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RNAz is a widely used software package for de novo detection of structured noncoding RNAs in comparative genomics
data. Four years of experience have not only demonstrated the applicability of the approach, but also helped us to
identify limitations of the current implementation. RNAz 2.0 provides significant improvements in two respects: (1)
The accuracy is increased by the systematic use of dinucleotide models. (2) Technical limitations of the previous
version, such as the inability to handle alignments with more than six sequences, are overcome by increased training
data and the usage of an entropy measure to represent sequence similarities. RNAz 2.0 shows a significantly lower
false discovery rate on a dinucleotide background model than the previous version. Separate models for structural
alignments provide an additional way to increase the predictive power. RNAz is open source software and can be
obtained free of charge at: http://www.tbi.univie.ac.at/~wash/RNAz/
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1. Introduction

Noncoding RNAs (ncRNAs) are transcripts that are not translated to proteins but function directly on the

RNA level. During the past few years it has become evident that such “RNA genes” are more common than

previously thought. MicroRNAs, for instance, have profoundly changed our view of gene regulation, and

several completely new classes of ncRNAs were discovered recently.1 They have been found to be involved

in such diverse processes as transcriptional regulation,2–4 post-transcriptional regulation,5 chromatin modi-

fication and epigenetics,6,7 and development.8 Non-coding RNAs thus are key players in cellular regulation,

a realization that has also moved the computational analysis and the annotation of ncRNAs at genome-wide

scales into the focus of attention.

With the rapidly increasing availability of genomic sequence data, the de novo prediction of ncRNAs is of

particular interest. While protein gene prediction is a classical problem in computational biology and has been

studied for more than 15 years, RNA gene prediction is still in its infancy. Nevertheless, significant progress

has been made regarding the prediction of “structured ncRNAs”. This class of ncRNAs is characterized

by evolutionary conserved secondary structures which appear to be important for their function. Most of

the well-characterized ncRNAs belong to this class. Leading software tools developed for de novo RNA gene

finding therefore use evolutionary conservation of functional secondary structures as the main signal to detect

these ncRNAs.9–13

RNAz also detects structural ncRNAs by means of a comparative approach. In addition to measuring

evolutionary conservation, however, it also explicitly evaluates the thermodynamic stability of the secondary

structure.14 A support vector machine (SVM) is then used to evaluate both criteria. RNAz 1.0 has been used

successfully to map structural ncRNAs in a wide variety of genomes.15–20 A large number of these predictions

have also been verified experimentally.21–23 Moreover, the generic approach and many algorithmic details

developed for RNAz 1.0 have been re-used, extended, and adapted to other problems in the field of RNA

gene-finding.11,24–30

The wide-spread use of RNAz 1.0 also helped to identify some of its limitations and to point our directions
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for improvements. In this contribution, we describe a major update of the RNAz program. It is based on the

results of two follow-up studies,31,32 on our experiences gained during many real-life applications, in particular

the ENCODE pilot project,33,34 and last but not least, on the user feedback we received over the past four

years.

One major improvement is that RNAz 2.0 now allows to calculate thermodynamic stability scores based

on a dinucleotide background model. It has been noted early-on that folding algorithms utilizing stacking

energies of adjacent base-pairs in their energy model are sensitive to the dinucleotide content.35 In the

context of genome-wide ncRNA predictions, this effect can lead to an increased number of false positive

calls as pointed out several times.32,33,36 The new dinucleotide model in RNAz 2.0 now avoids this source of

potential false positives and increases the accuracy of the program.

Another major limitation of RNAz 1.0 was the fact that only alignments with at most six sequences

could be scored. This rather arbitrary restriction was the result of the limited amount of comparative data

sets that were available at the time. During the past few years, however, comparative data sets have grown

massively and therefore we adapted the algorithm to allow flexible analysis of alignments of any size.

2. Methods

2.1. Overview of the RNAz algorithm

RNAz predicts functional RNA structures on two independent criteria: (i) thermodynamic stability and (ii)

structural conservation.

