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ABSTRACT 

Predicting progression from a stage of Mild Cognitive Impairment 
to Alzheimer’s disease is a major pursuit in current dementia 
research. As a result, many prognostic models have emerged with 
the goal of supporting clinical decisions. Despite the efforts, the 
clinical application of such models has been hampered by: 1) the 
lack of a reliable assessment of the uncertainty of each prediction, 
and 2) not knowing the time to conversion.  It is paramount for 
clinicians to know how much they can rely on the prediction made 
for a given patient (conversion or no conversion), and the time 
windows in case of conversion, in order to timely adjust the 
treatments. We propose a supervised learning approach using 
Conformal Prediction and a stepwise learning approach, where the 
learning model first predicts whether a patient converts to 
dementia, or remains stable, and then predicts the more likely 
progression window (short-term or long-term conversion). We 
used data from ADNI to test the approach and predict conversion 
within time windows of up to 2 years (short-term converter) and 2 
to 4 years (long-term converter). The exploratory results are 
promising but compromised by the small number of examples for 
the long-term converting patients, available for training. 
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1 Data used in preparation of this article were obtained from the 
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(adni.loni.usc.edu). As such, the investigators within the ADNI 
contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this 
report. A complete listing of ADNI investigators can be found at: 
http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pd
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1. INTRODUCTION 
Alzheimer's disease (AD) is a neurodegenerative disease with 
devastating effect on patients and their families, and a huge socio-
economic impact in modern societies. Nowadays, more than 30 
million people suffer from AD worldwide and its prevalence is 
expected to triple by 2050 [18]. It is therefore paramount to 
understand AD and its progression, not only to guide clinical 
decisions and manage patients and families’ expectations, but also 
to develop new effective treatments.  

Mild Cognitive Impairment (MCI) is considered as a transitive 
stage between healthy aging and dementia [18], where patients 
have cognitive complaints not interfering with daily live activities 
[18]. These patients are more likely to develop AD [11]. In this 
context, studying progression from MCI to dementia is a major 
challenge in current medical research [1, 21]. Whilst there is no 
treatment to revert AD’s symptoms, an early prognostic of 
dementia is nevertheless useful to help clinicians taking decisions 
about their patients’ possible treatment and to timely adjust 
medical appointments.  

By following different approaches and using different types of 
data (biological markers and/or neuropsychological data), 
researchers have sought for robust prognostic models, to guide 
clinical decisions by means of a medical decision support system 
to be used in clinical settings. This clinical decision support 
system would predict the most likely prognostic for a new MCI 
patient based on the past history of a cohort of patients with 
known diagnostics.  

Despite the advances made in prognostic prediction for MCI 
patients, where machine learning techniques achieved promising 
results [13], some issues have hampered its practical use in 
clinical settings: 
1) Lack of trustworthy prognostic prediction. Most prognostic 

models only produce bare predictions, without providing any 
assessment of the uncertainty on each prediction. This is a 
major disadvantage as for clinicians it is paramount to know 



 

how much can they trust the prognostic predicted for a given 
patient [16, 19]. In this context, confidence measures can 
provide insight on the likelihood of each prediction.  

2) Unknown time to conversion. The early prognostic of AD is 
very important to treat patients as well as possible and 
manage their expectation regarding disease progression. 
Furthermore, knowing how fast will the progression be in 
case it occurs is of great value. With such information, 
clinicians could timely adjust treatments and medical 
appointments to the need of that specific patient. In this 
context, we should model conversion to dementia within 
specific time intervals. Besides being more informative from 
a clinical point of view, the few studies [2, 7, 17] that 
addressed this question showed that prognostic models 
learned with patients having similar time to conversion are 
more reliable than those models learned from heterogeneous 
groups of patients (regarding their conversion time). 

In this work, we propose a supervised learning approach aiming to 
tackle these issues. Following a stepwise learning process, this 
approach not only predicts conversion to dementia, but outputs the 
more likely window of occurrence (short-term or long-term 
conversion). To test this approach, we used Conformal Prediction 
(CP) [20, 23], a machine learning technique that produces 
confidence measures. Conformal Predictors (CPs) are built on top 
of traditional machine learning algorithms (denoted as underlying 
algorithms), predicting the class that makes the new example 
(patient) more “conform” to the training set within certain levels 
of confidence. A confidence level of 0.9, for instance, means that 
the conformal predictors commit to a maximum of 10% of errors. 
CPs have been applied successfully in disease-related problems 
such as the early detection of ovarian cancer [5], diagnosis of 
acute abdominal pain [15] or stroke risk assessment [10]. 

