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Abstract

We consider the problem of learning a causal
graph over a set of variables with interventions.
We study the cost-optimal causal graph learn-
ing problem: For a given skeleton (undirected
version of the causal graph), design the set of
interventions with minimum total cost, that can
uniquely identify any causal graph with the given
skeleton. We show that this problem is solvable
in polynomial time. Later, we consider the case
when the number of interventions is limited. For
this case, we provide polynomial time algorithms
when the skeleton is a tree or a clique tree. For a
general chordal skeleton, we develop an efficient
greedy algorithm, which can be improved when
the causal graph skeleton is an interval graph.

1. Introduction

Causal inference is important for many applications
including, among others, biology, econometrics and
medicine (Chalupka et al., 2016; Grosse-Wentrup et al.,
2016; Ramsey et al., 2010). Randomized trials are the
golden standard for causal inference since they lead to reli-
able conclusions with minimal assumptions. The problem
is that enforcing randomization to different variables in a
causal inference problem can have significant and varying
costs. A causal discovery algorithm should take these costs
into account and optimize experiments accordingly.

In this paper we formulate this problem of learning a causal
graph when there is a cost for intervening on each vari-
able. We follow the structural equation modeling frame-
work (Pearl, 2009; Spirtes et al., 2001) and use interven-
tions, i.e., experiments. To perform each intervention, a
scientist randomizes a set of variables and collects new data
from the perturbed system. For example, suppose the sci-
entist wants to discover the causal graph between a set of
patient features, such as diet and blood sugar, and diabetes.

"The University of Texas at Austin, Austin, Texas, USA. Cor-
respondence to: Murat Kocaoglu <mkocaoglu@utexas.edu>.

Proceedings of the 34" International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

Alex Dimakis ! Sriram Vishwanath !

Suppose she decides to perform an intervention on the diet
variable. This entails forcing the desired dietary restrictions
on a random subset of the participating patients. Next, sup-
pose she decides to perform an intervention on the blood
sugar variable. This intervention requires the scientist to
adjust the blood sugar directly, for example through injec-
tion of glucose rather than through diet control. An inter-
vention on the blood sugar is arguably harder to perform
than a dietary restriction. Hence, the blood sugar variable
should be assigned a larger intervention cost than the diet
variable. Performing an intervention on the variable dia-
betes is impractical and also unethical. Hence it should be
potentially given the cost of infinity.

In this paper we study the following problem: We want to
learn a causal graph where each variable has a cost. For
each intervention set, the cost is the sum of the costs of all
the variables in the set. Total cost is the sum of the costs
of the performed interventions. We would like to learn a
causal graph with the minimum possible total cost.

Our Contributions: This is a natural problem that, to the
best of our knowledge, has not been previously studied ex-
cept for some special cases as we explain in the related
work section. Our results are as follows:

e We show that the problem of designing the minimum
cost interventions to learn a causal graph can be solved
in polynomial time.

e We study the minimum cost intervention design prob-
lem when the number of interventions is limited. We
formulate the cost-optimum intervention design prob-
lem as an integer linear program. This formulation al-
lows us to identify two causal graph families for which
the problem can be solved in polynomial time.

e For general graphs, we develop an efficient greedy al-
gorithm. We also propose an improved variant of this
algorithm, which runs in polynomial time when the
skeleton of the causal graph is an interval graph.

Our machinery is graph theoretic. We rely on the connec-
tion between graph separating systems and proper color-
ings. Although this connection was previously discovered,
it does not seem to be widely known in the literature.
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2. Background and Notation

In this section, we present a brief overview of Pearl’s
causality framework and illustrate how interventions are
useful in identifying causal relations. We also present the
requisite graph theory background. Finally, we explain sep-
arating systems: Separating systems are the central mathe-
matical objects for non-adaptive intervention design.