A common way to express thermodynamic stability is in terms of a z-score. This is simply the number

of standard deviations by which the minimum free energy (MFE) deviates from the mean MFE of a set of

randomized sequences with the same length and base composition. A negative z-score thus indicates that a

sequence is more stable than expected by chance. As this procedure involves energy evaluation of a large set

of random sequences it is not applicable for large-scale genomic screens. RNAz instead uses support vector

regression (SVR) to estimate the mean and the standard deviation based on the nucleotide composition of

a sequence.

RNAz evaluates evolutionary conservation of RNA structures in terms of the structure conservation index

(SCI). A consensus secondary structure is predicted using the RNAalifold algorithm,42 which is an extension

of standard minimum free energy folding algorithms with the constraint that all sequences have to fold

into a common structure. Compensatory mutations, i.e. mutations that preserve a certain base pair, yield

bonus energies, while inconsistent mutations add penalty energies. RNAz measures structural conservation

by calculating the ratio of the consensus folding energy to the unconstrained folding energies of the single

sequences.

Both criteria are combined by another support vector machine model that classifies the input alignment

as “structural RNA” or “other”. A graphical overview of the RNAz algorithm is depicted in Fig. 1. In the

following, we describe independent refinements of these steps that improve the overall prediction accuracy

of the RNAz approach.

2.2. z-score regression for dinucleotide shuffled sequences

As in RNAz 1.0, we use support vector regression to compute z-scores for folding energies because the direct

approach via repeated shuffling and folding is too costly for genome-wide applications.

In order to efficiently train the regression engine of RNAz 2.0, we used the following grid-like procedure:

We first generated synthetic sequences of length 50 with G+C content, A/(A+U) ratio, and C/(C+G) ratio

ranging from 0.20 to 0.80 in steps of 0.05. For each of these start sequences we then generated 500,000

mononucleotide shuffled sequences and discarded those sequences where the relative difference between the

observed dinucleotide frequency and the expected frequency exceeded the threshold of 1.5. Evaluation on

human ENCODE sequences showed that only a small fraction of approximately 1% of the sequences have

a higher value and it was hence considered to be a reasonable threshold. Sequences of length 100, 150 and
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Fig. 1. Outline of the RNAz 2.0 work-flow and algorithm. In a first step large genomic multiple alignments are processed using
rnazWindow.pl into smaller alignments. This filtering procedure involves several steps: (i) overlapping windows given a fixed
window and step size are created, (ii) sequences that contain too many gaps are removed and (iii) from the remaining sequences
only those sequences are kept that meet a predefined average pairwise identity threshold. The resulting alignments are then
separately processed by RNAz. First, structure and energy predictions are performed for both the single sequences and the
alignment. These results can be immediately combined to calculate the SCI as the measure of the evolutionary conservation of
the RNA sequences in the alignment. In a second step, the mean free energy and the standard deviation used for the calculation
of the z-score are estimated. For this purpose descriptors based on the nucleotide composition (G+C content, A/(A+U) ratio,
C/(C+G) ratio, all 16 dinucleotide frequencies and the length of the sequence) are calculated for each sequence. If descriptors are

within the training boundaries they are passed to the corresponding support vector regression (SVR) based on the G+C content.
Otherwise, the mean and the standard deviation are evaluated explicitly by folding of 1,000 randomized sequences with the
same dinucleotide composition. In a final step the average z-score of the sequences, the SCI and the normalized Shannon entropy
of the alignment are passed to the classification SVM, which returns a probability estimate that the given alignment harbours
thermodynamically stable and/or evolutionary conserved RNA secondary structures. Parts that are highlighted in dashed boxes
are new or modified components of RNAz algorithm. RNAfold and RNAalifold are part of the Vienna RNA Package. Numbers
in the SVR boxes indicate the G+C content the particular SVR is trained on. For a detailed explanation of the formulas we
refer to section 2.3.

