
Identifying Gene Function Descriptions by
Probability-based Sentence Selection

Kazuhiro Seki, Nihar Sheth, and Javed Mostafa

Laboratory for Applied Informatics Research, Indiana University
1320 East Tenth Street, LI 011, Bloomington, Indiana 47405-3907, USA

{kseki,nisheth,jm}@indiana.edu

Abstract

This paper proposes an approach to the secondary task in the
TREC Genomics Track. We regard the task as identification
of the sentences describing gene functions (i.e., GeneRIFs)
and propose a method considering two factors: topicality and
relevance. The former refers to the topicality of a sentence
and is measured based on location information and word fre-
quencies in the article. The latter refers to the relevance as a
GeneRIF based on the vocabulary used in the article. We for-
malize a probabilistic model combining these features. Our
method is evaluated on the test set of 139 MEDLINE ab-
stracts, and the results demonstrate that (a) function words
in input could help to identify gene function descriptions and
that (b) there is a vocabulary peculiar to GeneRIFs and that
(c) location information shows the highest predictive power
for this particular task despite its simplicity. Additionally,
we examine some alternative methods in comparison with
our method.

1 Introduction

The volume of publications in the biomedical domain has
been rapidly growing, making it difficult for individual re-
searchers to keep themselves updated. This resulted in a
strong demand for information retrieval (IR) and informa-
tion extraction (IE) techniques which could help us manage
the information overload.

To foster the IR and IE research in the area of biomedicine,
the Genomics Track was launched at the Text REtrival Con-
ference (TREC) 2003 (Hersh, 2002). TREC is one of the
major conferences targeting IR and has been contributing to
the advance in IR research and related areas (e.g., question
answering and filtering) since it first started in 1992.

The Genomics Track is aiming at IR and IE, reflecting the
increasing interest in the practical applications of those tech-
niques to the biomedical literature. This year, the Genomics
Track offers two independent tasks for IR and IE, namely, the
primary and secondary tasks. In short, the primary task aims

at finding MEDLINE articles stating the functions associated
with given gene names, and the secondary task aims at auto-
matically generating concise descriptions of gene functions
stated in given research articles. We are particularly inter-
ested in the great potential of IE in this field and therefore
targeted the secondary task.

The rest of this paper is structured as follows: Section 2
overviews the secondary task. Section 3 summarizes the past
research related to the task. Section 4 describes our proposed
method for identifying gene function descriptions. Section 5
reports experiments carried out to evaluate our method. Sec-
tion 6 compares our method with alternative approaches.
Lastly, Section 7 concludes this paper with a brief summary
and possible directions for future research.

2 The Secondary Task

The secondary task targets information extraction (IE) from
the biomedical literature. Specifically, it aims at generating
descriptions related to gene functions in an automated way.
For this year, the Track Steering Committee decided to ex-
perimentally use GeneRIF (Gene References into Function)
entries as the gold standard, which are described in the Lo-
cusLink database (Pruitt and Maglott, 2001) maintained by
National Center for Biotechnology Information (NCBI).

GeneRIFs are functional annotations of genes and, accord-
ing to the NCBI web page1, is defined as “a concise phrase
describing a function or functions (less than 255 characters
in length, preferably more than a restatement of the title of
the paper).” They have been mainly annotated by experts
in the life sciences at National Library of Medicine (NLM).
Figure 1 shows an example, whereGRIF provides PubMed
identifier (PMID) and the associated GeneRIF, separated by
a vertical line (i.e., PMID is12037388 and GeneRIF is
“NAT1 polymorphisms may be . . .”).

Our goal is to automatically generate a GeneRIF, given
an abstract or a full text associated with the correspond-

1http://www.ncbi.nlm.nih.gov/LocusLink/GeneRIFhelp.html



LOCUSID: 9

LOCUS CONFIRMED: yes

LOCUS TYPE: gene with protein

product, function known

or inferred

.....

OFFICIAL SYMBOL: NAT1

OFFICIAL GENE NAME: N-acetyltransferase

1 (arylamine

N-acetyltransferase)

ALIAS SYMBOL: AAC1

.....

