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Umut Şimşekli 1

1. Numerically Stable Computation
In this section, we focus on the computation of the following quantity:

Dγ{−φ(x)∂xU(x)}
φ(x)

≈ 1

hγ

K∑
k=−K

gγ,k
−φ(x− kh)∂xU(x− kh)

φ(x)
. (S1)

Since φ(x) = exp(−U(x)), for very large values of U(x) and U(x − kh) we might easily end up with 0/0 errors if we
directly implement (8).

We now present a numerically more stable algorithm for computing (8) . We rewrite the above equation as follows:

1

hγ

K∑
k=−K

gγ,k
−φ(x− kh)∂xU(x− kh)

φ(x)
=

1

hγ

K∑
k=−K

gγ,k

[
−∂xU(x− kh) exp

(
U(x)− U(x− kh)︸ ︷︷ ︸

`k

)]
(S2)

=
1

hγ

K∑
k=−K

gγ,k

[
−∂xU(x− kh) exp(`k − `∗ + `∗)

]
(S3)

=
exp `∗

hγ

K∑
k=−K

gγ,k

[
−∂xU(x− kh) exp(`k − `∗)

]
(S4)

where `∗ = maxk∈J−K,KK `k. This numerical approach is similar to the well-known ‘log-sum-exp’ trick.

2. Proof of Theorem 1
Before proving Theorem 1, we present the following proposition that will be helpful for our analysis.

Proposition 1. Let f : R→ R be a differentiable function and assume thatDγf(x) is well-defined for some γ ∈ R. Then,
the following equality holds:

∂xDγf(x) = Dγ∂xf(x). (S5)

Proof. By definition we have:

Dγf(x) = F−1{|ω|γ f̂(ω)}, (S6)

∂xf(x) = F−1{iωf̂(ω)}, (S7)
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where F denotes the Fourier transform, f̂(ω) = F{f(x)}, and i =
√
−1. By using these definitions, we obtain:

∂xDγf(x) = F−1{F{∂xDγf(x)}} (S8)

= F−1{iωF{Dγf(x)}} (S9)

= F−1{iω|ω|γ f̂(ω)} (S10)

= F−1{|ω|γF{F−1{iωf̂(ω)}}} (S11)

= F−1{|ω|γF{∂xf(x)}} (S12)

= F−1{F{Dγ∂xf(x)}} (S13)
= Dγ∂xf(x). (S14)

This completes the proof.

2.1. Proof of Theorem 1

Proof. Let us define q(X, t) as the probability density function of the state X at time t. By Proposition 1 in (Schertzer
et al., 2001), we obtain the fractional Fokker-Planck equation associated with the SDE given in (3) as follows:

∂tq(X, t) = −∂X [b(X,α)q(X, t)]−Dαq(X, t). (S15)

By using the definition of b(X,α) we obtain

∂tq(X, t) = −∂X [
Dα−2{−φ(X)∂XU(X)}

φ(X)
q(X, t)]−Dαq(X, t) (S16)

= −∂X [
Dα−2{−π(X)∂XU(X)}

π(X)
q(X, t)]−Dαq(X, t). (S17)

Here, we used the fact that π(X) = φ(X)/Z, where Z =
∫
φ(X)dX . By using −∂XU(X) = ∂X log π(X) = ∂Xπ(X)

π(X) ,
we obtain:

∂tq(X, t) = −∂X [
Dα−2{∂Xπ(X)}

π(X)
q(X, t)]−Dαq(X, t) (S18)

We can verify that π(X) is an invariant measure of the Markov process (Xt)t≥0 by checking

−∂X [
Dα−2{∂Xπ(X)}

π(X)
π(X)]−Dαπ(X) = −∂X [Dα−2{∂Xπ(X)}]−Dαπ(X) (S19)

= −∂2X [Dα−2{π(X)}]−Dαπ(X) (S20)

= D2[Dα−2{π(X)}]−Dαπ(X) (S21)
= Dα{π(X)} − Dα{π(X)} (S22)
= 0. (S23)

Here, we used the semigroup property of the Riesz potentialsDaDbf(x) = Da+bf(x) in (S22) and Proposition 1 in (S20).
If b(X,α) is Lipschitz continuous, by (Schertzer et al., 2001) we can conclude that π(X) is the unique invariant measure
of the Markov process (Xt)t≥0.

