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This supplemental document is organized as follows. Sec-
tion 1 gives the source and brief descriptions of the datasets
used in the paper. Section 2 gives a detailed information
retrieval interpretation of ws-SNE. Section 3 provides ad-
ditional visualizations that do not fit within the page limit
of the main paper.

1. Datasets
We present results of six datasets in the paper.

• shuttle: the data is from the UCI Machine Learn-
ing Repository, Statlog (Shuttle) Data Set1. It contains
58000 samples from 7 classes, where each sample has
9 numerical shuttle attributes.

• MNIST: the data is from the MNIST database2. It con-
tains 70000 handwritten digit images from 10 classes.
We preprocessed the images by the scattering operator
(Mallat, 2012) and PCA, which yields 256 features for
each sample.

• worldtrade: the data is from Pajek datasets3. It
is a weighted graph whose edges are trading amounts
between 80 countries in the world.

• usair97: the data is from the LinLog layout pack-
age4. It is a binary graph where the nodes are 332
airports in the United States and the edges indicate
whether there is direct flight between the airports.

• mirex07: the data is from the the Third Music
Information Retrieval Evaluation eXchange (MIREX
2007)5. We used the version from the collection by

1http://archive.ics.uci.edu/ml/
2http://yann.lecun.com/exdb/mnist/
3http://vlado.fmf.uni-lj.si/pub/networks/

data/
4http://code.google.com/p/linloglayout/
5http://www.music-ir.org/mirex/wiki/2007

Chen et al. (2009). It is a similarity graph of 3090
songs. The songs are evenly divided among 10 classes
that roughly correspond to different music genres. The
weighted edges are human judgment on how similar
two songs are.

• luxembourg: the data is from The University of
Florida Sparse Matrix Collection6. It contains 114599
nodes and 239332 edges, where each edge is a street
in Luxembourg.

To maintain the space limit in the paper, we present results
of two other datasets in this supplemental document (see
Section 3):

• jazz: the data is from Arenas’s collection7. It is a
social network of 198 musicians. The musicians are
mainly in New York and Chicago, with a few in both
places or in other places.

• ca-GrQc: the data is from Stanford Network Analy-
sis Project8. It is a coauthor network among 5242 re-
searchers working on general relativity. We extracted
the largest connected component with 4158 authors.

2. Retrieval interpretation of ws-SNE
Consider the objective of ws-SNE, Jws-SNE(Y ) =
DKL(p||M ◦q), whereMij = didj and di represents an im-
portance of node i which is known or computable from the
data, such as number of neighbors of the node (below this is
also denoted as ’high degree’). We will show Jws-SNE(Y )
has an information retrieval interpretation as maximizing
recall of retrieved neighbors, weighted by severity of the
left-out misses.

6http://www.cise.ufl.edu/research/sparse/
matrices/

7http://deim.urv.cat/˜aarenas/data/
welcome.htm

8http://snap.stanford.edu/index.html

http://archive.ics.uci.edu/ml/
http://yann.lecun.com/exdb/mnist/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://code.google.com/p/linloglayout/
http://www.music-ir.org/mirex/wiki/2007
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
http://deim.urv.cat/~aarenas/data/welcome.htm
http://deim.urv.cat/~aarenas/data/welcome.htm
http://snap.stanford.edu/index.html
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Notation. As in the main paper, let p̃ij =
pij∑
kl pkl

be a
symmetric input distribution jointly over nodes and their
neighbors in the original space. Here pij are symmetric but
not necessarily normalized, and the normalization in p̃ij
ensures

∑
ij p̃ij = 1. Let q̃ij =

Mijqij∑
klMklqkl

=
didjqij∑
kl dkdlqkl

be a distribution over nodes and their neighbors on the dis-
play such that qij is Gaussian qij = exp(−||yi − yj ||2)
or Cauchy qij = (1 + ||yi − yj ||2)−1. Note that again the
qij are not normalized, and the normalization in q̃ij ensures∑
ij q̃ij = 1.

The joint distribution q̃ij depends on locations of nodes on
the display and on their importances; intuitively, this distri-
bution represents retrieval behavior of an analyst who looks
at the display in a quick manner, noticing high-importance
nodes and close-by other nodes, and the task of the visual-
ization is to ensure that such retrieval of nodes and neigh-
bors corresponds to the true neighbors represented in p̃ij .

Each joint distribution over nodes can be written as a prod-
uct of a marginal and a conditional distribution, so that
p̃ij = p̃ip̃j|i where p̃i =

∑
k p̃ik =

∑
k pik/

∑
lm plm and

p̃j|i = p̃ij/p̃i = pij/
∑
ik pik, and similarly q̃ij = q̃iq̃j|i

where

q̃i =
∑
k

q̃ik =
di
∑
k dkqik∑

kl dkdlqkl
and q̃j|i =

q̃ij
q̃i

=
djqij∑
k dkqik

.

