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A Key assumptions and additional lemmas

In the main body of the paper, the following conditions are assumed:

1. the loss function ℓ(y, •) is proper convex for all y ∈ [m], and (P) is bounded and has an interior feasible
solution;

2. the Fenchel conjugate ℓ̂(y, •) is continuous on its effective domain and strictly convex for all y ∈ [m];

3. dom ℓ̂(y, •) is nonempty, bounded and closed for all y ∈ [m].

Before proving our theorems, we must introduce the following lemmas.

Lemma 12 (Strong duality; Theorem 9.6 in [6]). Let ai ∈ Rn and bi ∈ R for all i ∈ [m]. Let f : Rn →
[−∞, +∞] be the objective function of the following problem:

minimize
x∈Rn

f(x)

subject to a⊤
i x− bi = 0, ∀i ∈ [m].

We assume that f is proper convex and that there is a feasible solution on ri dom f , which denotes the relative
interior of dom f . Moreover, if this optimization problem is bounded, the optimal values of the following two
optimization problems are the same.

maximize
λ∈Rm

min {L(x, λ) | x ∈ Rn} ,

minimize
x∈Rn

max {L(x, λ) | λ ∈ Rm} ,

where L : Rn × Rm → R ∪ {+∞} is the Lagrange function

L(x,λ) = f(x) +

m∑
i=1

λi(a
⊤
i x− bi).

Lemma 13 (Section 3.5 in [4]). Given A ⊆ Rm, let fα : Rn → R be subdifferentiable functions for all α ∈ A.
Let f : Rn → R be the function defined by

f(x) = sup
α∈A

fα(x).

Then f is subdifferentiable if A is compact and the function α 7→ fα(x) is upper semi-continuous for each x.
The subderivative of f is given by

∂f(x) = conv
[∪

{∂fα(x) | α ∈ A, fα(x) = f(x)}
]
,

where conv denotes the convex hull of a set.



Lemma 14. Given U ⊆ Rp, let f : Rn × U → R be the objective function of the optimization problem

maximize
x∈S(u)

f(x, u), (14)

where S : U → P(Rn) is a constraint map. Assume that S is continuous at a point ū ∈ U and that the objective
function f is continuous on S(ū) × {ū}. If problem (14) has the unique optimal solution x̄ for u = ū, the
following map Φ : U → P(Rn) is continuous at ū:

Φ(u) = argmax
x

{f(x, u) | x ∈ S(u)}.

Proof. The same result is proved for a minimization problem in Theorem 3.30 in [5]. We can use this result
directly.

Lemma 15 (Section 3.2.3 in [3]). Let A ⊆ Rm and f : Rn ×A → [−∞,+∞]. Let g : Rn → [−∞,+∞] be the
function defined by

g(x) = sup
y∈A

f(x, y).

If f(• , y) is convex for each y ∈ A, g is convex.

A.1 Proof of Theorem 1

The proof proceeds along the lines of the proof of Theorem 1 in [1]. First, we derive the Lagrangian relaxation
of problem (P) as follows:

minimize
W∈Rm×p, b∈Rm,η∈Rn×m

maximize
α∈Rn×m

n∑
i=1

ℓ(yi,ηi• ) +
1

2γ

m∑
r=1

∥wr•∥22 +
n∑

i=1

m∑
r=1

αir(w
⊤
r•xi• + br − ηir).

From Assumption 1, the loss function ℓ(y, •) is proper convex for all y ∈ [m] and problem (P) is bounded and
has a interior feasible solution. Consequently, the strong duality holds by Lemma 12. We now transform this
problem into

maximize
α∈Rn×m

n∑
i=1

min
{
ℓ(yi,ηi• )−α⊤

i• ηi• | ηi• ∈ Rm
}

(15)

+

m∑
r=1

min
{
br1

⊤α•r | br ∈ R
}

(16)

+

m∑
r=1

min

{
1

2γ
∥wr•∥22 +w⊤

r•X
⊤α•r | wr• ∈ Rp

}
. (17)

Because their decision variables are independent, these minimization problems (15)–(17) can be solved sepa-
rately as follows:

• The optimal value of (15) is −ℓ̂(yi,αi• ) from the definition of the conjugate function.

• An equality constraint 1⊤α•r = 0 is obtained because problem (16) must be bounded.

• Problem (17) can be solved analytically; we have the optimal solution w⋆
r• = −γX⊤α•r.

From these results, we have the dual problem as desired.

