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Abstract
We explore the sequential decision-making prob-
lem where the goal is to estimate a number of lin-
ear models uniformly well, given a shared budget
of random contexts independently sampled from
a known distribution. For each incoming context,
the decision-maker selects one of the linear mod-
els and receives an observation that is corrupted
by the unknown noise level of that model. We
present Trace-UCB, an adaptive allocation algo-
rithm that learns the models’ noise levels while
balancing contexts accordingly across them, and
prove bounds for its simple regret in both expec-
tation and high-probability. We extend the algo-
rithm and its bounds to the high dimensional set-
ting, where the number of linear models times
the dimension of the contexts is more than the
total budget of samples. Simulations with real
data suggest that Trace-UCB is remarkably ro-
bust, outperforming a number of baselines even
when its assumptions are violated.

1. Introduction
We study the problem faced by a decision-maker whose
goal is to estimate a number of regression problems equally
well (i.e., with a small prediction error for each of them),
and has to adaptively allocate a limited budget of samples
to the problems in order to gather information and improve
its estimates. Two aspects of the problem formulation are
key and drive the algorithm design: 1) The observations
Y collected from each regression problem depend on side
information (i.e., contexts X 2 Rd) and we model the re-
lationship between X and Y in each problem i as a linear
function with unknown parameters �i 2 Rd, and 2) The
“hardness” of learning each parameter �i is unknown in ad-
vance and may vary across the problems. In particular, we
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assume that the observations are corrupted by noise levels
that are problem-dependent and must be learned as well.

This scenario may arise in a number of different domains
where a fixed experimentation budget (number of samples)
should be allocated to different problems. Imagine a drug
company that has developed several treatments for a partic-
ular form of disease. Now it is interested in having an accu-
rate estimate of the performance of each of these treatments
for a specific population of patients (e.g., at a particular
geographical location). Given the budget allocated to this
experiment, a number of patients n can participate in the
clinical trial. Volunteered patients arrive sequentially over
time and they are represented by a context X 2 Rd summa-
rizing their profile. We model the health status of patient X
after being assigned to treatment i by scalar Yi 2 R, which
depends on the specific drug through a linear function with
parameter �i (i.e., Yi ⇡ XT�i). The goal is to assign each
incoming patient to a treatment in such a way that at the end
of the trial, we have an accurate estimate for all �i’s. This
will allow us to reliably predict the expected health status
of each new patient X for any treatment i. Since the param-
eters �i and the noise levels are initially unknown, achiev-
ing this goal requires an adaptive allocation strategy for the
n patients. Note that while n may be relatively small, as
the ethical and financial costs of treating a patient are high,
the distribution of the contexts X (e.g., the biomarkers of
cancer patients) can be precisely estimated in advance.

This setting is clearly related to the problem of pure ex-
ploration and active learning in multi-armed bandits (An-
tos et al., 2008), where the learner wants to estimate the
mean of a finite set of arms by allocating a finite budget
of n pulls. Antos et al. (2008) first introduced this setting
where the objective is to minimize the largest mean square
error (MSE) in estimating the value of each arm. While
the optimal solution is trivially to allocate the pulls pro-
portionally to the variance of the arms, when the variances
are unknown an exploration-exploitation dilemma arises,
where variance and value of the arms must be estimated at
the same time in order to allocate pulls where they are more
needed (i.e., arms with high variance). Antos et al. (2008)
proposed a forcing algorithm where all arms are pulled at
least

p
n times before allocating pulls proportionally to the

estimated variances. They derived bounds on the regret,
measuring the difference between the MSEs of the learn-
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ing algorithm and an optimal allocation showing that the
regret decreases as O(n�3/2

). A similar result is obtained
by Carpentier et al. (2011) that proposed two algorithms
that use upper confidence bounds on the variance to es-
timate the MSE of each arm and select the arm with the
larger MSE at each step. When the arms are embedded
in Rd and their mean is a linear combination with an un-
known parameter, then the problem becomes an optimal
experimental design problem (Pukelsheim, 2006), where
the objective is to estimate the linear parameter and min-
imize the prediction error over all arms (see e.g., Wiens &
Li 2014; Sabato & Munos 2014). In this paper, we consider
an orthogonal extension to the original problem where a fi-
nite number of linear regression problems is available (i.e.,
the arms) and random contexts are observed at each time
step. Similarly to the setting of Antos et al. (2008), we
assume each problem is characterized by a noise with dif-
ferent variance and the objective is to return regularized
least-squares (RLS) estimates with small prediction error
(i.e., MSE). While we leverage on the solution proposed
by Carpentier et al. (2011) to deal with the unknown vari-
ances, in our setting the presence of random contexts make
the estimation problem considerably more difficult. In fact,
the MSE in one specific regression problem is not only de-
termined by the variance of the noise and the number of
samples used to compute the RLS estimate, but also by the
contexts observed over time.