2.1. Causal Graphs, Interventions and Learning

A causal graph is a directed acyclic graph (DAG), where
each vertex represents a random variable of the causal sys-
tem. Consider a set of random variables V. A directed
acyclic graph D on the vertex set V and edge set E,
D = (V,E), is a causal graph if the arrows in the edge
set I encode direct causal relations between the variables:
A directed edge X — Y represents a direct causal relation
between X and Y. X is said to be a direct cause of Y.
In the structural causal modeling framework (Pearl, 2009),
every variable X can be written as a deterministic function
of its parent set in the causal graph D and some unobserved
random variable Ex. Ex is called an exogenous variable
and it is statistically independent from the non-descendants
of X. Thus X = f(Pax,Ex) where Pay is the set of
the parents of X in D and f is some deterministic func-
tion. We assume that the graph is acyclic! (DAG) and all
the variables except the exogenous variables are observable
(causal sufficiency).

The functional relations between the observed variables
and the exogenous variables induce a joint probability dis-
tribution over the observed variables. It can be shown that
the underlying causal graph D is a valid Bayesian network
for the joint distribution induced over the observed vari-
ables by the causal model. To identify the causal graph,
we can check the conditional independence relations be-
tween the observed variables. Under the faithfulness as-
sumption (Spirtes et al., 2001), every conditional indepen-
dence relation is equivalent to a graphical criterion called

the d-separation 2.

In general, there is no unique Bayesian network that corre-
sponds to a given joint distribution: There exists multiple
Bayesian networks for a given set of conditional indepen-
dence relations. Thus, it is not possible to uniquely identify
the underlying causal graph using only these tests in gen-
eral. However, conditional independence tests allow us to
identify a certain induced subgraph: Immoralities, i.e., in-

!Treatment of cyclic graphs require mechanics different than
independent exogenous variables, or a time varying system, and
is out of the scope of this paper.

2The set of unfaithful distributions are shown to have measure
0. This makes faithfulness a widely employed assumption, even
though it was recently shown that almost faithful distibutions may
have significant measure (Uhler et al., 2013).

duced subgraphs on three nodes of the form X — Z < Y.
An undirected graph G is called the skeleton of a causal
directed graph D, if every edge of G corresponds to a di-
rected edge of D, and every non-edge of GG corresponds
to a non-edge of D. PC algorithm (Spirtes et al., 2001)
and its variants use conditional independence tests: They
first identify the graph skeleton, and then determine all the
immoralities. The runtime is polynomial if the underlying
graph has constant vertex degree.

The set of invariant causal edges are not only those that
belong to an immorality. For example, one can identify
additional causal edges based on the fact that the graph is
acyclic. Meek developed a complete set of rules in (Meek,
1995a;b) to identify every invariant edge direction, given a
set of causal edges and the skeleton. Meek rules can be iter-
atively applied to the output of the PC algorithm to identify
every invariant arrow. The graph that contains every in-
variant causal arrow as a directed edge, and the others as
undirected edges is called the essential graph of D. Es-
sential graphs are shown to contain undirected components
which are always chordal 3(Spirtes et al., 2001; Hauser &
Biihlmann, 2012a) .

Performing experiments is the most definitive way to learn
the causal direction between variables. Randomized clin-
ical trials, which aim to measure the causal effect of a
drug are examples of such experiments. In Pearl’s causal-
ity framework, an experiment is captured through the do
operator: The do operator refers to the process of assign-
ing a particular value to a set of variables. An inferven-
tion is an experiment where the scientist collects data af-
ter performing the do operation on a subset of variables.
This process is fundamentally different from conditioning,
and requires scientist to have the power of changing the un-
derlying causal system: For example, by forcing a patient
not to smoke, the scientist removes the causal effect of the
patient’s urge to smoke which may be caused by a gene.
An intervention is called perfect if it does not change any
other mechanism of the causal system and only assigns the
desired value to the intervened variable. A stochastic in-
tervention assigns the value of the variable of interest to
the realizations of another variable instead of a fixed value.
The assigned variable is independent from the other vari-
ables in the system. This is represented as do(X = U) for
some independent random variable U.

Due to the change of the causal mechanism, an intervention
removes the causal arrows from Pax to X. This change in
the graph skeleton can be detected by checking the con-
ditional independences in the post-interventional distribu-
tion: The edges still adjacent to X must have been direct-
ing away from X before the experiment. The edges that

3A graph is chordal if its every cycle of length 4 or more con-
tains a chord.
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are missing must have been the parents of X. Thus, an
intervention on X enables us to learn the direction of ev-
ery edge adjacent to X. Similarly, intervening on a set of
nodes S C V concurrently enables us to learn the causal
edges across the cut (5, 5°¢).

