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Primary Task 
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The Biosemantics group at the Erasmus MC followed a thesaurus-based approach for the first task of the 
genomics track. The approach is based on a concept-based indexing engine (Collexis®), suitable for large -
cale and high-speed indexing. The thesaurus used for indexing was constructed as a combination of the 
MESH thesaurus and the gene ontology (GO), with a species-specific gene thesaurus derived from 
LocusLink gene annotations. Our indexing machinery produces per indexed MEDLINE abstract a list of 
concepts with an accompanying weight, termed a fingerprint. Searching is done by matching a query 
fingerprint against fingerprints of all indexed MEDLINE abstracts. Query fingerprints are generated by 
combining fingerprints of four types. First, a fingerprint containing just the gene concept with all the 
known gene names and aliases. Second, a combination of MEDLINE fingerprints of all abstracts in which 
the gene concept was found without ambiguity problems. Third, a generic fingerprint with concepts typical 
of geneRIFs, when compared to MEDLINE in general. Fourth, a fingerprint containing the concepts of the 
Gene Ontology (GO) annotation 
 
When it comes to identifying a gene name in a text the large number of synonyms and the frequent 
occurrence of homonymy are problematic. In our approach we attempt to deal with both. Synonymy as 
found in Locuslink is incorporated in our thesaurus. An attempt was made to reduce the effects of 
homonymy by expanding the query with fingerprints where the gene name is found unambiguously. Gene 
specific information, the GO annotation, is included to select for the correct gene, but also to select for 
abstracts with terms about basic biology. The generic fingerprint is included to select for abstracts with 
terms about basic biology. 
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The Locuslink database is used as a basis for producing a gene thesaurus. Different thesauri were produced 
for the different organisms. For all the genes described in the database the following annotations were 
allowed as synonyms: official symbol, preferred symbol, alias symbol, official gene name, preferred gene 
name, alias protein, preferred product and product. A distinction was made between symbols and long 
forms of the gene name or product. Before indexing the lvg2002 normalizing engine 
(http://umlslex.nlm.nih.gov/index.html) is used to normalize the words in the text and make the system 
more robust. This includes removal of all capitalization. Hence indexing occurs case-insensitive. As an 
exception to this rule, words are not normalized when at least half of the letters are in capitals. For building 
our thesaurus gene and protein symbols are not normalized, though long forms are normalized. If a symbol 
is composed of a letter and number combination the symbol is also included in lowercase. When symbols 
or long forms end with a number, two forms are included in the thesaurus to better match spelling variation, 
one with the number directly after the last letter, the other separated with a hyphen.  
 
To expand the thesaurus with concepts from the biomedical domain all concepts of Gene Ontology 
(http://www.geneontology.org/) and all MESH concepts that have an unique identifier in UMLS are added 



(http://www.nlm.nih.gov/mesh/meshhome.html). The structure of these thesauri is not used. All terms are 
normalized. From the whole of the thesaurus all words with a length of one or two letters are removed.  
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For the selected MEDLINE records title, abstract and MESH headings are retrieved. One of the variables 
manipulated in our experiment is the use of the abbreviation expansion algorithm described by (Schwartz 
and Hearst, 2003) to replace abbreviations with their matching long forms. Our hypothesis is that 
abbreviation expansion will reduce the ambiguity of the text. Next are the removal of stop words followed 
by normalization of the remaining words.  

�����	��


For indexing Collexis® indexing software is used (http://www.collexis.com). Identified concepts are 
assigned a relevance score for vector representation. This value is based on term frequency multiplied with 
a factor selecting against general concepts (see equation 1). The values are subsequently divided by the 
value of the highest ranking concept of the document, thereby normalizing to a maximum value of 1. This 
is the data that will be queried. The list of concepts with relevance scores will be referred to as a 
fingerprint.  
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Equation 1, factor Fi is used to select against general concepts. Si represents the number of 
documents a concept ci occurs in. 
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To match the search queries to the document fingerprints several formulas were used. The formulas are 
listed below. fc qc represent the value of a concept in respectively the fingerprint and the query. Len(v) 
represents the length of a vector: Len(v)= sqrt( sum(vc²) ). 
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Queries are constructed by combining the four search fingerprints: 

1. Gene Name (GN). The first search fingerprint is the gene name, including its synonyms.  
2. Gene Specific Context (GSC). The second is an expansion of the search with gene specific 

fingerprints, creating a gene specific context. Fingerprints from the TREC set containing the name 
of the gene are evaluated and only added to expand the query when they meet the following 
demands: a. the name (or synonym) of the gene found in the text does not have a homonym in our 
thesaurus, and it either contains a space (i.e. it is a long-form), or it contains a number (but does 
not start with a number). b. the abstract or corresponding MESH headings contained the species 
name associated with the gene.  