Neuropsychological data have proved their relevance on 
predicting converting MCI patients, being considered as accurate 
as the more complex models involving data integration [12]. 
Despite the value of biological biomarkers, they retain a 
supportive role to the neuropsychological assessment. On the one 
hand, measurable cognitive impairment is still a hallmark for the 
diagnosis of dementia and mild cognitive impairment [6, 24]. On 
the other hand, neuropsychological tests (NPTs) are less 
expensive, non-invasive, and easily applied in clinical practice.  
Machine learning approaches are gaining a lot of relevance in 
dementia research [2, 13], but mainly focusing on brain imaging 
data (Magnetic Resonance Imaging (MRI) or Positron Emission 
Tomography (PET)). Works involving only NPTs tend to use 
traditional statistical analysis, which may not be suitable to 
successfully capture all its predictive power [1].  

In this work, we study the feasibility of the proposed approach to 
the prognostic problem of MCI-to-AD conversion within certain 
time windows, using the conformal prediction framework and 
neuropsychological data. To our knowledge, this was not explored 
to date. The proposed supervised learning approach may, 
however, be used with other methods and/or data types.  

2. DATASET AND METHODS 
2.1 ADNI data 
The ADNI was launched in 2003 as a public-private partnership, 
led by Principal Investigator Michael W. Weiner, MD. Its goals is 
to find relevant biomarkers in all stages of AD to guide future 
clinical trials for new possible treatments. Currently, it includes 

1400 MCI and AD patients, as well as normal subjects, being 
followed. ADNI includes several biomarkers of Alzheimer’s 
disease such as demographic data, neuropsychological tests, 
Cerebrospinal fluid (CSF), structural Magnetic Resonance 
Imaging, functional-MRI (fMRI), Positron Emission Tomography 
and other biological data. This data is collected from every ADNI 
participant at the baseline assessment, as well as on their annual 
follow-up consultations. 
In this work, we used NPTs data from ADNI-2 patients. A list of 
the 93 features used (original or created from the data) is available 
at: https://fenix.tecnico.ulisboa.pt/homepage/ist165127/support-
data-for-publications. This data also includes demographic data 
such as age, gender, education level. NPTs include, but are not 
limited to, the Mini Mental State Examination (MMSE) and the 
Alzheimer’s Disease Assessment Scale – cognitive subscale 
(ADAS-Cog). For a detailed description of ADNI’s data, we refer 
to http://adni.loni.usc.edu/. 
The total number of patients was filtered to include only MCI 
patients at the baseline assessment. Reverters – patients that 
converted from MCI to normal cognition, or even AD to MCI, 
were excluded from the pool. This is usually the method 
employed by most studies, as reversion is clearly unexpected and 
can be related to errors in diagnosis or the presence of diseases 
other than AD [8], which affects the diagnosis. Also, patients 
were excluded if they didn’t have any follow-up assessments. 
We followed the strategy to create learning examples using time 
windows described in [17]. For a given time-window, we 
considered patients that converted to dementia within a predefined 
interval, i.e. which had the diagnosis of AD in one of the yearly 
assessments up until the limit of the window. Those are labeled 
cMCI (converter MCI). On the other hand, patients that didn’t 
convert to AD during that period and presented a diagnosis of 
MCI at the limit of the window or afterwards, are included in the 
learning set labelled as sMCI (stable MCI). In this work, and 
taking into account the nature of the ADNI data, we chose a 
follow-up time of 4 years. From a total of 265 MCI patients, 143 
(54%) patients remained stable and 122 (46%) converted to 
dementia within the follow-up period. Regarding the converting 
patients, 89 converted to AD within the first 2 years (short-term 
conversion, s.t. cMCI), and 33 converted between 2 and 4 years 
(long-term conversion, l.t. cMCI).  