200 where then generated by concatenating the initial set of sequences 2 to 4 times. This initial set can be

generated very quickly and served as the basis for the selection of a much smaller, approximately evenly
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spaced, training set with representative dinucleotide frequencies. A sequence from the initial set was only

added to the representative training set if the Euclidean distance of the dinucleotide frequencies to any

sequence already present in the representative set was above a certain threshold (0.075 for a G+C content of

0.20 and 0.80, 0.100 for a G+C content of 0.25, 0.30, 0.70 and 0.75, and 0.125 for the remaining range). For

the final training set we also added sequences of length 75, 125 and 175, which were generated as described

above, resulting in a total of 1,155,737 training instances.

For each of these instances, we generated 1,000 randomized sequences by the Altschul-Erikson algo-

rithm37 with the same dinucleotide composition and used RNAfold38 with parameter -d2 to evaluate their

folding free energy. More than 1 million training instances are by far too many to be used in SVM training

procedures in reasonable time. For this reason we split the training instances into smaller subsets according

to their G+C content. In total we have 10 subsets with at most 150,000 training instances. We used the

SVM library LIBSVM to train regression models for the mean and the standard deviation for each of the

ten subsets. As input features we used the G+C content, the A/(A+U) ratio, the C/(C+G) ratio, all 16

dinucleotide frequencies and the length of the sequence scaled to the interval [0,1]. The regression for esti-

mating the mean free energy was trained to learn energy per nucleotide, while the standard deviation was

not scaled. We chose the ν variant of regression and a radial basis function kernel. The standard grid search

approach was used to find optimal combinations for SVM parameters. Regression accuracy was monitored

on an independent test set compiled from randomly selected sequences of variable length from 50 to 200 nt

from the human ENCODE regions. The average number of support vectors for the mean and the standard

deviation regression models are 8,763 and 8,607, respectively.

2.3. Training data generation and training of the SVM classifier

Training and test sets are based on the data available in the Rfam 9.1 database.39 93 RNA families were

selected based on their signals for thermodynamic stability and structural conservation. The RNAz 2.0

training set covers a broad range of different RNA families including major classes such as tRNAs, snoRNAs,

microRNAs, riboswitches, and bacterial regulatory RNAs.

For each RNA family, a set of alignments with varying numbers of sequences and average pairwise

identities was generated using the following strategy: Rfam full alignments were used if they contained

less than 300 sequences, otherwise we used the seed alignments. For our purpose the use of at most 300

sequences proofed well to generate a set of alignments over the desired range of average pairwise identities.

Rfam alignments were utilized only as a source to retrieve family members of a particular ncRNA class and

only extracted, ungapped RNA sequences were used for subsequent analyses.

First, Rfam alignments were filtered to remove nearly identical sequences, so that the training alignments

contained sequences with at most 98% identity. The sequences were then re-aligned using ClustalW. For each

of these ncRNA family alignments we then proceeded as follows: for each number of sequences from 2 to 15

we generated at most 10 alignments with a randomly chosen average pairwise identity between 50 and 98%

and with a maximum relative difference in sequence lengths of 65% using rnazWindow.pl which is part of

the RNAz analysis pipeline.44

To ensure that this set of positive training examples contained only instances with good structural

conservation signals we filtered alignments by using tree editing distances between the structures of the

sequences in the alignment as a quality measure of structural conservation. Ordered, rooted trees can be

deduced from the dot-bracket notation of RNA secondary structures. Tree editing defines a metric in the

space of trees by a set of operations (deletions, insertion and relabeling of nodes) and hence can be used

to calculate distances between RNA secondary structures.31 For each alignment we extracted sequences,

removed gaps and calculated the averaged pairwise tree editing distance using RNAdistance with options

-d2 -Dh to enable dangling ends and to use the HIT representation for RNA secondary structures. We

repeated this for a set of 100 randomized alignments and calculated an empirical p-value as a measure of

structural conservation. Alignments with a p-value higher than 0.05 were removed from the training set.

