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Abstract

Summarizing topological relations is fundamen-
tal to many spatial applications including spatial
query optimization. In this paper, we present sev-
eral novel techniques to effectively construct cell
density based spatial histograms for range (win-
dow) summarizations restricted to the four most
important topological relations: contains, con-
tained, overlap, and disjoint. We first present
a novel framework to construct a multiscale his-
togram composed of multiple Euler histograms
with the guarantee of the exact summarization re-
sults for aligned windows in constant time. Then
we present an approximate algorithm, with the
approximate ratio 19/12, to minimize the stor-
age spaces of such multiscale Euler histograms,
although the problem is generally NP-hard. To
conform to a limited storage space where only
k Euler histograms are allowed, an effective al-
gorithm is presented to construct multiscale his-
tograms to achieve high accuracy. Finally, we
present a new approximate algorithm to query an
Euler histogram that cannot guarantee the exact
answers; it runs in constant time. Our extensive
experiments against both synthetic and real world
datasets demonstrated that the approximate mul-
tiscale histogram techniques may improve the ac-
curacy of the existing techniques by several orders
of magnitude while retaining the cost efficiency,
and the exact multiscale histogram technique re-
quires only a storage space linearly proportional
to the number of cells for the real datasets.

1 Introduction
Research in spatial database systems has a great impact
on the technical support to many applications, such as ge-
ographic information systems, digital libraries, robotics,
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image processing, CAD and VLSI. In the last 20 years,
spatial indexing and searching have drawn a great deal
of attention from research society, and a number of tech-
niques have been developed [6]. With the availability
[9, 20, 21] of a huge collection of on-line spatial data, there
are strong demands for effective techniques to support effi-
cient browsing of large datasets to summarise spatial char-
acteristics. It becomes extremely important in large digital
libraries/archives to support interactive queries by query
preview [3, 9]. These applications require a system to pro-
vide a fast summary information to users for quickly iden-
tifying relevant data among enormous available data re-
sources. Summarizing spatial datasets also plays an im-
portant role in spatial query processing optimization by
providing selectivity estimation [1, 2, 14, 19].

A variety of techniques [7, 8] have been recently de-
veloped for effectively summarizing data in relational
datasets. The most common techniques are samples [16],
histograms [18, 7], wavelets [17], and sketches [7]. In
contrast, techniques for summarizing topological relations
against spatial datasets are relatively a little.

In this paper, we will investigate the problem of sum-
marizing rectangular objects for range (window) queries.
Several histogram based summarization techniques have
recently been developed to provide selectivity estimation
for spatial range queries. The existing techniques may be
divided into two categories: 1) data partition techniques,
and 2) cell density. The Min-skew algorithm in [2] and the
SQ-histogram technique in [1] belong to the first category,
and propose to group “similar” objects together accord-
ing to some mathematic models to form a bucket for esti-
mating the number of disjoint objects and the number of
non-disjoint objects in window queries.

Techniques based on cell density [3, 14, 20] propose to
divide the object space into a number of disjoint cells, and
to record some kind of object density for each cell. To
estimate the number of non-disjoint objects against a win-
dow, a cumulative density based approach (CD) was pro-
posed in [14], while the Euler formula [11] has been effec-
tively used in [3] in creating a cell density based histogram
(called Euler histogram). Sun, Agrawal, and El Abbadi
[20] substantially extended the Euler histogram techniques
to summarizing the 4 most important topological relations:
“contains”, “contained”, “overlap”, and “disjoint” (to be
defined in section 2) by dividing the non-disjoint relation
into the three relations: contains, contained, and overlap.

It has been demonstrated in [14] that a cell density
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Figure 1: 4 Topological Relations between two Objects

based technique may perform better than data partition
techniques. Further, the existing data partition techniques
dealt with only the two topological relations: disjoint and
non-disjoint.

In a cell density approach, summarizing rectangular
objects against an arbitrary window is usually processed
against the related aligned windows which consist of whole
cells only. Therefore, the summarization accuracy over
aligned windows is fundamental to the quality of a cell den-
sity based histogram. As with the conventional histogram
techniques in relational datasets, a cell density based his-
togram is practical if its storage space is linearly propor-
tional to the number of the disjoint cells to be used.

The histogram techniques in [3, 14, 20] are practi-
cal, and guarantee the exact solutions for estimating the
number of disjoint and non-disjoint objects, respectively,
against aligned windows. To the best of our knowledge,
[20] is the only paper investigating the problem of sum-
marizing the 4 topological relations above. The techniques
in [20] are practical but rely on a few strong assumptions;
the accuracy may greatly degrade if the spatial data do
not conform to the assumptions. To resolve the deficiency,
in this paper, we proposed a novel multiscale paradigm
by effective utilization of the object scales (to be precisely
defined in section 2). It consists of two steps: 1) group
together the objects with “similar” scales, and 2) for each
group of objects, create an Euler histogram. The main
contributions of the paper may be summarized below.

1. We proposed a novel framework to construct a mul-
tiscale histogram that is composed of multiple Euler
histograms. Such a multiscale histogram can gener-
ate exact summarization results for aligned windows
in constant time restricted to the four topological re-
lations.

2. We investigated the problem of storage space min-
imization in a multiscale histogram. Although the
problem is generally NP-hard, our approximate al-
gorithm, based on the Duh-Furer semi-local optimi-
sation technique [4], can guarantee the approximate
ratio 19/12.

3. To conform to a limited storage space where only k
Euler histograms are allowed, we present an effec-
tive algorithm to construct multiscale histograms with
high accuracy.

4. Finally, we present a new approximate algorithm to
query an Euler histogram that cannot guarantee the
exact answers; it runs in constant time.

We evaluate our new techniques by both synthetic and real
world datasets. Our experiment results demonstrated that
the approximate multiscale techniques may improve the ac-
curacy of the existing techniques by several orders of mag-
nitude while retaining the cost efficiency. The experiments
also showed that the exact multiscale histogram technique

requires only a storage space linearly proportional to the
number of disjoint cells for the real world datasets, and
thus is practical.

The rest of the paper is organized as follows. In section
2, we provide preliminaries and related works. In section 3,
we present our first and second contributions of the paper -
efficient histogram construction algorithms for generating
exact summarization results against aligned windows while
minimizing the storage space. Section 4 presents the third
and fourth contributions of the paper. Section 5 presents
the applications, possible generalizations, and the mainte-
nance of our new histogram techniques. Section 6 presents
the experiment results. This is followed by conclusion and
remarks.

2 Preliminaries

In this section, we give a brief overview of Euler histograms
[3], and the three algorithms (S-Euler, EulerApprox, and
M-Euler) [20] to query an Euler histogram. These tech-
niques are closely related to our work in this paper.

In this paper, we study only axis-aligned rectangular
objects; this is because different types of objects can be
represented by their minimum bounding rectangles (MBR)
to approximate the spatial extents. A set S of objects, in
this paper, always means a set of axis-aligned rectangles.