Contributions. We propose TRACE-UCB, an algorithm
that simultaneously learns the “hardness” of each problem,
allocates observations proportionally to these estimates,
and balances contexts across problems. We derive perfor-
mance bounds for TRACE-UCB in expectation and high-
probability, and compare the algorithm with several base-
lines. TRACE-UCB performs remarkably well in scenarios
where the dimension of the contexts or the number of in-
stances is large compared to the total budget, motivating the
study of the high-dimensional setting, whose analysis and
performance bounds are reported in App. F of Riquelme
et al. (2017a). Finally, we provide simulations with syn-
thetic data that support our theoretical results, and with real
data that demonstrate the robustness of our approach even
when some of the assumptions do not hold.

2. Preliminaries
The problem. We consider m linear regression problems,
where each instance i 2 [m] = {1, . . . ,m} is characterized
by a parameter �i 2 Rd such that for any context X 2 Rd,
a random observation Y 2 R is obtained as

Y = XT�i + ✏i, (1)

where the noise ✏i is an i.i.d. realization of a Gaussian dis-
tribution N (0,�2

i ). We denote by �2

max

= maxi �2

i and

by �2

= 1/m
P

i �
2

i , the largest and the average variance,
respectively. We define a sequential decision-making prob-
lem over n rounds, where at each round t 2 [n], the learn-
ing algorithm A receives a context Xt drawn i.i.d. from
N (0,⌃), selects an instance It, and observes a random
sample YIt,t according to (1). By the end of the experiment,
a training set Dn = {Xt, It, YIt,t}t2[n] has been collected
and all the m linear regression problems are solved, each
problem i 2 [m] with its own training set Di,n (i.e., a sub-
set of Dn containing samples with It = i), and estimates
of the parameters {ˆ�i,n}i2[m]

are returned. For each ˆ�i,n,
we measure its accuracy by the mean-squared error (MSE)

Li,n(
ˆ�i,n)=EX

⇥

(XT�i�XT
ˆ�i,n)

2

⇤

=k�i� ˆ�i,nk2
⌃

. (2)

We evaluate the overall accuracy of the estimates returned
by the algorithm A as

Ln(A) = max

i2[m]

EDn

⇥

Li,n(
ˆ�i,n)

⇤

, (3)

where the expectation is w.r.t. the randomness of the con-
texts Xt and observations Yi,t used to compute ˆ�i,n. The
objective is to design an algorithm A that minimizes the
loss (3). This requires defining an allocation rule to select
the instance It at each step t and the algorithm to com-
pute the estimates ˆ�i,n, e.g., ordinary least-squares (OLS),
regularized least-squares (RLS), or Lasso. In designing a
learning algorithm, we rely on the following assumption.

Assumption 1. The covariance matrix ⌃ of the Gaussian
distribution generating the contexts {Xt}nt=1

is known.

This is a standard assumption in active learning, since in
this setting the learner has access to the input distribu-
tion and the main question is for which context she should
ask for a label (Sabato & Munos, 2014; Riquelme et al.,
2017b). Often times, companies, like the drug company
considered in the introduction, own enough data to have
an accurate estimate of the distribution of their customers
(patients).

While in the rest of the paper we focus on Ln(A), our al-
gorithm and analysis can be easily extended to similar ob-
jectives such as replacing the maximum in (3) with average
across all instances, i.e., 1/m

Pm
i=1

EDn

⇥

Li,n(
ˆ�i,n)

⇤

, and
using weighted errors, i.e., maxi wi EDn

⇥

Li,n(
ˆ�i,n)

⇤

, by
updating the score to focus on the estimated standard de-
viation and by including the weights in the score, respec-
tively. Later in the paper, we also consider the case where
the expectation in (3) is replaced by the high-probability
error (see Eq. 17).