Alignments retained after this filtering procedure were realigned with ClustalW with standard options for
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application to sequence-based alignments.

For the generation of structural alignments for the training set we chose to use LocARNATE,40 which is

a structural alignment program based on the Sankoff algorithm for the simultaneous solution of the RNA

folding and the alignment problem. LocARNATE uses RNAfold for structure predictions and hence the same

energy parameters as RNAz does. LocARNATE was called with options --no-seq --no-struc to generate

global, structural alignments.

Negative instances of the training set were generated by shuffling using multiperm41 v. 0.9.3 if the

normalized Shannon entropy of the alignment31 was less than 0.50. Otherwise, alignments were simulated

using SISSIz32 to ensure full randomization for the more diverse alignments where shuffling can become

inefficient. The final training set was composed of 10,538 alignments for each the positive and the negative

class.

The RNAz 2.0 SVM classifier uses three features to detect structured noncoding RNAs: (i) the average

minimum free energy z-score z̄ estimated from a dinucleotide shuffled background, (ii) the SCI and (iii) the

normalized Shannon entropy H of the alignment as a measure for the content of evolutionary information.

Consider an alignment A consisting of N sequences. Let Ex denote the minimum free energy of sequence

x, and let µx and σx be the mean and standard deviation, respectively, of the folding energies of a large

number of random sequences of the same length and same dinucleotide composition as x. The averaged

z-score of the alignment A is defined as

z̄ =
1

N

∑

x∈A

Ex − µx

σx

The SCI of an alignment is given as the fraction of the consensus folding free energy (Econsensus) to the

average of the folding free energies of the single sequences:

SCI =
Econsensus

1
N

∑
x∈A

Ex

The normalized Shannon entropy H of an alignment A of RNA sequences over the alphabet Σ = {A, C, G,

U, -} is defined as the sum of the Shannon entropies of the individual columns divided by the length of the

alignment denoted by L:

H = −
1

L

L∑

i

∑

α∈Σ

pi

α log2 pi

α

The probability pi
α is approximated by the observed frequency of character α in alignment column i (nor-

malized by the number N of sequences in the alignment). All features were scaled to a range of [-1,1].

Standard grid search combined with a 10-fold cross validation was applied to find optimized SVM param-

eters. Among the models with the best cross-validation accuracy (top 20) we chose the model that showed

best performance on an independent test set created the same way as the training set. The output of the

final classification SVM is a probability estimate that the input alignment contains thermodynamically stable

and/or structurally conserved RNA sequences.

A second, independent, SVM classifier was trained on sequence/structure-based alignments generated

by LocARNATE using the same procedure.

3. Results

3.1. Dinucleotide based z-scores

To estimate the mean and standard deviation of folding energies for mononucleotide shuffled sequences it is

feasible to sample uniformly simply by varying variables describing the four mononucleotide frequencies and

the length of the sequence on a grid. This approach cannot, however, be extended that easily for dinucleotide

shuffled sequences. One has to consider the much larger space of dinucleotide compositions that is occupied by
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Fig. 2. z-scores calculated by support vector regression in comparison with z-scores determined from 1,000 random samples
preserving dinucleotide frequencies for 10,000 randomly drawn sequences from the human ENCODE regions. Correlation of
z-scores is 0.996 and the mean absolute error is 0.076.

sequences of practical interest. In this work we use a grid-like approach, where we first apply uniform sampling

to cover the mononucleotide space and then choose, for each data point in the grid, a representative set of

sequences that covers the dinucleotide space for that particular base composition. However, this procedure

still gave more than one million training instances. The training data was split into different ranges of

the G+C content to guarantee efficient training and fast prediction. This comes at the price of increased

memory consumption but keeps the number of support vectors comparable to the approach used in RNAz