A.2 Proof of Lemma 2

First, for any y ∈ [m] and α ∈ dom ℓ̂(y, •), the expression
∑m

r=1

∑p
j=1 zj(x

⊤
• jα•r)

2 is differentiable with respect

to z ∈ [0, 1]p. In addition, dom ℓ̂(y, •) is bounded and closed from Assumption 3. The subderivative of c is
therefore obtained by Lemma 13 as

∂c(z) = conv

{(
−γ

2

∥∥α⊤x• j

∥∥2
2

)
j∈[p]

∣∣∣∣ 1⊤α•r = 0, ∀r ∈ [m], αi• ∈ dom ℓ̂(yi, •), ∀i ∈ [n], fz(α) = c(z)

}
,



where fz is the objective function (10). Moreover, fz is strictly convex because of XX⊤ ⪰ O and the strict

convexity of ℓ̂(y, •) from Assumption 2. That is, the map α⋆ is a monomorphism. We thus obtain the partial
derivatives of z as (11).

Next we show the continuity of ∇c(z). The expression (11) is continuous at each z ∈ [0, 1]p if the function
α⋆ is continuous; we therefore show the continuity of α⋆ instead. The feasible region

A =
{
α ∈ Rn×m

∣∣∣ 1⊤α•r = 0, ∀r ∈ [m], αi ∈ dom ℓ̂(yi, •), ∀i ∈ [n]
}

does not depend on z, and thus the constraint map of (Dz) is trivially continuous at each z ∈ [0, 1]p. For any
z ∈ [0, 1]p, the objective function (10) is also continuous in α. From these facts and the uniqueness of α⋆(z),
α⋆ satisfies the assumptions of Lemma 14. Consequently, α⋆ is continuous at each z ∈ [0, 1]p.

From the above discussion, c is continuously differentiable.

A.3 Proof of Lemma 3

For each α ∈ A, the objective function (10) is linear in z ∈ [0, 1]p and thus convex. Consequently, c is convex
from Lemma 15.

A.4 Proof of Theorem 4

Algorithm 1 converges to an optimal solution if the following conditions are satisfied [2]:

• The optimization problem (7) is feasible and bounded.

• The objective function c is continuously differentiable and convex.

The former condition is clearly satisfied by Assumption 1, and the latter condition is also satisfied because
Lemmas 2 and 3 hold under Assumptions 1–3. Because the loss function satisfies Assumptions 1–3, Algorithm 1
converges to the optimal solution in a finite number of iterations.

A.5 Proof of Proposition 5

First, we prove that the function ℓMNL(y, •) is proper convex for any y ∈ [m]. From the definition, we have
ℓMNL(y, η) = − log [exp(ηy)/

∑m
s=1 exp(ηs)]. Because 0 < exp(v) < +∞ for any v ∈ R, the following inequality

holds:

0 <
exp(ηy)∑m
s=1 exp(ηs)

< 1.

Consequently, dom ℓMNL(y, •) = Rm ̸= ∅ and ℓMNL(y, η) > 0. The convexity of ℓMNL(y, •) is discussed in
Section 3 in [7].

Next, we consider problem (P) of the MNL model. As discussed above, 0 < ℓMNL(y, η) < +∞, ∀y ∈
[m], η ∈ Rm. Consequently, (P) is bounded and feasible. Because dom ℓMNL(y, •) = Rm for all y ∈ [m],
(P) has an interior feasible solution.

A.6 Proof of Proposition 6

The continuity is trivial because v log v is continuous at each v ∈ [0, 1]. We also find that ℓ̂MNL(y, •) is strictly
convex for all y ∈ [m] because its Hessian matrix is always positive definite; this is easily observed from the
following equation:

∂2ℓ̂MNL

∂αs∂αr
(y,α) =


α−1
r if r ̸= y and s = r,

(1 + αr)
−1 if r = y and s = r,

0 otherwise,

∀α ∈ AMNL
y .

A.7 Proof of Proposition 7

We have αiyi
= −1⊤α

\yi

i• from constraint (9). Consequently, the feasible region AMNL is bounded and closed.



A.8 Proof of Proposition 9

The second equality below is satisfied by the definition of ĝ:

g(η; p) = sup{ηα− ĝ(α; p) | α ∈ [0, 1]}
= sup{ηα− (p3α

2 + p2α+ p1) | α ∈ [0, 1]}. (18)

We note that the objective function of problem (18) is concave from the assumption p3 > 0. We differentiate
the objective function with respect to α and then set it equal to zero as follows:

η − 2p3ᾱ− p2 = 0,

where ᾱ ∈ R is the stationary point. Consequently, the following holds:

ᾱ =
η − p2
2p3

. (19)

Because the objective function is concave, the optimal value is given at α = 0 and α = 1 when ᾱ < 0 and
ᾱ > 1, respectively.