2.2 Conformal Prediction 
We introduce the idea behind the conformal prediction 
framework. For a more formal description we refer to [23]. Let us 
assume that we are given a training set {(!", $"  ),...,(!"#$, &"#$  )}, 
where !" ∈ $   is a vector of attributes and !" ∈ $   is the class label 
(assuming a binary classification problem). Given a new test 
example ("#)   we aim to predict its class.   Intuitively, we assign 
each class !" ∈ $   to !"   , at a time, and then evaluate how “non-
conform” the example (!", $"   ) is in comparison with the training 
data. The most likely class label conforms better with the training 
set. A non-conformity measure, to assess the non-conformity of 
the test example, must be extracted from the underlying classifier 
(any classifier may be used). To evaluate how different !"    is from 
the training set, we compare its non-conformity score with those 
of the remaining training examples !"	, % = 1,… , ) − 1  , using the 
p-value function (distinct from the p-value from statistics):  

! "#	 = | '(),…,#:	-.	 /-0	 |
#                (1) 



 

where !"	    is the non-conformity score of !"   , assuming it is 
assigned to the class label !"   . If the p-value is small, then the test 
example (!", $"   ) is non-conforming since few examples (!", $"   ) 
had a higher non-conformity score when compared with !"   . On 
the other hand, if the p-value is large, !"    is very conforming since 
most of the examples ("# , %#   ) had a higher non-conformity score 
when compared with !"   . Once p-values are computed, CP can be 
used in one of the following ways: 

1) Using prediction regions. For a given significance level 
(e), CPs output a prediction region, !"   : set of all classes 
with ! "#	 > &  , contrarily to the single predictions 
given by standard classifiers. These prediction regions 
have a guaranteed error rate. This means that the 
frequency of errors (fraction of true values outside !"   ) 
does not exceed !  , at a confidence level 1 − #  . The error 
rate is guaranteed under the randomness assumption, 
which states that the examples are independently drawn 
from the same distribution (this property is called 
validity) [23]. Prediction regions may therefore 
comprise more than one class (uncertain prediction), no 
class (empty prediction) or a single class (certain 
prediction). Multiple predictions are not errors but a 
reflection of the fact that the classifier is not being 
confident enough to predict a certain class. The smaller 
the prediction region the more efficient the conformal 
predictor is [23]. 

2) Using forced predictions. If one would rather have 
single predictions than prediction regions, CPs predict 
the class with the highest p-value (forced prediction), 
alongside with its credibility (the largest p-value) and 
confidence (complement to 1 of the second highest p-
value). Confidence reveals how likely the predicted 
classification is compared with the other classes. 
Credibility reveals how suitable the CP is for classifying 
the given example. Low credibility means that either the 
training set is non-random or the test example is not 
representative of the training set, and thus, the predicted 
class is non-conforming to the training data. Given that 
the data was generated independently from the same 
distribution (randomness assumption [23]), the 
probability that the credibility is less than some 
threshold e is less than e [22]. The higher the values of 
both confidence and credibility the more reliable is the 
prediction.  

2.2.1 Transductive and Inductive CP 
Conformal prediction may be used in the transductive or in the 
inductive setting. When transductive framework is used, the 
training set is enriched with the test example, and the underlying 
classifier is updated. Non-conformity scores are then computed 
for all the training examples. This process is repeated for all class 
labels ! ∈ #  . A new prediction is therefore based on all the 
training examples. For large datasets, this is computationally very 
demanding. This led to the emergence of inductive learning [14, 
22]. When inductive is used, the training set 
{(!", $"  ),...,(!"#$, &"#$  )} is divided into the proper training set 
{(!", $"  ),...,(!", $"   )} and the calibration set 
{(!"#$, &"#$  ),...,(!"#$, &"#$  )}, where ! < # − 1  . The proper 
training set is used to derive the prediction rule, by training the 
underlying classifier. This prediction rule is then used to classify 

the examples of the calibration set and the test example. Non-
conformity scores are only computed with the examples of the 
calibration set.  

