
Un-regularizing: approximate proximal point and faster stochastic algorithms
for empirical risk minimization

Roy Frostig RF@CS.STANFORD.EDU

Stanford University

Rong Ge RONGGE@MICROSOFT.COM
Sham M. Kakade SKAKADE@MICROSOFT.COM

Microsoft Research, New England

Aaron Sidford SIDFORD@MIT.EDU

MIT

Abstract
We develop a family of accelerated stochastic al-
gorithms that optimize sums of convex functions.
Our algorithms improve upon the fastest running
time for empirical risk minimization (ERM),
and in particular linear least-squares regression,
across a wide range of problem settings.

To achieve this, we establish a framework, based
on the classical proximal point algorithm, use-
ful for accelerating recent fast stochastic algo-
rithms in a black-box fashion. Empirically, we
demonstrate that the resulting algorithms exhibit
notions of stability that are advantageous in prac-
tice. Both in theory and in practice, the pro-
vided algorithms reap the computational benefits
of adding a large strongly convex regularization
term, without incurring a corresponding bias to
the original ERM problem.

1. Introduction
A general optimization problem central to machine learn-
ing is that of empirical risk minimization (ERM): finding
a predictor or regressor that minimizes a sum of loss func-
tions defined by a data sample. In this paper, we focus on
empirical risk minimization of linear predictors: given a set
of n data points ai, . . . , an ∈ Rd and convex loss functions
φi : R→ R for i = 1, . . . , n, solve

min
x∈Rn

F (x), where F (x)
def
=
∑n
i=1 φi(a

T
i x). (1)

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

This problem underlies supervised learning (e.g. the train-
ing of logistic regressors when φi(z) = log(1 + e−zbi)
and their regularized form when φi(z) = log(1 + e−zbi) +
γ
2n‖x‖

2
2) and captures the widely-studied problem of linear

least-squares regression when φi(z) = 1
2 (z − bi)2.

Over the past five years, problems such as (1) have received
increased attention, with a recent burst of activity in the
design of fast randomized algorithms. Iterative methods
that randomly sample the φi have been shown to outper-
form standard first-order methods under mild assumptions
(Bottou & Bousquet, 2008; Johnson & Zhang, 2013; Xiao
& Zhang, 2014; Defazio et al., 2014; Shalev-Shwartz &
Zhang, 2014).

Despite the breadth of these recent results, their use in solv-
ing the ERM problem (1) lead to sub-optimal dependence
on a natural notion of the problem’s condition number.
This dependence does, however, significantly impact the
guarantees on running time, as high-dimensional problems
encountered in practice are often poorly conditioned (due
to strong correlation structure among variables). In partic-
ular, among the recent randomized algorithms, each either:

• Solves the ERM problem (1), under an assumption of
strong convexity, with convergence that depends lin-
early on the problem’s condition number (Johnson &
Zhang, 2013; Defazio et al., 2014).

• Solves only an explicitly regularized ERM prob-
lem, minx{F (x) + λr(x)} where the regularizer r
is a known strongly convex function and λ must be
strictly positive, even when F is itself strongly con-
vex. The first such result is due to Shalev-Shwartz &
Zhang (2014) and achieves acceleration, i.e. depen-
dence only on the square root of the regularized prob-
lem’s condition number, which scales inversely with
λ. Hence, taking small λ to solve the ERM problem

Un-regularizing: approximate proximal point algorithms for empirical risk minimization

(where λ = 0 in effect) is not a viable option.

In this paper we show how to bridge this gap by a black-
box reduction: solving the ERM problem (1), under an as-
sumption of strong convexity, through repeated, approxi-
mate minimizations of the form minx{F (x) + λr(x)} for
fairly large λ.

The key to our reduction is an approximate variant of
the classical proximal point algorithm (PPA) (Rockafellar,
1976; Parikh & Boyd, 2014). Both PPA and the inner min-
imization procedure can then be accelerated and our analy-
sis gives precise approximation requirements for either op-
tion. We show further practical improvements when the
inner minimizer operates by a dual ascent method.

Table 1 summarizes our improvements in comparison to
existing minimization procedures. Our end result is a fam-
ily of algorithms, including:

1. An approximate proximal point algorithm (APPA),
and a dual variant thereof, that matches the previ-
ous state-of-the-art running time and exhibits desir-
able empirical properties (Sections 2 and 5).

2. An accelerated variant of APPA that enjoys a running
time with a square root dependence on the ERM prob-
lem’s condition number (Theorem 2.6).

All analysis is performed in the common setting where each
φi is smooth and the sum F is strongly convex (e.g. as in
overdetermined linear regression).

Several of the algorithmic tools in this paper are similar
in principle to (and sometimes appear indirectly in) work
scattered throughout the machine learning and optimization
literature – from classical treatments of error-tolerant PPA
(Rockafellar, 1976; Güler, 1992) to the effective proximal
term used by Shalev-Shwartz & Zhang (2014) in enabling
their acceleration. By analyzing these as separate tools, and
by bookkeeping the error requirements that they impose,
we are able to assemble them into algorithms achieving an
improved runtime.