A binary topological relation between two objects, D
and Q, is based upon the comparison [5] of D’s interior
Di, boundary Db, exterior De (see Figure 1(a)) with Q’s
interior, boundary, and exterior. It can be classified [5, 10,
20] into 8 high-resolution topological relations according
to the 9-intersection model, and can be also classified into
the 5 medium-resolution topological relations by omitting
3 less important relations. In this paper, we focus only
on the 4 important medium-resolution topological relations
(as depicted in Figures 1(b) - (e)) - disjoint (ds), overlap
(ov), contains (cs), and contained (cd).

2.1 Euler Histograms

To build an Euler histogram H for a set S of objects, the
axis-aligned MBR containing the whole S is first divided
into n1 × n2 disjoint cells, called a grid or a resolution of
H and S respectively. For instance, Figure 2(a) illustrates
5× 4 grid.

(b) align with the grid (c) scale (3, 2) (a) 5 x 4 grid
(1, 1)

(6, 5)

Figure 2: Grid, Query Window, and Object Scale

Note that in a n1 × n2 grid, each node on the grid is
called grid point and labelled by (i, j), lexicographically,



with the integers i and j in the range of 1 ≤ i ≤ n1 + 1
and 1 ≤ j ≤ n2 + 1. There are n1 cells spanned the grid
horizontally and n2 cells spanned the grid vertically; thus,
n1 is the width and n2 is the height of the grid. The total
number of cells, and internal nodes and internal edges is
(2n1 − 1)× (2n2 − 1).

In an Euler histogram with a resolution n1×n2, (2n1−
1) × (2n2 − 1) buckets are given where each cell, internal
edge, and internal node are allocated a bucket to store an
integer, respectively, such that [3, 20]:

• The integer, corresponding to a cell in the grid, is
increased by 1 if an object intersects the cell.

• The integer, corresponding to a node (grid point) in
the grid, is increased by 1 if an object contains the
node.

• The integer, corresponding to an edge in the grid, is
decreased by 1 if an object crosses the edge.

Figure 3(a) gives an example of an Euler histogram.
Note that in an Euler histogram H, we do not deal with
the information that a boundary of an object aligns with
the grid of H (see Figure 2(b) for example); this is because
we can always “shrink” the object a little bit to remove the
situation.

(b) Object with Hole(a) Object without Hole
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Figure 3: Euler Histograms

Suppose that H is an Euler histogram for a set S of
objects, and Q is an aligned query window.

• |S| denotes the total number of objects in S.

• Nds denotes the number of objects in S which disjoint
with Q.

• Nnds denotes the number of objects which non-
disjoint with Q.

• Pi denotes the summation of all the bucket values in-
side Q (excluding the boundary of Q, shown in Figure
4).

Assume that S has only one object without holes. The
Euler formula [11] implies that the summation of values
from the buckets non-disjointing with the object is 1 (see
Figure 3(a) for example). Therefore, Nnds = Pi; this to-
gether with Nnds + Nds = |S| yield the exact solutions for
Nnds and Nds.
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Figure 4: Compute Pi and Pe

2.2 S-Euler Algorithm

In [20], the non-disjoint relation is decomposed into 3 re-
lations: overlap, contains, and contained, as depicted in
Figure 1 since equal relation does not occur in an Euler
histogram. Sun, Agrawal, and El Abbadi then proposed to
use the histogram information outside a query window Q
as well to summarize these 3 new relations. They extended
the original Euler formula for processing an object with a
hole inside. It can be shown that if we sum up the values of
the buckets that an object intersects, then the result will
be 0 if the object has a hole inside (shown in Figure 3(b)).
Here, a hole means that there is at least one cell on the
grid which is not contained by the object but encompassed
by the “outside” boundary of the object; see Figure 3(b)
for example. Note that any object studied in this paper is
assumed without hole; however by investigating holes we
can effectively use the histogram information outside Q.

It has been shown that in an Euler histogram, the ov re-
lation as illustrated in Figure 1(c) has to be separated into
1) intersect (the left figure in Figure 1(c)), and 2) cross-
over (the right figure in Figure 1(c)), since they contribute
differently to the outside of Q. Note that here, we abuse
the original term “intersect” from [5, 20] for a term sim-
plification; the “intersect” relation in [5, 20] corresponds
to the “non-disjoint” relation in this paper. Although in
this paper we aim to count the number of ov objects, we
will have to first deal with the relations cross-over (cr) and
intersect (it), and then add them together to obtain the
number of ov objects.

• Ncs denotes the number of objects in S which Q con-
tains;

• Nit denotes the number of objects in S which intersect
Q.

• Ncr denotes the number of objects in S which cross
over Q.

• Ncd denotes the number of objects in S by which Q
is contained.

• Pe denotes the summation of all the bucket values
outside Q (shown in Figure 4).

By a generalized Euler formula [20], we have

Pe = Nit + 2Ncr + Nds (1)

Note that here, we have to count a cr object twice in (1).
Clearly, Nnds = Nit + Ncr + Ncd + Ncs; this together with
the equation (1) and the equations in the last subsection
lead to:

Nds = |S| − Pi (2)

Ncr =
1

2
(Pi + Pe − |S| −Nit) (3)

Ncs + Ncd =
1

2
(Pi − Pe + |S| −Nit) (4)

Clearly, Nds can be computed exactly since Pi can be
computed from the histogram and |S| is known. In the
equations (3) and (4), there are 4 variables to be fixed.
In fact, it tends to be impossible to create more equations
without introducing new variables. This is because that
the information in one Euler histogram is not enough to
determine the 3 relations, cs, cd, and ov. For instance, in
Figure 5 the two different scenarios (Figure 5(a) and Figure
5(b)) lead to the same histogram (Figure 5(c)). If we use
the shadow area as a query window, we have no idea about
what the scenario should be.



0 0

0 0 0

(b) contains=0,  overlap=2 (c) Histogram for (a) and (b)

00 00 00

0

(a) contains=1,  overlap=1

objects

0

1

0

00

00

1 2−1

0

−1

0

00 0

00

Figure 5: A Counter Example

Motivated by this example, in S-Euler Ncr and Ncd are
both removed from the equations (3) and (4) for approxi-
mation. Therefore, the two equations are just enough for
the remaining two variables.

2.3 EulerApprox Algorithm

In this algorithm, Ncr is still assigned to 0 while Ncd, Nit,
and Ncs remain in the two equations (3) and (4). There-
fore, one more equation is needed. This is done by adding
the following equation.

Nit + Ncd + Nds = Ncs(B) + Pe(A) (5)

As depicted in Figure 6, the whole space is split into two
parts along one edge of Q. Here, Ncs(B) is the number
of objects contained in the shadow area B, which can be
calculated exactly by the algorithm S-Euler. Pe(A) is the
summation of all bucket values in the interior of the shadow
area A. It has been shown that (5) holds if Ncr = 0 and
the number of O1 type objects equals the number of O2

type objects.

