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Abstract-We present heuristics for mukicast tree construction
for communication that dependa on: i) bounded end-to-end delay
along the paths from source to each destination, and ii) minimum
cost of tbe multicast tree, where edge coat and edge delay can
be independent metrics. This problem of computing such a
constrained mtdticaat tree is NP-complete. We show that the
heuristlca demonstrate good average case behavior in terms of
coat as determined through simulations on a large number of
graphs.

I. INTIIODUmON

M ULTICASTING is the simultaneous transmission of
data to multiple destinations. Although support for

multicasting has been slow, it is now being viewed as a very
important facility in networks especially because video and

audio applications can use such a feature effectively. The most
popular solutions to mukicast routing involve tree construc-
tion. There are two reasons for basing efftcient multicast routes
on trees: i) the data can be transmitted in parallel to the various
destinations along the branches of the tree; and ii) a minimum
number of copies of the data are transmitted, with duplication
of data being necessary only at forks in the tree.

Algorithms for constructing multicast trees have been de-
veloped with two optimization goals in mind. The first is
the minimum average path delay, ‘%, which is the average
of the minimum path delays from the source to each of the

destinations in the multicast group. A minimum average path
delay tree can be constructed in 0(n2 ) time using Dijkstra’s
shortest path algorithm [2], where n is the number of nodes in
the graph. The second measure of efficiency is in terms of the
cost of the multicast tree, CT, which is the sum of the costs
on the edges in the multicast tree. The least cost tree is called
a Steiner tree [5], and the problem of finding a Steiner tree
is known to be /VP-complete [7]. Futthertnore, the problem

remains AP-complete, even if edges have unit cost [4].
Several algorithms that construct low-cost multicast routes

[1], [6], [13], [14] are based on heuristics for approximate

Steiner trees [10]–[12]. Empirical observations show that the
heuristics produce near-optimal trees quickly. The algorithms
take polynomial time, ranging from 0(n3) to 0(n4). Further-
more, they produce solutions that are provably within twice
the cost of the optimal solution.
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The two measures, CT and VT, are individually insufficient
to characterize a good multicast route for interactive multime-
dia communication. The performance of such a multicast route

is determined by two factors: i) bounded end-to-end delay
along the individual paths from source to each destination, and
ii) minimum cost of the multicast tree, for example, in terms

of network bandwidth utilization. In our formulation, a mul-
ticast tree is a constrained Steiner free, i.e., a delay-bounded
minimum cost tree, where the delay bound is specified by the
application performing the multicast.

Kadaba and Jaffe [6] studied a problem that involves opti-
mizing on both the cost and delay measures of the multicast
tree. They investigated how a compromise could be struck

between minimizing ~T and CT. There are two primary differ-
ences between our approach and that of [6]. Tbe fundamental
difference is that we assume that edge cost and edge delay
are different functions. For example, edge cost could be a
measure of the amount of buffer space or channel bandwidth
used, and edge delay could be a combination of propagation,
transmission, and queueing delay. A second major difference
is that we are trying to construct a constrained minimum cost
tree, where the constraint is on the individual path delay,
rather than trying to minimize the average path delay to all

destinations.

H. TJ-tE CONSTRAINED STEINER TREE

We now formulate the constrained Steiner tree (CST) prob-
lem as follows. Given a graphl G = (V, E) with node set
V and edge set E, we define two weight functions, C(e) and
D(e), on edge e. C(e) is a positive real cost function on e,
and D(e) is a positive integer delay function on e. On this
graph, we have a source nodes and a set of destination nodes
S, called the multicast group. Given a delay tolerance A, a
constrained spanning tree T is a tree, rooted at s, that spans
the nodes in S such that for each node v in S, the delay on the
path from s to v is bounded above by A. Formally, for each
v E S, if P(s, v) is the path in T from s to v,

~ D(e)< A

e E F’(s, v)

We shall assume that A is a bounded integer value. The
constrained Steiner tree can now be described as a constrained
spanning tree such that

~ C(e) is minimized
eET

‘We consider only simple graphs, i.e., graphs with only one edge between
atry two nodes,
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Fig. 1. Constrained cheapest path from A to C with A=6. Figures along
edges are (cost, delay).

We note that this problem is NF’-complete since it reduces to
the standard Steiner tree problem [8].