Given sufficient data and computation power, we can ap-
ply the PC algorithm and Meek rules to identify the essen-
tial graph. To discover the rest of the graph we need to
use interventions on the undirected components. We as-
sume that we work on a single undirected component after
this preprocessing step*. Hence, the graphs we consider
are chordal without loss of generality, since these compo-
nents are shown to always be chordal (Hauser & Biithlmann,
2012a). After each intervention, we also assume that the
scientist can apply the PC algorithm and Meek rules to un-
cover more edges. A set of interventions is said to learn a
causal graph given skeleton G, if every causal edge of any
causal graph D with skeleton G can be identified through
this procedure. A set of m interventions is called an in-
tervention design and is shown by Z = {I1, Is,..., I, },
where I; C V is the set of nodes intervened on in the i*?
experiment.

An intervention design algorithm is called non-adaptive if
the choice of an intervention set does not depend on the out-
come of the previous interventions. Yet, we can make use
of the Meek rules over the hypothetical outcomes of each
experiment. Adaptive algorithms design the next experi-
ment based on the outcome of the previous interventions.
Adaptive algorithms are in general hard to design and ana-
lyze. They are also impractical when the scientist needs to
design the interventions before the experiment starts, e.g.,
for parallelized experiments.

In this paper we are interested in the problem of learning
a causal graph given its skeleton where each variable is as-
sociated with a cost. The objective is to non-adaptively de-
sign the set of interventions that minimizes the total inter-
ventional cost. We prove that, any set of interventions that
can learn every causal graph with a given skeleton needs
to be a graph separating system for the skeleton. This is,
to the best of our knowledge, the first formal proof of this
statement.

2.2. Separating systems, Graphs, Colorings

A separating system on a set of elements is a collection
of subsets with the following property: For every pair of
elements from the set, there exists at least one subset which
contains exactly one element from the pair:

Definition 1. For set V = [n] = {1,2,...,n}, a col-

*It is shown that learning additional edges in an undirected
component does not help identify edges in another undirected
component (Hauser & Biithlmann, 2012a).

lection of subsets of V, T = {I1,1Is,...1,,}, is called a
separating system if for every pair u,v € V, 3i € [m] such
that either w € I; and v & I;, oru & I; and v € I,.

The subset that contains exactly one element from the pair
is said to separate the pair. The number of subsets in the
separating system is called the size of the separating sys-
tem. We can represent a separating system with a binary
matrix:

Definition 2. Consider a separating system 1T =
{I1,I,...I,} for the set [n]. A binary matrix M &
{0,1}™*™ js called the separating system matrix for T if
Sor any element j € [n], M(j,i) = 1if j € I; and 0 other-
wise.

Thus, each set element has a corresponding row coordinate,
and the rows of M represent the set membership of these
elements. Each column of M is a 0-1 vector that indicates
which elements belong to the set corresponding to that col-
umn. See Figure 1(b) for two examples. The definition of
every pair being separated by some set then translates to
every row of M being different.

Given an undirected graph, a graph separating system is a
separating system that separates every edge of the graph.

Definition 3. Given an undirected graph G = ([n], E), a
set of subsets of [n), T = {I1, I, ... I}, is a G-separating
system if for every pair u,v € [n] for which (u,v) € E,
3i € [m] such that either v € I; and v ¢ I, or u ¢ I; and
RS I1

Thus, graph separating systems only need to separate pairs
of elements adjacent in the graph. Graph separating sys-
tems are considered in (Mao-Cheng, 1984). It was shown
that the size of the minimum graph separating system is
[log x|, where x is the coloring number of G. Based on
this, we can trivially extend the definition of separating sys-
tem matrices to include graph separating systems.