GRIF: 12037388|NAT1

polymorphisms may be

correlated with an

increased risk of larynx

cancer

Figure 1: A fragment of a LocusLink record.GRIF gives a
PMID and a gene function description (i.e., GeneRIF).

ing PMID as input. In addition, we may use offi-
cial gene names and aliases provided by LocusLink (e.g.,
OFFICIAL GENE NAME) in generating a GeneRIF. (However,
as described later, we use only abstracts and basically do not
use gene names in this study.)

The generated GeneRIF candidates are to be evaluated us-
ing the Dice coefficient and its variants, which measure the
extent of word overlap between the generated GeneRIF can-
didate and the actual GeneRIF. Section 5 will formally de-
scribe the evaluation measures.

3 Related Works

Given that 95% of actual GeneRIFs are reported to contain
some text from titles or abstracts (Hersh, 2003), we view
the secondary task as sentence selection, that is, we sim-
plify the task to identifying those sentences which are likely
to describe gene functions. Sentence selection (or passage
retrieval) is one of core components of automatic summa-
rization and question answering (QA) systems and has been
widely explored.

Text summaries are typically generated by extracting text
segments based on several features, such as existence of title
words, locations of text segments, and similarities between
the text segments and the entire text (Gong and Liu, 2001;
Chuang and Yang, 2000; McDonald and Chen, 2002). By
using these features, each text segment is given a score indi-
cating the extent to which the segment would be included in
a summary. We will utilize some of these features to identify
topical descriptions.

QA aims at providing the information that directly an-

swers users’ questions, as opposed to a ranked list of doc-
uments usually returned by conventional IR systems. Most
of current QA systems are composed of four basic mod-
ules (Tellex et al., 2003): question analysis, document re-
trieval, passage retrieval, and answer extraction. Here, let
us focus on passage retrieval, which breaks down documents
retrieved in the preceding module into smaller units, such as
sentences, and returns only passages potentially relevant to
the query. Passage retrieval is often treated on an analogy to
IR, where each passage is regarded as a document and rel-
evant passages are retrieved based on their similarities to a
query. In the secondary task, the query is “gene functions,”
which will be too general to find relevant passages. Instead,
we use vocabulary related to gene functions for measuring
relevancy of passages, which will be described next.

4 Our Method

4.1 Probabilistic Sentence Selection

The secondary task can be performed by identifying those
sentences which describe gene functions, assuming that such
sentences exist in an input article. We propose a probabilistic
model incorporating two measures: relevance and topicality.

For the relevance as GeneRIFs, we make use of word
frequencies in GeneRIFs; higher scores are given to those
sentences which contain more words frequently appearing
in GeneRIFs. Our assumption is that there is a typical vo-
cabulary used for gene functions frequently. For example,
“activate” or “bind” may be often used in describing gene
functions and then a sentence containing those words could
receive higher scores. For sentences composed of a se-
quence of wordsw1 w2 · · ·wn, the probability of being Gene-
RIF can be formalized as a product of the relative frequen-
cies of the words composing the sentence as in Equation (1),
whereFG(w j) andNG denote the frequency of wordw j and
the total number of words in GeneRIFs, respectively.

PG(s) =

n∏

j=1

PG(w j) =

n∏

j=1

FG(w j)

NG
(1)

Incidentally, this can be regarded as a unigram language
model; that is, it models GeneRIF descriptions by word uni-
grams.

For the topicality of sentences, we use word frequencies
in a given article; higher scores are given to those sentences
which contain more words frequent in the article itself. Note
that word frequencies here are based on theinput, as opposed
to PG based on word frequencies in GeneRIFs. The rationale
behind it is that the topic of the article is likely to be repeat-
edly stated. Given this assumption, the probability of being a
topical sentence can be expressed as in Equation (2), where
NT denotes the total number of word tokens in the given arti-



cle andFT(w j) is a frequency of wordw j in the given article.

PT(s) =

n∏

j=1

PT(w j) =

n∏

j=1

FT(w j)

NT
(2)

As with PG, PT can be regarded as a unigram language
model; that is, it models an input article by word unigrams.