2.2.2 Mondrian CP  
Mondrian conformal prediction is a variant of CP that deals with 
imbalanced datasets [23]. When the number of examples of a 
given class is significantly larger than those of the other class, 
most errors are putatively from the minority class, limiting the 
applicability of these predictions. Mondrian conformal prediction 
applies CPs separately to each label class. The p-value is thus 
computed by comparing the non-conformity score of the test 
example against only training examples of the same class as the 
current hypothesis !"   : 

! "#	 = | '(),…,#∶	-.(-/	0#1		2.	 32/	 |
| '(),…,#∶	-.(-/ |      (2) 

2.3 Stepwise learning with time windows  
The supervised learning approach proposed in this work is 
described in Figure 1. It consists on a two-step supervised 
learning approach which starts by predicting conversion from 
MCI to AD, within a given level of confidence, and then 
complements it with the prediction of the most likely time 
window of conversion (short-term or long-term conversion). More 
specifically, in the first step, Model 1 predicts whether a given 
MCI patient will convert to dementia (cMCI) or remains MCI 
during the follow-up period (sMCI). A measure reflecting the 
confidence on the predicted class is outputted. If this value is 
below a certain (predefined) threshold, we consider that prediction 
as unpredictable (No prediction). If the prediction is trustworthy 
(above the confidence level) the prognostic is made. A 
trustworthy prediction of conversion (cMCI) is fed into Model 2, 
in the second step of the approach. This model predicts whether 
the patient will have a short-term or long-term conversion. Once 
again, low confident predictions are considered as unpredictable.  

 
Figure 1. Workflow of the proposed stepwise supervised learning 
approach. Model 1 predicts whether a MCI patient is going to convert 
(cMCI: converter MCI), remains MCI (sMCI: stable MCI), or if no 
prognostic is presented because the prediction is below the chosen 
confidence level. Model 2 predicts the more likely window of conversion 
(short-term or long-term) for converting patients, or no prediction if it is 
not trustworthy. 

2.3.1 Classification setup 
The proposed classification approach is divided into two phases: 
i) training and tuning the parameters to Model 1 (prognostic 
prediction, Figure 1) and Model 2 (window of conversion, Figure 
1) and ii) applying the stepwise approach described before: for a 



 

given test set, first classify patients as sMCI or cMCI and then in 
short-term (cMCI at 0-2 years) or long-term (cMCI at 2-4 years) 
conversion. The dataset was randomly split (keeping class 
proportions) in training set (80%) and test set (20%). This process 
was repeated 5 times with fold randomization. During the training 
and tuning parameters phase, for each training set, a further 5-fold 
cross-validation (CV) procedure was repeated 5 times with fold 
randomization. This aimed at dividing the examples into training 
and validation sets, in order to use the validation examples to 
determine the parameters that optimize a predefined evaluation 
metric. We optimized the values of F-measure and outputted also 
the values of sensitivity and specificity. We used Naïve Bayes and 
tested three parameters: 1) use Gaussian distribution or 2) kernel 
estimator for numerical attributes, and 3) whether to use 
supervised discretization to convert numerical into nominal 
attributes.  
Since the use of preprocessing techniques to deal with a large 
number of (possibly irrelevant) features or imbalanced classes 
may have a significant impact on both classification performance 
and model simplification and interpretability, the worth of 
using/not using feature selection (FS) and/or using/not using 
SMOTE to deal with class imbalance was tested.  

Four methods from the filter family of FS were tested. A filter 
feature selection algorithm evaluates the value of a features’ 
subset without taking into account the learning algorithm that is 
applied afterwards. These methods take different measures in 
search for the most predictive features, such as Weka’s 
CfsSubsetEval is an implementation of Hall’s work [9], that 
measures the predictive power of each feature while minimizing 
the redundancy between them.  CorrelationAttributeEval 
measures the Person’s correlation between features and the class 
and SymmetricalUncertAttributeEval and InfoGain measure the 
worth of a particular attribute by its information gain and 
symmetrical uncertainty with respect to the class, respectively. 
The latter three methods rank the features by their individual 
evaluations and thus the number of selected features to keep must 
be defined. Subset sizes of 10 to 40 features, with incremental 
steps of 5 features, were tested. These FS methods were 
implemented in Weka. 
Furthermore, class imbalance was tackled with the Synthetic 
Minority Over-sampling Technique (SMOTE) [3]. SMOTE is an 
oversampling technique that generates synthetic samples from the 
minority class by choosing a set of similar instances and 
perturbing the attributes by a random amount. SMOTE percentage 
ranges from 0% to the equilibrium of the class proportions, in 3 
steps. In order to ensure the validity of the results, FS and 
SMOTE were only applied to the training data within each cross-
validation fold.  

The worth of using FS and/or SMOTE was assessed by the 
Wilcoxon Signed Rank Test [4] on the averaged F-Measure across 
the 5´5-fold CV using IBM SPSS Statistics 24 (released version 
24.0.0.0). 