A coloring of an undirected graph is an assignment of a
set of labels (colors) to every vertex. A coloring is called
proper if every adjacent vertex is assigned a different color.
A proper coloring for a graph is optimal if it is the proper
coloring that uses the minimum number of colors. The
number of colors used by an optimal coloring is the chro-
matic number of the graph. Optimum coloring is hard
to find in general graphs, however it is in P for perfect
graphs. Since chordal graphs are perfect, the graphs we are
interested in in this paper can be efficiently colored using
minimum number of colors. For a given undirected graph
G = (V,E), the vertex induced subgraph on S C V is
shown by Gg = (S, E).
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3. Related Work

The framework of learing causal relations from data has
been extensively studied under different assumptions on
the causal model. The additive noise assumption asserts
that the effect of the exogenous variables are additive in the
structural equations. Under the additional assumptions that
the data is Gaussian and that the exogenous variables have
equal variances, Peters & Biithlman (2014) shows that the
causal graph is identifiable. Recently, under the additive
linear model with jointly Gaussian variables Peters et al.
(2016) proposed using the invariance of the causal relations
to combine a given set of interventional data.

For the case of two variable causal graphs, there is a rich
set of theoretical results for data-driven learning: Hoyer
et al. (2008) and Shimizu et al. (2006) show that we can
learn a two-variable causal graph under different assump-
tions on the function or the noise term under the additive
noise model. Alternatively, an information geometric ap-
praoch that is based on the independence of cause and ef-
fect is suggested by Janzing et al. (2012). Lopez-Paz et al.
(2015) recently proposed using a classifier on the datasets
to label each dataset either as X causes Y or Y causes X.
The lack of large real causal datasets forced him to generate
artificial causal data, which makes this approach dependent
on the data generation process. An entropic causal infer-
ence framework is recently proposed for the two-variable
causal graphs by Kocaoglu et al. (2017).

The literature on learning causal graphs using interven-
tions without assumptions on the causal model is more lim-
ited. For the objective of minimizing the number of exper-
iments, Hauser & Biithlmann (2012b) proposes a coloring-
based algorithm to construct the optimum set of interven-
tions. Eberhardt et al. (2005) introduced the constraint on
the number of variables intervened in each experiment. He
proved in (Eberhardt, 2007) that, when all causal graphs
are considered, the set of interventions to fully identify the
causal DAG needs to be a separating system for the set
of variables. For example for complete graphs, separating
systems are necessary. Hyttinen et al. (2013) draws connec-
tions between the combinatorics literature and causality via
known separating system constructions. Shanmugam et al.
(2015) illustrates several theoretical findings: They show
that the separating systems are necessary even under the
constraint that each intervention has size at most k, iden-
tify an information theoretic lower bound on the necessary
number of experiments, and develop an adaptive algorithm
that leverages the Meek rules. To the best of our knowl-
edge, the fact that a graph separating system is necessary
for a given causal graph skeleton was unknown until this
work. Also, none of these works has an explicit cost func-
tion associated with interventions.

4. Graph Separating Systems, Proper
Colorings and Intervention Design

In this section, we illustrate the relation between graph col-
orings and graph separating systems, and show how they
are useful for non-adaptive intervention design algorithms.

Given a graph separating system Z = {I, I, ..., I, } for
the skeleton G of a causal graph, we can construct the set
of interventions as follows: For experiment ¢, intervene on
the set of variables in the set I;. Since Z is a graph sepa-
rating system, for every edge in the skeleton, there is some
1 for which I; intervenes on only one of the variables ad-
jacent to that edge. Since the edge is cut, it can be learned
by learning the skeleton of the post-interventional graph,
as explained in Section 2. Since every edge is cut at least
once, an intervention design based on a G-separating sys-
tem identifies any causal graph with skeleton G.

Graph separating systems provide a structured way of de-
signing interventions that can learn any causal graph. Their
necessity however is more subtle: One might suspect that
using the Meek rules in between every intervention may
eliminate the need for the set of interventions to correspond
to a graph separating system. Suppose we designed the first
i — 1 experiments. Applying the Meek rules over all possi-
ble outcomes of our first « — 1 experiments on G may en-
able us to design the mth experiment in an informed man-
ner, even though we do not get to see the outcome of our
experiments. Eventually it might be possible to uncover
the whole graph without having to separate every edge. In
the following we show that Meek rules are not powerful
enough to accomplish this, and we actually need a graph
separating system. This fact seems to be known (Eberhardt,
2007; Hauser & Biihlmann, 2012b), however we could not
locate a proof. We provide our own proof:

Theorem 1. Consider an undirected graph G. A set of
interventions L learns every causal graph D with skeleton
G if and only if T is a graph separating system for G.