3. Generic Context (GC). The third fingerprint is constructed based on a database containing all 
fingerprints from the documents indicated by geneRIFs in Locuslink and on a database containing 
all fingerprints from the TREC set. All found concepts were extracted from the database and 

vector sum( fc *  qc ) / len(f)* len(q) 

collexis sum(1/si), si represents the number of documents a concept ci occurs in. Concept ci is a 
concept which occurs in both the query and the fingerprint it is compared with. 

dice ( 2*sum( fc *  qc ) ) / ( len(f)² + len(q)² ) 

weighted sum( fc*  qc ) *  (mf + 1) / (lq + 1), where mf is the number of matched concepts of f, lq is 
the number concepts in q. 



ordered based on relative overrepresentation in the geneRIF set. Ranking was done based on 
equation 2. Every concept with a value larger than two is admitted in the generic fingerprint, 
resulting in a total of 3217 concepts.  

4. Gene Ontology (GO). The fourth fingerprint contains concepts representing the GO-annotation for 
the gene as found in the Locuslink database.  
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Equation 2, The score C calculated using this equation is used to rank concepts for the generic 
fingerprint, S indicates the number of documents a concept occurs in, T the total number of 
documents in that set.  

The query is constructed by combining the search fingerprints. For combination the weights assigned to the 
concepts of the different fingerprints are multiplied with a scaling factor, and combined by addition to the 
other fingerprints. Prior to matching the concepts of the query are multiplied with the factor calculated with 
equation 1, followed by normalization to 1.  
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Various aspects of our system were tested using the TREC training set in order to find the optimal settings 
to be used for our final submission. The results presented in this paper may differ from those used for our 
submitted runs, because of the elimination of several errors in our software.  
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To find the optimal combination of fingerprints, abbreviation expansion and matching algorithm, an 
experiment was performed evaluating a large number of possible combinations. The different variables 
were tested with the following discrete values: 

• Abbreviation Expansion (AE): on or off 
• Gene name fingerprint: weight of 0, 0.5 or 1 
• Other fingerprints: weight of 0, 0.1, 0.3 or 0.5 
• Matching coefficient: Vector, Dice, Weighted or Collexis 

In total 1448 variations were constructed, and for each combination performance on the training was tested.  
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This experiment was aimed at evaluating the contributions of the various requirements used to select those 
abstracts that will be combined into the GSC fingerprint. Using the optimal combination found in the 
previous experiment, the system was tested using the gene specific context constructed by varying the 
following requirements: 

• Ambiguity requirement: on or off 
• Species name requirement: on or off 
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The system was used and evaluated according to the standards of the TREC genomics track. The 
document collection consisted of 525,938 MEDLINE records where indexing was 
completed between 4/1/2002 and 4/1/2003. The training set were the 47 topics distributed by the 
track. GeneRIFs taken from LocusLink were the documents to be retrieved for every topic. The 
test set are the official topics for the TREC competition. As a measure for evaluation mean 
average precision (MAP) was used.  
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To test whether differences existed between the composition of the test and training set we also used our 
optimization scheme for the test set (after submitting results). Additionally, we calculated the difference in 
the ratio of # geneRIFs / # retrieved documents, for test and training set.  
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An expert in molecular biology manually evaluated the first 10 retrieved documents for 10 queries of the 
test set. As a standard for a good result the definition as distributed by the TREC organization was used:  

For gene X, find all MEDLINE references that focus on the basic biology of the gene or 
its protein products from the designated organism. Basic biology includes isolation, 
structure, genetics and function of genes/proteins in normal and disease states. 
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In table 1 the 15 highest scoring settings for our system are represented. Table 2 shows the highest score 
when the condition in the first column is true. This allows comparisons between different parameters. For 
all pairs a statistical test was performed (paired t-test, N=47) to assess whether observed differences 
between settings are significant at the .05 level. The best settings have a higher score than the baseline 
consisting of a query with only the gene name (p=0.047). Also GC=0.5, GN=0 and MA=collexis scored 
significantly lower than the optimal settings.  

Table 1, MAP scores for 15 highest scoring settings. Abbreviations: GN, genename; GSC, gene 
specific context; GC, generic context fingerprint; GO, go annotation; MA, matching algorithm; AE, 
abbreviation expansion. 