After the tuning phase, we trained Model 1 and Model 2 with the 
training data (80% of the original dataset) and the optimized 
parameters and then, we tested the proposed stepwise approach 
with the test set (20% of the original dataset). The classification 
approach was implemented in Java using WEKA's functionalities 
(version 3.8.0). 

2.3.2 Conformal prediction settings 
Given that the dataset under study does not have high 
dimensionality, we used the Transductive Conformal Prediction 
framework. In addition, we used Mondrian CP framework to 
tackle the class imbalance of the dataset under study.  

We used Naïve Bayes as underlying classifier of the CP approach 
since, in previous work [17], it outperformed other commonly 
used classifiers (such as SVMs, Decision Trees and Random 
Forests) in the MCI-to-dementia conversion problem. The 
following non-conformity measure was used:  

- log % &' = ) *'  ,   (3) 

where !   is the posterior probability estimated by Naïve Bayes. 
We used the Forced Prediction approach to train and tune the 
parameters to Model 1 and Model 2 (first phase of the proposed 
approach, Section 2.3.1). The confusion matrix computed to fine-
tune the parameters was built with no confidence level as it used 
all the (forced) predictions made. In the second phase of the 
proposed framework (applying the stepwise approach), both 
approaches of Conformal Prediction – using Prediction Regions 
(PR approach) or Forced Predictions (FP approach) (section 2.2) 
were used. In the former, certain predictions were considered as 
trustworthy while uncertain and empty predictions were seen as 
unreliable (no class predicted). Three significance levels were 
tested !   = {0.15, 0.20, 0.30} corresponding to the following 
confidence levels: cfd = {0.70, 0.75, 0.85}. In the latter, forced 
predictions above the predefined confidence threshold were 
considered as trustworthy while the remaining were disregarded. 
Three confidence (cfd) thresholds were tested (cfd = {0.70, 0.75, 
0.80}).  

Two other approaches, using Prediction Regions, were tried to 
compute the optimization metric in the parameters’ tuning phase 
(first phase of the proposed approach, Section 2.3.1). Specifically, 
F-measure was computed: i) using only certain predictions 
(disregarding the uncertain and empty predictions) and ii) using 
the certain predictions and considering the uncertain and empty 
predictions as misclassified examples. However, since these 
approaches did not enhanced the results and due to space 
constraints, we do not report these results.   

3. RESULTS AND DISCUSSION 
The data used in this work is described in Section 2.1 and 
summarized in Table 1. 

Table 1. Data description.  

 sMCI cMCI 
Model 1 143 (54%) 122 (46%) 

Model 2 - 
s.t. cMCI l.t. cMCI 
89 (73%) 33 (27%) 

 

From the empirical experiments performed using different FS 
methods and size of the features’ subset, we chose the InfoGain 
with 25 features. Small differences were found between the 
averaged F-Measure with distinct FS methods. Although good 
results were achieved for larger subsets of features, we decided to 
pursued the analysis with 25 features, as it represents a good 
trade-off between a good classification performance and a minor 
number of features used, which should be as small as possible 
regarding the reduced sample size.     



 