Our techniques also extend naturally to the following more
general optimization problem, which is fundamental in the
theory of convex optimization,

min
x∈Rd

∑n
i=1 ψi(x), where ψi : Rd → R, (2)

and which covers ERM problems for multiclass and struc-
tured prediction. To simplify exposition and comparison to
related work we focus on (1); extensions to (2) are made
apparent in Section 2.

For the remainder of the introduction, we present the
formal setup and cover previous approaches and running
times. Section 2 provides the reduction framework and al-
gorithms, then states the running time guarantees provided

Empirical risk minimization
Algorithm Running time Problem
GD dn2κ log(ε0/ε) F
Accel. GD dn3/2

√
κ log(ε0/ε) F

SAG, SVRG dnκ log(ε0/ε) F
SDCA dnκ′ log(ε0/ε) F + λr

Acc. SDCA, APCG dn
√
κ′ log(ε0/ε) F + λr

This work dn
√
κ log(ε0/ε) F

Linear least-squares regression
Algorithm Running time Problem
Pseudoinverse ndω−1 ‖Ax− b‖22
Row sampling (nd+ dω) log(ε0/ε) ‖Ax− b‖22
Rand. Kaczmarz dnκ log(ε0/ε) Ax = b
Accel. coord. dn

√
κ log(ε0/ε) Ax = b

This work dn
√
κ log(ε0/ε) ‖Ax− b‖22

Table 1. Theoretical performance comparison on ERM and linear
regression. Running times hold in expectation for randomized
algorithms. In the “problem” column for ERM, F marks algo-
rithms that can optimize the ERM objective (1), while F + λr
marks those that only solve the explicitly regularized problem.
For linear regression, Ax = b marks algorithms that only solve
consistent linear systems, whereas ‖Ax− b‖22 marks those that
more generally minimize the squared loss. The constant ω is the
exponent of the matrix multiplication running time (currently be-
low 2.373 (Williams, 2012)).

by the framework. Section 3 provides analysis for the sim-
plest among the algorithms (the other two are analyzed in
the appendix). Finally, Section 4 discusses implementation
concerns, and Section 5 concludes with an empirical anal-
ysis. Most proofs are deferred to the appendix.

1.1. Formal setup

Consider ERM (1) in the following common setting:

Assumption 1.1 (Regularity). Each loss function φi is L-
smooth, i.e. for all x, y ∈ R,

φ(y) ≤ φ(x) + φ′(x)(y − x) + L
2 (y − x)2,

and the sum F is µ-strongly convex, i.e. for all x, y ∈ Rd,

F (x) ≥ F (x) +∇F (x)T(y − x) + µ
2 ‖y − x‖

2
2.

Let R def
= maxi ‖ai‖2, A ∈ Rn×d be the matrix whose i’th

row is aTi , and κ = dLR2/µe denote the condition number.

Although many algorithms are designed for special cases
of the ERM objective F where there is some known, ex-
ploitable structure to the problem, our aim is to study the
most general case subject to Assumption 1.1. To standard-
ize the comparison among algorithms, we consider the fol-
lowing generic model of interaction with F :

Un-regularizing: approximate proximal point algorithms for empirical risk minimization

Assumption 1.2 (Computational model). For any i ∈ [n]
and x ∈ Rd, two possible primitive operations are:
• For b ∈ R, compute the gradient of x 7→ φi(a

T
i x− b).

• For b ∈ R, c ∈ Rd, minimize φi(aTi x) + b‖x− c‖22.
We refer to these operations, as well as to the evaluation
of φi(aTi x), as single accesses to φi, and assume that these
operations can be computed in O(d) time.

Notation Denote [n]
def
= {1, . . . , n}. Denote the optimal

value of a convex function by f opt = minx f(x), and, when
f is clear from context, let xopt denote a minimizer. A point
x′ is an ε-approximate minimizer of f if f(x′) − f opt ≤ ε.
The Fenchel dual of a convex function f : Rk → R is f∗ :
Rk → R defined by f∗(y) = supx∈Rk{〈y, x〉 − f(x)}.

1.2. Running times and related work

Table 1 compares our results with the running time of both
classical and recent algorithms for solving the ERM prob-
lem (1) and linear least-squares regression.

In the more general context of the ERM problem, GD refers
to canonical gradient descent on F , Accel. GD is Nes-
terov’s accelerated gradient decent (Nesterov, 1983; 2004),
SVRG is the stochastic variance-reduced gradient of John-
son & Zhang (2013), SAG is the stochastic average gradi-
ent of Roux et al. (2012) and Defazio et al. (2014), SDCA
is the stochastic dual coordinate ascent of Shalev-Shwartz
& Zhang (2013), Acc. SDCA is the accelerated proximal
SDCA of Shalev-Shwartz & Zhang (2014) and APCG is
the accelerated coordinate algorithm of Lin et al. (2014).
The latter three algorithms are more restrictive in that they
only solve the explicitly regularized problem F + λr, even
if F is itself strongly convex (such algorithms run in time
inversely proportional to λ).

The running time of the algorithms are presented based
on the setting considered in this paper, i.e. under Assump-
tions 1.1 and 1.2. Many of the algorithms can be applied
in more general settings (e.g. even if the function F is not
strongly convex) and have different convergence guaran-
tees in those cases. The running times are characterized by
four parameters: d is the data dimension, n is the number
of samples, κ = dLR2/µe is the condition number (for
F + λr the condition number κ′ = dLR2/λe is used) and
ε0/ε is the ratio between the initial and desired accuracy.
Running times are stated per Õ-notation; factors that de-
pend poly-logarithmically on n, κ, and κ′ are ignored.