Ncs(B)

O2

O1

Pe(A)

A

Q

B

Figure 6: EulerApprox

2.4 M-Euler Algorithm

This algorithm attempts to reduce the deficiency caused
by those strong assumptions in S-Euler and EulerApprox
by adopting multiple Euler histograms. In M-Euler, the
object areas are divided into k ranges and construct one
Euler histogram for the objects in each range.

Querying an Euler histogram H against an aligned
query window Q in M-Euler proceeds as follows. If the
area of each object involved in H is smaller (greater) than
the area of Q then S-Euler algorithm is used (in the later
Ncs = 0 instead of Ncd = 0). Otherwise, EulerApprox is
applied.

2.5 Costs of Euler Histograms

An Euler histogram H with a resolution n1×n2 has (2n1−
1) × (2n2 − 1) buckets, and each bucket stores an integer.
Therefore, the storage space required by H is O(n1 × n2).

Since |S| is given, S-Euler and EulerApprox run in con-
stant time by solving the linear equations if Pi and Pe are
already obtained; consequently, M-Euler takes O(k) time
where k is the number of histograms. In fact, Pi and Pe

can be computed in constant time as follows if the prefix-
sum techniques in [12] is applied to representing Euler his-
tograms.

In H, H(x, y) represents the value in the bucket (x, y)
where (x, y) is a representation of a grid point, an edge, or

a cell. For a n1 × n2 grid, the grid points are {(i, j) : 1 ≤
i ≤ n1 + 1, 1 ≤ j ≤ n2 + 1}, an edge from the grid point

(a, b) to the grid point (a′, b′) is represented by ( a+a′

2
, b+b′

2
),

and a cell, with four grid points (a, b), (a + 1, b), (a, b + 1),
(a+1, b+1), is represented by (a+0.5, b+0.5). Note that
for presentation simplification, we use non-grid points to
represent a cell and an edge.

In the prefix-sum techniques, we use a cumulative rep-
resentation Hc(x, y) for each (x, y), that is,

Hc(x, y) =
∑

x′≤x,y′≤y

H(x′, y′).

Note that we assume H(x, y) equals zero if there is no entry
in the histogram for (x, y). For a query window Q with
the bottom-left corner (x1, y1) and the upper-right corner
(x2, y2), the corresponding Pi and Pe are:

Pi = Hc(x2 −
1

2
, y2 −

1

2
) + Hc(x1, y1)− (6)

Hc(x1, y2 −
1

2
)−Hc(x2 −

1

2
, y1),

Pe = |S| −Hc(x2, y2) + Hc(x1 −
1

2
, y2) + (7)

Hc(x2, y1 −
1

2
)−Hc(x1 −

1

2
, y1 −

1

2
).

3 Multiscale Histograms
In this section, we will present a multiscale paradigm to
construct Euler histograms which can guarantee the ex-
act solutions for Ncs, Ncd, Ncr, Nit, and Nds for aligned
windows. We first identify our motivation.

3.1 Motivation

The strong assumptions that Ncr = 0 or/and Ncd = 0 in
S-Euler and EulerApprox greatly downgrade the perfor-
mance of the two algorithms if the underlying data do not
follow the assumptions.

M-Euler aims to remove the disadvantages of S-Euler
and EulerApprox by grouping objects together according
to their areas. As rectangles with different shapes may
have the same area, the disadvantages of S-Euler and Eu-
lerApprox cannot be removed effectively by M-Euler.

The full paper version of [20] proved that in the worst
case, any cell density based histogram requires Ω(n2

1 × n2
2)

storage space to count Ncs exactly for aligned windows
with respect to a n1×n2 resolution. Therefore, it is impos-
sible for a practical (i.e., storage space linearly proportional
to the number of cells) cell density based spatial histogram
to provide exact solutions to Ncs since n2

1×n2
2 is quadratic

with respect to n1 × n2. Motivated by these, in this sec-
tion we will present a multiscale Euler histogram technique
with the guarantee of exact solutions to the aligned win-
dows, which may be practical for many real applications
though not always. In the next section, we will present
another multiscale Euler histogram with high accuracy of
approximation (though no guarantee of exact solutions),
which is always practical. Our new techniques do not take
the assumptions that Ncr = 0 or/and Ncd = 0.

3.2 Construction Techniques

Note that in the rest of paper, we will focus only on aligned
query windows with respect to a given grid (resolution);



thus, the expression is abbreviated to “a query window” in
the rest of the paper whenever no ambiguities.

The basic idea of our multiscale paradigm is to group
the objects together according to their scales. An object
(rectangle) has the scale (w, h) with respect to a grid (reso-
lution) if its horizontal edge crosses w cells and its vertical
edge crosses h cells (see Figure 2(c) for example). A query
window has the scale (w, h) if its query rectangle has the
scale (w, h).

The following theorem characterises a relationship be-
tween the scales and the topological relations for a given
query window. The theorem can be immediately verified.

Theorem 1 Suppose that Q is a query window with the
scale (i, j), and D is an object with the scale (w, h) (both
scales are referred to the same grid).

• If Q contains D, then w ≤ i and h ≤ j.

• If D crosses over Q, then (w ≤ i and h ≥ j + 2) or
(w ≥ i + 2 and h ≤ j).

• If Q is contained by D, then w ≥ i+2, and h ≥ j +2.

The theorem below is the key to the correctness of our
algorithm. It states that a histogram built on the objects
with 4 “adjacent” scales can guarantee the exact solutions.

Theorem 2 Suppose that H is an Euler histogram with
a n1 × n2 resolution, such that the objects involved in H
have at most 4 scales, (w, h), (w + 1, h), (w, h + 1), and
(w + 1, h + 1). Then, H can provide the exact solutions to
Nds, Nit, Ncs, Ncd and Ncr for a query window Q.

Proof: Suppose that the scale of Q is (i, j) (1 ≤ i ≤ n1

and 1 ≤ j ≤ n2). Clearly, Nds can be obtained exactly
from equation (2). Below are the three cases by comparing
(w, h) with (i, j) while querying H against Q:

Case 1: w ≤ i and h ≤ j (depicted in Figure 7(a)).

Case 2: (w > i and h ≤ j) or (w ≤ i and h > j) (depicted
in Figure 7(b)).

Case 3: w > i and h > j (depicted in Figure 7(c)).

( b ) Case 2 ( c ) Case 3( a ) Case 1

j
i

i

 Cross−over       intersect        DisjointContains          intersect         Disjoint

i j ji

Contained        intersect      Disjoint

Figure 7: Three Cases by Comparing Q with (w, h)

According to Theorem 1, in case 1 no object in this his-
togram can cross over Q, nor Q is contained by an object.
That is, Ncr ≡ 0 and Ncd ≡ 0. Clearly, the remaining two
variables Ncs and Nit can be fixed from the equations (3)
and (4).

In case 2, clearly there is no cd relation nor cs relation;
that is, Ncd ≡ 0 and Ncs ≡ 0. Again, the two remaining
variables can be fixed by the two equations.