A. Heuristics for the Constrained Steiner Tree

ln the following, we assume that the source has all the

information necessary to construct the multicast tree. We call

these algorithms source-based routing algorithms. We define
the following terms. A constrained cheapes? path between v
and w is the least cost path from v to w that has delay less
than A. We denote the cost on such a path by Pc(v, w), and
the delay on it by PD (v. w). In Fig. 1, for a delay bound of
A = 6, there are three constrained cheapest paths from A to
C, namely AB-BC, AB-BD-BC, and AD-DC, with costs of 5,
4, and 4 units. The tie-breaking choice between the latter two

is based on the path delays, and since AD-DC has the lesser

delay, it is the constrained cheapest path. A closure graph G’
on a set of nodes N is a complete graph on the nodes in N
with edge cost between nodes v. w E N equal to Pc(v, w)
and edge delay PD (v. w ).

In order to compute the closure graph G’, we first determine
the constrained cheapest paths between all pairs of nodes in
the set S U {s}. Although this problem is NF’-complete [4] for
arbitrary values of A, we assume A to be a bounded integer,

and therefore the solution takes polynomial time in the size of
the graph. We compute the all-pairs constrained cheapest paths

using a dynamic programming approach similar to Floyd’s
shortest path algorithm [3]. We define Cd(v, w) to be the cost
of the cheapest path from v to w with delay exactly d. If there
are multiple cheapest constrained paths with the same cost,
then the one with the least delay is chosen. We can formulate
cd(~~, 711) and PC(V, v)) as follows:

cd(l), W) = ~=i\l, {C& T)[u,w)(V,U) + C(’U,w)} (1)

PC(SJ. W) = #:Ij Cd(v,w) (2)

PD(v, w) is then determined by the constrained cheapest path
that corresponds to Pc (v, w ). Thus, we can construct the
closure graph G’ on the nodes in the set S U {S}. Note that
G’ is also a simple graph.

The second step is to construct a constrained spanning tree
of G’. We use a greedy approach to add edges to a subtree of
the constrained spanning tree until all the destination nodes are
covered. Assume v is in the tree constructed thus far, and that
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Fig. 2. The graph used in presenting the heuristics.

we are considering whether to include some edge adjacent to
v. We have considered the following two selection functions:

and

f~ =
{

C(v, w) if P(v)+ D(v, w) < A

W otherwise

provided the delay from source to w is within the delay bound,
where T(v) is the delay on the path froms to v in the spanning
tree constructed thus far.2The third step consists of expanding
the edges of the constrained spanning tree into the constrained
cheapest paths they represent, and remove any loops that may
be caused by this expansion. The edge selection functions,

~cD and fc, give rise to two source-based heuristics: CSTCD
and CSTC, respectively.

CSTCD uses the selection function fcD,which explicitly
uses both cost and delay in its functional form. It tries to
choose low-cost edges, but modulates the choice by trying to
pick edges that maximize the residual delay. This increases the
chances of extending the path through this edge, and beyond
to another destination. The idea is to reduce the cost of the tree
through path sharing. However, this heuristic has a tendency
to optimize on delay also, in that it may find paths with delays
far lower than A, at the expense of added cost to the tree.

C’SZ’C minimizes fc, thereby trying to construct the cheap-

est tree possible while ensuring that the delay bound is met.
This tends to minimize the cost of the tree without unduly
minimizing the delay. We present simulation results that show

20ne of tie problems ~irh G1 is that it presents a distorted view of G

For example, in Fig. 2, tbe constrained cheafxst path from F to H passes
through E. The closure graph does not reflect this, and has two edges, FE
and F1-LThis inaccuracy leads to spurious conflicts of choices between edges
that share paths in G. We can improve this picture by keeping track of the
nodes on a constrained cheapest path. Then we can mark all these nodes as
being in the tree when that constrained cheapest path is chosen. This leads to
improved performance, kecause these conflicts about edge cost are resolved.
Both the heuristics take advantage of this optimization.
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Fig. 3. (a) The closure graph on S=(h,D&,H ] with A=5 and s=F. (b) The optimal constrained Steiner tree.
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Fig. 4. (a)-(d) Four stages in constructing the spanning tree using ~cD. (e) The constrained spanning - using CSTCD.

that the CSTC has better average performance than CSTCD.
We have devised two distributed algorithms for constructing

constrained Steiner trees which use the same two selection

functions. Interestingly, for the distributed algorithms, we find

that the heuristic that uses ~CD works better than the one using

fc [9]. Fig. 2 shows the example graph, with source F, and
destination set {B, D, E, H}. The delay constraint is 5. The

closure graph is shown in Fig. 3(a), and the optimal solution

is shown in Fig. 3(b). Fig. 4 shows the working of heuristic

C’STCD. Fig. 5 shows the working of heuristic CSTC. We

compare these solutions with the tree of shortest delay paths

to the destinations, shown in Fig. 6.