1.0. Accuracy of the z-score regression for dinucleotide shuffled sequences was evaluated on 10,000 randomly

chosen sequences of variable length from 50 to 200 nt from the human ENCODE regions34 (Fig. 2) and

genomic sequences of D. melanogaster and E. coli. The mean absolute error (MAE) and the correlation (R)

of z-scores calculated by SVM regression compared to z-scores determined from 1,000 random samples is

0.0748 and 0.996, respectively (n = 30, 000; genomic sequence from ENCODE regions, D. melanogaster, and

E. coli). Comparisons of z-scores determined from 1,000 dinucleotide shuffled sequences to 100 dinucleotide

shuffled sequences (MAE= 0.107, R = 0.992) and to 1,000 mononucleotide shuffled samples (MAE= 0.420,

R = 0.916) clearly demonstrate that our method is a suitable approach for fast and efficient estimation of

dinucleotide controlled z-scores. RNAz 1.0 also showed restrictions on the base composition because of the

training range of the SVR. This limitation is now overcome by explicit generation of shuffled sequences once

the base composition of a sequence is out of the training range. Since boundaries have been chosen broadly

(e.g. G+C content from 20 to 80%) this will only apply in a small minority of cases.

3.2. New training sets and improved classification model

Since the postulation of the SCI, it has been a major point of criticism that the SCI evaluates structural

conservation on the energy level rather than on the RNA structures themselves. However, in previous study31

it has been shown that the SCI is on average the most powerful method and that it is only outperformed by
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Fig. 3. Accuracy of RNAz 2.0 classification (black) vs. RNAz 1.0 classification (orange) on a previously published data set for
the evaluation of noncoding RNA gene finders.32 The positive instance data set consists of 4,303 alignments of structural RNA
families (5S ribosomal RNA, U2 spliceosomal RNA, tRNA, Hammerhead ribozyme, U3 snoRNA, U5 spliceosomal RNA, Group
II catalytic intron, and Mir-10 microRNA) with two to six sequences per alignment. The negative instance data set consists of
4,303 alignments taken from random genomic location, which resemble approximately the same dinucleotide composition and
conservation degree as the positive set. The inset shows the region of high specificity were RNAz 2.0 clearly outperforms the old
version.

other approaches in the high sequence identity range. Attempts to use other conservation measure methods

than the SCI, however, failed to give results of comparable quality (data not shown).

To use the SCI for efficient classification one has to take into account the average pairwise identity and

the number of sequences as well. Due to the lack of comparative data at the time of training of the initial

RNAz algorithm limits on these two descriptors were rather arbitrarily chosen. In this work we generated a

new training set covering a broader range of RNA families and evaluate sequence variation in terms of the

normalized Shannon entropy which has been shown to combine both sequence variation and the number of

sequences into one measure.31 This does not only result in dimensionality reduction of the final classification

model, but also overcomes the need to set an upper boundary to the number of sequences in an alignment.

The new RNAz 2.0 algorithm now uses the average z-score of the sequences in the alignment based

on a dinucleotide background model, the SCI and the normalized Shannon entropy as features in the final

classification model. To evaluate the predictive power of RNAz 2.0 we chose a test set used in a previous

study.32 This test set is especially well suited as it contains randomly chosen genomic regions from vertebrate

alignments as negative controls. The background dinucleotide content in vertebrate genomes is known to be

the main reason for false positive calls in RNAz 1.0.33 Although both versions perform well on this test set,

RNAz 2.0 clearly outperforms version 1.0 in the high specificity range (Fig. 3). For example, at the generally

used 0.01 false-positive cutoff, RNAz 2.0 shows 0.899 sensitivity compared to 0.688 in the old version.

