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A Key assumptions and additional lemmas

In the main body of the paper, the following conditions are assumed:

1. the loss function £(y, «) is proper convex for all y € [m], and (P) is bounded and has an interior feasible
solution;

2. the Fenchel conjugate g(y, +) is continuous on its effective domain and strictly convex for all y € [m];

3. dom é(y, +) is nonempty, bounded and closed for all y € [m)].

Before proving our theorems, we must introduce the following lemmas.

Lemma 12 (Strong duality; Theorem 9.6 in [6]). Let a; € R™ and b; € R for alli € [m]. Let f : R" —
[—00, +00] be the objective function of the following problem:

minimize f(x)
subject to a/x —b; =0, Vi € [m].

We assume that f is proper convexr and that there is a feasible solution on ri dom f, which denotes the relative
interior of dom f. Moreover, if this optimization problem is bounded, the optimal values of the following two
optimization problems are the same.

m%\)éiﬂgrgze min {L(z, A) | z € R"},

mini%lize max {L(x, A) | A € R"},
me n

where £ : R™ x R™ — RU {400} is the Lagrange function

m

Lz X)) =f(x)+ > Nila]z—b).
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Lemma 13 (Section 3.5 in [4]). Given A CR™, let fo : R™ — R be subdifferentiable functions for all o € A.
Let f : R™ — R be the function defined by

f(x) = sup fo(w).

acA

Then f is subdifferentiable if A is compact and the function o — fo(x) is upper semi-continuous for each .
The subderivative of f is given by

0f @) = conv || J0fal(@) | a € A, fal@) = f@)}],

where conv denotes the convex hull of a set.



Lemma 14. Given U CRP, et f : R™ x U — R be the objective function of the optimization problem

. u
maximize f(z, u), (14)

where S : U — P(R™) is a constraint map. Assume that S is continuous at a point @ € U and that the objective
function f is continuous on S(@) x {u}. If problem (14) has the unique optimal solution T for u = u, the
following map ® : U — P(R™) is continuous at @:

O(u) = arg;nax{f(:c, u) |z e S(u)}

Proof. The same result is proved for a minimization problem in Theorem 3.30 in [5]. We can use this result
directly. O

Lemma 15 (Section 3.2.3 in [3]). Let A CR™ and f: R™ x A — [—00,+00]. Let g : R™ — [—00,400] be the
function defined by

g(x) = sup f(z, y).
yeA

If f(-, y) is convex for each y € A, g is convex.

A.1 Proof of Theorem 1

The proof proceeds along the lines of the proof of Theorem 1 in [1]. First, we derive the Lagrangian relaxation
of problem (P) as follows:

n

1 m n m
minimize maximize Uy; M) + — w,. |2 + Qi (W i + by — 0ir).
WER™ P, bER™ R aeRm X £ (i, i) 2 ; oy Iz ;; ir (W7 @ie by = 1hir)
From Assumption 1, the loss function £(y, «) is proper convex for all y € [m] and problem (P) is bounded and
has a interior feasible solution. Consequently, the strong duality holds by Lemma 12. We now transform this

problem into

n

maximize min {4(y;, n;. —aiT_ i | M. € R™ 15
naximiz ; {tyisni) — aimi | } (15)
+3 " min{b,17a., | b € R} (16)
r=1
= 1
+ Z min {2||wr. 12+ w,. X a., | w,. € RP} . (17)
2
r=1

Because their decision variables are independent, these minimization problems (15)—(17) can be solved sepa-
rately as follows:

e The optimal value of (15) is —¢(y;, cv;.) from the definition of the conjugate function.
e An equality constraint 1T cv.,. = 0 is obtained because problem (16) must be bounded.

e Problem (17) can be solved analytically; we have the optimal solution w}, = —vX " a.,..

From these results, we have the dual problem as desired.

A.2 Proof of Lemma 2

First, for any y € [m] and a € dom £(y,+), the expression 3", Zle zj(x.)e.)? is differentiable with respect
to z € [0, 1]7. In addition, dom £(y,+) is bounded and closed from Assumption 3. The subderivative of ¢ is
therefore obtained by Lemma 13 as

Oc(z) = conv { (f% ||aTa:JH§) ‘ 1o, =0, Vr € [m], ;. € dom U(y;, +), Vi € [n], fz(a) = c(z)},

JEp)



where f, is the objective function (10). Moreover, f, is strictly convex because of X X T = O and the strict
convexity of éA(y7 +) from Assumption 2. That is, the map a* is a monomorphism. We thus obtain the partial
derivatives of z as (11).