For the linear least-squares regression problem, there is
greater variety in the algorithms that apply. For compar-
ison we include the use of a Moore-Penrose pseudoinverse
to compute a solution in closed form via the standard nor-
mal equations, algorithms based on the randomized Kacz-
marz method (Strohmer & Vershynin, 2009; Needell et al.,
2014) and their accelerated variant (Lee & Sidford, 2013),

and algorithms based on subspace embedding or row sam-
pling (Nelson & Nguyen, 2013; Li et al., 2013; Cohen et al.,
2015). Some Kaczmarz-based methods can only solve the
more restrictive problem of consistent systems (finding x
satisfying Ax = b) rather than minimize the squared loss
‖Ax−b‖22. The running times depend on the same four pa-
rameters n, d, κ, ε0/ε as before, except for computing the
closed-form pseudoinverse, which for simplicity we con-
sider “exact,” independent of initial and target errors ε0/ε.

Condition numbers in machine learning The condition
number of the ERM problem (1) captures notions of data
complexity such as variable correlation. Machine learn-
ing problems are typically high-dimensional with highly
correlated variables, which implies large κ. On the other
hand these problems often need not be optimized to a pre-
cision far below the statistical noise level of O(1/n), so
log(ε0/ε) = O(log n). Hence, in the statistically interest-
ing regime, condition number dependence often comprises
the main concern in runtime bounds.

2. Main results
This section describes our framework for iteratively ap-
plying and accelerating certain minimization algorithms.
When instantiated with recent fast algorithms we obtain,
under Assumptions 1.1 and 1.2, algorithms guaranteed to
solve the ERM problem in time Õ(nd

√
κ log(1/ε)).

Our framework stems from a critical insight of the classi-
cal proximal point algorithm (PPA) or proximal iteration:
to minimize F (or more generally, any convex function) it
suffices to iteratively minimize

fs,λ(x) = F (x) + λ
2 ‖x− s‖

2
2 (3)

for λ > 0 and proper choice of center s ∈ Rd. PPA itera-
tively applies the update rule x(t+1) ← argminx fx(t),λ(x)
and converges to the minimizer of F . The minimization
in the update is known as the proximal operator (Parikh &
Boyd, 2014), and we refer to it in the sequel as the inner
minimization problem.

We establish three distinct types of approximate proximal
point algorithms, i.e. algorithms that do not require full in-
ner minimization. Each enables the use of a different ex-
isting fast algorithm as its inner minimizer, in turn yielding
several ways to obtain our improved ERM running time:

• Section 2.1 provides APPA: an algorithm most similar
to PPA, but requiring inner minimization by only a
fixed multiplicative constant in each iteration.

• Section 2.2 provides Accelerated APPA: an acceler-
ated version of APPA. Its instantiation with SVRG
(Johnson & Zhang, 2013) as an inner minimizer

Un-regularizing: approximate proximal point algorithms for empirical risk minimization

Algorithm 1 Approximate PPA (APPA)

input x(0) ∈ Rd, λ > 0

input primal (2(λ+µ)
µ , λ)-oracle P

for t = 1, . . . , T do
x(t) ← P(x(t−1))

end for
output x(T)

achieves the accelerated runtime for the general ERM
problem (2).

• Section 2.3 provides Dual APPA: an algorithm whose
approximate inner minimizers operate on the dual
fs,λ, with warm starts between iterations. Dual APPA
enables several inner minimizers that are otherwise in-
compatible with APPA. Its instantiation with APCG
(Lin et al., 2014) or with Accelerated Proximal SDCA
(Shalev-Shwartz & Zhang, 2014) as an inner mini-
mizer achieves the accelerated runtime for the ERM
problem (1).

2.1. An approximate proximal point algorithm

To design APPA, we quantify the error that can be tolerated
of an inner minimizer, while accounting for the computa-
tional cost of ensuring such error. The abstraction we use
is the following notion of inner approximation:
Definition 2.1. An algorithm P is a primal (c, λ)-oracle if,
given x ∈ Rd, it outputsP(x) that is a ([fx,λ(x)−f opt

x,λ]/c)-
approximate minimizer of fx,λ in time TP .1

In other words, a primal oracle is an algorithm initialized
at x that reduces the error of fx,λ by a 1/c fraction, in time
that depends on λ, and c, and regularity properties of F .

Typical iterative first-order algorithms, such as those in Ta-
ble 1, yield primal (c, λ)-oracles with runtimes TP that
scale inversely in λ or

√
λ, and logarithmically in c. For

instance:
Theorem 2.2 (SVRG (Johnson & Zhang, 2013)). SVRG
is a primal (c, λ)-oracle with runtime complexity TP =

O(nddLR
2

µ+λe log c).

Note, moreover, that SVRG is a primal oracle even for the
general ERM problem (2).