We note that CSTCD and CSTC always produce a con-

strained spanning tree, if one exists. The following lemma is

true for source-based techniques using a closure graph.

Lmwnu: A constrained mukicast tree exists if and only

if there are k edges incident on s with fitite cost in the

constrained closure graph, where k = IS I.

Pmc$ For a solution to exist, there must be at least one

path from s to each destination v f S. Thus, the closure graph

has to have one edge from s to v, for each destination v,

representing the constrained cheapest path between those two

nodes. Since there are k destinations, there must be k edges

out ofs. On the other hand, if them are k edges out ofs, then,
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Fig, 5. (a)-(d) Four stages in constructing the spanning tree using ~c. (e) The constrained spanning tree using C.STC,
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Fig. 6. The tree produced by using the shortest delay paths from source to
destinations.

since there are exactly k destinations, there is one edge to each
destination from s. Since each edge represents a constrained
cheapest path, there is a path of delay less than A from s to
each destination, and hence a solution exists.

Theorem CSTCD and CSTC find a solution if and only
if a solution exists.

Proof If either heuristic is able to cover all the k vertices,
then we know two facts. First, the algorithm produces a tree
that spans allk vertices. Second, no delay condition has been

violated. Thus, there must be a path from s to each destination
under the delay constraint, which means that a solution exists.
On the other hand, if a solution exists, then by Lemma 1 there
is at least one edge from s to each destination such that the
edge has bounded delay. Thus, there is at least one tree in
G’ such that its edges yield finite values using the selection

function. This is the star out ofs to each destination. Hence,
the heuristics will find at least one tree, the star graph,

III. PERFORMANCE ANALYSIS OF THE HeUriStiCS

We can define the CST for a given problem as follows of
all possible constrained spanning-trees ~hat can be constructed,
the one with the least cost is the constrained Steiner tree. The
optimal algorithm, OPT, enumerates all constrained spanning
trees and finds the least cost tree. We describe the performance

of heuristic H in terms of 6H, the normalized surcharge with
respect to the optimal, defined as follows:

~TH– To
6H =

To

where TH is the cost of the tree using heuristic H, and T<>is
the cost of the optimal tree.

A. Empirical Performance Analysis

ln order to fairly evaluate these heuristics, we decided to run

them on randomly generated graphs with low average degree,
which would better represent the topologies of common point-
to-point networks, e.g., the NSFNET. Initial measurements
with small graphs showed that OPT and CSTC had com-

parable performance (see Fig. 7 and [8]). For large graphs,
finding the optimal solution is impractical so=we defined the

normalized surcharge with respect to CSTC, 6~, as follows:

A TH – TCSTC.
& =

TcsT<.

We also compared the performance of the shortest delay
tree created by Dijkstra’s shortest path algorithm, SPT, with
unnecessary branches pruned.

The nodes in the graphs were randomly placed in a unit
square, and the edge delays were proportional to the Euclidean
distance separating the endpoints. We used both unit edge
costs and random edge cost generated uniformly from the set
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Fig. 7. Normalized surcharge 6 versus the number of nodes,for three group
sizes, comparing CSTC versus OPT for smrdlgraphs for A=25.
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Fig. 8. Normalized surcharge 8 versus the number of nodes, for group
sire= 15, A=80, and maximum degree= 15, w.r.t. C.STC.

{l,..., 10}. The random edge costs match typical values for
costs used in the NSFNET backbone network. However, the

results indicate that the propdes of the heuristics and their
relative performance remain the same for both unit costs and
random costs. The graphs we considered in the evaluation of
the heuristics had between 50 and 100 nodes, and an average
degree between 5 and 15. Each experiment generated R graphs
with identical parameters number of nodes, maximum degree

of each node, delay bound, and size of the multicast group.