Optimal static allocation with OLS estimates. While the
distribution of the contexts is fixed and does not depend on
the instance i, the errors Li,n(

ˆ�i,n) directly depend on the
variances �2

i of the noise ✏i. We define an optimal baseline
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obtained when the noise variances {�2

i }mi=1

are known. In
particular, we focus on a static allocation algorithm Astat
that selects each instance i exactly ki,n times, indepen-
dently of the context,1 and returns an estimate ˆ�i,n com-
puted by OLS as

b�i,n =

�

XT
i,nXi,n

��1

XT
i,nYi,n, (4)

where Xi,n 2 Rki,n⇥d is the matrix of (random) samples
obtained at the end of the experiment, and Yi,n 2 Rki,n

is its corresponding vector of observations. It is simple to
show that the global error corresponding to Astat is

Ln(Astat) = max

i2[m]

�2

i

ki,n
Tr

⇣

⌃EDn

⇥

b

⌃

�1

i,n

⇤

⌘

, (5)

where b⌃i,n = XT
i,nXi,n/ki,n 2 Rd⇥d is the empirical co-

variance matrix of the contexts assigned to instance i. Since
the algorithm does not change the allocation depending on
the contexts and Xt ⇠ N (0,⌃), b⌃�1

i,n is distributed as an
inverse-Wishart and we may write (5) as

Ln(Astat) = max

i2[m]

d�2

i

ki,n � d� 1

. (6)

Thus, we derive the following proposition for the optimal
static allocation algorithm A⇤

stat.

Proposition 1. Given m linear regression problems, each
characterized by a parameter �i, Gaussian noise with vari-
ance �2

i , and Gaussian contexts with covariance ⌃, let
n > m(d + 1), then the optimal OLS static allocation al-
gorithm A⇤

stat selects each instance

k⇤i,n =

�2

i
P

j �
2

j

n+ (d+ 1)

✓

1� �2

i

�2

◆

, (7)

times (up to rounding effects), and incurs the global error

L⇤
n = Ln(A⇤

stat) = �2

md

n
+O

 

�2

✓

md

n

◆

2

!

. (8)

Proof. See Appendix A.1.2

Proposition 1 divides the problems into two types: those
for which �2

i � �̄2 (wild instances) and those for which
�2

i < �̄2 (mild instances). We see that for the first type,
the second term in (7) is negative and the instance should
be selected less frequently than in the context-free case
(where the optimal allocation is given just by the first term).
On the other hand, instances whose variance is below the

1This strategy can be obtained by simply selecting the first
instance k1,n times, the second one k2,n times, and so on.

2All the proofs can be found in the appendices of the extended
version of the paper (Riquelme et al., 2017a).

mean variance should be pulled more often. In any case,
we see that the correction to the context-free allocation
(i.e., the second term) is constant, as it does not depend on
n. Nonetheless, it does depend on d and this suggests that
in high-dimensional problems, it may significantly skew
the optimal allocation.

While A⇤
stat effectively minimizes the prediction loss Ln,

it cannot be implemented in practice since the optimal al-
location k⇤i requires the variances �2

i to be known at the
beginning of the experiment. As a result, we need to devise
a learning algorithm A whose performance approaches L⇤

n

as n increases. More formally, we define the regret of A as

Rn(A) = Ln(A)� Ln(A⇤
stat) = Ln(A)� L⇤

n, (9)

and we expect Rn(A) = o(1/n). In fact, any allocation
strategy that selects each instance a linear number of times
(e.g., uniform sampling) achieves a loss Ln = O(1/n), and
thus, a regret of order O(1/n). However, we expect that the
loss of an effective learning algorithm decreases not just at
the same rate as L⇤

n but also with the very same constant,
thus implying a regret that decreases faster than O(1/n).

3. The TRACE-UCB Algorithm
In this section, we present and analyze an algorithm of
the form discussed at the end of Section 2, which we
call TRACE-UCB, whose pseudocode is in Algorithm 1.

Algorithm 1 TRACE-UCB Algorithm
1: for i = 1, . . . ,m do
2: Select problem instance i exactly d+ 1 times
3: Compute its OLS estimates ˆ�i,m(d+1)

and �̂2

i,m(d+1)

4: end for
5: for steps t = m(d+ 1) + 1, . . . , n do
6: for problem instance 1  i  m do
7: Compute score (�i,t�1 is defined in (11))

si,t�1

=

b�2

i,t�1

+�i,t�1

ki,t�1

Tr

�

⌃

ˆ

⌃

�1

i,t�1

�

8: end for
9: Select problem instance It = argmaxi2[m]

si,t�1

10: Observe Xt and YIt,t

11: Update its OLS estimators ˆ�It,t and �̂2

It,t

12: end for
13: Return RLS estimates {ˆ��

i,n}mi=1

with regularization �

The regularization parameter � = O(1/n) is provided to
the algorithm as input, while in practice one could set �
independently for each arm using cross-validation.