3. Proof of Corollary 1
Proof. By Theorem 1, we know that π(X) is the unique invariant distribution of the Markov process (Xt)t. Then, the
claim directly follows Theorem 2 of (Panloup, 2008), provided that there exists p ∈ (0, 1/2] and q ∈ [1/2, 1], such that the
following conditions hold: ∫

|x|>1

v(x)|x|2p <∞, and
∫
|x|≤1

v(x)|x|2q <∞, (S24)
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where v(x) is the Lévy-measure of the symmetric α-stable Lévy process, defined as

v(x) =
1

|x|α+1
. (S25)

It is easy to see that these conditions hold with p ∈ (0, 1/2] and q ∈ (α/2, 1]. Therefore, we can directly apply Theorem 2
of (Panloup, 2008) in order to obtain the desired result.

4. Proof of Theorem 2
Before proving Theorem 2, we first bound |Dγfπ(x) −∆γ

hfπ(x)| and |∆γ
hfπ(x) −∆γ

h,Kfπ(x)|, which will be useful in
our analysis.

Çelik & Duman (2012) showed that |Dγf(x)−∆γ
hf(x)| = O(h2) for 1 < γ ≤ 2. However, we cannot directly use their

result. For completeness, we adapt the proof of Lemma 2.2 in (Çelik & Duman, 2012), and prove that we obtain a bound
of the same order for −1 < γ < 0.
Lemma 1. Assume f(x) ∈ C3(R) and all derivatives up to order three belong to L1(R). Let ∆γ

h be the operator defined
in (7). Then, for −1 < γ < 0, the following bound holds:

|Dγf(x)−∆γ
hf(x)| = O(h2) (S26)

as h goes to zero.

Proof. We follow the same proof technique given in (Çelik & Duman, 2012). We first make use of the generator of (7)
given as follows: (Ortigueira, 2006)

|2 sin(z/2)|γ =

∞∑
k=−∞

gγ,k exp(ikz). (S27)

Now, consider the Fourier transform of ∆γ
hf(x)

F{∆γ
hf(x)} =

∞∑
k=−∞

gγ,k exp(ikhω)f̂(ω) (S28)

where F{f(x)} =
∫∞
−∞ f(x) exp(iωx)dx and f̂(ω) , F{f(x)}. Then, we have

F{∆γ
hf(x)} = |2 sin

ωh

2
|γ f̂(ω) (S29)

Let us define ϕ̂(h, ω) = |ω|γ(1− |2 sin ωh
2 |

γ

|ωh|γ )f̂(ω). Then we have

− 1

hγ
F{∆γ

hf(x)} = −|ω|γ f̂(ω) + ϕ̂(h, ω). (S30)

Let us define z = ωh and v(z) = |2 sin(z/2)|γ
|z|γ . Now, we will bound the function v(z). By using a Taylor expansion, we

obtain

v(z) =
∣∣∣2
z

∣∣∣γ∣∣∣z
2
−
(z

2

)3 1

3!
+
(z

2

)5 1

5!
− · · ·

∣∣∣γ (S31)

=
∣∣∣1− (z

2

)2 1

3!
+
(z

2

)4 1

5!
− · · ·

∣∣∣γ (S32)

Since γ < 0, for small enough z, we have

v(z) ≤

(
1−

∣∣∣(z
2

)2 1

3!
+
(z

2

)4 1

5!
+ · · ·

∣∣∣)γ (S33)

= 1− γ
∣∣∣(z

2

)2 1

3!
+
(z

2

)4 1

5!
+ · · ·

∣∣∣+ γ(γ − 1)
∣∣∣(z

2

)2 1

3!
+
(z

2

)4 1

5!
+ · · ·

∣∣∣2 − · · · (S34)

≤ 1 + C0z
2 (S35)