It is a well known fact that sequence-based alignment methods fail to give high quality alignments

regarding RNA secondary structures in low average pairwise identity ranges. By using structural alignments

one can expect an improvement in discrimination capability of the SCI for alignments with low sequence
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Fig. 4. ROC curves for the RNAz 2.0 prediction accuracy on sequence-based alignments (black) vs. structural alignments (red).
A significant improve of the overall predictive power of RNAz 2.0 is achieved by use of structural alignments. The test set is
composed of 2,455 alignments of various ncRNA families with an average pairwise identity between 30 and 70%, as well as
a negative set consisting of 2,455 alignments derived by randomization of reference alignments with multiperm or SISSIz as
described in section 2.2. Sequence-based alignments were generated with ClustalW, while structural alignments were generated
with LocARNATE.

similarity.11 Therefore, we trained a separate SVM decision model based on sequence/structure alignments,

similar to the approach used in RSSVM.30 Structural alignments were generated using LocARNATE, a multiple

alignment variant of LocARNA.46 As depicted in Fig. 4 structural alignments improve the overall predictive

power of RNAz.

Recent studies (e.g. Washietl et al.33) have shown that RNAz suffers from a high false discovery rate

(FDR). We therefore evaluated the performance of both versions for the human ENCODE regions. 17-way

MAF alignments based on the human genome assembly hg.17 were downloaded from the UCSC genome

browser. In total we screened 193,634 MAF alignments derived by pre-filtering with rnazWindow.pl with

standard options (window length is 120 nt, step size is 40 nt, average pairwise identity the resulting alignment

is optimized to is 80%, and at most six sequences are allowed). Both reading directions were considered in

our analysis. A dinucleotide background model was generated with SISSIz32 and all hits detected by RNAz

on this data set were considered to be false positives. Results are summarized in Tab. 1. While RNAz 1.0

shows a very high FDR of around 80%, the FDR of RNAz 2.0 is much lower being around 54% for high

confident hits (classification probability > 0.9). It seems noteworthy, that in a previous study33 the FDR for

RNAz 1.0 on ENCODE data was estimated to be around 50%. This estimate was based on a rather simplistic

ad hoc method to correct for the dinucleotide bias. The new results are based on the more accurate SISSIz

null model and demonstrate that RNAz 1.0 is even more affected by the dinucleotide bias than previously

assumed. The new version, however, reduces this source of false positives significantly.

To investigate a potential G+C bias of RNAz that was observed for version 1.0,33 we also trained a

classification model that included the G+C content as fourth feature. This additional feature, however, had

little impact on the predictions. In particular, the distribution of the G+C content of the positive predictions
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Table 1. Comparison of the false discovery rate (FDR) based on ENCODE
regions and a dinucleotide background model for low (P > 0.5) and high
(P > 0.9) confidence hits. A hit corresponds to a single alignment derived from
pre-filtering of ENCODE MAF alignments with rnazWindow.pl.

RNAz 1.0 RNAz 2.0

# low conf. # high conf. # low conf. # high conf.

ENCODE regions 17,814 6,854 6,880 2,259
background 14,489 5,596 4,090 1,219

estimated FDR 81% 82% 59% 54%

remained nearly unchanged (data not shown). This suggests that the elevated G+C content of RNAz hits

is not an artificial bias, but rather reflects the G+C content of true functional RNAs. Consistent with this

observation, the G+C bias of structured RNAs has been used successfully for de novo prediction of RNA

genes.43 Preliminary analysis of the ENCODE data showed that the effect is smaller for RNAz 2.0 than in

the earlier version.

3.3. Computational speed

The performance of RNAz 2.0 in comparison to RNAz 1.0 was benchmarked on 50,000 randomly chosen MAF

alignments from the ENCODE data set. Alignment length was 120 nucleotides and alignments contained

at most six sequences. Experiments were conducted on an Intel Xeon 2.40GHz CPU. For each alignment

both reading directions were examined, resulting in a total of 100,000 alignments that had to be scored. The

execution time required by RNAz 1.0 was 202 min, RNAz 2.0 with explicit shuffling switched off was 252

min and RNAz 2.0 using explicit shuffling was 1,230 min. Although explicit shuffling had to be used for only

1% of the sequences (5,524 out of 549,210), it comes with an tremendous overhead increasing the run time of

RNAz 2.0 almost 5-fold. We extracted those alignments where explicit shuffling was used and compared the

classification probability to the one derived from calling RNAz with option --no-shuffle to avoid explicit

shuffling. For the vast majority of cases (96%) the change in classification probability was less than 1%. For

this data set the maximal observed difference was 0.21. In general, we observed larger differences in the range

from 0.2 to 0.8 than in the regions close to 0 or 1.