Intuition. Equation (6) suggests that while the parameters
of the context distribution, particularly its covariance ⌃, do
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not impact the prediction error, the noise variances play the
most important role in the loss of each problem instance.
This is in fact confirmed by the optimal allocation k⇤i,n
in (7), where only the variances �2

i appear. This evidence
suggests that an algorithm similar to GAFS-MAX (Antos
et al., 2008) or CH-AS (Carpentier et al., 2011), which
were designed for the context-free case (i.e., each instance i
is associated to an expected value and not a linear function)
would be effective in this setting as well. Nonetheless, (6)
holds only for static allocation algorithms that completely
ignore the context and the history to decide which instance
It to choose at time t. On the other hand, adaptive learning
algorithms create a strong correlation between the dataset
Dt�1

collected so far, the current context Xt, and the deci-
sion It. As a result, the sample matrix Xi,t is no longer a
random variable independent of A, and using (6) to design
a learning algorithm is not convenient, since the impact of
the contexts on the error is completely overlooked. Unfor-
tunately, in general, it is very difficult to study the potential
correlation between the contexts Xi,t, the intermediate es-
timates ˆ�i,t, and the most suitable choice It. However, in
the next lemma, we show that if at each step t, we select It
as a function of Dt�1

, and not Xt, we may still recover an
expression for the final loss that we can use as a basis for
the construction of an effective learning algorithm.

Lemma 2. Let A be a learning algorithm that selects
the instances It as a function of the previous history,
i.e., Dt�1

= {X
1

, I
1

, YI1,1, . . . , Xt�1

, It�1

, YIt�1,t�1

}
and computes estimates b�i,n using OLS. Then, its loss after
n steps can be expressed as

Ln(A) = max

i2[m]

EDn



�2

i

ki,n
Tr

⇣

⌃

b

⌃

�1

i,n

⌘

�

, (10)

where ki,n =

Pn
t=1

I{It = i} and b⌃i,n = XT
i,nXi,n/ki,n.

Proof. See Appendix B.

Remark 1 (assumptions). We assume noise and contexts
are Gaussian. The noise Gaussianity is crucial for the es-
timates of the parameter b�i,t and variance b�2

i,t to be inde-
pendent of each other, for each instance i and time t (we
actually need and derive a stronger result in Lemma 9, see
Appendix B). This is key in proving Lemma 2, as it allows
us to derive a closed form expression for the loss function
which holds under our algorithm, and is written in terms of
the number of pulls and the trace of the inverse empirical
covariance matrix. Note that b�i,t drives our loss, while b�2

i,t

drives our decisions. One way to remove this assumption is
by defining and directly optimizing a surrogate loss equal
to (10) instead of (3). On the other hand, the Gaussianity of
contexts leads to the whitened inverse covariance estimate
⌃

b

⌃

�1

i,n being distributed as an inverse Wishart. As there

is a convenient closed formula for its mean, we can find
the exact optimal static allocation k⇤i,n in Proposition 1, see
(7). In general, for sub-Gaussian contexts, no such closed
formula for the trace is available. However, as long as the
optimal allocation k⇤i,n has no second order n↵ terms for
1/2  ↵ < 1, it is possible to derive the same regret rate
results that we prove later on for TRACE-UCB.

Equation (10) makes it explicit that the prediction error
comes from two different sources. The first one is the noise
in the measurements Y, whose impact is controlled by the
unknown variances �2

i ’s. Clearly, the larger the �2

i is, the
more observations are required to achieve the desired ac-
curacy. At the same time, the diversity of contexts across
instances also impacts the overall prediction error. This is
very intuitive, since it would be a terrible idea for the re-
search center discussed in the introduction to estimate the
parameters of a drug by providing the treatment only to a
hundred almost identical patients. We say contexts are bal-
anced when b⌃i,n is well conditioned. Therefore, a good
algorithm should take care of both aspects.

There are two extreme scenarios regarding the contribu-
tions of the two sources of error. 1) If the number of
contexts n is relatively large, since the context distribu-
tion is fixed, one can expect that contexts allocated to each
instance eventually become balanced (i.e., TRACE-UCB
does not bias the distribution of the contexts). In this case,
it is the difference in �2

i ’s that drives the number of times
each instance is selected. 2) When the dimension d or the
number of arms m is large w.r.t. n, balancing contexts be-
comes critical, and can play an important role in the final
prediction error, whereas the �2

i ’s are less relevant in this
scenario. While a learning algorithm cannot deliberately
choose a specific context (i.e., Xt is a random variable),
we may need to favor instances in which the contexts are
poorly balanced and their prediction error is large, despite
the fact that they might have small noise variances.

