respects whatever definition of
tions. Moreover, we can take advantage of these indexes as a meananonymity the R-tree building procedure is given as input. (That
for producing dynamik-anonymous data sets. Experiments indi- is, the R-tree splitting routine can incorporate, for examaiek)-

cate that the spatial indexing approactktanonymization is scal- anonymity [32] orl-diversity [21] just as easily as “vanillak-

able for very large data sets, is faster than previously proposed algo-anonymity.) Deciding whether or not compaction is desirable is
rithms even for in-memory data sets and produces anonymizationsan interesting challenge area for future work.

with better quality as measured by the discernibility penalty [4], While this paper makes a case for R-trees as a meank- for

KL-divergence [15] and certainty metric [33]. Experiments with anonymizing data sets, we do not lay claim to R-trees as the panacea

random queries over these anonymized data sets also show thafor k-anonymization as spatial indexing. Several R-tree variants [2,

the accuracy of the queries on the ftee anonymized data have 3, 5, 6, 12, 13, 14] have been proposed to address different-index

higher accuracy than the same queries on data anonymized by a
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ing issues and these issues and solutions may well translate into[16] Y. Kim and J. Patel. Rethinking choices for

the anonymization domain. For example, long index construction

times, especially for very large data sets, are addressed through

the use of bulk-loading algorithms. This translates to fast data
anonymization times. Packing algorithms [12, 13] have been em-
ployed to improve bulk load times while producing a good cluster-
ing of the data in the index. Good data clustering will result in bet-

ter anonymized data quality. The authors in [8] describe methods

multi-dimensional point indexing: Making the case for the

often ignored quadtree. @IDR, 2007.

[17] K. LeFevre and D. DeWitt. Scalable anonymization
algorithms for large data sets. Technical report, University of
Wisconsin, Madison, 2007.

[18] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito:
Efficient full-domaink-anonymity. INnACM SIGMOD 2005.

for bulk-loading a database that are resilient to different spatial data [19] k. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian

distributions, improving the spatial clustering of nodes in the index.
Such technigues may be employed in devisianonymization al-
gorithms that generate “good quality” anonymized data for a wide
variety of data sets with different distributions. Recent work [16]
makes a case for quad-trees as indexes for multi-dimensional dat
sets. The choice of one type of index over another for indexing a

data set may likely be reason enough for using the same index for

k-anonymizing the data set.

7. ACKNOWLEDGMENTS

We would like to thank David DeWitt for many helpful com-
ments and discussions.

8. REFERENCES

[1] R. Agrawal, S. Ghosh, T. Imielinski, and A. Swami.
Database mining: A performance perspectivd BEE
Transactions on Knowledge and Data Engineering

volume 5, 1993.

L. Arge. The buffer tree: A New Technique for Optimal

Algorithms (Extended Abstract). WADS pages 334-345,

1995.

L. Arge, M. de Berg, and H. J. Haverkort. The priority r-tree:

A pratically efficient and worst-case optimal r-tree. In

SIGMOD, 2004.

R. Bayardo and R. Agrawal. Data privacy through optimal

k-anonymity. InICDE, 2005.

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The

R*-tree: An efficient and robust access method for points and

rectangles. IACM SIGMOD pages 322-331, 1990.

[6] J. Bercken, B. Seeger, and P. Widmayer. A generic approach
to bulk loading multidimensional index structuresMhDB,
1997.

[7] T. Dalenius. Finding a needle in a haystack or identifying
anonymous census recordsurnal of Official Statistics
2(3):329-336, 1986.

[8] D. J. DeWitt, N. Kabra, J. Luo, J. Patel, and J. Yu. Client
server paradise. MLDB, pages 558-569, 1994.

[9] B. Fung, K. Wang, and P. Yu. Top-down specialization for
information and privacy preservation. IBDE, 2005.

[10] A. Guttman. R-trees: A dynamic index structure for spatial
searching. IPACM SIGMOD pages 47-57, 1984.

[11] V. lyengar. Transforming data to satisfy privacy constraints.
In ACM SIGKDDQ 2002.

[12] H. Jagadish. Linear clustering of objects with multiple
attributes. IPACM SIGMOD 1990.

[13] I. Kamel and C. Faloutsos. On packing R-trees. In
International Conference on Information and Knowledge
Managementpages 490-499, 1993.

[14] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved
R-tree using fractals. INLDB, 1994.

[15] D. Kifer and J. Gehrke. Injecting utility into anonymized
datasets. II5IGMOD, 2006.

(2]

(3]

(4]
(5]

757

multidimensionak-anonymity. INICDE, 2006.
[20] K. LeFevre, D. DeWitt, and R. Ramakrishnan.
Workload-aware anonymization. kCM SIGKDDQ 2006.

a[21] A. Machanavajjhala, J. Gehrke, D. Kifer, and

M. Venkitasubramanianm-diversity: Privacy beyond
k-anonymity. InICDE, 2006.

[22] M. F. Mokbel, C. Chow, and W. G. Aref. The New Casper:
Query processing for location services without
compromising privacy. IWVLDB, 2006.

[23] J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid file:
An adaptable, symmetric mulitkey file structure AGM
Transactions on Database Systert384.

[24] P. Samarati. Protecting respondents’ identities in microdata

releaselEEE Transactions on Knowledge and Data

Engineering 13(6):1010-1027, 2001.

P. Samarati and L. Sweeney. Generalizing data to provide

anonymity when disclosing information. Proc. of the ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of

Database System$998.

P. Samarati and L. Sweeney. Protecting privacy when

disclosing informationk-anonymity and its enforcement

through generalization and suppression. Technical Report

SRI-CSL-98-04, SRI Computer Science Laboratory, 1998.

T. Sellis, N. Roussopoulos, and C. Faloutsos. THetiRee: A

dynamic index for multi-dimensional objects. W.DB,

pages 507-518, 1987.

[28] L. Sweeney. Uniqueness of simple demographics in the U.S.
population. Technical report, Carnegie Mellon University,
2000.

[29] L. Sweeney. Achievingi-anonymity privacy protection using
generalization and suppressidmternational Journal on
Uncertainty, Fuzziness and Knowledge-based Systems
10(5):571-588, 2002.

[30] L. Sweeneyk-anonymity: A model for protecting privacy.
International Journal on Uncertainty, Fuzziness and
Knowledge-based System9(5):557-570, 2002.

[31] K. Wang, P. Yu, and S. Chakraborty. Bottom-up
generalization: A data mining solution to privacy solution. In
ICDM, 2004.

[32] R. C. Wong, J. Li, A. W. Fu, and K. Wanga ( k)-anonymity:
An enhanced-anonymity model for privacy-preserving data
publishing. INACM SIGKDDQ 2006.

[33] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W. Fu.
Utility-based anonymization using local recoding AGM
SIGKDD, 2006.

[25]

[26]

[27]