With option --no-shuffle, RNAz 2.0 has an execution time that is increased by about 25% compared

to RNAz 1.0.

4. Future directions

In this work we present a major update of the RNAz algorithm. Evaluation of thermodynamic stability has

been improved by considering a dinucleotide background model. This directly translates into a significantly

lower false discovery rate. In addition to the dinucleotide z-score, the overall prediction accuracy is improved

by a combination of the use of a new training set and the normalized Shannon entropy as a measure of

sequence variation. Furthermore, the updated version is not any more restricted to limitations concerning

the base composition or number of sequences in the input alignment.

The generation of structural alignments is computationally expensive but we showed that they can

improve the RNAz classification power. This is true in particular for alignments of low average pairwise

identity. Given that the overall computational complexity of LocARNATE is O(n4), the routine use of structural

alignments on a genome-wide scale is still out of reach, at least when off-the shelf hardware is used. In

general, it has to be questioned if ncRNA gene finding would benefit from realigning genomic alignments

available to date with a structural aligner. These alignments have been generated by means of sequence-

only based methods and therefore are not likely to contain homologous RNA sequences that evolve fast

on nucleotide level but retain structural conservation. A feasible strategy, however, is the pre-selection of
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syntenic regions based on better-conserved flanking regions.13 Such an approach could be employed for

the detection of conserved local structures in the untranslated regions of protein-coding mRNAs, where

orthology is established based on similarities of the much better conserved coding sequences. The re-scoring

of positively scored hits of a sequence-based RNAz screen after re-aligning them with a structural aligner

may help to increase the overall accuracy, in particular for relatively poorly conserved alignment slices. One

could also use RNALfold45 augmented with the z-score prediction engine of RNAz to screen for loci that show

signature of increased thermodynamic stability then re-evaluate these loci using structural alignments with

RNAz 2.0 to also account for structural conservation.

An open question, not covered by this work, is how to address the growing number of species in genomic

alignments. The use of the normalized Shannon entropy helped us to remove the upper limit on the number

of sequences in the alignment. Preliminary analysis of RNAz 2.0 on multiz 44-way, 28-way and 17-way

alignments shows, however, that the simple use of more sequences does not necessarily correlated with

improved classification power. To a large extent the increased conservation signal is counteracted by increasing

levels of alignment errors. Structural variation of the ncRNAs themselves also poses technical challenges. To-

date, an algorithm that addresses both possible misalignments and structural variation is still missing.

RNA secondary structure prediction is sensitive to the exact ends of the input sequence. The use of

arbitrarily determined alignment windows of fixed width thus introduces noise. This issue will be allevi-

ated in a forthcoming update of RNAz that addresses the pre-processing of long genomic alignments. Here,

the sliding window approach will be replaced by the systematic use of RNALalifold,47 an algorithm that

computes locally stable consensus RNA secondary structures. These are then used to extract alignments of

self-contained (sub)structures for RNAz scoring.

RNAz 2.0 was trained on two particular alignment methods, ClustalW for sequence-based alignments

and LocARNATE for structure-based alignments. As RNAz uses a machine learning approach, we have to expect

some influence of the alignment algorithm since the features passed to the SVM implicitly also incorporate

properties of the alignment algorithms themselves. It may thus become necessary to either re-align the input

data or to train decision models for alternative alignment methods.

Supplementary material

An Electronic Supplement located at www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/09-026/

compiles a supplemental figure and data sets used in this work.
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