Proof. See the supplementary material. O

4.1. Any Graph Separating System is Some Coloring

In this section, we explain the relation between graph sep-
arating systems and proper graph colorings. This relation,
which is already known (Hauser & Biihlmann, 2012b), is
important for us in reformulating the intervention design
problem in the later sections.

Let C' : V — {0,1}™ be a proper graph coloring for graph
G which uses ¢ (¢ < 2™) colors in total. Colors are la-
beled by length-m binary vectors. First construct matrix
M as follows: Let i'" row of M be the label correspond-
ing to the color of vertex 4, i.e., C(¢). Then M is a G-
separating system matrix: Let I; be the set of row indices
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of M for which the corresponding entries in the i*" col-
umn are 1. Let Z = {4, s, ..., I,,} be the set of subsets
constructed in this manner from m columns of M. Then
7 is a graph separating system for G. To see this, consider
any pair of vertices u, v that are adjacent in G: (u,v) € E.
Since the coloring is proper, the color labels of these ver-
tices are different, which implies the corresponding rows
of M, M(u,:) and M(v,:), are different. Hence, there is
some column of M which is 1 in exactly one of the u*"
and v'" rows. Thus, the subset constructed from this col-
umn separates the pair of vertices u, v.

Therefore any proper graph coloring can be used to con-
struct a graph separating system. It turns out that the con-
verse is also true: Any graph separating system can be used
to construct a proper graph coloring. This is shown by
Cai in (Mao-Cheng, 1984) within his proof that shows that
the minimum size of a graph separating system is [log x|,
where Y is the chromatic number. We repeat this result for
completeness’:

Lemma 1 ((Mao-Cheng, 1984)). LetZ = {I1,Io,..., I}
be a graph separating system for the graph G = (V, E).
Let M be the separating system matrix for L: it" column of
M is the binary vector of length |V'| which is 1 in the rows
that are contained in I;. Then the coloring C (i) = M(i,:)
is a proper coloring for G.

This connection between graph colorings and graph sep-
arating systems is important: Ultimately, we want to use
graph colorings as a tool for searching over all sets of inter-
ventions, and find the one that minimizes a cost function.
This is possible due to the characterization in Lemma 1 and
the fact that the set of interventions has to correspond to
a graph separating system in order to identify any causal
graph by Theorem 1.

Along this direction, we have the following simple, yet im-
portant observation: We observe that a minimum graph
separating system does not have to correspond to an op-
timum coloring. We illustrate this with a simple example:

Proposition 1. Consider the undirected graph in Fig. 1(a).
There does not exist any proper 3 coloring of this graph,
for which the graph separating system given in Fig. 1(b)
separates every node across color classes.

Proof. Notice that the chromatic number of the given
graph is 3. Hence the minimum separating system size is
[log,(3)] = 2. Thus the given graph separating system
is a minimum graph separating system. In any proper 3-
coloring, U4 and U5 must have different colors. Hence,
any color-separating system separates U4 and U5. How-

>Note that this lemma is not formally stated in (Mao-Cheng,
1984) but rather verbally argued within a proof of another state-
ment.

ever the rows of the graph separating system which cor-
respond to U4 and U5 are the same. In other words, any
3-coloring based graph separating system separates U4 and
U5 whereas the graph separating system given in Fig. 1(a)
does not. O

This problem can be solved by assigning both vertices U4
and U5 a new color, hence coloring the graph by x + 1 col-
ors. We can conclude the following: Suppose we consider
the cost-optimum intervention design problem with at most
[log(x)] interventions. When we formulate it as a search
problem over the graph colorings, we need to consider the
colorings with at most 21201 colors instead of y colors.

5. Cost-Optimal Intervention Design

In this section, we first define the cost-optimal intervention
design problem. Later we show that this problem can be
solved in polynomial time.