Algorithm. TRACE-UCB is designed as a combination of
the upper-confidence-bound strategy used in CH-AS (Car-
pentier et al., 2011) and the loss in (10), so as to obtain a
learning algorithm capable of allocating according to the
estimated variances and at the same time balancing the er-
ror generated by context mismatch. We recall that all the
quantities that are computed at every step of the algorithm
are indexed at the beginning and end of a step t by i, t� 1

(e.g., b�2

i,t�1

) and i, t (e.g., b�i,t), respectively. At the end of
each step t, TRACE-UCB first computes an OLS estimate
b�i,t, and then use it to estimate the variance b�2

i,t as

b�2

i,t =
1

ki,t � d

�

�Yi,t �XT
i,t
b�i,t

�

�

2

,

which is the average squared deviation of the predictions
based on b�i,t. We rely on the following concentration in-
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equality for the variance estimate of linear regression with
Gaussian noise, whose proof is reported in Appendix C.1.
Proposition 3. Let the number of pulls ki,t � d + 1 and
R � maxi �2

i . If � 2 (0, 3/4), then for any instance i and
step t > m(d+1), with probability at least 1� �

2

, we have

|�̂2

i,t � �2

i |  �i,t
�

= R

s

64

ki,t � d

✓

log

2mn

�

◆

2

. (11)

Given (11), we can construct an upper-bound on the pre-
diction error of any instance i and time step t as

si,t�1

=

�̂2

i,t�1

+�i,t�1

ki,t�1

Tr

⇣

⌃

ˆ

⌃

�1

i,t�1

⌘

, (12)

and then simply select the instance which maximizes this
score, i.e., It = argmaxi si,t�1

. Intuitively, TRACE-UCB
favors problems where the prediction error is potentially
large, either because of a large noise variance or because
of significant unbalance in the observed contexts w.r.t. the
target distribution with covariance ⌃. A subtle but critical
aspect of TRACE-UCB is that by ignoring the current con-
text Xt (but using all the past samples Xt�1

) when choos-
ing It, the distribution of the contexts allocated to each in-
stance stays untouched and the second term in the score
si,t�1

, i.e., Tr(⌃b⌃�1

i,t�1

), naturally tends to d as more and
more (random) contexts are allocated to instance i. This is
shown by Proposition 4 whose proof is in Appendix C.2.
Proposition 4. Force the number of samples ki,t � d+ 1.
If � 2 (0, 1), for any i 2 [m] and step t > m(d + 1) with
probability at least 1� �/2, we have

✓

1� C
Tr

s

d

ki,t

◆

2


Tr

⇣

⌃

ˆ

⌃

�1

i,t

⌘

d

✓

1 + 2C
Tr

s

d

ki,t

◆

2

,

with C
Tr

= 1 +

p

2 log(4nm/�)/d.

While Proposition 4 shows that the error term due to con-
text mismatch tends to the constant d for all instances i as
the number of samples tends to infinity, when t is small
w.r.t. d and m, correcting for the context mismatch may
significantly improve the accuracy of the estimates b�i,n re-
turned by the algorithm. Finally, note that while TRACE-
UCB uses OLS to compute estimates b�i,t, it computes its
returned parameters b�i,n by ridge regression (RLS) with
regularization parameter � as

ˆ��
i = (XT

i,nXi,n + �I)�1XT
i,nYi,n. (13)

As we will discuss later, using RLS makes the algorithm
more robust and is crucial in obtaining regret bounds both
in expectation and high probability.

Performance Analysis. Before proving a regret bound for
TRACE-UCB, we report an intermediate result (proof in

App. D.1) that shows that TRACE-UCB behaves similarly
to the optimal static allocation.
Theorem 5. Let � > 0. With probability at least 1 � �,
the total number of contexts that TRACE-UCB allocates to
each problem instance i after n rounds satisfies

ki,n � k⇤i,n � C
�

+ 8C
Tr

�2

min

r

nd

�
min

� ⌦(n1/4
) (14)

where R � �2

max

is known by the algorithm, and we defined
C

�

= 16R log(2mn/�) and �
min

= �2

min

/
P

j �
2

j .