APPA (Algorithm 1) takes any primal oracle and queries it
repeatedly. We prove the following lemma to guarantee a
geometric convergence rate for the iterates produced in this
manner (proved in Section 3).
Lemma 2.3 (Contraction in APPA). Fix any c′ ∈ (0, 1),
x ∈ Rd, and primal (λ+µc′µ , λ)-oracle P . If x′ = P(x),

1When the oracle is a randomized algorithm, we require that
its outputs is, in expectation, ε-approximate in the same way.

Algorithm 2 Accelerated APPA

input x(0) ∈ Rd, µ > 0, λ > 2µ
input primal (4ρ3/2, λ)-oracle P , where ρ = µ+2λ

µ

Define ζ = 2
µ + 1

λ

v(0) ← x(0)

for t = 0, . . . , T − 1 do
y(t) ← 1

1+ρ−1/2x
(t) + ρ−1/2

1+ρ−1/2 v
(t)

x(t+1) ← P(x(t))
g(t) ← λ(y(t) − x(t+1))
v(t+1) ← (1− ρ−1/2)v(t) + ρ−1/2

[
y(t) − ζg(t)

]
end for

output x(T)

then2

F (x′)− F opt ≤ λ+ c′µ

λ+ µ
(F (x)− F opt) . (4)

Lemma 2.3 in turn implies the following runtime bound for
APPA.

Theorem 2.4 (Un-regularizing in APPA). Given a primal
(2(µ+λ)

µ , λ)-oracle P , Algorithm 1 minimizes the general
ERM problem (2) to within accuracy ε in time

O

(
TP

µ+ λ

µ
log

ε0
ε

)
Corollary 2.5. Instantiating Theorem 2.4 with SVRG
(Johnson & Zhang, 2013) as the primal oracle and
taking λ = µ yields the running time bound
O(ndκ log(2(µ+λ)

µ) log(ε0/ε)) for the general ERM prob-
lem (2).

2.2. Accelerated APPA

We show how to generically accelerate APPA by develop-
ing Algorithm 2, Accelerated APPA. In a sense, it uses in-
ner minimizers more efficiently, but requires a more pre-
cise constant minimization factor. We prove a contraction
lemma, analogous to Lemma 2.3, as part of a complete
analysis of Accelerated APPA in Appendix D. As before, it
implies the following runtime bound.

Theorem 2.6 (Un-regularizing in Accelerated APPA).
Given a primal

(
4(2λ+µ

µ)3/2, λ
)

-oracle P for λ ≥ 2µ, Al-
gorithm 2 minimizes the general ERM problem (2) to within
accuracy ε in time

O

(
TP

√
µ+ λ

µ
log

ε0
ε

)
.

2When the oracle is a randomized algorithm, the guarantee (4)
holds in expectation over x′, conditioned on x.

Un-regularizing: approximate proximal point algorithms for empirical risk minimization

Algorithm 3 Dual APPA

input x(0) ∈ Rd, λ > 0
input dual (σ, λ)-oracle D (see Theorem 2.10 for σ)
y(0) ← ŷ(x(0))
for t = 1, . . . , T do
y(t) ← D(x(t−1), y(t−1))
x(t) ← x̂x(t−1),λ(y(t))

end for
output x(T)

Corollary 2.7. Instantiating Theorem 2.6 with SVRG
(Johnson & Zhang, 2013) as the primal oracle and tak-
ing λ = 2µ + LR2 yields the running time bound
Õ(nd

√
κ log(ε0/ε)) for the general ERM problem (2).

2.3. Dual APPA

Several oracles that are well-suited inner minimizers – for
F as the ERM objective (1) in particular – operate in the
regularized ERM dual. That is, fs,λ is minimized by in-
stead decreasing the negative dual objective gs,λ : Rn → R
given by

gs,λ(y) = G(y) +
1

2λ
‖ATy‖22 − sTATy, (5)

where G(y) =
∑n
i=1 φ

∗
i (yi). To make corresponding

progress in the primal, dual-based algorithms make use of
the dual-to-primal mapping, given by

x̂s,λ(y) = s− 1
λA

Ty, (6)

and the primal-to-dual mapping, given entrywise by

[ŷ(x)]i =

[
∂φi(z)

∂z

]∣∣∣∣
z=aTi x

(7)

for i = 1, . . . , n (Appendix A elaborates on duality.) Such
dual algorithms include SDCA and Accelerated Proximal
SDCA (Shalev-Shwartz & Zhang, 2013; 2014).

The theoretical guarantees of dual-based algorithms can
usually be augmented so that they fit Definition 2.1 of a
primal oracle P(x), under the scheme where x determines
ŷ(x) as the initial dual point. However, such an initializa-
tion scheme is not typically considered in these algorithms’
analyses, so some further custom-tailored proof is needed
to ensure the oracle assumption is valid in this case.

Far more importantly, such an initialization scheme has an
O(nd) runtime overhead per APPA iteration. A more natu-
ral scheme is to operate contiguously in the dual, or in other
words to “warm start,” initializing by the dual point y from
the end of the previous oracle invocation. This scheme in-
curs only O(d) overhead (see Section 4) and we find that it

provides a significant speedup in practice (Section 5). Al-
together, we formalize this procedure as Dual APPA (Al-
gorithm 3), which uses a dual oracle:

Definition 2.8. An algorithm D is a dual (c, λ)-oracle if,
given s ∈ Rd and y ∈ Rn, it outputs D(s, y) that is a
([gs,λ(y)− gopt

s,λ]/c)-approximate minimizer of gs,λ in time
TD.1

For instance, it is immediate from its analysis that SDCA
is a valid dual oracle:

Theorem 2.9 (SDCA (Shalev-Shwartz & Zhang, 2013)).
SDCA is a dual (c, λ)-oracle with runtime complexity
TD = Õ(nddLR

2

λ e log c).