= O(1 + z2). (S36)
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By our assumptions, we have

|f̂(ω)| ≤ C1(1 + |ω|)−3. (S37)

Therefore, we obtain

|ϕ̂(h, ω)| = |ω|γ |v(ωh)− 1||f̂(ω)| (S38)

≤ |ω|γC0|ωh|2C1(1 + |ω|)−3 (S39)

≤ C2h
2(1 + |ω|)γ+2(1 + |ω|)−3 (S40)

= C2h
2(1 + |ω|)γ−1. (S41)

Since −1 < γ < 0, the inverse Fourier transform of ϕ̂(h, ω) exists. Then we consider the inverse Fourier transform of
(S30) and obtain

− 1

hγ
∆γ
hfπ(x) = Dγf(x) + ϕ(h, x) (S42)

where

ϕ(h, x) , F−1{ϕ̂(h, ω)} =
1

2π

∫ ∞
−∞

ϕ̂(h, ω) exp(−iωx)dω. (S43)

By using the bound for |ϕ̂(h, ω)|, we obtain

|ϕ(h, x)| = 1

2π

∫ ∞
−∞

ϕ̂(h, ω) exp(−iωx)dω (S44)

≤ 1

2π

∫ ∞
−∞
|ϕ̂(h, ω)|dω (S45)

≤ 1

2π

∫ ∞
−∞

C2h
2(1 + |ω|)γ−1dω (S46)

≤ C3h
2. (S47)

Finally, we conclude that

|Dγf(x)− 1

hγ
∆γ
hfπ(x)| = |ϕ(h, x)| (S48)

≤ C3h
2. (S49)

Now, we bound the term |∆γ
hfπ(x)−∆γ

h,Kfπ(x)|.

Lemma 2. Assume
∣∣∣fπ(x− kh)

∣∣∣ ≤ C exp(−|k|h) for some C > 0 and |k| > K for some K <∞, where K ∈ N+. Then
the following bound holds: ∣∣∣∆γ

hfπ(x)−∆γ
h,Kfπ(x)

∣∣∣ = O
( 1

hK

)
. (S50)

Proof. By definition we have ∣∣∣∆γ
hfπ(x)−∆γ

h,Kfπ(x)
∣∣∣ =

∣∣∣h−γ ∑
k/∈J−K,KK

gγ,kfπ(x− kh)
∣∣∣ (S51)

≤ h−γ
∑

k/∈J−K,KK

gγ,k

∣∣∣fπ(x− kh)
∣∣∣ (S52)
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By the hypothesis and the symmetry of the coefficients (gγ,k = gγ,−k), we have∣∣∣∆γ
hfπ(x)−∆γ

h,Kfπ(x)
∣∣∣ ≤ Ch−γ ∞∑

k=K+1

gγ,k exp(−kh) (S53)

From (Ortigueira, 2006; Çelik & Duman, 2012), we know that gγ,k = O( 1
kγ+1 ), then we obtain∣∣∣∆γ

hfπ(x)−∆γ
h,Kfπ(x)

∣∣∣ ≤ Ch−γ ∞∑
k=K+1

1

kγ+1
exp(−kh) (S54)

= Ch

∞∑
k=K+1

1

(hk)γ+1
exp(−kh) (S55)

≤ Ch
∫ ∞
K

(yh)−(γ+1) exp(−yh) dy (S56)

By making a change of variables, we obtain∣∣∣∆γ
hfπ(x)−∆γ

h,Kfπ(x)
∣∣∣ ≤ C ∫ ∞

hK

y−(γ+1) exp(−y) dy (S57)

= CΓ(−γ, hK), (S58)

where Γ(·, ·) denotes the incomplete gamma function (Borwein & Chan, 2009). Then by using Theorem 2.4 of (Borwein
& Chan, 2009), we obtain the desired result as follows:∣∣∣∆γ

hfπ(x)−∆γ
h,Kfπ(x)

∣∣∣ ≤ C 1

hK
. (S59)

4.1. Proof of Theorem 2

Proof. We decompose the error as follows:∣∣∣Dγfπ(x)−∆γ
h,Kfπ(x)

∣∣∣ ≤ ∣∣∣Dγfπ(x)−∆γ
hfπ(x)

∣∣∣+
∣∣∣∆γ

hfπ(x)−∆γ
h,Kfπ(x)

∣∣∣. (S60)

Then we obtain the desired result by applying Lemmas 1 and 2 to the first and the second terms of the left hand side of the
above inequality.