Additionally, we use location information as an indicator
of topicality, given the fact that there is a conventional struc-
ture of where topics of articles appear at some typical loca-
tions. We definePL(L(s)), which is a probability that sen-
tences is a topic sentence, based on its locationL(s). The
function L(s) returns a location ofs and its possible values
aretitle, abstract last, abstractbody, defined based on our
preliminary study having suggested that actual GeneRIFs oc-
cur in many cases in titles or the end of abstracts. It returns
title if s is a (part of) title;abstract last if s is the last sen-
tence of abstracts; andabstractbodyotherwise.

We combine these probabilities introduced above, i.e.,PG,
PL, andPT , assuming their mutual independency, as in Equa-
tion (3).

P(s) = PT(s) · PL(L(s)) · PG(s) (3)

Since P(s) is influenced by sentence lengths (longer sen-
tences are generally result in smaller values), we normalize it
by the number of wordsn in sentencesand take a logarithm
for computational efficiency, forming a score indicating the
extent to whichs is likely to be a GeneRIF.

SGRIF(s) = logP(s)
1
n

= log(PT(s) · PL(L(s)) · PG(s))
1
n

=
1
n

(
logPT(s) + logPL(L(s)) + logPG(s)

)
(4)

We select the sentence which maximizesS(·) as output
(GeneRIF), that is:

ŝ = arg max
si

SGRIF(si) (5)

4.1.1 Probability estimation

To computeSGRIF, we estimate the probabilities,PG, PT , and
PL, as follows.

Firstly, as defined in Equation (1),PG(s) is a product of
relative frequencies of words composing sentences in Gene-
RIFs. This can be estimated based on word frequencies in
a training set of GeneRIFs. However there are two things
to take into account, that is, function words (e.g.,the and
to) and word inflection (e.g.,activateandactivation). We
use a stop word list2 containing 571 words so as to exclude
function words, and use the Porter stemmer (1980) so as to
eliminate inflectional variations. To observe their effect on

2ftp://ftp.cs.cornell.edu/pub/smart/english.stop

this task, we create four different models ofPG with/without
applying the stop word list and the stemmer. In addition, we
employ a discounting (smoothing) method, since a signifi-
cant number of words in input texts would never appear in
GeneRIFs and thus we will encounter unknown words in es-
timating their probabilities, i.e., the zero frequency problem.
The absolute discounting method (Ney et al., 1994) is exper-
imentally used to remedy the problem. Absolute discounting
takes out a constant proportion from the probability mass and
uniformly distributes it to unknown words.

Secondly,PT(s) can be calculated by simply counting
word frequencies in the input. As withPG, again we make
use of the stop word list and the Porter stemmer in order
to deal with function words and word inflection, and create
four different models ofPT by using/not using the stop word
list and the stemmer. Notice that estimating probabilitiesPT

does not require to train the model in advance, as opposed to
PG.

Lastly, PL can be estimated by counting where GeneRIFs
appear in their corresponding articles, given pairs of articles
and GeneRIFs. For example, if most GeneRIFs are taken
from titles,PL(title) would have a high probability. However,
this cannot be automatically done because GeneRIFs are not
marked in articles and they are not even guaranteed to lit-
erally appear in articles since they are generated by human;
words, phrases, or word orders may be changed in abstract-
ing GeneRIFs from articles. Thus, it is ideal to use human
in order to accurately identify where GeneRIFs (or similar
sentences) appear, which is however costly. Instead, we use
bigram phraseDice coefficient (see Section 5.1) to measure
how similar each sentence is to the corresponding GeneRIF,
and consider the computed similarity as the number of oc-
currences of the GeneRIF. To put it differently, given an arti-
cle (sentences) and GeneRIF, we compute a similarity score
between each sentence and the GeneRIF, and the similarity
scores are summed up within each category of location (i.e.,
title, abstractlast, andabstractbody), which is regarded as
a frequency of the GeneRIF occurrences in the location.

5 Evaluation

5.1 Methodology

We evaluate our proposed method on the 139 MEDLINE ab-
stracts provided for the secondary task, where each of the
abstracts is associated with an actual GeneRIF. Full-text arti-
cles are also available for this task, but we use only abstracts
(and titles) given that 95% of actual GeneRIFs contained
some text from titles and abstracts (Hersh, 2003). In addi-
tion, gene names associated with each GeneRIF can be uti-
lized, but our framework does not incorporate them because,
in the actual GeneRIF annotation, indexers do not have spe-
cific gene names in mind in advance.