When evaluating the worth of using FS with Model 1, we 
concluded that there was no statistical difference (p-value<0.291) 
between the results obtained with or without feature selection. 
Still, we decided to proceed with feature selection for the sake of 
model interpretability. We note that SMOTE was not applied to 
Model 1 since its respective class imbalance is negligible. In what 
concerns Model 2, using SMOTE enhanced the results (p-
value=0.00), either using or not using FS. Moreover, learning the 
model with a reduced set of features also improved the results (p-
value<0.04). As such, we pursued the analysis with FS for both 
Model 1 and Model 2 and with SMOTE for Model 1.  
As aforementioned, InfoGain ranks features according to their 
information gain in respect to the class. As such, and while not 
being the main goal of this work, we briefly evaluated the highest 
and lowest ranked features for Model 1 and Model 2. Table 2 
reports the highest and the lowest 10 features for each model. 
Extended tables are provided in the following link: 
https://fenix.tecnico.ulisboa.pt/homepage/ist165127/support-data-
for-publications. ADAS-Cog total scores and memory sub-scores 
(word recall and delayed recall) along with the total score of the 
Functional Assessment Questionnaire are amongst the highest 
ranked features of Model 1. Different measures of the Clinical 
Dementia Rating are also present, including the memory sub-
score but also measures of daily live activities, judgment, problem 
solving and orientation.  
Regarding the highest ranked features of Model 2, we can see sub-
scores from the Neuropsychiatric Inventory that measures several 
behavioral patterns such as the patient’s appetite, depression, 
irritability, apathy and sleep. These were totally absent from the 
highest ranked features of Model 1.  Although there are common 
highest ranked features for both Models (such as sub-scores of 
ADAS-Cog and the Clinical Dementia Ranting), there are some 
measures, such as total scores of ADAS-Cog, part B of the trail 
making test and the total score of the Functional Assessment 
Questionnaire that appears as a top feature for Model 1 but as one 
of the bottom features for Model 2. These results suggest that 
while some measures of delayed recall are extremely important as 
Alzheimer’s disease biomarkers, there are marked differences in 
the most predictive tests and scores to classify converting patients 
and differentiate early from late converters. Finally, some features 
ranked low on both Models, such as the patient’s age, education 
level, number of years of symptoms prior to baseline and age at 
retirement. 
Table 3 reports the results obtained with the optimized parameters 
tuned within a randomized 5-fold cross validation scheme, for 
each train set (5 ´ 80% data) and for Model 1 and Model 2. As 
aforementioned, Model 1 predicts whether a MCI patient converts 
to AD (positive class, cMCI) or remains stable during the follow-
up period of 4 years (negative class, sMCI). The model 
successfully distinguished between converting and non-converting 
patients, as values above 0.76 were achieved in all evaluation 
metrics. Non-converting patients were easier to identify than those 
who converted, pointed by the higher values of specificity.  
Table 3. Results obtained with the optimized parameters fine-
tuned within a randomized 5-fold cross validation scheme, for 
each train fold (5 ´ 80% data) and for each model 1 (prognostic 
prediction) and 2 (time to conversion).   

 F-Measure Sensitivity Specificity 
Model 1 0.784±0.013 0.764±0.014 0.801±0.014 
Model 2 0.642±0.028 0.631±0.032 0.620±0.029 

 

In the second step of the stepwise approach, Model 2 aims to 
predict the most likely window of conversion, between a short-
term (up to 2 years) and long-term (2-4 years) conversion. This 
classification task is more challenging than the prognostic 
prediction learned by Model 1. In fact, the classification models 
are based on the performance accomplished in the 
neuropsychological assessment made at the baseline (first 
patient’s assessment). A converter MCI has certainly a more 
accentuated deficit in the NPTs when compared with a stable 
MCI. Between converting patients, differences in the performance 
on the NPTs assessment should also be present, since some 
patients are closer to become demented than others, although at a 
smaller level, which hampers the learning task. The results 
corroborate this idea (Model 2, Table 3). The negative class 
corresponds to a short-term conversion while the positive class 
represents the long-term conversion. Despite the difficulty of this 
classification task, and the small and imbalanced set of examples 
used in the learning process, the performance was above the 
random level, with F-Measure of 64% and equilibrated values of 
sensitivity and specificity (63% and 62%, respectively).     

Tables 4 and 5 report the results obtained with the stepwise 
approach ran with the test set (5 ´ 20% data), using the models 
trained with the optimized parameters, and following the Forced 
Prediction and Prediction Regions approaches (Section 2.3.2), 
respectively. We note that, since Models 1 and 2 learn distinct 
classes (Model 1: sMCI vs cMCI and Model 2: short-term cMCI 
vs long-term cMCI) we cannot present an overall evaluation 
metric to assess their performance (as we did in Table 3). Instead, 
we evaluate the number of cases that are correctly (and 
incorrectly) classified for each class and at each step of the 
stepwise approach, at different confidence thresholds. We note 
that the class distribution in the test set is imbalanced (it has in 
average 24 sMCI, 18 short-term cMCI and 6 long-term cMCI) 
thus hampering the results, mainly during the second step. 