5. Proof of Theorem 3
Before presenting the proof of Theorem 3, let us define the following SDEs which will be useful in the analysis:

dXt = b(Xt−, α)dt+ dLαt (S61)

dYt = b̃h,K(Yt−, α)dt+ dLαt (S62)

where b and b̃ are defined in (5) and (8), respectively. Here, (S61) is our main SDE, (S62) is another SDE whose drift is b̃.

Let us first present the following lemma, which will be useful for proving Theorem 3.

Lemma 3. Let (Xt)t≥0 and (Yt)t≥0 be the solution processes of the SDEs (S61) and (S62). Assume that both (Xt)t≥0
and (Yt)t≥0 are geometrically ergodic with their unique invariant measures and |∂xg| is bounded. Further assume that
the truncation parameter K is chosen in such a way that H4 holds for any x. Then the following bound on the weak error
holds: ∣∣∣E[g(Xt)− g(Yt)]

∣∣∣ ≤ C(1− exp(−λt)
)(
h2 +

1

hK

)
, (S63)

for some C, λ > 0.



Fractional Langevin Monte Carlo – Supplementary Document

Proof. We follow a standard approach for weak error analysis in SDEs. We make use of the semigroups associated with
(Xt)t≥0 and (Yt)t≥0, given as PXt g(x) , E[g(Xt)] and PYt g(x) , E[g(Yt)]. Then, we rewrite the weak error by using
the semigroups, given as follows (Kohatsu-Higa, 2015):

E[g(Xt)− g(Yt)] = PXt g(x)− PYt g(x) (S64)

=

∫ t

0

∂s{PXs PYt−sg(x)}ds. (S65)

We now investigate the integrand, as follows:

∂s{PXs PYt−sg(x)} = (∂sPXs )PYt−sg(x) + PXs (∂sPYt−s)g(x) (S66)

= PXs AXPYt−sg(x)− PXs AY PYt−sg(x) (S67)

= PXs {AX −AY }PYt−sg(x), (S68)

where AX and AY are the generators of the SDEs in (S61) and (S62), respectively, and they are defined as follows (Duan,
2015):

AXf(x) , b(x, α)∂xf(x) +

∫
R\0

[f(x+ y)− f(x)− 1{|y|<1}y∂xf(x)]v(dy), (S69)

AY f(x) , b̃h,K(x, α)∂xf(x) +

∫
R\0

[f(x+ y)− f(x)− 1{|y|<1}y∂xf(x)]v(dy), (S70)

for a differentiable function f , where 1 is the indicator function and v(dy) is the Lévy-measure of the symmetric α-stable
Lévy process defined in (S25). Since these SDEs have the same volatility, the difference (AX − AY )f(x) simplifies and
it is equal to (b(x, α)− b̃h,K(x, α))∂xf(x). Accordingly, we obtain the following expression:

∂s{PXs PYt−sg(x)} = PXs (b(x, α)− b̃h,K(x, α))∂xPYt−sg(x), (S71)

= PXs (b(x, α)− b̃h,K(x, α))PYt−s∂xg(x) (S72)

where we assumed the interchangeability of integration and differentiation. By the ergodicity assumptions, we have:

|PXs f(x)| ≤ C exp
(
−λxs

)
‖f‖∞, (S73)

|PYt−sf(x)| ≤ C exp
(
−λy(t− s)

)
‖f‖∞ (S74)

for some C, λx, λy > 0 and a bounded function f . By injecting (S72) into (S65) and then using the boundedness assump-
tion on ∂xg, (S73), (S74), and Theorem 2, we obtain the following inequality: (for some C > 0)∣∣∣E[g(Xt)− g(Yt)]

∣∣∣ ≤ C(h2 +
1

hK

)∫ t

0

exp(−λxs)ds (S75)

≤ C
(
1− exp(−λxt)

)(
h2 +

1

hK

)
, (S76)

as desired. This completes the proof.