These intervals can be transformed into the following intervals of η by equation (19):

ᾱ < 0 ⇔ η < p2,

ᾱ ∈ [0, 1] ⇔ η ∈ [p2, p2 + 2p3],

ᾱ > 1 ⇔ η > p2 + 2p3.

Consequently, we have the desired result.

A.9 Proof of Proposition 10

The second equality below is satisfied by the definition of ℓTitsias:

ℓ̂Titsias(y,α) = sup{α⊤η − ℓTitsias(y, η) | η ∈ Rm}

= sup{α⊤η −
∑
s̸=y

log[1 + exp(ηs − ηy)] | η ∈ Rm}. (20)

Because optimization problem (20) has no constraints and has a convex objective function, we obtain an optimal
solution by the gradient with respect to η. Let us consider the following two cases.
Case 1: r ̸= y holds. First, we calculate the partial derivative with respect to ηr, and set it equal to zero as
follows:

αr −
exp(η⋆r − η⋆y)

1 + exp(η⋆r − η⋆y)
= 0,

where η⋆ ∈ Rm is an optimal solution of problem (20). That is,

1

1 + exp(η⋆y − η⋆r )
= αr. (21)

From this equation, the following two equations are obtained:

η⋆y − η⋆r = log(1− αr)− logαr, (22)

1 + exp(η⋆r − η⋆y) = (1− αr)
−1. (23)

Note that we assume 0 < αr < 1 to derive these equations.
Case 2: r = y holds. Similarly, we calculate the partial derivative with respect to ηr, and set it equal to zero
as follows:

αy +
∑
s̸=y

(
1

1 + exp(η⋆y − η⋆s )

)
= 0.



Consequently, the following equation is obtained from equation (21):

1⊤α = 0. (24)

We obtain the following derivation from equations (22) and (23):

ℓ̂Titsias(y, α) = α⊤η⋆ −
∑
s̸=y

log[1 + exp(η⋆s − η⋆y)]

=
∑
s̸=y

αs

(
η⋆y − log(1− αs) + logαs

)
+ αyη

⋆
y +

∑
s ̸=y

log[1− αs]

=
∑
s̸=y

(αs logαs + (1− αs) log(1− αs)) + η⋆y
∑
s∈[m]

αs.

Consequently, from equation (24), the following equation holds:

ℓ̂Titsias(y, α) =
∑
s̸=y

[αs logαs + (1− αs) log(1− αs)].

Because v log v → 0 when v → 0, we have the desired result.

A.10 Proof of Theorem 11

The loss function ℓquad : [m]× Rm → R is defined by

ℓquad(y, η) =
∑
s̸=y

g(ηs − ηy; p),

where

g(η; p) =


−p1 if η < p2,

(η − p2)
2/4p3 − p1 if η ∈ [p2, p2 + 2p3],

η − (p1 + p2 + p3) otherwise.

Moreover, for each y ∈ [m], let ℓ̂quad(y, •) be the conjugate defined as follows:

ℓ̂quad(y, α) =

{∑
s̸=y p3α

2
s + p2αs + p1 if α ∈ Aquad

y ,

+∞ otherwise,

where
Aquad

y = {α ∈ Rm | 1⊤α = 0, 0 ≤ α\y ≤ 1}.

We show that these two functions and problem (P) satisfy Assumptions 1–3.
First, for each y ∈ [m], ℓquad(y, α) is the summation of quadratic functions; ℓquad(y, α) is thus strictly

convex in α if and only if p3 > 0. Consequently Assumption 2 is satisfied when p3 > 0. Second, we have
0 ≤ α\y ≤ 1 and αy = −1⊤α\y from the definition of Aquad

y . Consequently, Aquad
y is bounded and closed;

that is, Assumption 3 is satisfied. Finally, the function ℓquad is bounded below because g(η; p) ≥ −p1 when
p3 > 0. Because the conjugate of a closed proper convex function is still closed proper convex, ℓquad(y, •) is a
proper convex function. As with the proof of Theorem 5, (P) is bounded and has an interior feasible solution.
Consequently, Assumption 1 is satisfied.

From the above discussion, all the assumptions of Theorem 4 are satisfied, and we have the desired result.
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