 MAP GN GSC GC GO MC AE 

1 0.374 0.5 0.1 0 0.1 dice false 
2 0.372 1 0.3 0 0.1 dice false 
3 0.368 1 0.3 0 0.3 dice false 
4 0.367 0.5 0.1 0 0.1 vector false 
5 0.366 1 0.1 0.1 0.1 vector false 
6 0.366 1 0.1 0.1 0 vector false 
7 0.363 1 0.1 0 0.3 vector false 
8 0.361 1 0.5 0 0.1 dice false 
9 0.361 1 0.5 0.1 0 vector false 
10 0.361 1 0.3 0.1 0.1 vector false 
11 0.36 1 0.3 0 0 dice false 
12 0.359 1 0.5 0.1 0.1 vector false 
13 0.359 1 0.1 0 0.1 vector false 
14 0.359 1 0.1 0.1 0.1 vector true 
15 0.359 0.5 0.1 0 0 dice false 

Table 2, maximum average MAP scores achieved when expression in the first column is true. 
Abbreviations: GN, genename; GSC, gene specific context; GC, generic context fingerprint; GO, go 
annotation; MA, matching algorithm; AE, abbreviation expansion.  

Condition MAP Condition MAP Condition MAP 

Only GN 0.336 AE=true 0.359 GO=0.1 0.374 



Only GN & 
GSC 0.360 GN=0 0.096 GO=0.3 0.368 

Only GN & GC 0.338 GN=0.5 0.374 GO=0.5 0.343 

Only GN & GO 0.341 GN=1 0.372 MA=dice 0.374 
GC=0 0.374 GSC=0 0.341 MA=vector 0.367 

GC=0.1 0.366 GSC=0.1 0.374 MA=weighted 0.331 

GC=0.3 0.309 GSC=0.3 0.372 MA=collexis 0.269 

GC=0.5 0.237 GSC=1 0.361   
AE=false 0.374 GO=0 0.366   
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Observed differences are not significant at the .05 level according to evaluation with the paired t-test.  

 +Species -Species 
+Non-ambiguous indexing 0.37 0.36 
- Non-ambiguous indexing 0.34 0.34 

Table 3, average MAP for different ways to produce gene specific context, other parameters same as 
at the best configuration 
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Figure 1, results on training and test set, boxplot and average MAP 
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Abstracts Analyzed 100 

Relevant, geneRIF 31 

Relevant, not geneRIF 53 

Disputable* 14 

Irrelevant 2  

Table 4, summary of results of expert evaluation, first 10 results for 10 query. The annotator called 
an document Disputable when it contained content about the gene but less about function or also 
about (many) other genes 

 

 Average 
MAP 

test .17 
training .37 
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The simplest query within our system, only the gene name, already gives a reasonable average MAP of 
0.33. After optimization, the use of the gene specific fingerprint and the GO annotation fingerprint led to a 
better result than optimized settings for the gene name alone. Let it be noted that most of the other observed 
differences in table 1 are not statistically significant and that a larger set would be required to determine 
real effects. The results give a weak indication that the gene specific context is mostly responsible for the 
improvement. The GO annotation fingerprint could have a neutral or slight positive effect. The significance 
of the generic fingerprint is difficult to asses, though it clearly has a detrimental effect when given a large 
role in the query.  
 
When the gene specific context is studied in more detail, the conditions for inclusion of fingerprints seem 
to play an important role. Though the differences in table 2 are small and may potentially reflect no real 
effects, there appears to be a trend towards better performance with more specific context.  
 
The role of the abbreviation expansion algorithm is apparently minimal. One could expect more specific 
indexing (and better performance) as ambiguous acronyms are removed. On the other hand it has been 
observed that the long forms that are put in place have much more variations and hence are more likely not 
to be included in the thesaurus.  
 
