Nothing Special   »   [go: up one dir, main page]

Date of Award

12-18-2014

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Computer Science

First Advisor

Xiaolin Hu

Second Advisor

Saeid Belkasim

Third Advisor

Wenzhan Song

Fourth Advisor

Yichuan Zhao

Abstract

Agent-based simulation of smart environment finds its application in studying people’s movement to help the design of a variety of applications such as energy utilization, HAVC control and egress strategy in emergency situation. Traditionally, agent-based simulation is not dynamic data driven, they run offline and do not assimilate real sensor data about the environment. As more and more buildings are equipped with various sensors, it is possible to utilize real time sensor data to inform the simulation. To incorporate the real sensor data into the simulation, we introduce the method of data assimilation. The goal of data assimilation is to provide inference about system state based on the incomplete, ambiguous and uncertain sensor data using a computer model. A typical data assimilation framework consists of a computer model, a series of sensors and a melding scheme. The purpose of this dissertation is to develop a data assimilation framework for agent-based simulation of smart environment. With the developed data assimilation framework, we demonstrate an application of building occupancy estimation which focuses on position estimation using the framework. We build an agent based model to simulate the occupants’ movement s in the building and use this model in the data assimilation framework. The melding scheme we use to incorporate sensor data into the built model is particle filter algorithm. It is a set of statistical method aiming at compute the posterior distribution of the underlying system using a set of samples. It has the benefit that it does not have any assumption about the target distribution and does not require the target system to be written in analytic form .To overcome the high dimensional state space problem as the number of agents increases, we develop a new resampling method named as the component set resampling and evaluate its effectiveness in data assimilation. We also developed a graph-based model for simulating building occupancy. The developed model will be used for carrying out building occupancy estimation with extremely large number of agents in the future.

DOI

https://doi.org/10.57709/6373004

Share

COinS