As evaluation metrics, the secondary task uses the Dice
coefficient to measure similarities between actual GeneRIFs
and generated GeneRIF candidates. Given two stringssx and
sy, the Dice coefficient σ betweensx and sy is defined as
in Equation (6), whereNx, Ny, andNxy are the numbers of
words insx, in sy, and in bothsx andsy, respectively.

σ(sx, sy) =
2 · Nxy

Nx + Ny
(6)

However, the Dice coefficient has several limitations as an
evaluation metric for this task. Most of them result from the
fact that it treats strings asbags of wordsand treats words just
as symbols. To compensate for the problems to some extent,
the secondary task uses four variants of the Dice coefficient
below.

• Classic Dice (CD):
Uses the Dice coefficient after removing stop words and
stemming suffixes. This enables an evaluation based on
normalized contents words.

• Modified Unigram Dice (MD):
Similar to CD but considers word frequencies to give
additional scores to words appearing multiple times in
both strings compared.

• Bigram Dice (BD):
Regards two adjacent words (bigrams) as a unit for
comparison and applies the Dice coefficient. This al-
lows us to take word order into account to some extent.

• Bigram Phrases (BP):
Same as BD but excludes bigrams containing stop
words. This metric has more focus on noun phrases.

5.2 Results

5.2.1 Exploring Word Frequencies in Input

We examined the effects of stemming word suffixes and re-
moving stop words onPT(s), which indicates the topicality
of sentencesbased on word frequencies in an input text. We
applied the model with/without stemming and removing stop
words, and output the predicted GeneRIFs with the highest
probabilities. Table 1 shows the result, where bold figures
indicate the highest similarities for each evaluation metric.

Somewhat unexpectedly, the result indicates that the stem-
mer and the stop word list didnotcontribute to predicting ac-
tual GeneRIFs. Especially, when stop words were removed,
Dice coefficients radically dropped by more than 10 points,
irrespective of evaluation criteria. In IR and related areas,
stop words are commonly thought to be less (or not at all)
informative and removed, but for this particular task, stop
words appear to play a certain role to characterize GeneRIFs.

In the remainder, we do not use the stemmer nor exclude
stop words forPT estimation.

Table 1: Effects of stemming and removing stop words in esti-
matingPT(s). CD, MD, BD, and BP denote classic Dice, modified
unigram Dice, bigram Dice, and bigram phrase, respectively.

Stop words
remained excluded

CD 38.37 CD 26.36
off MD 39.04 MD 26.37

BD 21.45 BD 11.38
Stemmer BP 24.55 BP 13.59

CD 36.69 CD 25.86
on MD 37.38 MD 25.24

BD 20.27 BD 10.27
BP 23.42 BP 12.43

5.2.2 Exploring Word Frequencies in GeneRIF

As with PT(s) above, we examined the effects of stemming
word suffixes and removing stop words onPG(s), which is a
probability that a given sentences is relevant to gene func-
tions based on the vocabulary used in GeneRIFs.

EstimatingPG requires training data. However, since there
are no training data besides the test data of 139 GeneRIFs,
we trained the model by a leave-one-out cross-validation us-
ing the test data, where each GeneRIF was predicted based
on the model trained on the other 138 GeneRIFs; that is,
training data and test data are always mutually exclusive. We
created four different models with/without stemming and re-
moving stop words, and evaluated their effectiveness. The
result is shown in Table 2, where bold figures indicate the
highest similarities for each metric.

Table 2:Effects of stemming and removing stop words in estimat-
ing PG(s).

Stop words
remained excluded

CD 32.68 CD 35.55
off MD 31.30 MD 36.83

BD 15.94 BD 20.80
Stemmer BP 18.75 BP 23.41

CD 31.72 CD 36.68
on MD 29.25 MD 37.55

BD 14.59 BD 22.02
BP 16.77 BP 24.88

As opposed to the case withPT , stemming and removing
stop words resulted in the best result. Especially, removing
stop words improved the similarity scores by 3–8 points (9–
50%). It proves that there exists a vocabulary particularly
used for describing GeneRIFs (or gene functions). Inciden-
tally, it was found that when only the stemmer was applied
without removing stop words, it decreased the similarities.