In case 3, based on Theorem 1 there is no cr relation nor
cs relation; that is, Ncr ≡ 0 and Ncs ≡ 0. Thus, the two
remaining variables can also be fixed by the two equations.
2
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S2,1

S2,2

S3,1

S5,3

S4,4
S2,4

S3,5

S3,3

    ( b )    ( a )

Figure 8: Different Sets of Subsets

Let S denote a set of objects. In the rest of the paper,
Qi,j denotes a query window with the scale (i, j) at a n1×
n2 resolution; Sw,h denotes the set of objects, in S, with
the scale (w, h) with respect to the n1×n2 resolution. Let

Ŝ = {Sw,h : 1 ≤ w ≤ n1, 1 ≤ h ≤ n2, |Sw,h| 6= 0}.

To describe our techniques, each dataset Sw,h ∈ Ŝ is
mapped into a grid point (w, h) on the n1 × n2 grid, and

B
Ŝ

denotes the set of subsets of Ŝ, such that each element

(a subset of Ŝ) in B
Ŝ

consists of the datasets whose corre-
sponding grid points belong to only one cell. For example,
regarding Figure 8, B

Ŝ
is

{{S1,2, S2,1, S2,2}, {S1,2, S2,1}, {S1,2, S2,2}, {S2,1, S2,2},
{S1,2}, {S2,1}, {S2,2}, {S2,1, S2,2, S3,1}, ..., }.

Clearly, |B
Ŝ
| = O(|Ŝ|). Note that B

Ŝ
is closed under in-

tersection if we add ∅ to B
Ŝ
. For a given S and a given

resolution n1×n2 of S, Ŝ is unique, and B
Ŝ

is also unique.
An object D is involved in an element ξ of B

Ŝ
if D

is in a dataset in ξ; for instance, an object is involved in
{S2,1, S2,2, S1,2} if the object is in one of S2,1, S2,2, and
S1,2. A subset of B

Ŝ
is disjointed if every pair of elements

in the subset do not share a common dataset; for instance,
{{S1,2, S2,2}, {S2,1, S3,1}} is disjointed.

Theorem 2 states that a set of objects, which are in-
volved in one element in B

Ŝ
, can be represented by the

Euler histogram to support the exact solutions. Our algo-

rithm is to find a disjointed subset Λ of B
Ŝ

such that Ŝ is
covered by Λ; it consists of the following 3 steps.

Multi-Scale Exact Algorithm (MESA)

Step 1: Scan S to form Ŝ and B
Ŝ

according to a

given resolution (the n1 × n2 grid).

Step 2: Find a disjointed subset Λ of B
Ŝ

such that

Ŝ is covered by Λ.

Step 3: For each element ξ ∈ Λ, construct the Euler
histogram Hξ, with the resolution, to represent
the objects involved in ξ.

Figure 8(a) illustrates such a Λ with 6 elements, where
each element in Λ is “circled”. Querying the set of his-
tograms constructed by MESA for a query window may be
easily done by querying each histogram with respect to the
three cases as described in the proof of Theorem 2, respec-
tively; then adding up the values over all the histograms
gives the global Ncr, Nit, Ncs, Ncd, and Nds. Accord-
ing to Theorem 2, the algorithm MESA is correct; that is,
the histograms constructed can provide the exact solutions



to these five values for (aligned) window queries. Since
querying each histogram takes constant time (see section
2), querying |Λ| Euler histograms constructed by MESA
takes O(|Λ|) time.

Note that the Step 1 is immediate. An implementation
of Step 3 has been briefly described in section 2; the details
may be found in [3].

Suppose that Λ is chosen in the Step 2. The number
(|Λ|) of histograms produced by MESA is called the thick-
ness of the set of histograms. Clearly, there may be many
disjointed subsets of B

Ŝ
to be chosen as an output of the

Step 2. Figure 8 shows two different disjointed subsets of

B
Ŝ
; both cover Ŝ. One gives the thickness 6 and another

gives the thickness 5. In this example, 5 is the minimum
thickness.

Note that a multiscale histogram constructed by MESA
requires O(|Λ|n1 × n2) space for the resolution n1 × n2.
The minimization of such a |Λ| means the minimization of
the histogram storage space and query processing costs.

3.3 Minimization of Thickness

According to the construction of B
Ŝ
, it is immediate that

for any such Λ produced by MESA, k
4
≤ |Λ| ≤ k where

k = |Ŝ|. The minimization problem is formally defined
below.

Optimal Data Partitioning Problem (ODP)

Instance: Suppose that Ŝ and B
Ŝ

are given as above.

Question: find a disjointed subset Λ of B
Ŝ
, such that Ŝ

is covered by Λ and |Λ| is minimized.
Recall that each element in B

Ŝ
corresponds to the grid

points on one cell. ODP is a special case of the 4-set cover
problem [4]; the 4-set cover problem is well-known NP-hard
in general. Although a very special case of the 4-set cover
problem, unfortunately ODP is still NP-hard.

Theorem 3 ODP is NP-hard.

Proof: The proof is quite lengthy and less relevant to
the paper. The details are omitted here due to the space
limitation; the interested readers may refer to a full version
[15] of this paper for details.

The basic idea is to transfer the vertex cover problem
for cubic planar graphs into a special case of ODP. To do
this, we need to embed a cubic planar graph on a grid,
and then construct a corresponding instance for ODP. The
technique used is similar to that in [13]. 2

Below we present an approximate algorithm to solve
ODP.

Minimizing the Thickness (MT)

Step 1: Choose a disjointed subset of B
Ŝ

iteratively
element by element such that the cardinality of
each selected element is at least 3 and the max-
imum among the available elements.

Step 2: Remove from B
Ŝ

the elements intersecting
an element chosen in Step 1. Run the graph
maximum matching algorithm to obtain a subset
of the remaining B

Ŝ
.

Step 3: Output the union of the selections in Step 1
and Step 2 plus the uncovered singletons in B

Ŝ
.

Note that in Step 2, after removing the elements from
B

Ŝ
with an intersection to an element selected in Step

1, each remaining element of B
Ŝ

have the cardinalities at
most 2. The remaining B

Ŝ
can be viewed as a graph G,

where a vertex corresponds to a remaining singleton, and
each edge corresponds to a remaining element with the
cardinality 2. Thus, we can run the maximum matching
algorithm to get a maximum matching. Each edge in the
maximum matching corresponds to an element in the re-
maining B

Ŝ
, which will be chosen in Step 2. It is immediate

that Step 2 takes the dominant costs and runs in O(|Ŝ|).
With respect to the example in Figure 8, Step 1

can select only one element. Suppose that we choose
{S1,2, S2,1, S2,2} in Step 1, then after removing the relevant
elements from B

Ŝ
, we obtained a graph G with 8 ver-

tices {S1,3, S2,4, S3,5, S4,4, S5,3, S3,3, S4,2, S3,1}, and 9 edges
{(S1,3, S2,4), (S2,4, S3,5), (S2,4, S3,3), (S3,5, S4,4), (S4,4, S3,3),
(S4,4, S5,3), (S5,3, S4,2), (S3,3, S4,2), (S4,2, S3,1)}. For this
graph, a maximum matching can have only 3 edges.
Suppose that {(S2,4, S3,5), (S4,4, S5,3), (S4,2, S3,1)} is
output as a maximum matching in Step2. Then, S1,3

and S3,3 are chosen in Step 3. In this case, Λ is what is
depicted in Figure 8(a).