Model 1 has a high predictive power on classifying MCI patients 
as being converting or non-converting, following both 
approaches, with about 84% of non-converting cases correctly 
classified, even with the highest confidence threshold (cfd=0 .80) 
for the FP approach and 75% for the PR approach. About 79 to 
83% (cfd = 0.70 to 0.80) of the converting cases were also 
correctly identified, although the number of cases with short-term 
conversion that were correctly classified were much higher (above 
83%) than those who converted between 2 and 4 years (around 
60%), for the FP approach. This may be, however, an effect of the 
imbalanced dataset, and not of the incapability of this class to be 
learned. As the confidence threshold increases, the number of 
unreliable predictions (number of non-classifiable cases) also 
increases from 0 to 6%. Still, even for high values of confidence, 
Model 1 achieved good classification performances and a small 
number of non-classifiable cases. Similar results were obtained 
with the PR approach. In this scenario, there is however a higher 
amount of untrustworthy predictions (up to 32%) but also a 
smaller number of wrong predictions (maximum of 12%).  

A final prognostic prediction is given for non-converting patients 
(Model 1). Those classified as converters (about 16 short-term 
cMCI and 3 long-term cMCI) are then fed to Model 2, to 
complement their prognostic with a likely window of progression. 
About 64% of the short-term converting patients are correctly 
classified with a confidence level of 0.70 for the FP approach.  On 
the other side, this model was not reliable on identifying long-
term converters since it correctly classified at maximum average 



 

of 1.4 cases out of 3.8. Once again, the small number of long-term 
cMCI does not allow us to evaluate whether these results are due 
to the challenging learning task or a consequence of the class 
imbalance. Still, it is clear that this classification task is harder 
than that learned with Model 1. The predictions are in general less 
confident as the number of non-classifiable cases goes from 6 to 
32%, with the growth of the confidence threshold.  Comparing 
with the PR approach (Table 5) a minor number of cases of s.t. 
and l.t. conversions were predicted, mainly for higher confidence 
levels, but also less errors were made (11% for confidence level of 
0.85). This is due to the larger amount of non-classifiable patients 
obtained with this approach. This leads to the idea that the PR 
approach is more stringent on the demanded trustiness to make a 
prediction than the FP approach. In fact, the FP approach outputs 
a larger number of correctly classified cases but also a higher 
number of misclassified cases, as only a reduced number of cases 
are considered as non-classifiable.    

4. CONCLUSIONS AND FUTURE WORK 
This paper presents a two-step supervised learning approach 
which starts by predicting conversion from MCI to AD, within a 
given level of confidence, and then complements it with the 
prediction of the most likely time window of conversion (short-
term or long-term conversion), using Conformal Prediction and 
data from ADNI. Despite the clinical meaning and significance of 
the proposed approach, the dataset used in this study did not allow 
a proper validation of the methodology, as more examples of 
long-term converting patients are required.  

Further work is needed to improve the methodology. In particular, 
we aim to test the approach with a larger data sample, either using 
different sources of data or using follow-up assessments to build 
learning examples, considering those as being a “baseline” 
assessment. In this case, we should guarantee that examples of the 
same patient are bundled together, either present in the train or in 
the test set. Besides that, we would like to test whether cases 
whose conversion is at the borderline of the time window (i.e., a 
patient that converts for instance at 2 years and more (or less) a 
few months) are introducing noise in the classification task. We 
will also try different cut-offs of the time windows, which may 
putatively be more significant clinically.  

Another future work concerns the use of methods to deal with 
multiclass problems, where the classifier should distinguish, in 
one step, which patients would convert in a short-term, long-term 
or remain stable. Different algorithms and data types should also 
be tested.  
We highlight the importance of introducing confidence levels 
associated with the predictions. Firstly, it is paramount for 
clinicians to know how much they can rely on the prediction made 
for a given patient, and the time that it takes for the conversion, in 
order to timely adjust the treatments. Secondly, even 
untrustworthy predictions might be useful as clinicians can 
prescribe more specific exams to deeply evaluate the 
neurodegeneration of these patients.  
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Table 2. List of the 10 highest and lowest ranked subsets of features obtained with InfoGain method for Models 1 and 2. 