Next we show the continuity of Ve(z). The expression (11) is continuous at each z € [0, 1] if the function

* is continuous; we therefore show the continuity of a* instead. The feasible region

a
A= {a e R™™ ‘ 1o, =0, Vr € [m], a; € dom U(y;,+), Vi € [n]}

does not depend on z, and thus the constraint map of (D) is trivially continuous at each z € [0, 1]°. For any
z € [0, 1J7, the objective function (10) is also continuous in c. From these facts and the uniqueness of a*(z),
o satisfies the assumptions of Lemma 14. Consequently, a* is continuous at each z € [0, 1]P.

From the above discussion, c¢ is continuously differentiable.

A.3 Proof of Lemma 3

For each a € A, the objective function (10) is linear in z € [0,1]? and thus convex. Consequently, ¢ is convex
from Lemma 15.

A.4 Proof of Theorem 4

Algorithm 1 converges to an optimal solution if the following conditions are satisfied [2]:
e The optimization problem (7) is feasible and bounded.
e The objective function c¢ is continuously differentiable and convex.

The former condition is clearly satisfied by Assumption 1, and the latter condition is also satisfied because
Lemmas 2 and 3 hold under Assumptions 1-3. Because the loss function satisfies Assumptions 1-3, Algorithm 1
converges to the optimal solution in a finite number of iterations.

A.5 Proof of Proposition 5

First, we prove that the function ¢MN%(y, +) is proper convex for any y € [m]. From the definition, we have

MNE(y ) = —log [exp(n,)/ Som, exp(ns)]. Because 0 < exp(v) < +oo for any v € R, the following inequality
holds:

exp(7y)

> erq exp(ns)

Consequently, dom MNE(y o) = R™ £ () and MNE(y, 1) > 0. The convexity of /MNL(y, +) is discussed in
Section 3 in [7].

Next, we consider problem (P) of the MNL model. As discussed above, 0 < (MNE(y n) < 400, Vy €
[m], n € R™. Consequently, (P) is bounded and feasible. Because dom (MNE(y «) = R™ for all y € [m)],
(P) has an interior feasible solution.

0< <1

A.6 Proof of Proposition 6

The continuity is trivial because vlogwv is continuous at each v € [0,1]. We also find that EMNL(y7 +) is strictly
convex for all y € [m] because its Hessian matrix is always positive definite; this is easily observed from the
following equation:

1 ifr#yands=r,

(y,a) =< (1+a,)" ! ifr=yands=r, VaG.Al;/INL.
0 otherwise,

H2MNL a

Oag,0a,

A.7 Proof of Proposition 7

AMNL

We have oy, = —lTal\.y"’ from constraint (9). Consequently, the feasible region is bounded and closed.



A.8 Proof of Proposition 9
The second equality below is satisfied by the definition of §:

g(n; p) = sup{na — g(a; p) | a € [0, 1]}
= sup{na — (psa® + paar+p1) | e € [0, 1]} (18)

We note that the objective function of problem (18) is concave from the assumption p; > 0. We differentiate
the objective function with respect to o and then set it equal to zero as follows:

77*2}7354*]72 :07
where & € R is the stationary point. Consequently, the following holds:
n—p2

o= . 19
2p3 (19)

Because the objective function is concave, the optimal value is given at « = 0 and @ = 1 when @ < 0 and
@ > 1, respectively.
These intervals can be transformed into the following intervals of i by equation (19):
a<0 & n<po,
a € [01 1] < ne [p2>p2+2p3]3
a>1 & n>py+2ps.

Consequently, we have the desired result.

A.9 Proof of Proposition 10

The second equality below is satisfied by the definition of ¢Titsias;

lZTitsias(y’ a) _ sup{aTn _ [FitsiaLS(y7 "7) | ne Rm}

=sup{a'n — > log[l +exp(n, —n,)] | n € R™}. (20)
s#Y

Because optimization problem (20) has no constraints and has a convex objective function, we obtain an optimal
solution by the gradient with respect to 7. Let us consider the following two cases.