The semi-local optimization technique in [4] may be
used to refine the result produced by the algorithm MT;
this can guarantee [4] the approximation ration 19

12
. Below

we briefly describe the semi-local optimization technique,
the interested readers may refer to [4] for the details.
Semi-local Optimization: Iteratively do the following
on Λ till there is no improvement.

Choose an element ξ from Λ with cardinality 4
or 3. Remove, from Λ, ξ and the elements with
cardinality less than 3. Remove, from B

Ŝ
, the

elements with an intersection to the remaining
Λ. Run the algorithm MT on the remaining B

Ŝ
.

If the resultant new Λ′ has either smaller number
of thickness or the same number of thickness but
with less number of singletons, then we continue
the next iteration.

As depicted in Figure 8(a), suppose that the circled
elements are the output of the algorithm MT. Running
the semi-local optimization algorithm, we need to choose
a replacement to {S1,2, S2,1, S2,2}. In this example, either
{S2,1, S2,2, S3,1} or {S1,3, S1,2, S2,2} is an option; both of
them can guarantee the minimum thickness 5 by the semi-
local optimization algorithm (see Figure 8(b) for example).

In the real datasets used in our experiments, we found
that even the algorithm MT can generate the optimal
thickness. For instance, for the Texas road segments data
of US Census Tiger [22] with the 360× 180 resolution, the
minimum thickness 13 can be computed by our algorithm
MT, while there are 35 different scales. The performance
of MESA will be evaluated in section 6.

4 Multiscale Histograms with a Fixed
Space

The exact algorithm proposed in the last section suits for

datasets with small number (|Ŝ|) of scales for a given res-

olution. When |Ŝ| is large or the storage space is limited,
MESA is not always applicable. Further, we observed that
in most real world datasets the majority of objects have



similar scales at a reasonable resolution while the total
number of outliers (objects) may be very small; thus, it
is not economic to use more than one histogram to ap-
proximate a small set of objects. To resolve these, in this
section we will present an effective algorithm to construct
a set of histograms, such that the number of histograms to
be used is k + 1 for a fixed k.

The main idea of our algorithm is to construct k his-
tograms which can provide the exact solutions for the ob-
jects involved, while the remaining objects are all put into
the last histogram which cannot guarantee the exact solu-
tions. Intuitively, less objects are involved in the last his-
togram, higher accuracy of approximation may be globally
expected on average. Therefore, in our algorithm we aim
to allocate the objects to the first k histograms as many
as possible while retaining the property of providing exact
solutions. Below is a description of our algorithm. For a

set Λ of subsets of Ŝ, ||Λ|| denotes the number of objects
involved in Λ.

Multi-scale Approximate Algorithm (MAPA)

Step 1: Scan S to form Ŝ and B
Ŝ

according to a

given resolution (the n1 × n2 grid).

Step 2: Find a disjointed subset Λ of B
Ŝ

such that

|Λ| = k and ||Λ|| is maximized.

Step 3: For each element ξ ∈ Λ, construct the Euler
histogram Hξ, with the n1 × n2 resolution, to
represent the objects involved in ξ.

Step 4: Construct the Euler histogram Hlast for the
objects not involved in Λ.

In MAPA, the Steps 1, 3, 4 are the same as those in the
algorithm MESA. In the subsection 4.1, we will present our
results for Step 2. As with the algorithm MESA, the first
k histograms generated by the algorithm MAPA can guar-
antee the exact solutions for Ncr, Nit, Ncs, Ncd, and Nds

restricted to the objects involved in Λ. In subsection 4.2,
we will present a new algorithm to summarize the objects
involved in the last histogram Hlast.

4.1 Data Partition
The optimization problem in Step 2 may be formally de-
scribed below.

Weighted k-Partitioning Problem (WkP)

Instance: Suppose that Ŝ and B
Ŝ

are given as described
in section 3, and an integer k is given.
Question: find a disjointed subset Λ of B

Ŝ
such that |Λ| =

k and ||Λ|| is maximized.

Theorem 4 WkP is NP-hard.
Proof: A special case of WkP, where each dataset in Ŝ
has the same number of objects, is more general than the
corresponding decision problem of ODP. 2

Below we present a greedy heuristic to approach WkP.

GreedyWkP(B
Ŝ
, k, Λ)

Sort the elements in B
Ŝ

decreasingly based on

the number of objects involved in each element;
Λ← ∅;
while |Λ| 6= k and |B

Ŝ
| 6= 0 do

{ get the 1st element ξ from B
Ŝ
;

remove the element from B
Ŝ

intersecting ξ;

Λ← Λ ∪ {ξ}; }

According to the definition of B
Ŝ
, there are a constant

number of subsets (of Ŝ) in B
Ŝ

intersecting another subset
in B

Ŝ
. Thus, the dominant cost of GreedyWkP is in sorting

B
Ŝ
. Recalling that |B

Ŝ
| = O(|Ŝ|), GreedyWkP runs in

time O(n log n) where n = |Ŝ|.

4.2 Summarizing the Last Histogram

In this subsection, we study the problem of summarizing
the object set involved in the last histogram Hlast. To
achieve high accuracy, we propose to use scales information
in combining with the Euler histogram.

Given an object scale (w, h) and a query window Qi,j

with respect to the n1 × n2 resolution, the 3 cases in The-
orem 1 can be further divided into the following 5 cases:

Case 1. w ≤ i and h ≤ j - at most 3 relations: cs, it, and
ds.

Case 2. w = i + 1 or h = j + 1 - at most 2 relations: it
and ds.

Case 3a. w ≥ i + 2 and h ≤ j - at most 3 relations: cr,
it, and ds.

Case 3b. w ≤ i and h ≥ j + 2 - at most 3 relations: cr,
it, and ds.

Case 4. w ≥ i+2 and h ≥ j +2 - at most 3 relations: cd,
it, and ds.

We should be able to estimate the occurring probabili-
ties against the 5 relations (cr, it, cs, cd, and ds), respec-
tively, in the object scale (w, h) with respect to Qi,j . For a
given case and a given topological relation, we will calculate
the ratio of the number of possible grid points to be used
as the bottom-left corner of an object with the scale (w, h)
to form the relation over the number of possible grid points
to be used as the bottom-left corner of an object with the
scale (w, h).