The optimal settings retrieved for the training set resulted in an average MAP score of 0.37. This appears to 
be reasonably good when compared to the preliminary runs reported previously (e.g. 0.35 by Prof. Jacques 
Savoy with the SMART system) on the TREC website. A very different score was achieved for the test set, 
an average MAP of 0.17. The boxplots in figure 1 clearly show that a very different distribution of MAP 
scores exists for the test set. A possible explanation could be that the system was over-trained on the 
training set and that the optimal result on the training set is far from robust. When we optimized settings for 
the test set the MAP score improved only modestly (MAP = 0.19), which rules out over-training. A better 
explanation would be that the test and training set are different in composition. After preliminary 
experimentation with the training set during the preparations for the TREC it was decided to exclude genes 
for the testset that have only one or two geneRIFs. This most likely led to the striking difference in the 
average number of geneRIFs per gene, 6.2 for the training set and 11.3 for the test set. Also we found a 
significantly lower ratio of # geneRIFs / # retrieved documents by our system for the test set. If our system 
can not distinguish very well between geneRIFs and other retrieved documents, the geneRIFs become more 
spread out in the retrieved list of documents. This would explain, at least for a part, the difference in the 
results between the test and training set.  
 
Expert evaluation of retrieved documents showed some clear tendencies, which were also noted by the 
evaluation by the group of William Hersh (TREC genomics overview presentation, 2003). All checked 
geneRIFs were considered to be appointed appropriately. A large number of other retrieved documents, 
however, also appear to fit the description of a geneRIF. It therefore appears the collection of geneRIFs is 
incomplete. This makes the value of the evaluation of retrieval experiments with geneRIFs as standard 
difficult to assess.  
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The system of combining four different fingerprints was successful in improving performance relative to a 
query with the gene name. The most important contribution to this improved performance appears to be 
from the gene specific context fingerprint. 
 
Results on the test set were much lower and different from those on the training set. This appears to be 
caused by a difference in composition of the sets. 
 
Expert evaluation of queries showed that numerous results matched the given definition of a geneRIF but 
were not annotated as such. Large incompleteness in annotation and lack of difference between positives 
and some non-positives makes comparison of results very difficult.  



Secondary Task 
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With regard to the second task, our starting point was the observation that the GeneRIF annotators in 
approximately 42% of the cases simply use (part of) the title of a paper as annotation, in spite of the 
GeneRIF guideline that annotations are ‘preferably more than a restatement of the title of the paper’ . Even 
when the title was not used, a test using the classic dice coefficient showed that the annotation usually 
matched (part of) a sentence from the abstract. For this reason we have reduced the problem from 
generating a GeneRIF to mimicking the annotator’s choice for a certain sentence or title. We have 
approached this problem as a classification task using the naïve Bayesian classifier as proposed in 
(Mitchell, 1997). 
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The classifier constructed for this task assigns a given abstract to a class vj that represents the choice to use 
one of the sentences as the annotation, where we define the title as sentence 0. To determine the number 
and type of the classes the set of 38.193 GeneRIFs was examined. For each GeneRIF we computed the 
classic dice coefficient between the annotation and each of the sentences and title of the corresponding 
abstract. In 16.163 (42 %) of the cases the annotation matched best with the title.  

 

Figure 2, Distribution of positions of the annotation sentence, counting from the start and from the 
end of the abstract.  

Figure 2 shows the distribution of the position of the non-title sentences that best matched the annotation. 
The first half of the figure shows the distribution of geneRIFs that were mapped to the first 8 sentences or 
the title of the abstract. The second half shows the same for the last sentences of the abstract. In 3.304 cases 
(9 %) the annotation was matched to one of the first three sentences and in 17.661 cases (46 %) the 
annotation matched one of the last five sentences. Because few abstracts (3%) in our test set were matched 
to annotation positions outside this set of 9, we did not include other positions. As a result, the classifier 
can assign to class vj with j=0,..,8 which represent sentence 0 (i.e., the title) as annotation, the first sentence 
as annotation etc. 
As features, we use the presence of normalized words in sentences. Both for training and classification, 
these features are determined by extracting sentences from the abstracts: nine sentences if the abstract has a 
length of at least nine, or less if the abstract is shorter. If the abstract is shorter than nine sentences we first 
extract the title, then the last five sentences, starting with the last moving backwards and then, if any 
sentences remain, the first three starting with the first. All words in a sentence are then normalized, using 
the lvg2002 normalizer. We also experimented with other features, such as presence of gene-symbols or 
thesaurus-based concepts in sentences, but this did not improve the results. 
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The prior probability of the class vj is estimated by 
 