We now report our regret bound for the TRACE-UCB al-
gorithm. The proof of Theorem 6 is in Appendix D.2.
Theorem 6. The regret of the Trace-UCB algorithm,
i.e., the difference between its loss and the loss of optimal
static allocation (see Eq. (8)), is upper-bounded by

Ln(A)� L⇤
n  O

✓

1

�2

min

⇣ d

�
min

n

⌘

3/2
◆

. (15)

Eq. (15) shows that the regret decreases as O(n�3/2
) as ex-

pected. This is consistent with the context-free results (An-
tos et al., 2008; Carpentier et al., 2011), where the regret
decreases as n�3/2, which is conjectured to be optimal.
However, it is important to note that in the contextual case,
the numerator also includes the dimensionality d. Thus,
when n � d, the regret will be small, and it will be larger
when n ⇡ d. This motivates studying the high-dimensional
setting (App. F). Eq. (15) also indicates that the regret
depends on a problem-dependent constant 1/�

min

, which
measures the complexity of the problem. Note that when
�2

max

⇡ �2

min

, we have 1/�
min

⇡ m, but 1/�
min

could be
much larger when �2

max

� �2

min

.

Remark 2. We introduce a baseline motivated by the
context-free problem. At round t, let VAR-UCB selects
the instance that maximizes the score3

s0i,t�1

=

�̂2

i,t�1

+�i,t�1

ki,t�1

. (16)

The only difference with the score used by TRACE-UCB
is the lack of the trace term in (12). Moreover, the regret
of this algorithm has similar rate in terms of n and d as
that of TRACE-UCB reported in Theorem 6. However, the
simulations of Sect. 4 show that the regret of VAR-UCB is
actually much higher than that of TRACE-UCB, specially
when dm is close to n. Intuitively, when n is close to dm,
balancing contexts becomes critical, and VAR-UCB suffers
because its score does not explicitly take them into account.

Sketch of the proof of Theorem 6. The proof is divided
into three parts. 1) We show that the behavior of the ridge

3Note that VAR-UCB is similar to both the CH-AS and B-AS
algorithms in Carpentier et al. (2011).
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loss of TRACE-UCB is similar to that reported in Lemma 2
for algorithms that rely on OLS; see Lemma 19 in Ap-
pendix E. The independence of the ˆ�i,t and �̂2

i,t estimates
is again essential (see Remark 1). Although the loss of
TRACE-UCB depends on the ridge estimate of the param-
eters ˆ��

i,n, the decisions made by the algorithm at each
round only depend on the variance estimates �̂2

i,t and ob-
served contexts. 2) We follow the ideas in Carpentier et al.
(2011) to lower-bound the total number of pulls ki,n for
each i 2 [m] under a good event (see Theorem 5 and its
proof in Appendix D.1). 3) We finally use the ridge reg-
ularization to bound the impact of those cases outside the
good event, and combine everything in Appendix D.2.

The regret bound of Theorem 6 shows that the largest
expected loss across the problem instances incurred by
TRACE-UCB quickly approaches the loss of the optimal
static allocation algorithm (which knows the true noise
variances). While Ln(A) measures the worst expected loss,
at any specific realization of the algorithm, there may be
one of the instances which is very poorly estimated. As a
result, it would also be desirable to obtain guarantees for
the (random) maximum loss

eLn(A) = max

i2[m]

k�i � ˆ�i,nk2
⌃

. (17)

In particular, we are able to prove the following high-
probability bound on eLn(A) for TRACE-UCB.
Theorem 7. Let � > 0, and assume k�ik2  Z for all i,
for some Z > 0. With probability at least 1� �,

eLn 

mP
j=1

�2
j

n

⇣
d+ 2 log

3m

�

⌘
+O

✓
1

�2
min

⇣ d

n�min

⌘ 3
2

◆
. (18)

Note that the first term in (18) corresponds to the first term
of the loss for the optimal static allocation, and the second
term is, again, a n�3/2 deviation. However, in this case, the
guarantees hold simultaneously for all the instances.

Sketch of the proof of Theorem 7. In the proof we slightly
modify the confidence ellipsoids for the ˆ�i,t’s, based
on self-normalized martingales, and derived in (Abbasi-
Yadkori et al., 2011); see Thm. 13 in App. C. By means of
the confidence ellipsoids we control the loss in (17). Their
radiuses depend on the number of samples per instance, and
we rely on a high-probability events to compute a lower
bound on the number of samples. In addition, we need to
make sure the mean norm of the contexts will not be too
large (see Corollary 15 in App. C). Finally, we combine the
lower bound on ki,n with the confidence ellipsoids to con-
clude the desired high-probability guarantees in Thm. 7.