As depicted by the rectangular areas in Figure 9, we
use δcr, δit, δcs, δcd, and δds to denote the number of grid
points, possibly used as bottom-left object corners for the 5
relations, respectively. Note that in Figure 9, we illustrate
only three cases: Case 1, Case 3a, and Case 4. Case 3b is
similar to Case 3a; and Case 2 is similar to all these three
cases but without the white area in the middle.

Below we present the detailed formulae to identify those
rectangles in Figure 9 with respect to each case. The for-
mulae may be immediately obtained by elementary geom-
etry; thus, we omit the deduction details from this paper.
Note that the size and position of each rectangle area in
Figure 9 not only depend on the scales (w, h) and (i, j) but
also depend on a position of Qi,j .

Suppose that a query rectangle Qi,j with the bottom-
left corner (qx, qy), and a rectangle is represented by
{(x, y), (a, b)} where (x, y) is the bottom-left corner and
(a, b) represents (width, height).
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Case 1:

In this case, δcr ≡ 0 and δcd ≡ 0, while the others can
be calculated as follows.

δcs is the number of grid points in the rectangle rcs =
{(xcs, ycs), (acs, bcs)} (the white area in Figure 9(a)). Here,

• xcs = qx and ycs = qy;

• acs = i −w, and bcs = j − h.

Note that “in the rectangle” also include the points on
the edge; this is also applicable to the cases below. Note
acs = 0 and bcs = 0 imply there is only one point (xcs, ycs).

δit is the number of grid points in the rectangle (the one
with slash lines in Figure 9(a)) rit = {(xit, yit), (ait, bit)}
but exclude the points in rcs. Note that in this case, rit is
getting smaller when an edge of Qi,j approaches a bound-
ary of the grid. Below is a precise formula.

• xit = 1+max{0, qx−w} and yit = 1+max{0, qy−h};

• ait = qx + i−1−xit−max{0, qx + i+w−n1−2} and
bit = qy + j − 1− yit −max{0, qy + j + h− n2 − 2}.

Note that an object with the scale (1, 1) never intersects
Qi,j ; consequently δit ≡ 0 in this case. This can be re-
flected by the formula. In fact we can verify that rit is
always the same as rcs when w = 1 and h = 1; and thus
δit is calculated as 0.

δds is the number of grid points in the rectangle rds =
{(xds, yds), (ads, bds)} (the one bounded by dashed line in
Figure 9) except the grid points in rit. Here,

• xds = 1 and yds = 1;

• ads = n1 − w and bds = n2 − h.

Note that this rectangle is determined only by the object
scale (w, h). In case 1, the probabilities for cs, it, and ds,
respectively, are

ρ1
cs =

δcs

δcs + δit + δds

, ρ1
it =

δit

δcs + δit + δds

,

ρ1
ds =

δds

δcs + δit + δds

.

It can be immediately verified that the rectangle rit always
includes the rectangle rcs, and is always included by rds.
Therefore, the computation of δcs, δit, and δds is simple.
We first calculate δcs from rcs. We then calculate δit as
the total points in rit minus δcs, and calculate δds as the
total points in rds minus δcs and minus δit. Therefore, ρ1

cs,
ρ1

it, and ρ1
ds can be calculated in constant time.

Case 2:

In this case, δcs ≡ 0, δcr ≡ 0, and δcd ≡ 0, while δit and
δds can be calculated by the above formula. By similar
reasons, ρ2

it = δit

δit+δds

and ρ2
ds = δds

δit+δds

can be computed

in constant time. Note that we can more precisely handle
this case by dividing it into two sub-cases: a) a = i+1 and
b 6= j+1, and b) b = j+1. However, our experiments show
that we gain very marginally by doing this. Therefore, we
omit these from the paper.

Case 3a:

In this case, δcs ≡ 0 and δcd ≡ 0. We can calculate δcr

as follows.

• δcr = 0 if qx = 1 or qx + i = n1 + 1, otherwise

• δcr is the number of grid points in the rectangle rcr =
{(xcr, ycr), (acr, bcr)} (white rectangle in Figure 9(b)).
Here,

– xcr = 1 + max{0, qx + i −w} and ycr = qy;

– acr = qx−1−xcr−max{0, qx +w−n1−2} and
bcr = j − h.

Note that the rectangles for δit and δds can be calculated
by the same formulae as those in Case 1. Again, it can be
immediately verified that the rectangle rit always includes
rcr and is included by rds. Similarly, ρ3a

cr = δcr

δcr+δit+δds

,

ρ3a
it = δit

δcr+δit+δds

, and ρ3a
ds = δds

δcr+δit+δds

can be computed

in constant time, respectively.

Case 3b:

Every thing can be viewed as a reflectional image, by
the diagonal of the query rectangle, of case 3a; and thus
may be calculated in a similar way to those in Case 3a.
Therefore, ρ3b

cr, ρ3b
it , and ρ3b

ds can be computed in constant
time.

Case 4:

In this case, δcs ≡ 0 and δcr ≡ 0. Clearly, δcd = 0 if qx =
1 or qy = 1 or qx + i = n1 + 1 or qy + j = n2 + 1; otherwise
the rectangle rcd = {(xcd, ycd), (acd, bcd)} for calculating
δcd is as follows.

• xcd = 1+max{0, qx +i−w} and ycd = 1+max{0, qy +
j − h};

• acd = qx − 1 − xcd − max{0, qx + w − n1 − 2} and
bcd = qy − 1− ycd −max{0, qy + h − n2 − 2}.

Note that the rectangles for δit and δds can be calculated
by the same formulae as those in Case 1. It can be im-
mediately verified that the rectangle rit includes rcd but is
included by rds. Similarly, ρ3

ds, ρ3
it, and ρ3

cd may be com-
puted in constant time.

Note that for a given query window Qi,j and a set
of m objects with the scale (w, h), we can estimate Ncr,
Nit, Ncs, Ncd purely by the above probabilities; that is,
N ′

cr = ρcrm, N ′
it = ρitm, N ′

cs = ρcsm, N ′
cd = ρcdm,

and N ′
ds = ρdsm. Since we assume that mw,h = |Sw,h| is

recorded for each Sw,h, we can immediately calculate the
above estimation. Therefore, by summing up all the above
estimates, respectively, we can get the global estimation of
Ncr, Nit, Ncs, Ncd and Nds.

The pure probability approach above has two limita-
tions: 1) the running time is O(k) (k is the number of
object scales) which is not necessary a constant, 2) it does
not make the use of the advantages of an Euler histogram.

Now we present the algorithm Prob with constant time,
combining the probability approach above with the Euler
histogram. The basic idea is to divide the objects involved
in Hlast into the possible 5 cases (groups) as stated above;
then we use an average rectangle to approximately repre-
sent the objects in each case together with the number of
objects. Thus, for each case we can use constant time to
compute the conditional possibility. Below is the descrip-
tion of Prob.