Suppose each variable has an associated cost w; of being
intervened on. We consider a modular cost function: The
cost of intervening on a set S of nodes is w(S) = >, g w;.
Our objective is to find the set of interventions with mini-
mum total cost, that can identify any causal graph with the
given skeleton: Given the causal graph skeleton G, find the
set of interventions S = {51, 5s,...,S,,} that can iden-
tify any causal graph with the skeleton G, with minimum
total cost 37, > g, w;. In this section, we do not assume
that the number of experiments are bounded and we are
only interested in minimizing the total cost. We have the
following theorem:

Theorem 2. Let G = (V,E) be a chordal graph, and
w : V — RY be a cost function on its vertices. Let an inter-
vention on set I have cost ), ; w;. Then the optimal set of
interventions with minimum total cost, that can learn any
causal graph D with skeleton G is given by T = {I; }i[y)»
where I; is the color class for color i for any x coloring
of the graph Gy g = (V\S, E), where S is the maximum
weighted independent set of G.

Proof. See the supplementary material. [

In other words, the optimum strategy is to color the ver-
tex induced subgraph obtained by removing the maximum
weighted independent set S and intervening on each color
class individually. After coloring the maximum weighted
independent set, the remaining graph can always be colored
by at most y colors, i.e., the chromatic number of G. The
remaining graph is still chordal. Since optimum coloring
and maximum weighted independent set can be found in
polynomial time for chordal graphs, Z can be constructed
in polynomial time.
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(a) An undirected graph
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Figure 1. (a) An undirected graph with a proper 3 coloring. (b) A graph separating system, which does not separate color classes for any
proper coloring of the graph. An example color-separating system is also provided.

6. Intervention Design with Bounded Number
of Interventions

In this section, we consider the cost-optimum interven-
tion design problem for a given number of experiments.
We construct a linear integer program formulation for this
problem and identify the conditions under which it can be
efficiently solved. As a corollary we show that when the
causal graph skeleton is a tree or a clique tree, the cost-
optimal intervention design problem can be solved in poly-
nomial time. Later, we present two greedy algorithms for
more general graph classes.

To be able to uniquely identify any causal graph, we need
a graph separating system by Theorem 1. Hence, we need
m > [log(x)] since the minimum graph separating system
has size [log(x)] due to (Mao-Cheng, 1984).

6.1. Coloring formulation of Cost-Optimum
Intervention Design

One common approach to tackle combinatorial optimiza-
tion problems is to write them as linear integer programs:
Often binary variables are used with a linear objective func-
tion and a set of linear constraints. The constraints deter-
mine the set of feasible points. One can construct a con-
vex object (a convex polytope) based on the set of feasible
points by simply taking their convex hull. However this
object can not always be described efficiently. If it can,
then the linear program over this convex object can be ef-
ficiently solved and the result is the optimal solution of the
original combinatorial optimization problem. We develop
an integer linear program formulation for finding the cost-
optimum intervention design using its connection to proper
graph colorings.

From Theorem 1, we know that we need the set of inter-
ventions to correspond to a graph separating system for the

skeleton. From Lemma 1, we know that any graph sepa-
rating system can be constructed from some proper color-
ing. Based on these, we have the following key observa-
tion: To solve the cost-optimal intervention design prob-
lem given a skeleton graph, it is sufficient to search over
all proper colorings, and find the coloring that gives the
graph separating system with the minimum cost. We use
the following (standard) coloring formulation: Suppose we
are given an undirected graph G with n vertices and ¢ col-
ors are available. Assign a binary variable z; , € {0,1}
to every vertex-color pair (i,k): x;, = 1 if vertex 7 is
colored with color k, and O otherwise. Each vertex is as-
signed a single color, which can be captured by the equality
> kep Tik = L. Since coloring is proper, every pair of ad-
jacent vertices are assigned different colors, which can be
captured by x;  + z; < 1,V(i,j) € E,Vk € [t]. Based
on our linear integer program formulation given in the sup-
plementary material, we have the following theorem:

Theorem 3. Consider the cost-optimal non-adaptive inter-
vention design problem given the skeleton G = (V, E) of
the causal graph: Let each node be associated with an in-
tervention cost, and the cost of intervening on a set of vari-
ables be the sum of the costs of each variable. Then, the
non-adaptive intervention design that can learn any causal
graph with the given skeleton in at most m interventions
with the minimum total cost can be identified in polynomial
time, if the following polytope can be described using poly-
nomially many linear inequalities:

C = conv{x € R*2" :Z i < 1,Vi € [n], (1)

ke[2m]
Tk + X4k < 1,V(Z,]) e F,
zik € {0,1},Vi € [n],k € [2™]}.