Highest ranked features Lowest ranked features 
Model 1 Model 2 Model 1 Model 2 

ADAS-Cog - Delayed Word 
Recall RAVLT - Trial B Total Age at retirement Trail Making Test - Part B 

ADAS-Cog - Total Score 
(ADAS 13) 

NPI - Appetite and eating 
disorders: Item score MOCA - Letter Fluency RAVLT - Delayed Recall 

FAQ - Total Score MMSE - Total Score NPI - Total Score Category Fluency (Animals) - 
Total Correct 

ADAS-Cog - Word Recall ADAS-Cog - Orientation Score Education Level Trail Making Test - Part A 
ADAS-Cog - Total Score 

(ADAS 11) ADAS-Cog - Word Recall Years of symptoms prior to 
baseline FAQ - Total Score 

CDR - Home and Hobbies 
Score 

NPI - Depression/Dysphoria: 
Item score MOCA - Digit Span Forward NPI - Total Score 

CDR - Memory Score ADAS-Cog - Delayed Word 
Recall Gender MOCA - Delayed Recall 

RAVLT - Trial 6 Total NPI - Irritability/Lability: Item 
score 

Diagnostic Summary - 
Subjective memory complaint MMSE - Writing 

CDR - Judgment and Problem 
Solving Score NPI - Anxiety: Item score MMSE - Construction - Copy 

Score Trail Making Test - Part B 

RAVLT - Trial B Total MOCA - Attention - Letters 
and Tapping Age at baseline ADAS-Cog - Total Score 

(ADAS 11) 
 
 



 

 

Table 4. Results obtained with our stepwise approach on the test set using the models trained with the optimized parameters and following the Forced Prediction (FP) approach.  
We note that sMCI stands for stable MCI, cMCI: MCI, s.t. cMCI: short-term conversion, l.t. cMCI: long-term conversion and cfd: confidence threshold. 

 

 
 
 
 
 
 
 
 

 
 

Table 5. Results obtained with our stepwise approach on the test set using the models trained with the optimized parameters and following the Prediction Region (PR) approach.  
We note that sMCI stands for stable MCI, cMCI: MCI, s.t. cMCI: short-term conversion, l.t. cMCI: long-term conversion and cfd: confidence threshold. 

 

 

 

Test set Model 1 Model 2 

# 
sMCI # cMCI 

# sMCI 
as 

sMCI # cMCI as cMCI 
# 

Misclassified 

Non-
classifiable 
cases (%) 

# cMCI as 
cMCI 

# 
Misclassified 

Non-
classifiable 
cases (%) 

cfd  Total 
s.t. 

cMCI 
l.t. 

cMCI  Total 
s.t. 

cMCI 
l.t. 

cMCI   
s.t. 

cMCI 
l.t. 

cMCI   
0.70 28 24.0 18.0 6.0 24.2±0.8 20.0±1.9 16.2±1.1 3.8±1.0 7.8±2.3 0 10.4±3.2 1.4±1.1 8.8±2.6 14±13.9 
0.75 28 24.0 18.0 6.0 24.0±0.8 20.0±1.8 16.2±1.1 3.8±1.0 7.8±1.9 0.4±0.9 10.2±2.8 1.2±1.1 8.2±1.9 18±13.5 
0.80 28 24.0 18.0 6.0 23.4±1.1 19.0±1.7 15.4±0.9 3.6±1.1 7.6±3.3 6.4±4.5 7.6±2.5 1.0±1.2 5.8±1.5 32.2±11.7 

 

Test set Model 1 Model 2 

# 
sMCI # cMCI 

# sMCI 
as 

sMCI 
# cMCI as cMCI # 

Misclassified 

Non-
classifiable 
cases (%) 

# cMCI as 
cMCI 

# 
Misclassified 

Non-
classifiable 
cases (%) 

Cfd.  Total s.t. 
cMCI 

l.t. 
cMCI  Total s.t. 

cMCI 
l.t. 

cMCI   s.t. 
cMCI 

l.t. 
cMCI   

0.70 28 24.0 18.0 6.0 22.0±2.1 18.2±1.8 15.2±0.8 3.0±1.0 6.2±1.9 12.0±3.2 10.6±2.2 1.2±0.8 6.2±1.9 16.8±12.2 
0.80 28 24.0 18.0 6.0 23.4±1.1 19.0±1.7 15.4±0.9 3.6±1.1 5.4±2.9 7.0±3.7 8.2±2.3 1.2±1.3 5.0±1.0 35.6±14.2 
0.85 28 24.0 18.0 6.0 21.4±1.3 18.6±5.9 16.2±5.7 2.4±0.9 5.0±3.2 17.2±6.4 7.8±2.0 0.4±0.9 2.4±1.5 44.6±15.1 