Algorithm Prob (for a given Q)
α := 0; β := 0; µ := 0; γ := 0;
for each Case i (i ∈ {1, 2, 3a, 3b, 4}) do

{ calculate mi; //the number of objects in this case.
calculate w̄i and h̄i; // average width and height.
calculate ρi

cr, ρi
it, ρi

cs, and ρi
cd against w̄i and h̄i;

α := α + miρ
i
cr; β := β + miρ

i
it;

µ := µ + miρ
i
cs; γ := γ + miρ

i
cd; }

if γ + µ = 0 then

{ Ncs := 0; Ncd := 0;
calculate Ncr and Nit from (3) and (4); }

else

{ get Ncr and Nit from (3) by Ncr : Nit = α : β;
get Ncd and Ncs from (4) by Ncs : Ncd = µ : γ; }

Note that in Prob, if each mi, w̄i and h̄i can be calcu-
lated in constant time then the whole algorithm will run
in constant time. Below we show a pre-fix data structure
to accommodate such a request.

Time Complexity of Prob

We apply the prefix-sum technique to representing
{ma,b : 1 ≤ a ≤ n1, 1 ≤ b ≤ n2}; for 1 ≤ a ≤ n1 and
1 ≤ b ≤ n2, m′

a,b =
∑

1≤w≤a,1≤h≤b
mw,h.

Let wa,b and ha,b denote the total widths and total
heights of the objects in the scales [1, a] × [1, b], respec-
tively. Besides Hlast, in algorithm Prob we also pre-store

{(m′
a,b, wa,b, ha,b) : 1 ≤ a ≤ n1, 1 ≤ b ≤ n2}.

By similar methods to those in section 2.5, the total width,
total height, and total number can be computed, respec-
tively, for each case in constant time; then we can calculate
the average widths and heights accordingly. Consequently,
the algorithm Prob runs in constant time.

Note that the algorithm Prob takes (2n1−1)(2n2−1)+
3n1n2 storage space which is about 75% more than the
storage space ((2n1−1)(2n2−1)) for one Euler histogram.

Since querying every histogram runs in constant time,
querying a set of histograms generated in MAPA runs in
time O(k) for a window query, where k is the number of
histograms.

5 Maintenance, Generalization, and
Applications

The histograms generated by MAPA may be maintained
as follows for dataset updates. For an insertion, we need
only to update the corresponding histogram for the rele-
vant node and cell values, respectively, by increasing 1; and
update the relevant edge values, respectively, by decreas-
ing 1. For a deletion, the updates to the corresponding
histogram are opposite to those for an insertion. Further,
if an insertion or deletion is involved in the last histogram,
we need also to update their corresponding statistic values
accordingly. Note that as the histogram values and the
statistic information are stored in a cumulative fashion, an
update needs to be propagated in a cumulative fashion as
well. Moreover, we can also keep a threshold for the num-
ber of changes to trigger MAPA to generate a new set of
histograms.

Note that the techniques presented in this paper are also
applicable to the case if the whole object space is unevenly
divided into cells. In this case, the histogram construction
time will be increased by a logarithmic factor due to binary

search of the cells in a grid. The discussion and investiga-
tion of the best way to partition the object space is not
within the scope of the paper.

It should be mentioned that the Euler histogram tech-
niques are not only applicable to estimating spatial range
query results but may also be immediately applicable
to spatial digital libraries to support window browsers
[3, 9, 20, 21]. Further, our results are also fundamental to
the development of new selectivity estimation techniques
in spatial joins with the join predicates, such as contains,
intersection, cross-over, etc.

6 Performance Evaluation
In this section we evaluate the performance of our new
techniques, MESA, MAPA, and Prob. As M-Euler in [20]
is the only work dealing with the same problems studied
in this paper, it will be used as a benchmark algorithm in
the evaluation. Specifically, we evaluate the accuracy of
the following techniques:

• M-Euler [20]: When only one histogram is used, it is
the EulerApprox [20].

• MAPA-Prob: Prob is used to query the last histogram
generated by MAPA. Note that when only one his-
togram is used, it is the Prob.

• MAPA-Simple: In case that a small number of objects
left in the last histogram generated by MAPA, we
throw away the remaining objects.

We also evaluated the query time in these techniques
as well as the histogram construction costs; these will be
done together with MESA. Note that we did not evaluate
the performance of MESA against synthetic datasets used
in the paper since they are designed to show the disadvan-
tages of MESA - the necessity of developing MAPA; that
is, there are a big number of object scales.

Our implementation has been carried out on PC
Pentinum4 - 2.2GHz with 512M RAM.

Datasets and Resolutions

In our experiment, real-world and synthetic datasets are
used. To do a fair comparison with M-Euler regarding
accuracy, we adopt the 360 × 180 resolution to evaluate
the accuracy of our algorithms, as this resolution was used
in [20] to provide the experiment results. The 360 × 180
grid is a simulation of the earth resolution by the longitude
and latitude. Below are the datasets used.

• Ca road consists of the 2, 851, 627 California road
segments obtained from the US Census TIGER [22]
dataset. We normalized the dataset into the 360×180
grid.

• Ca Tx road consists of the 3, 653, 571 Texas road
segments (Tx road) and the 2, 851, 627 California
road segments extracted from the US Census TIGER
[22] dataset. We combine them together by normal-
izing both of them into the 360 × 180 grid. By com-
bining the two real world datasets together, we hope
that Ncd and Ncr may be reasonably significant.

• SAME is a synthetic dataset used in [20] such that
each object has width 3.6 and height 1.8, while the
distribution of the positions follow a Zipf fashion [23].
This dataset is believed a simulation of many real
world datasets.
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• Zipf1 is a synthetic dataset with one million square
objects. The centers of the objects are uniformly dis-
tributed over the 360×180 grid, while the side lengths
follow a Zipf distribution.

• Zipf2 is to add 250, 000 objects with the scale (1, 50)
and 250, 000 objects with the scale (30, 30) on the top
of Zipf1 dataset. This dataset will produce large val-
ues of Ncr and Ncd. Though it is quite unusual in real
world, it is expected to further confirm the advantages
of our algorithms.

Query Sets

To evaluate thoroughly the performance of those algo-
rithms, we select the query windows to accommodate vari-
ous different user query patterns. We divide query windows
into two classes, small and non-small. A query window in
small class has a scale such that the width and height are
both smaller than 5, while a query window in non-small
class has either height between 6 and 20 or width between
6 to 20. We randomly generate 3 different sets of windows,
T1, T2, and T3, each of which has 100, 000 query windows.

In T1, 20% of the 100, 000 query windows are in the
small class. In T2, 40% of the query windows are in the
small class, while in T3, 80% of the query windows are in
the small class.

Error Metrics

For each Q ∈ Ti (1 ≤ i ≤ 3), we record the relative
errors for Ncs, Ncd and Nov, respectively, where Nov =
Nit+Ncr. Recall that the relations it and cr are subdivided
from the relation ov, and we aim only to summarize the
relation ov. The relative error is defined below.

ε =

{
|e−e′|

e
if e 6= 0

e′ otherwise
(8)

Here, e is the exact value and e′ is an approximate value.
The average relative error may be defined below.