Each graph was then checke~ to ensure that a solution existed.

The confidence interval for 6H at the 95% confidence level is
about 1-2% for all the graphs shown.

Figs. 8 and 9 show that CSTCD performs marginally worse
than CSTC. As the multicast group increases in Size, the
algorithms CSTCD and C’STC converge to the minimum
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spanning tree. This is born out by Fig. 10. ‘Ilk is a desirable
property, since it means that the heuristics converge to the

optimal solution for large group sizes. Finally, Fig. 11 shows

that, as the delay tolerance incnmses, the performance of both
source-based heuristics converges. This is because when A is

far larger than the path delays, then icD converges to Jc.

The main point to be made here is that SPT, the shot-test
delay tree algorithm, produces trees with consistently high
costs – between 70 and 80% more than CSTC – as seen in
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Figs. 8– 11. Thus, we believe that when interactive multipoint
communication becomes more critical, it will be essential to
have a routing policy that is not based purely on delay but

also takes into account other factors.

B. Complexity of the Heuristics

An analysis of the source-based heuristics shows that the
majority of the time is spent in computing the constrained
cheapest paths between all nodes. Equations ( I ) and (2) take
0(n3A) time to compute, since the computation loops over
all pairs of nodes and over all intermediate nodes like Floyd’s
shortest path algorithm. However, it also has to loop over all
possible values of delay from 1 to (A – 1).Constructing the

constrained minimum spanning tree on the closure graph with
k nodes takes 0(k3) time. and expanding the tree into the
constrained spanning tree solution takes O(k 7L) time for k
edges each to be expanded into at most n edges and remove
loops. For comparison, Dijkstra’s shortest paths algorithm
takes 0(712) time [2].

IV. CONCLUSIONS

Multimedia communications researchers are increasingly
aware of the inadequacies of existing network protocols and

algorithms to handle continuous media such as audio and
video. We have addressed one aspect of the problem by
presenting routing algorithms that take into account quality-
of-service parameters required to make multimedia communi-
cation successful.

The analysis presented in this paper shows that while the
problem of optimal constrained multicast routing is intractable,

there are fast heuristics that produce good solutions. They can
scale to large-sized graphs and, on the average, still provide

near-optimal routes that minimize cost (in terms of network

resources expended to support a multicast) and limit path

delays. Assuming accurate network status is available to the
source, we devised two heuristics that select edges to construct
a constrained multicast tree. One heuristic uses an explicit
function of edge cost and edge delay, while the other uses a
function of the cost of an edge.

One important result of this study is that if adequate global
information is available to the source, then the source-based
heuristics we have proposed produce much better results than
shortest delay routing.

[1]

[2]

[3]

APPENDIX

THE CONSTRAINED STEINER TREE ALGORITHM

1“
● Let G = (V, E) describe the network topology
* s = source node
“ S = mtdticast group
● A = delay constraint
●1

Mdtic.wt (G(t’. E), s, S, A)
begin

/“ Compute the cheapest constrained paths
* between atl nodes in S u {s}
●1

t’; + s u {s}
for each u, w E V’ do
begin

Pc[u, w] .- cost of cheapest constrained
path from . to w

PD [u, w] _ path delay along cheapest
constrained path from v to w

end
/“ C = set of nodes atmady visited “/
/“ P[u] = path delay from ~ to . i“ the tree “/
/* T = spanning tree on the closure graph “/
c = (a}
P[s]= o
T=O
/- until atl nodes in V’ have been apann.d ●/
while (C # V’) do
begin

mi. = m
for each , E C’ do
begin

for each we V’ \ Cdo
begin

1“ if delav from a to w is within knits. consider
‘ ● (., W)“asa candidate and compute f,(., u,)

● f,(u,’w) = fcD(u, w) or fc(u,”w).
* JCD(UW) =

Pc[”, w)
A-[7y”)+P”(”,l”)~

: jc = PC(.!UJ)
For further optimization, usc a better edge cost

“ after conflict resolution (see footnote 2)
“1

if(f, (., w) < mtn) then
begin

nertedge = (., w)
m,n = J.(., w)

end /“ if “/
end /“ for “j

end /“ for “/
C=cu {w}
P[w] = P[u]+ PD[U, W]
T = TU {nertedge}

end /“ while “/
end /“ Multicast “j
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