|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
A Physical Design Method for a New Memory-Based Reconfigurable Architecture without Switch Blocks
Masatoshi NAKAMURA Masato INAGI Kazuya TANIGAWA Tetsuo HIRONAKA Masayuki SATO Takashi ISHIGURO
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E95-D
No.2
pp.324-334 Publication Date: 2012/02/01 Online ISSN: 1745-1361
DOI: 10.1587/transinf.E95.D.324 Print ISSN: 0916-8532 Type of Manuscript: Special Section PAPER (Special Section on Reconfigurable Systems) Category: Design Methodology Keyword: reconfigurable device, physical design, placement, routing, MPLD, FPGA, EDA,
Full Text: PDF(1.7MB)>>
Summary:
In this paper, we propose a placement and routing method for a new memory-based programmable logic device (MPLD) and confirm its capability by placing and routing benchmark circuits. An MPLD consists of multiple-output look-up tables (MLUTs) that can be used as logic and/or routing elements, whereas field programmable gate arrays (FPGAs) consist of LUTs (logic elements) and switch blocks (routing elements). MPLDs contain logic circuits more efficiently than FPGAs because of their flexibility and area efficiency. However, directly applying the existing placement and routing algorithms of FPGAs to MPLDs overcrowds the placed logic cells and causes a shortage of routing domains between logic cells. Our simulated annealing-based method considers the detailed wire congestion and nearness between logic cells based on the cost function and reserves the area for routing. In the experiments, our method reduced wire congestion and successfully placed and routed 27 out of 31 circuits, 13 of which could not be placed or routed using the versatile place and route tool (VPR), a well-known method for FPGAs.
|
open access publishing via
|
|
|
|
|
|
|
|