∑
Q∈Ti

εQ

|Ti|
(9)

Here, εQ is the relative error for a query window Q.

Effectiveness of MESA

In the dataset SAME used in [20], the objects have 4
different scales with respect to the 360 × 180 resolution:
(4, 2), (4, 3), (5, 2), and (5, 3). While M-Euler cannot pro-
vide the exact solutions even with 4 histograms, MESA
can always guarantee the exact solutions by only one Eu-
ler histogram. Further, in this application the querying
time of MESA is about 4 times less than M-Euler when
M-Euler uses 4 histograms. We will also present the ex-
periment results regarding the histogram construction time
and querying time later together with the other algorithms.

We examined the number of histograms produced by
MESA, respectively, against the 3 resolutions 100 × 50,
180 × 90, and 360 × 180 for Ca road and Tx road. The
numbers of histograms generated in Ca road are 3, 8, and
17, respectively, while the breakdown numbers for Tx road
are 4, 9, and 13, respectively.

Note that the number of object scales is usually in-
creased with the increment of resolution; this should be
also applicable to the number of histograms generated by
MESA. Further, it is quite unusual that a resolution higher
than 360 × 180 cells will be applied to many spatial data
processing applications (including selectivity estimation)
for a dataset with less than 4 millions rectangles. There-
fore, we can argue that in real applications, MESA for these
two real datasets requires a storage space O(l) where l is the
number of cells. Thus, it is practical. This together with
the dataset SAME (only one histogram is required) indi-
cate that MESA may be practical for many real datasets.

Approximation Accuracy

We examine the approximation accuracy of 3 algorithms
M-Euler, MAPA-Prob, and MAPA-Simple, against 3 dif-
ferent storage space requirements: 1 histogram, 3 his-
tograms, and 5 histograms. In our experiments, we ex-
amine only the accuracies of Ncs, Ncd, and Nov but Nds

is omitted; this is because these 3 algorithms are always
able to produce the exact answers to Nds (see equation
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(2)). We recorded the average relative errors for a given
storage space and a given query set for these 3 algorithms,
respectively.

Our algorithm MAPA automatically generates a set of
histograms but in M-Euler we need to intuitively specify
the data partitioning manually to obtain a good set of his-
tograms.

Figure 10 shows the experiment results against the real-
world dataset Ca road, where M-Euler 1, 3, 5 denote the
experiment results of M-Euler while using 1, 3, 5 his-
tograms, respectively. Similar notation is also applied to
MAPA-Simple and MAPA-Prob. Note that we did not
implement MAPA-Simple 1, as too many objects will be
thrown away if doing so. The experiment results demon-
strated that MAPA-Prob greatly improve the accuracy of
M-Euler, while MAPA-Prob 5 may improve the accuracy
of M-Euler by up to two orders of magnitude. It is inter-
esting to note that MAPA-Simple performs clearly better
than M-Euler only regarding Ncs.

The experiment results for dataset Ca Tx road continue
the trends, as depicted in Figure 11.

Figure 12 presents the experiment results for the syn-
thetic dataset Zipf1. For this dataset, we did not imple-
ment the algorithm MAPA-Simple as there are too many
objects left in the last histogram. In our implementation of
M-Euler, we use the data partitioning suggested in [20]. To
generate 3 histograms, the first histogram contains the ob-
jects with the areas 1 to 8, the second histogram contains
the objects from areas 9 to 99, and the third histogram
contains the objects with the areas 100 and more. To gen-
erate 5 histograms, the first histogram contains the object
with the areas from 1 to 8, the second with the areas from
9 to 24, the third with the areas from 25 to 99, the fourth
with the areas from 100 to 224, and the fifth with the
areas 225 and more. The experiment results follow sim-
ilar trends to those in Ca road. It is interesting to note
that MAPA-Prob 1 already greatly out-performs M-Euler
5 with respect to Nov and Ncd though the storage space
required by MAPA-Prob 1 is about 4 times smaller than
that in M-Euler 5.

Similar trends to those in Zipf1 continue in Zipf2, as
depicted in Figure 13.

It is worth to note that the accuracy of estimating Nov

in M-Euler is always fixed regardless of the number of his-
tograms to be used; this may be problematic as illustrated
by Figure 13 (b). In summary, MAPA-Prob should be the
best option among these 3 algorithms regarding the ap-
proximation accuracy.
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Query Time

As analyzed earlier, the time for querying an Euler his-
togram in M-Euler, MAPA-Simple, and MAPA-Prob, is
constant, respectively, which is irrelevant to the size of the
Euler histogram and the underlying spatial data. Our ex-
periment results (based on Ca Tx road) in Figure 14 con-
firmed this.

In fact, our implementation of these 3 algorithms
against all the data demonstrated that the query time
depends only on the number of histograms required and
the types of the algorithm used. Note that the algorithm
Prob is slightly slower than the algorithm EulerApprox,
and the algorithm EulerApprox is slightly slower than the
algorithm for solving the linear equations (2) - (4) directly
when two variables are zero. These have been reflected in
the experiment results.

We implemented MESA against Ca Tx road; it takes
about 5 seconds for 100, 000 window queries; this is because
there are 19 histograms involved.

Histogram Construction Time

We evaluated the running time to construct the his-
tograms. In the datasets used in the experiments,



Ca Tx road has the largest number of objects, about
6, 500, 000. The time costs for constructing the histograms
in M-Euler, MAPA-Prob, and MAPA-Simple, respectively
for 1 histogram, 3 histograms, and 5 histograms with the
two resolutions, 360 × 180 and 180 × 90 are between 40
seconds and 41 seconds, respectively. In fact, the costs
of these 3 algorithms, for constructing the histograms, are
dominated by the costs of scanning the dataset; this is why
those construction costs are similar.

We also recorded the histogram construction time in
MESA against the data Ca Tx road. It takes about 49
seconds for the resolution 360 × 180, and about 42 sec-
onds for the resolution 180 × 90. The construction time
in MESA for 360 × 180 is significantly higher than those
of M-Euler, MAPA-Prob, and MAPA-Simple due to the
costs of a search for the right histogram for each object
and the costs for computing the bucket values, as there are
19 histograms involved.

7 Conclusion and Remarks
In this paper, we investigated the problem of effectively
summarizing the four topological relations against large
spatial datasets by histograms. By effectively utilising the
object scale information, we first present an efficient algo-
rithm MESA to construct a small set of histograms, based
on a multi-scale paradigm, to provide exact summarization
results for aligned windows. To conform to a limited stor-
age space, we also provide an effective algorithm MAPA
to construct a fixed number of histograms with the aim
to minimize the estimation errors. Finally, we presented a
novel and effective approximate algorithm, Prob, to query
one histogram; it runs in constant time. Our experiment
results demonstrated that our techniques, developed in this
paper, greatly improve the accuracy of the existing tech-
niques while retaining the costs efficiency.

As a possible future study, we will investigate the prob-
lem of dividing object spaces effectively, and explore the
other related research directions.
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