Proof. See the supplementary material. O
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Donne in (Donne & Marenco, 2016) identifies that when
the graph is a tree, one can replace the constraints z; j, €
{0,1} with z; , > 0 for all (¢,k) € [n] x [2™] without
changing the polytope in 1. He also shows that when the
graph is a clique-tree (a graph that can be obtained from
a tree by replacing the vertices of the tree with cliques), a
simple alternative characterization based on the constraints
on the maximum cliques of the graph exists, which can be
efficiently described. Based on this and Theorem 3, we
have the following corollary:

Corollary 1. The cost-optimal non-adaptive intervention
design problem can be solved in polynomial time if the
given skeleton of the causal graph is a tree or a clique tree.

We can identify another special case for the cost-optimum
intervention design problem when the graph is uniquely
colorable. See the supplementary material for the corre-
sponding result and the details.

6.2. Greedy algorithms

In this section, we present two greedy algorithms for the
minimum cost intervention design problem for more gen-
eral graph classes.

Algorithm 1 Greedy Intervention Design for Total Cost
Minimization for Chordal Skeleton

1: Input: A chordal graph GG, maximum number of interven-

tions m, cost w; assigned to each vertex .

2:r=2"1t=0,G1=(V,E), Vi =V.

3: T = All binary vectors of length m.

4: while » > x do

5:  Find maximum weighted independent set S; of G+.

6.

7

8

Find u = arg min_,|x|1 (Break ties arbitrarily).
Assign M (i,:) =toevery ¢ € St.
Git1 = (Vig1, E), Vig1r = Vi\Se: Gy is the induced
subgraph on the uncolored nodes.
9 r+r—Lt+«t+1, T+ T—{u}.
10: end while
11: Color G¢—1 with minimum number of colors.
12: Assign the remaining length-m binary vectors as rows of M
to different color classes.
13: Output: M.

We have the following observation: Consider a coloring
C': V — [t], which uses up to ¢ colors. Consider the graph
separating system matrix M constructed using this color-
ing, as described in Section 4.1. Recall that the ith row
of M is a {0, 1} vector which represents the label for the
color of vertex ¢, and j th column is the indicator vector for
the set of variables included in intervention j. We call the
{0, 1} vector used for color k as the coloring label for color
k. The separating property does not depend on the color
labels: Using different labels for different colors is suffi-
cient for the graph separating property to hold. However,
the number of 1s of a coloring label determines how many

Algorithm 2 Greedy Intervention Design for Total Cost
Minimization for Interval Skeleton
1: Input: An interval graph GG, maximum number of interven-
tions m, cost w; assigned to each vertex 4.
20 r=2"1t=0,G1=(W1,E),Vi=V.
3: whiler — (') > x do
4:  Find maximum (weighted) (T) —colorable induced sub-
graph S;
5:  Assign all weight—t binary vectors of length m as rows of
M (S, :) to different color classes.

6:  Git1 = (Vig1, E), Vig1 = Vi\Se: Gy is the induced

subgraph on the uncolored nodes.

r4—Tr— (T) r is the number of unused available colors.

t—t+1

: end while

: Color G¢—1 with minimum number of colors.

: Assign the remaining length-m binary vectors as rows of M
to different color classes.

12: Output: M.

—_—

times that variable is intervened on using the correspond-
ing intervention design. Hence, we can choose the coloring
labels from the binary vectors with small weight, given the
choice. Moreover, the column index of a 1 in a certain row
does not affect the cost since in a non-adaptive design, ev-
ery intervention counts towards the total cost (we cannot
stop the experiments earlier unlike adaptive algorithms).

Based on this observation, we can try to greedily color the
graph as follows: Suppose we are allowed to use up to
m interventions. Thus the corresponding graph separating
system matrix IM can have up to m columns, which allows
up to 2™ distinct coloring labels. We can greedily color the
graph by choosing labels with small weight first: Choose
the color label with smallest weight from the available la-
bels. Find the maximum weighted independent set of the
graph. Assign the coloring label to the rows associated with
the vertices in this independent set. Remove the used col-
oring label from the available labels, update the graph by
removing the colored vertices and iterate.