Case 1: r # y holds. First, we calculate the partial derivative with respect to 7., and set it equal to zero as
follows:

exp(ny — )

T e )
where n* € R™ is an optimal solution of problem (20). That is,
1
Ttexp(ny —m) 2!
From this equation, the following two equations are obtained:
ny — 1y = log(1 — a;) — log a, (22)
L+ exp(ny —my) = (1—ar) 7 (23)

Note that we assume 0 < «, < 1 to derive these equations.
Case 2: r = y holds. Similarly, we calculate the partial derivative with respect to 7,, and set it equal to zero

as follows:
o +z< ! ) ~0
y " =
2N\ T+ ey — )




Consequently, the following equation is obtained from equation (21):
1Ta=0. (24)

We obtain the following derivation from equations (22) and (23):

éTitsias(y’ a) _ aTn* _ Z 10g[1 + eXP(W: - 77;/()]

s#y
—Zas — log( 1—ozg)+logag)+ayny+Zlog1—ag}
s#y s#yY
*Z aslogas + (1 — ) log(1 — o)) + 1 Z Q.
s#y s€[m]

Consequently, from equation (24), the following equation holds:

é’I‘itsias(y’ Ol) — Z[as log as + (]_ — as) log(l - OZS)].
s#Y

Because vlogv — 0 when v — 0, we have the desired result.

A.10 Proof of Theorem 11
The loss function £9924 : [m] x R™ — R is defined by

M2y, m) = g(ns =y P),

s#Y

where
—r1 if n < pa,
g(n; p) =< (n—p2)?/4ps —p1 if 1) € [p2, p2 + 2p3),
n— (p1 +p2 +p3) otherwise.

Moreover, for each y € [m], let £9%34(y, +) be the conjugate defined as follows:

Squad B ZS#J p3a? +poas+p1 ifae Ag‘lad,
400 otherwise,

where
A = fa e R™ [1Ta=0,0< 'V <1}

We show that these two functions and problem (P) satisfy Assumptions 1-3.

First, for each y € [m], £9%2d(y, ) is the summation of quadratic functions; £1"%d(y, ) is thus strictly
convex in « if and only if p3 > 0. Consequently Assumption 2 is satisfied when p3 > 0. Second, we have
0 < aV¥ <1 and oy = —1Ta\¥ from the definition of Aq”ad. Consequently, Aq“ad is bounded and closed;
that is, Assumption 3 is satisfied. Finally, the function fq“ad is bounded below because g(n; p) > —p1 when
p3 > 0. Because the conjugate of a closed proper convex function is still closed proper convex, £943d(y, +) is a
proper convex function. As with the proof of Theorem 5, (P) is bounded and has an interior feasible solution.
Consequently, Assumption 1 is satisfied.

From the above discussion, all the assumptions of Theorem 4 are satisfied, and we have the desired result.

References

[1] D. Bertsimas, J. Pauphilet, and B. V. Parys. Sparse classification and phase transitions: A discrete opti-
mization perspective. arXiv preprint arXiv:1710.01352, 2017.

[2] P. Bonami, L. Biegler, A. Conn, G. Cornuéjols, I. Grossmann, C. Laird, J. Lee, A. Lodi, F. Margot, N.
Sawaya, and A. Wichter. An algorithmic framework for convex mixed integer nonlinear programs. Discrete
Optimization 5(2):186-204, 2008.



[3] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

[4] S.Boyd and L. Vandenberghe. Subgradients. Lecture notes for EE364b, Stanford University, Winter Quarter
2006—2007, 2008.

[5] M. Fukushima. Basic nonlinear optimization (in Japanese). Asakura Publishing, 2001.

[6] T. Kanamori, T. Suzuki, I. Takeuchi, and I. Sato. Continuous optimization for machine learning (in
Japanese). Kodansha Scientific, 2016.

[7] J. D. M. Rennie. Regularized logistic regression is strictly convex. Technical report, MIT,
[http://qwone.com/ ~jason/writing/convexLR.pdf], 2005. Last accessed: 2018-09-05.