By repeatedly querying a dual oracle – producing along the
way primal iterates via the dual-to-primal mapping (6) –
we obtain Dual APPA, with the following runtime bound:

Theorem 2.10 (Un-regularizing in Dual APPA). Given
a dual (σ, λ)-oracle D, Algorithm 3 minimizes the ERM
problem (1) to within accuracy ε in time

Õ

(
TD

1

1− r
log

ε0
ε

)
,

where σ = O(poly(n, κ)) and r < 1 is a positive scalar
depending on λ/(λ+ µ).

The proof of Theorem 2.10 is given in Appendix C, includ-
ing the precise definition of the numerical constants r and
σ in (19) and (20).

An acceleration scheme alternative to that of Section 2.2,
which obtains the same overall running time as Acceler-
ated APPA (Algorithm 2), is to run Dual APPA using an
accelerated procedure for its inner dual oracle:

Corollary 2.11. Instantiating Theorem 2.10 with APCG
(Lin et al., 2014) or with Accelerated Proximal SDCA
(Shalev-Shwartz & Zhang, 2014) as the dual oracle
and taking λ = LR2 yields the running time bound
Õ(nd

√
κ log(ε0/ε)).

2.4. Discussion

Notions of error-tolerance in (primal) PPA – for both its
plain and accelerated variants – have been defined and stud-
ied in prior work (Rockafellar, 1976; Güler, 1992). These
mainly consider the cumulative absolute error of a given
sequence of minimizers of fx(t),λ, assuming that such a
sequence is somehow provided. Such a view falls short
of providing a complete and instantiable study of runtime
complexity: how, and in what time, can we produce such
minimizers? Most any procedure of interest begins at some
initial point, and has runtime that depends on the rela-
tive error ratio between its start and end. Definitions 2.1

Un-regularizing: approximate proximal point algorithms for empirical risk minimization

and 2.8 capture such procedures succinctly and hence Al-
gorithms 1, 3, and 2 fully specify families of concrete
algorithms. Analytically, the main challenge for prov-
ing runtime guarantees lies in proving contractions, as in
Lemma 2.3 and Theorems 2.6 and 2.10, namely in showing
that a constant reduction of relative error in inner problems
suffices.

As a separate note, we believe that the presentation of Ac-
celerated APPA simplifies, and clarifies in terms of broader
convex optimization theory, the “outer loop” steps used
in Accelerated Proximal SDCA to enable its acceleration
(Shalev-Shwartz & Zhang, 2014).

3. Convergence analysis of APPA
In this section we present a proof of Lemma 2.3, which in
turn implies the geometric convergence of APPA iterates
and hence the overall runtime in Theorem 2.4. The anal-
ogous proofs for Dual APPA and Accelerated APPA are
significantly more complex and deferred to the appendix.
However, the simple analysis carried out in this section
demonstrates the conceptual core of many of the tools in-
volved, and in particular explains the fixed relative error
reduction needed in APPA, as discussed in Section 2.

Note that, as is always the case with APPA (but not with
Dual APPA), the function F in this section can represent
any µ-strongly convex function. In particular, it need not
represent the ERM objective as it does in other sections.

First, consider exact inner minimizers. The following re-
lates the minimum of the sub-problem fs,λ to F opt.

Lemma 3.1 (Relationship between minima). For s ∈ Rd
and λ ≥ 0

f opt
s,λ − F

opt ≤ λ

µ+ λ
(F (s)− F opt) .

Proof. Let xopt = argminx F (x) and for all α ∈ [0, 1]
let xα = (1 − α)s + αxopt. The µ-strong convexity of F
implies that, for all α ∈ [0, 1],

F (xα) ≤ (1− α)F (s) + αF (xopt)− α(1− α)µ

2
‖s− xopt‖22.

Consequently, by the definition of f opt
s,λ,

f opt
s,λ ≤ F (xα) +

λ

2
‖xα − s‖22

≤ (1− α)F (s) + αF (xopt)

− α(1− α)µ

2
‖s− xopt‖22 +

λα2

2
‖s− xopt‖22

Choosing α = µ
µ+λ yields the result.

This immediately implies contraction for the exact PPA,
as it implies that in every iteration of PPA the error in F
decreases by a multiplicative λ/(λ + µ). Here we show
that it also implies contraction for approximate minimiz-
ers. Namely, we use the lemma above to relate approximate
error reduction in fs,λ to contraction in F :

Lemma 3.2 (Error reduction implies contraction). For any
x, s ∈ Rd, λ > 0, and c > 0, if

fs,λ(x)− f opt
s,λ ≤

1

c

(
fs,λ(s)− f opt

s,λ

)
, (8)

then

F (x)− F opt ≤
(

1

c
+

λ

µ+ λ

)
(F (s)− F opt)

Proof. Note that fs,λ(x) ≥ F (x) and by the same reason-
ing f opt

s,λ ≥ F opt. By definition, fs,λ(s) = F (s), so rear-
ranging (8) and subtracting F opt from both sides implies

F (x)− F opt ≤ 1

c

(
F (s)− F opt)+

(
f opt
s,λ − F

opt
)
.