As an illustration, Table 3 shows the 12 stems, exclud-
ing stop words, which most frequently appeared in the test



data set of 139 GeneRIFs, where one can find a number of
stems related to gene functions, such as “activ”, “regul”, and
“role”.

Table 3:The most frequent 20 stems in the test data of 139 Gene-
RIFs. The figures on their right show the logarithms of their relative
frequencies.

Rank Stem logPG(w) Rank Stem logPG(w)
1 activ −1.4838 7 express −1.7137
2 cell −1.4838 8 gene −1.8031
3 regul −1.5342 9 induc −1.8031
4 protein −1.6396 10 signal −1.8031
5 role −1.6569 11 mediat −1.8286
6 1 −1.7137 12 receptor −1.8286

In the remainder, we use the stemmer and remove stop
words forPG estimation.

5.2.3 Exploring Optimal Combinations of Models

As defined in Equation 3, our final model combines three in-
dependent estimations:PT(·), PG(·), andPL(·). To demon-
strate the contribution of each model and to explore their
optimal combination, we evaluated each model and every
combination on the test data set. Table 4 summarizes the
results of the different models, where the top row indicates
the combinations of models applied. The right most column
(PT · PG · PL) shows our submitted official run.

From the results in Table 4, it is apparent that, despite its
simplicity, location information (PL) dominantly contributed
to the result and the other two models hardly had effect on the
outcome when combined withPL. This is mainly because the
actual GeneRIFs are more or less taken from titles in many
cases.

6 Discussions

The evaluation in Section 5 revealed that location informa-
tion impacts the most in identifying GeneRIFs. However, it
does not mean that we can ignore the contents of input sen-
tences because whether each sentence describes gene func-
tions depends on its contents. We explore an alternative
method making use of contents (word frequencies) from a
viewpoint of classification.

The secondary task can be seen as classification, assigning
a class (cGRIF or cnonGRIF) to each sentence and selects the
one which is most likely to be a GeneRIF. There is a number
of methods that can be applied, e.g., naive Bayes classifiers,
decision trees, support vector machines. These methods have
been compared for their effectiveness and, to our knowledge,
there is no clear evidence about which performs best; it de-
pends on tasks applied to, training data size, the number of
classes, and so on (Chuang and Yang, 2000; Yang and Liu,

1999). For comparison, we experimentally implemented a
naive Bayes classifier, which has been widely used in past
research.

The naive Bayes classifier predicts class ˆc for input s,
whereĉ maximizes the probabilityP(ck|s) andck can be ei-
thercGRIF or cnonGRIF.

ĉ = arg max
ck

P(ck|s)
= arg max

ck

P(s|ck)P(ck)
(7)

For each sentencesi , we compute a likelihood ratio of a
probability associated with classcGRIF to one associated with
classcnonGRIF, and select a sentence as a GeneRIF which pro-
duces the highest ratio.

ŝ = arg max
si

P(si |cGRIF)P(cGRIF)
P(si |cnonGRIF)P(cnonGRIF)

≈ arg max
si=w1...wn

∏

w j

P(w j |cGRIF)

P(w j |cnonGRIF)

(8)

We used the GeneRIFs in the test set to train the classi-
fier for classcGRIF (i.e., the numerator) and used the ab-
stracts to train it for classcnonGRIF (i.e., the denominator).
Although most abstracts would include GeneRIFs, it should
not be harmful as long as there are more non-GeneRIFs than
GeneRIFs in the training data. We evaluated the method on
the test set; Table 5 compares the results produced by our
model (PT ·PG) and the naive Bayes classifier.

Table 5:Comparison between our model based on word frequen-
cies (PT · PG) and the naive Bayes classifier for identifying Gene-
RIFs.

PT · PG Bayes
CD 39.11 34.70 (−11.2%)
MD 40.62 34.66 (−14.7%)
BD 22.42 19.64 (−12.4%)
BP 25.78 22.18 (−13.4%)

Our method outperformed the naive Bayes classifier in all
evaluation criteria. The result demonstrates the effectiveness
of our method but, at the same time, it implies the limita-
tion of the methods based solely on word distributions, as
location information alone results in much higher similarity
scores.