High-Dimensional Setting. High-dimensional linear mod-
els are quite common in practice, motivating the study of
the n < dm case, where the algorithms discussed so far

break down. We propose SPARSE-TRACE-UCB in Ap-
pendix F, an extension of TRACE-UCB that assumes and
takes advantage of joint sparsity across the linear functions.
The algorithm has two-stages: first, an approximate sup-
port is recovered, and then, TRACE-UCB is applied to the
induced lower dimensional space. We discuss and extend
our high-probability guarantees to SPARSE-TRACE-UCB
under suitable standard assumptions in Appendix F.

4. Simulations
In this section, we provide empirical evidence to support
our theoretical results. We consider both synthetic and real-
world problems, and compare the performance (in terms of
normalized MSE) of TRACE-UCB to uniform sampling,
optimal static allocation (which requires the knowledge of
noise variances), and the context-free algorithm VAR-UCB
(see Remark 2). We do not compare to GFSP-MAX and
GAFS-MAX (Antos et al., 2008) since they are outper-
formed by CH-AS Carpentier et al. (2011) and VAR-UCB
is the same as CH-AS, except for the fact that we use the
concentration inequality in Prop. 3, since we are estimating
the variance from a regression problem using OLS.

First, we use synthetic data to ensure that all the assump-
tions of our model are satisfied, namely we deal with lin-
ear regression models with Gaussian context and noise.
We set the number of problem instances to m = 7 and
consider two scenarios: one in which all the noise vari-
ances are equal to 1 and one where they are not equal,
and �2

= (0.01, 0.02, 0.75, 1, 2, 2, 3). In the latter case,
�2

max

/�2

min

= 300. We study the impact of (independently)
increasing dimension d and horizon n on the performance,
while keeping all other parameters fixed. Second, we con-
sider real-world datasets in which the underlying model is
non-linear and the contexts are not Gaussian, to observe
how TRACE-UCB behaves (relative to the baselines) in set-
tings where its main underlying assumptions are violated.

Synthetic Data. In Figures 1(a,b), we display the results
for fixed horizon n = 350 and increasing dimension d.
For each value of d, we run 10, 000 simulations and report
the median of the maximum error across the instances for
each simulation. In Fig. 1(a), where �2

i ’s are equal, uniform
sampling and optimal static allocation execute the same al-
location since there is no difference in the expected losses
of different instances. Nonetheless we notice that VAR-
UCB suffers from poor estimation as soon as d increases,
while TRACE-UCB is competitive with the optimal perfor-
mance. This difference in performance can be explained
by the fact that VAR-UCB does not control for contextual
balance, which becomes a dominant factor in the loss of a
learning strategy for problems of high dimensionality. In
Fig. 1(b), in which �2

i ’s are different, uniform sampling is
no longer optimal but even in this case VAR-UCB performs
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(b) �2
= (0.01, 0.02, 0.75, 1, 2, 2, 3).
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(c) �2
= (1, 1, 1, 1, 1, 1, 1).
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(e) �2
= (1, 1, 1, 1, 1, 1, 1).
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Figure 1. White Gaussian synthetic data with m = 7. In Figures (a,b), we set n = 350. In Figures (c,d,e,f), we set d = 10.

better than uniform sampling only for small d < 23, where
it is more important to control for the �2

i ’s. For larger di-
mensions, balancing uniformly the contexts eventually be-
comes a better strategy, and uniform sampling outperforms
VAR-UCB. In this case too, TRACE-UCB is competitive
with the optimal static allocation even for large d, success-
fully balancing both noise variance and contextual error.

Next, we study the performance of the algorithms w.r.t. n.
We report two different losses, one in expectation (3) and
one in high probability (17), corresponding to the results
we proved in Theorems 6 and 7, respectively. In order to
approximate the loss in (3) (Figures 1(c,d)) we run 30, 000
simulations, compute the average prediction error for each
instance i 2 [m], and finally report the maximum mean er-
ror across the instances. On the other hand, we estimate the
loss in (17) (Figures 1(e,f)) by running 30, 000 simulations,
taking the maximum prediction error across the instances
for each simulation, and finally reporting their median.

In Figures 1(c, d), we display the loss for fixed dimension
d = 10 and horizon from n = 115 to 360. In Figure 1(c),
TRACE-UCB performs similarly to the optimal static al-
location, whereas VAR-UCB performs significantly worse,

ranging from 25% to 50% higher errors than TRACE-UCB,
due to some catastrophic errors arising from unlucky con-
textual realizations for an instance. In Fig. 1(d), as the num-
ber of contexts grows, uniform sampling’s simple context
balancing approach is enough to perform as well as VAR-
UCB that again heavily suffers from large mistakes. In
both figures, TRACE-UCB smoothly learns the �2

i ’s and
outperforms uniform sampling and VAR-UCB. Its perfor-
mance is comparable to that of the optimal static allocation,
especially in the case of equal variances in Fig. 1(c).