However, this type of greedy coloring could end up using
many more colors than allowed. Indeed one can show that
greedily coloring a chordal graph using maximum indepen-
dent sets at each step cannot approximate the chromatic
number within an additive gap for all graphs. Thus, this
vanilla greedy algorithm may use up all 2™ available col-
ors and still have uncolored vertices, even though x < 2.
To avoid this, we use the following modified greedy algo-
rithm: For the first 2™ — x steps, greedily color the graph
using maximum weighted independent sets. Use the last y
colors to color the remaining uncolored vertices. Since the
graph obtained by removing colored vertices have at most
the same chromatic number as the original graph, x colors
are sufficient. The remaining graph is also chordal since re-
moving vertices do not change the chordal property, hence
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Figure 2. Exponential weights w; ~ exp(1). m: no. of vertices, d: Sparsity parameter of the chordal graph. Each datapoint is the
average cost incurred by the greedy intervention design over 1000 randomly sampled causal graphs for a given number of experiments.
The expected average cost of all the edges is E[w;] = 1. The cost incurred by the intervention design is normalized by n. As observed,
the cost incurred increases gradually as the number of experiments are reduced, or graph becomes denser. For sparse graphs, proposed

construction incurs low cost even for up to 3 experiments.

finding a coloring that uses x colors can be done efficiently.
This algorithm is given in Algorithm 1.

We can improve our greedy algorithm when the graph is
an interval graph, which is a strict subclass of the chordal
graphs. Note that there are ('}') binary labels of length m
with weight t. When we use these ("}') vectors as the color-
ing labels, the corresponding intervention design requires
every variable with these colors to be intervened on exactly
t times in total. Then, rather than finding the maximum
independent set at iteration ¢, we can find the maximum
weighted ('}')-colorable subgraph, and use all the coloring
labels of weight t. The cost of the colored vertices in the in-
tervention design is ¢ times their total cost. We expect this
to create a better coloring in terms of the total cost, since
it colors a larger portion of the graph at each step. Finding
the maximum weighted %k colorable subgraph is hard for
non-constant k in chordal graphs, however it can be solved
in polynomial time if the graph is an interval graph (Yan-
nakakis & Gavril, 1987). This modified algorithm is given
in Algorithm 2. Notice that when m >> log n, the number
of possible coloring labels is super-polynomial in n, which
seem to make the algorithms run in super-polynomial time.
However, when m >> logn, we can only use the first n
color labels with the lowest weight, since a proper coloring
on a graph with n vertices can use at most n colors in total.

7. Experiments

In this section, we test our greedy algorithm to construct in-
tervention designs over randomly sampled chordal graphs.
We follow the sampling scheme proposed by Shanmugam
et al. (2015) (See the supplementary material for details).
The costs of the vertices of the graph are selected from i.i.d.

samples of an exponential random variable with mean 1.
The total cost of all variables is then the same as the num-
ber of variables n in expectation. We normalize the cost
incurred by our algorithm with n and compare this normal-
ized cost for different regimes. The parameter d is a pa-
rameter that determines the sparsity of the graph: Graphs
with larger d are expected to have more edges. See the sup-
plementary material for the details of how the parameter d
affects the probability of an edge. We limit the simulation
to at most 10 experiments (z-axis) and observe the effect
of changing the number of variables n and parameter d.

Algorithm 1 requires a subroutine that can find the maxi-
mum weighted independent set of a given chordal graph.
We implement the linear-time algorithm by Frank (Frank,
1975) for finding the maximum weighted independent set
of a chordal graph. For the details of Frank’s algorithm, see
the supplementary material.

We observe that the main factor that determines the aver-
age incurred cost is sparsity of the graph: The number of
edges compared to the number of nodes. For a fixed n, re-
ducing d results in a smaller average cost by increasing the
sparsity of the graph. For a fixed d, increasing n reduces
the sparsity, which is also shown to reduce the average cost
incurred by the greedy intervention design. See the sup-
plementary material for additional simulations where the
costs are chosen as the i.i.d. samples from a uniform ran-
dom variable over the interval [0, 1].
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