Invoking Lemma 3.1 then yields the result.

This inequality now essentially proves Lemma 2.3:

Proof of Lemma 2.3. Suppose we have c′ ∈ (0, 1) and x ∈
Rd, and that x′ = P(x) where P is a primal (λ+µc′µ , λ)-
oracle. By definition

fx,λ(x′)− f opt
x,λ ≤

c′µ

λ+ µ

(
fx,λ(x)− f opt

x,λ

)
.

Applying Lemma 3.2 proves the claim.

Remark 3.3. The proofs in this section did not require that
F be smooth, or even differentiable.

4. Practical concerns
While theoretical convergence rates lay out a broad-view
comparison of the algorithms in the literature, we briefly
remark on some of the finer-grained differences between
algorithms, which inform their implementation or empiri-
cal behavior. To match the terminology used for SVRG in
Johnson & Zhang (2013), we refer to a “stage” as a single
step of APPA, i.e. the time spent executing the inner mini-
mization of fx(t),λ or gx(t),λ (as in (3) and (5)).

Re-centering overhead of Dual APPA vs. SVRG At
the end of every one of its stages, SVRG pauses to compute
an exact gradient by a complete pass over the dataset (cost-
ing Θ(nd) time during which n gradients are computed).
Although an amortized runtime analysis hides this cost, this
operation cannot be carried out in-step with the iterative

Un-regularizing: approximate proximal point algorithms for empirical risk minimization

updates of the previous stage, since the exact gradient is
computed at a point that is only selected at the stage’s end.

Meanwhile, if each stage in Dual APPA is initialized with
a valid primal-dual pair for the inner problem, Dual APPA
can update the current primal point together with every dual
coordinate update, in time O(d), i.e. with negligible in-
crease in the overhead of the update. When doing so, the
corresponding data row remains fresh in cache and, unlike
SVRG, no additional gradient need be computed.

Moreover, initializing each stage with a valid such primal-
dual pair can be done in only O(d) time. At the end of
a stage where s was the center point, Dual APPA holds
a primal-dual pair (x, y) where x = x̂s(y). The next
stage is centered at x and the dual variables initialized at
y, so it remains to set up a corresponding primal point
x′ = x̂x(y) = x− 1

λA
Ty. This can be done by computing

x′ ← 2x− s, since we know that x− s = − 1
λA

Ty.

Decreasing λ APPA and Dual APPA enjoy the nice
property that, as long as the inner problems are solved
with enough accuracy, the algorithm does not diverge even
for large choice of λ. In practice this allows us to start
with a large λ and make faster inner minimizations. If we
heuristically observe that the function error is not decreas-
ing rapidly enough, we can switch to a smaller λ. Figure 3
(Section 5) demonstrates this empirically. On the contrary,
algorithms like SGD or SVRG are more sensitive to the
choice of λ and can suddenly diverge when it is taken too
large. This makes them less amenable to (mid-run) dy-
namic parameter tuning.

Stable update steps Dual coordinate-wise ascent pro-
vides a convenient framework in which to derive parame-
ter updates with data-dependent step sizes, or sometimes
closed-form updates altogether (i.e. optimal solutions to
each single-coordinate maximization sub-problem), which
reduces the number of parameters needing tuning and can
thereby improve stability overall.

5. Empirical analysis
We experiment with Dual APPA in comparison with
SDCA, SVRG, and SGD on several binary classification
tasks.

Beyond general benchmarking, the experiments also
demonstrate the advantages of the unordinary “bias-
variance tradeoff” presented by approximate proximal it-
eration: the vanishing proximal term empirically provides
advantages of regularization (added strong convexity, lower
variance) at a bias cost that is less severe than with typical
`2 regularization. Even if some amount of `2 shrinkage is
desired, Dual APPA can place yet higher weight on its `2
term, enjoy improved speed and stability, and after a few

0 5 10 15 20

gradients / n

1e-3

1e-2

1e-1

5e-4

2e-3

5e-3

2e-2

5e-2
0.1

sdca(0.1) svrg(1.0) appa(1.0) sgd(1.0) ls(0) ls(0.1) ls(1.0)

0 5 10 15 20

gradients / n

1e-1

2e-2

5e-2

2e-1

0.02

0.22

(a) MNIST. Left: excess train loss F (x)− F opt. Right: test error rate.

0 5 10 15 20

gradients / n

1e-2

5e-3

2e-2

5e-2 0.06

sdca(0.1) svrg(1.0) appa(1.0) sgd(1.0) ls(0) ls(0.1) ls(1.0)

0 5 10 15 20

gradients / n

2e-1

0.11

0.28

(b) CIFAR. Left: excess train loss F (x)− F opt. Right: test error rate.

0 5 10 15 20

gradients / n

1e-4

1e-3

5e-5

2e-4

5e-4

2e-3 0.002

sdca(0.1) svrg(0.01) appa(0.1) sgd(1.0) ls(0) ls(0.1) ls(0.1)

0 5 10 15 20

gradients / n

5e-3 0.005

0.009

(c) Protein. Left: excess train loss F (x)− F opt. Right: test error rate.