5.1. Proof of Theorem 3

Proof. Let us first define the following quantities:

ν(g) =

∫
g(X)π(dX) (S77)

ν̃(g) =

∫
g(Y )π̃(dY ) (S78)
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where π, and π̃ are the unique invariant measures of (S61) and (S62), respectively. And let (Xt)t≥0 and (Yt)t≥0 be the
solution processes of the SDEs (S61) and (S62). By the triangle inequality, we have∣∣∣ν(g)− lim

N→∞
ν̃N (g)

∣∣∣ ≤ ∣∣∣ν(g)− ν̃(g)
∣∣∣+
∣∣∣ν̃(g)− lim

N→∞
ν̃N (g)

∣∣∣. (S79)

Due to the ergodicity assumptions, we can rewrite the right hand side of the above inequality as follows:∣∣∣ν(g)− lim
N→∞

ν̃N (g)
∣∣∣ ≤ ∣∣∣ lim

t→∞
E
[
g(Xt)− g(Yt)

]∣∣∣+
∣∣∣ν̃(g)− lim

N→∞
ν̃N (g)

∣∣∣ (S80)

= lim
t→∞

∣∣∣E[g(Xt)− g(Yt)
]∣∣∣+

∣∣∣ν̃(g)− lim
N→∞

ν̃N (g)
∣∣∣ (S81)

where (S81) can be obtained by the reverse triangle inequality and the squeeze theorem. By (Panloup, 2008), we have
almost surely ∣∣∣ν̃(g)− lim

N→∞
ν̃N (g)

∣∣∣ = 0. (S82)

By Lemma 3, we have

lim
t→∞

∣∣∣E[g(Xt)− g(Yt)
]∣∣∣ ≤ C(h2 +

1

hK
), (S83)

for some C > 0. Finally, by injecting (S82), and (S83) in (S81), we obtain the desired result:

|ν(g)− lim
N→∞

ν̃N (g)| ≤ C(h2 +
1

hK
). (S84)

This completes the proof.

Remark 1. The assumption H5 is not very restrictive and for the SDE (3) it can be easily satisfied if the following
conditions hold:

A1) xb(x, α) <= −ax2 + c with a, c > 0 .
A2) Let SiK(x) =

∑K
k=−K gk,γf

(i)
π (x− kh), where f (i)π is the i’th derivative of fπ . Then {SK}K>0 converges uniformly

when K →∞ and is bounded, for any x belonging to a compact set and i >= 1.

A1 is a standard growth condition. A2 is mild due to the nature of fπ , and it ensures Xt to have a smooth density (see
(Picard, 1996)). We note that, if the SDE (3) satisfies A1-2, then it is easy to show that so does the perturbed SDE defined
in H5.

6. Proof of Corollary 2
Proof. It is easy to check that (14) corresponds to using (8) with h = r(x). Then we obtain the first part of the conclusion
by directly applying Theorem 2. The second part of the conclusion can be proved by using the same proof technique
presented in Theorem 3.

Remark 2. Corollary 2 implies that the weak error FLA depends heavily on the structure of the target density. If the high
probability region of π is concentrated in a particular area, Kx would be small and vice versa. On the other hand, if x is
near a mode of π or fπ(x) is symmetric around x, or fπ varies very slowly with x, r(x) can be arbitrarily small. Finally,
Corollary 2 expresses the overall error in terms of Kx and r(x), and illustrates the roles of these terms.

7. A Note on the Experiments Conducted on SG-FLA
In the SG-FLA experiments, we monitored the training likelihood and we did not observe that SG-FLA is able to find a
better mode in a systematic way. However, we did observe that SG-FLA is more robust to the size of the minibatches –
therefore to the variance of the stochastic gradients – when compared to SGLD. We believe that this observation is caused
by the fact that the jumps in SG-FLA provide robustness against stochastic gradients and the choice of the step sizes.
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