N

N
vP j
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where Nj is the number of abstracts assigned to class vj and N the total number of abstracts used for 
training. 
The conditional probabilities of the occurrences wk,i of the normalized word k in sentence i given that the 
abstract is in class vj, P(wk,i | vj), is estimated as: 
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where nk,i,j is the number of occurrences of word k in sentence i in all abstracts in class vj, and ni,j is the total 
number of distinct words in all abstracts in class vj. The factor �  is added to ensure that P(wk,i | vj) is never 
equal to zero, in which case the absence of a word in a sentence i in class vj would cancel out all other 
probabilities in the next calculation. The variable di is the number of distinct words in sentence i. We 
established empirically that �  is best assigned a small value: for our experiments it was set at 10-6.  
An abstract a is assigned a class vj by calculating vNB: 
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where S is the set of sentence position and Wa,i is the set of all words positions in sentence i in abstract a 
and V is the set of all classes. 
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We trained our classifier on all GeneRIFs, excluding the 139 GeneRIFs that were specified as a test set for 
this secondary task. On the test set, the classifier correctly found the sentence from which the human 
annotation was derived in 65.47% of the cases. This compares favorably to the score of 43.88% for the 
naïve system that selects titles as annotation. However, during the TREC conference it was brought to our 
attention that our training set might contain GeneRIFs that duplicate with those in the test set, and indeed 
when we checked a number of LocusLink entries outside the test set turned out to have exactly identical 
GeneRIFs as those in the test set. This means that some LocusLink entries not only share PMIDs,but –
rather surprisingly– annotations as well. Without these duplicates in the training set the performance of our 
classifier drops to that of the naïve system. The results reported in this section are our initial results 
obtained using all GeneRIF entries as a training set, only leaving out the test set. 
Table 5 shows the results for the 139 test GeneRIFs using the TREC scoring system. 
 
Classic Dice 54.37% 
Modified unigram Dice 56.27% 
Modified bigram Dice 44.58% 
Modified bigram Dice phrases 46.25% 

Table 5 Scores for all test GeneRIFs 

The classic Dice coefficient was somewhat lower than could be expected from our calculated classification 
score at 54.37%. 
Table 6 shows the scores of all abstracts that according to our measures were classified correctly 
 
Classic Dice 73.26% 
Modified unigram Dice 75.93% 
Modified bigram Dice 67.30% 



Modified bigram Dice phrases 69.32% 

Table 6 Scores for correctly classified GeneRIFs 

The results in Table 6 suggest that the annotators often change sentences taken from the abstract. 
Table 7 shows the scores for incorrectly classified abstracts. 
 
Classic Dice 24.38% 
Modified unigram Dice 25.02% 
Modified bigram Dice 6.65% 
Modified bigram Dice phrases 8.35% 

Table 7 Scores for incorrectly classified GeneRIFs 

Because some words in the suggested annotation occur in the actual annotation the classic dice score is still 
24.38 %. The scores that include some measure of word order are lower, because the two sentences are 
very different. 
Table 8 shows how a hypothetical perfect classifier would perform for the 139 GeneRIFs. This classifier 
always selects the sentence from the abstract that according to the classic dice coefficient most closely 
matches the actual annotation. 
 
Classic Dice 70.36% 
Modified unigram Dice 72.69% 
Modified bigram Dice 62.51% 
Modified bigram Dice phrases 64.83% 

Table 8 Scores for 139 GeneRIFs using a perfect classifier 

The scores in table 8 are very similar to those in table 2, albeit slightly lower, likely because the annotations 
that were incorrectly classified also differed most from the original sentences in the abstract. 
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Our classifier is capable of selecting the title or sentences of the abstract that best matched the human 
annotations in 65.47 % of the cases. This is a considerable improvement when compared to the trivial 
method of always taking the title as the annotation, which yields a score of 43.88 %. It should be noted, 
however, that our high score relies on duplicate entries in the training set. Once removed, our classifier 
performs no better than the simple approach of always selecting the title. One could argue that for 
randomly selected GeneRIFs, which may have duplicate entries, our classifier performs well, but for 
entirely new GeneRIFs the classifier will perform no better than the baseline algorithm, which selects titles 
in all cases. 
At least two directions for further improvement of our approach can be envisaged. First, the performance of 
the classifier might be improved; possibly by incorporating other features than the ones we have 
experimented with so far. However, even a perfect classifier will only give a moderate improvement of the 
TREC scoring measures. For example, the classic dice score of 54.37 % that was obtained for our current 
classifier will only become 70.36 % when the classifier is perfect. 
A second direction for improvement could be a post-processing of the annotations suggested by the 
classifier to better match the human annotations. NLP techniques might be helpful in this respect. However, 
before embarking on further research, it would seem important to assess the quality of the GeneRIFs and to 
determine in how far a suggested annotation that partially differs from the actual annotations, could serve 
as a GeneRIF equally well. 
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