Figure 1. Sub-optimality curves when optimizing under squared
loss φi(z) =

1
2n

(z − bi)2.

stages achieve roughly the desired bias.

Datasets In this section we show results for three binary
classification tasks, derived from MNIST,3 CIFAR-10,4

and Protein:5 in MNIST we classify the digits {1, 2, 4, 5, 7}
vs. the rest, and in CIFAR we classify the animal categories
vs. the automotive ones. MNIST and CIFAR are taken
under non-linear feature transformations that increase the
problem scale significantly: we normalize the rows by scal-
ing the data matrix by the inverse average `2 row norm. We
then take take n/5 random Fourier features per the ran-
domized scheme of Rahimi & Recht (2007). This yields
12K features for MNIST (60K training examples, 10K test)
and 10K for CIFAR (50K training examples, 10K test).
Meanwhile, Protein is a standard pre-featurized benchmark
(75 features, ∼117K training examples, ∼30K test) that
we preprocess minimally by row normalization and an ap-
pended affine feature, and whose train/test split we obtain
by randomly holding out 20% of the original labeled data.

Algorithms Each algorithm is parameterized by a scalar
value λ analogous to the λ used in proximal iteration: λ

3http://yann.lecun.com/exdb/mnist/
4http://www.cs.toronto.edu/∼kriz/cifar.html
5http://osmot.cs.cornell.edu/kddcup/datasets.html

http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html
http://osmot.cs.cornell.edu/kddcup/datasets.html

Un-regularizing: approximate proximal point algorithms for empirical risk minimization

0 5 10 15 20

gradients / n

1e-2

1e-1

2e-2

5e-2

0.01

0.15

sdca(1e− 08) svrg(10.0) appa(0.1) sgd(1000.0)

0 5 10 15 20

gradients / n

2e-2

5e-2

0.02

0.05

(a) MNIST. Left: train loss F (x). Right: test error rate.

0 5 10 15 20

gradients / n

2e-1

5e-1

0.17

0.58

sdca(0.01) svrg(10.0) appa(0.1) sgd(1000.0)

0 5 10 15 20

gradients / n

2e-1

0.12

0.22

(b) CIFAR. Left: train loss F (x). Right: test error rate.

Figure 2. Objective curves when optimizing under logistic loss
φi(z) =

1
n
log(1 + e−zbi).

is the step size for SVRG, λt−1/2 is the decaying step
size for SGD, and λ

2 ‖x‖
2
2 is the ridge penalty for SDCA.

(See Johnson & Zhang (2013) for a comparison of SVRG
to a more thoroughly tuned SGD under different decay
schemes.) We use Dual APPA (Algorithm 3) with SDCA
as the inner minimizer. For the algorithms with a notion
of a stage – i.e. Dual APPA’s time spent invoking the inner
minimizer, SVRG’s period between computing exact gra-
dients – we set the stage size equal to the dataset size for
simplicity.6 SVRG is given an advantage in that we choose
not to count its gradient computations when it computes
the exact gradient between stages. All algorithms are ini-
tialized at x = 0. Each algorithm was run under λ = 10i

for i = −8,−7, . . . , 8, and plots report the trial that best
minimized the original ERM objective.

Convergence and bias The proximal term in APPA
introduces a vanishing bias for the problem (towards the
initial point of x = 0) that provides a speedup by adding
strong convexity to the problem. We investigate a natural
baseline: for the purpose of minimizing the original ERM
problem, how does APPA compare to solving one instance
of a regularized ERM problem (using a single run of its
inner optimizer)? In other words, to what extent does re-
centering the regularizer over time help in solving the un-
regularized problem? Intuitively, even if SDCA is run to
convergence, some of the minimization is of the regular-
ization term rather than the ERM term, hence one cannot
weigh the regularization too heavily. Meanwhile, APPA
can enjoy more ample strong convexity by placing a larger
weight on its `2 term. This advantage is evident for MNIST

6Such a choice is justified by the observation that doubling the
stage size does not have noticeable effect on the results discussed.

10−210−1100 101 102 103 104 105 106 107 108

parameter setting λ

1e-1

1

2e-2

5e-2

2e-1

5e-1

2

fin
al

va
lu

e

sdca svrg appa sgd

10−210−1100 101 102 103 104 105 106 107 108

parameter setting λ

1e-1

1

5e-2

2e-1

5e-1

2

fin
al

va
lu

e

(a) Squared loss. Left: MNIST. Right: CIFAR.

10−210−1100 101 102 103 104 105 106 107 108

parameter setting λ

1e-1

1

2e-2

5e-2

2e-1

5e-1

2

5

fin
al

va
lu

e

sdca svrg appa sgd

10−210−1100 101 102 103 104 105 106 107 108

parameter setting λ

1

2e-1

5e-1

2

5

fin
al

va
lu

e

(b) Logistic loss. Left: MNIST. Right: CIFAR.

