|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Superimposing Thermal-Infrared Data on 3D Structure Reconstructed by RGB Visual Odometry
Masahiro YAMAGUCHI Trong Phuc TRUONG Shohei MORI Vincent NOZICK Hideo SAITO Shoji YACHIDA Hideaki SATO
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E101-D
No.5
pp.1296-1307 Publication Date: 2018/05/01 Publicized: 2018/02/16 Online ISSN: 1745-1361
DOI: 10.1587/transinf.2017MVP0023 Type of Manuscript: Special Section PAPER (Special Section on Machine Vision and its Applications) Category: Machine Vision and its Applications Keyword: thermal-infrared camera, visual odometry, 3D thermal map, Delaunay division, calibration,
Full Text: PDF(4.6MB)>>
Summary:
In this paper, we propose a method to generate a three-dimensional (3D) thermal map and RGB + thermal (RGB-T) images of a scene from thermal-infrared and RGB images. The scene images are acquired by moving both a RGB camera and an thermal-infrared camera mounted on a stereo rig. Before capturing the scene with those cameras, we estimate their respective intrinsic parameters and their relative pose. Then, we reconstruct the 3D structures of the scene by using Direct Sparse Odometry (DSO) using the RGB images. In order to superimpose thermal information onto each point generated from DSO, we propose a method for estimating the scale of the point cloud corresponding to the extrinsic parameters between both cameras by matching depth images recovered from the RGB camera and the thermal-infrared camera based on mutual information. We also generate RGB-T images using the 3D structure of the scene and Delaunay triangulation. We do not rely on depth cameras and, therefore, our technique is not limited to scenes within the measurement range of the depth cameras. To demonstrate this technique, we generate 3D thermal maps and RGB-T images for both indoor and outdoor scenes.
|
open access publishing via
|
|
|
|
|
|
|
|