In order to combine multiple information sources, our
model multiplies the resulting probability estimates (i.e.,PT ,
PG, andPL). This can be regarded as probability voting. On
the other hand, one of voting algorithms often used isma-
jority voting where each information source gives a vote to
its best candidate and the one which received the majority of
votes wins. We implemented a (modified) majority voting
method for comparison. The voting scheme considers every
candidate and cast 1/n votes forn-th ranked candidate, so as



Table 4:Results for different combinations of models. Bold characters indicate the best score for each row across the combinations. The
right most column (PT ·PG ·PL) is our submitted official run.

PT PG PL PT · PG PT · PL PG · PL PT ·PG ·PL

CD 38.37 36.68 50.47 39.11 50.25 50.44 50.40
MD 39.04 37.55 52.60 40.62 52.36 52.52 52.56
BD 21.45 22.02 34.82 22.42 34.66 34.93 34.83
BP 24.55 24.88 37.91 25.78 37.92 38.05 37.97

to avoid the case where no candidate receives the majority.
Equation (9) shows the formula.

ŝ = arg max
si

∑

P∈{PT ,PG,PL}

1
rank(P(si))

(9)

where,rank(P(si)) is a rank of candidate (sentence)si based
on probabilityP(·). Table 6 compares two voting schemata,
i.e., probability voting (our model) and majority voting.

Table 6:Results for different voting schemata: probability voting
(our model) vs. majority voting.

PT · PG PT · PG · PL

prob majority prob majority
CD 39.11 39.67 (+1.4%) 50.40 42.43 (−15.6%)
MD 40.62 41.06 (+1.1%) 52.56 44.20 (−15.9%)
BD 22.42 24.06 (+7.3%) 34.83 26.75 (−23.2%)
BP 25.78 27.74 (+7.6%) 37.97 30.59 (−19.4%)

When used for combining two probabilities (PT ·PG), ma-
jority voting improved the result, especially for bigram-
based evaluation criteria (BD and BP). On the other hand,
when applied to combinePT , PG, andPL, it significantly de-
creased the similarity scores by 15%–23%. This is presum-
ably because the probabilityPL has much more predictive
power than the others. Weighted voting, which gives certain
weights to each source, could work better for this model.

Lastly, we report the result when gene names are used
as a filter. Each MEDLINE article in the test set is associ-
ated with specific gene names, thus it is very likely that gene
function descriptions (GeneRIFs) would contain those gene
names in them. Based on this assumption, we restricted the
system output to those containing the associated gene names.
In cases where no gene name appeared in input sentences,
the highest ranked sentence was outputted. The experimen-
tal result is presented in Table 7.

The filter using gene names did not raise the result. This
implies that (exact) gene names do not necessarily appear in
GeneRIFs.

7 Conclusions and Future Directions

This paper presented a method for identifying gene function
descriptions (GeneRIFs) in biomedical articles. We regarded

Table 7:Results when gene names are used/not used as a filter. The
columns labeled “not used” are the results of our proposed method.

PT · PG PT · PG · PL

not used used not used used
CD 39.11 36.18 (−7.5%) 50.40 48.41 (−3.9%)
MD 40.62 36.64 (−9.8%) 52.56 50.28 (−4.3%)
BD 22.42 21.51 (−4.1%) 34.83 32.98 (−5.3%)
BP 25.78 24.44 (−5.2%) 37.97 36.32 (−4.3%)

the task as sentence selection assuming that input articles do
contain actual GeneRIFs. Our method exploits location in-
formation and word frequencies both in input and GeneRIFs
and, given an input text, identifies a sentence which is most
likely a GeneRIF using a probabilistic model. We evaluated
our method on the test set of 139 MEDLINE abstracts, and
the results indicated that (a) function words in input can be
used for identifying GeneRIFs, that (b) there exists a vocab-
ulary peculiar to gene function descriptions, and that (c) lo-
cation information has the most impact in identifying Gene-
RIFs.

Future directions would include the use of a larger training
set and wider contexts for modeling and probability estima-
tion, rather than independent word occurrences. In addition,
the effect of using full text articles in estimatingPT (which is
based on word frequencies in input) should be investigated.
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