In Figure 1(e), TRACE-UCB learns and properly balances
observations extremely fast and obtains an almost optimal
performance. Similarly to figures 1(a,c), VAR-UCB strug-
gles when variances �̂2

i are almost equal, mainly because it
gets confused by random deviations in variance estimates
�̂2

i , while overlooking potential and harmful context imbal-
ances. Note that even when n = 360 (rightmost point), its
median error is still 25% higher than TRACE-UCB’s. In
Fig. 1(f), as expected, uniform sampling performs poorly,
due to mismatch in variances, and only outperforms VAR-
UCB for small horizons in which uniform allocation pays
off. On the other hand, TRACE-UCB is able to success-
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Figure 2. Results on Jester (left) with d=40,m=10 and MovieLens (right) with d=25,m=5. Median over 1000 simulations.

fully handle the tradeoff between learning and allocating
according to variance estimates �̂2

i , while accounting for
the contextual trace b⌃i, even for very low n. We observe
that for large n, VAR-UCB eventually reaches the perfor-
mance of the optimal static allocation and TRACE-UCB.

In practice the loss in (17) (figures 1(e,f)) is often more rel-
evant than (3), since it is in high probability and not in ex-
pectation, and TRACE-UCB shows excellent performance
and robustness, regardless of the underlying variances �2

i .

Real Data. TRACE-UCB is based on assumptions such as
linearity, and Gaussianity of noise and context that may not
hold in practice, where data may show complex dependen-
cies. Therefore, it is important to evaluate the algorithm
with real-world data to see its robustness to the violation
of its assumptions. We consider two collaborative filter-
ing datasets in which users provide ratings for items. We
choose a dense subset of k users and p items, where every
user has rated every item. Thus, each user is represented
by a p-dimensional vector of ratings. We define the user
context by d out of her p ratings, and learn to predict her
remaining m = p � d ratings (each one is a problem in-
stance). All item ratings are first centered, so each item’s
mean is zero. In each simulation, n out of the k users are se-
lected at random to be fed to the algorithm, also in random
order. Algorithms can select any instance as the dataset
contains the ratings of every instance for all the users. At
the end of each simulation, we compute the prediction error
for each instance by using the k � n users that did not par-
ticipate in training for that simulation. Finally, we report
the median error across all simulations.

Fig. 2(a) reports the results using the Jester Dataset
by (Goldberg et al., 2001) that consists of joke ratings in
a continuous scale from �10 to 10. We take d = 40 joke
ratings as context and learn the ratings for another 9 jokes.
In addition, we add another function that counts the total
number of movies originally rated by the user. The latter
is also centered, bounded to the same scale, and has higher
variance (without conditioning on X). The number of to-

tal users is k = 3811, and m = 10. When the number
of observations is limited, the advantage of TRACE-UCB
is quite significant (the improvement w.r.t. uniform alloca-
tion goes from 45% to almost 20% for large n, while w.r.t.
VAR-UCB it goes from almost 30% to roughly 5%), even
though the model and context distribution are far from lin-
ear and Gaussian, respectively.

Fig. 2(b) shows the results for the MovieLens
dataset (Maxwell Harper & Konstan, 2016) that con-
sists of movie ratings between 0 and 5 with 0.5 increments.
We select 30 popular movies rated by k = 1363 users,
and randomly choose m = 5 of them to learn (so
d = 25). In this case, all problems have similar variance
(�̂2

max

/�̂2

min

⇡ 1.3) so uniform allocation seems appropri-
ate. Both TRACE-UCB and VAR-UCB modestly improve
uniform allocation, while their performance is similar.

5. Conclusions
We studied the problem of adaptive allocation of n con-
textual samples of dimension d to estimate m linear func-
tions equally well, under heterogenous noise levels �2

i

that depend on the linear instance and are unknown to
the decision-maker. We proposed TRACE-UCB, an opti-
mistic algorithm that successfully solves the exploration-
exploitation dilemma by simultaneously learning the �2

i ’s,
allocating samples accordingly to their estimates, and bal-
ancing the contextual information across the instances. We
also provide strong theoretical guarantees for two losses of
interest: in expectation and high-probability. Simulations
were conducted in several settings, with both synthetic and
real data. The favorable results suggest that TRACE-UCB
is reliable, and remarkably robust even in settings that fall
outside its assumptions, thus, a useful and simple tool to
implement in practice.
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