Figure 3. Sensitivity to λ: the final objective values attained by
each algorithm, after 20 stages (or the equivalent), with λ chosen
at different orders of magnitude. SGD and SVRG exhibit a sharp
threshold past which they easily diverge, whereas SDCA degrades
more gracefully, and Dual APPA yet more so.

and CIFAR in Figures 1 and 2: recalling that λ is the same
strong convexity added both by APPA and by SDCA, we
see that APPA takes λ at least an order of magnitude larger
than SDCA does, to achieve faster and more stable conver-
gence towards an ultimately lower final value.

Figure 1 also shows dashed lines corresponding to the ERM
performance of the least-squares fit and of fully-optimized
ridge regression, using λ as that of the best APPA and
SDCA runs. These appear in the legend as “ls(λ).” They
indicate lower bounds on the ERM value attainable by
any algorithm that minimizes the corresponding regular-
ized ERM objective. Lastly, test set classification accuracy
demonstrates the extent to which a shrinkage bias is statis-
tically desirable. In the MNIST and CIFAR holdout, we
want only the small bias taken explicitly by SDCA (and
effectively achieved by APPA). In the Protein holdout, we
want no bias at all (again effectively achieved by APPA).

Parameter sensitivity By solving only regularized ERM
inner problems, SDCA and APPA enjoy a stable response
to poor specification of the biasing parameter λ. Figure 3
plots the algorithms’ final value after 20 stages, against dif-
ferent choices of λ. Overestimating the step size in SGD or
SVRG incurs a sharp transition into a regime of divergence.
Meanwhile, APPA and SDCA always converge, with solu-
tion quality degrading more smoothly. APPA then exhibits
an even better degradation as it overcomes an overaggres-
sive biasing by the 20th stage.

Un-regularizing: approximate proximal point algorithms for empirical risk minimization

Acknowledgments
Part of this work took place while RF and AS were at Mi-
crosoft Research, New England, and another part while AS
was visiting the Simons Institute for the Theory of Com-
puting, UC Berkeley. This work was partially supported
by NSF awards 0843915 and 1111109, NSF Graduate Re-
search Fellowship (grant no. 1122374).

References
Bottou, L. and Bousquet, O. The tradeoffs of large scale

learning. In Advances in Neural Information Processing
Systems (NIPS), 2008.

Cohen, M. B., Lee, Y. T., Musco, C., Musco, C., Peng, R.,
and Sidford, A. Uniform sampling for matrix approxi-
mation. In Innovations in Theoretical Computer Science
(ITCS), 2015.

Defazio, A., Bach, F., and Lacoste-Julien, S. Saga: A
fast incremental gradient method with support for non-
strongly convex composite objectives. In Advances in
Neural Information Processing Systems (NIPS), 2014.

Güler, O. New proximal point algorithms for convex mini-
mization. SIAM Journal on Optimization, 2(4):649–664,
1992.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances
in Neural Information Processing Systems (NIPS), 2013.

Lee, Y. T. and Sidford, A. Efficient accelerated coordinate
descent methods and faster algorithms for solving linear
systems. In Foundations of Computer Science (FOCS),
2013.

Li, M., Miller, G. L., and Peng, R. Iterative row sampling.
In Foundations of Computer Science (FOCS), 2013.

Lin, Q., Lu, Z., and Xiao, L. An accelerated proximal co-
ordinate gradient method. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2014.

Needell, D., Srebro, N., and Ward, R. Stochastic gradient
descent, weighted sampling, and the randomized kacz-
marz algorithm. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2014.

Nelson, J. and Nguyen, H. L. Osnap: Faster numerical lin-
ear algebra algorithms via sparser subspace embeddings.
In Foundations of Computer Science (FOCS), 2013.

Nesterov, Y. A method of solving a convex programming
problem with convergence rate o(1/k2). Soviet Mathe-
matics Doklady, 27(2):372–376, 1983.

Nesterov, Y. Introductory Lectures on Convex Optimiza-
tion: A Basic Course. Springer, 2004.

Parikh, N. and Boyd, S. Proximal algorithms. Foundations
and Trends in Optimization, 1(3):123–231, 2014.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Advances in Neural Information
Processing Systems (NIPS), 2007.

Rockafellar, R. T. Monotone operators and the proximal
point algorithm. SIAM Journal on Control and Opti-
mization, 14(5):877–898, 1976.

Roux, N. L., Schmidt, M., and Bach, F. A stochastic gra-
dient method with an exponential convergence rate for
finite training sets. In Advances in Neural Information
Processing Systems (NIPS), 2012.

Shalev-Shwartz, S. and Zhang, T. Stochastic dual coor-
dinate ascent methods for regularized loss minimization.
Journal of Machine Learning Research (JMLR), 14:567–
599, 2013.

Shalev-Shwartz, S. and Zhang, T. Accelerated proximal
stochastic dual coordinate ascent for regularized loss
minimization. Mathematical Programming, pp. 1–41,
2014.

Strohmer, T. and Vershynin, R. A randomized kaczmarz
algorithm with exponential convergence. Journal of
Fourier Analysis and Applications, 15:262–278, 2009.

Williams, V. V. Multiplying matrices faster than
Coppersmith-Winograd. In Symposium on Theory of
Computing (STOC), 2012.

Xiao, L. and Zhang, T. A proximal stochastic gradient
method with progressive variance reduction. SIAM Jour-
nal on Optimization, 24(4):2057–2075, 2014.