(1)
Note that

∑
i p̃i = 1 and

∑
j p̃j|i = 1 for all i, and simi-

larly
∑
i q̃i = 1 and

∑
j q̃j|i = 1 for all i.

Inserting the above into the cost function of ws-SNE, the
Kullback-Leibler divergence becomes a sum of two terms,
a divergence between the marginals and a weighted mean
of divergences between conditionals:

Jws-SNE(Y ) (2)
=DKL(p||M ◦ q) (3)

=
∑
ij

( pij∑
kl pkl

)
log

( pij∑
kl pkl

)( didjqij∑
kl dkdlqkl

) (4)

=
∑
ij

p̃ij log
p̃ij
q̃ij

(5)

=
∑
ij

p̃ip̃j|i log
p̃ip̃j|i

q̃iq̃j|i
(6)

=
∑
ij

p̃ip̃j|i

(
log

p̃i
q̃i

+ log
p̃j|i

q̃j|i

)
(7)

=
∑
i

p̃i

(∑
j

p̃j|i

)
log

p̃i
q̃i

+
∑
ij

p̃ip̃j|i log
p̃j|i

q̃j|i
(8)

=
∑
i

p̃i log
p̃i
q̃i

+
∑
i

p̃i
∑
j

p̃j|i log
p̃j|i

q̃j|i
(9)

=DKL({p̃i}||{q̃i}) +
∑
i

p̃iDKL({p̃j|i}||{q̃j|i}) (10)

where {p̃i} is the distribution formed by all values p̃i, and
similarly for {q̃i}; and {p̃j|i} is the distribution formed by
all values p̃j|i for a fixed i, and similarly for {q̃j|i}.

We next analyze the conditional divergences and provide an
information retrieval interpretation for them, and then an-
alyze the marginal divergence and provide an information
retrieval interpretation for it.

2.1. Analysis of the conditional divergences

We first analyze the second term which is a weighted aver-
age of Kullback-Leibler divergences between conditional
distributions of neighbors. Each Kullback-Leibler diver-
gence in the second term compares the true neighborhood
of node i to an on-screen neighborhood where users are
likely to retrieve close-by nodes, or nodes with high de-
gree, and counts the cost of misses in such retrieval. We
now show this has an information retrieval interpretation.

First, note that the weighted conditional output probabili-
ties q̃j|i in (1) can be written as

q̃j|i =
djqij∑
k dkqik

=
dj

qij∑
l qil∑

k dk
qik∑
l qil

=
dj

qij∑
l qil

Gi
. (11)

where the qij/
∑
l qil are unweighted conditional output

probabilities, which are based only on how close points
are to points i on the display but not on the importances
of the points. Here we denoted the denominator by Gi =∑
k dk

qik∑
l qil

which is the weighted average importance of
nodes near i on the display, where the importance of each
node k is weighted by qik∑

l qil
.

Analysis in a simplified situation. Consider a simplified
situation where the input probability p̃j|i takes a high value
Ai = 1−δ

Ri
for Ri points and a low value Bi = δ

N−Ri−1
for other points, where δ is a very small positive number,
and the unweighted output probability qij/

∑
k qik simi-

larly takes a high value Ci = 1−δ
Ki

for Ki points and a
low value Di =

δ
N−Ki−1 for other points. Denote the set

where p̃j|i = Ai and qij/
∑
k qik = Ci by STP,i, the set

where p̃j|i = Ai and qij/
∑
k qik = Di by SMISS,i, the

set where p̃j|i = Bi and qij/
∑
k qik = Ci by SFP,i, and

the set where p̃j|i = Bi and qij/
∑
k qik = Di by STN,i.

The Kullback-Leibler divergence between the conditional
input distribution {p̃j|i} and the weighted conditional out-
put distribution {q̃j|i} can then be written as

DKL({p̃j|i}||{q̃j|i}) (12)

=−
∑

j∈STP,i

Ai log
djCi
Gi
−

∑
j∈SMISS,i

Ai log
djDi

Gi
(13)
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−
∑

j∈SFP,i

Bi log
djCi
Gi
−

∑
j∈STN,i

Bi log
djDi

Gi
+ constant

(14)

=−
∑

j∈STP,i

1− δ
Ri

log
dj(1− δ)
KiGi

(15)

−
∑

j∈SMISS,i

1− δ
Ri

log
djδ

(N −Ki − 1)Gi
(16)

−
∑

j∈SFP,i

δ

N −Ri − 1
log

dj(1− δ)
KiGi

(17)

−
∑

j∈STN,i

δ

N −Ri − 1
log

djδ

(N −Ki − 1)Gi
+ constant.

(18)

where in this simplified situation

Gi =
∑
k

dk
qik∑
l qil

(19)

=
∑

k∈STP,i

dkCi (20)

+
∑

k∈SMISS,i

dkDi (21)

+
∑

k∈SFP,i

dkCi (22)

+
∑

k∈STN,i

dkDi. (23)

Analysis of dominating terms, and information re-
trieval interpretation. Assuming that each dj ≥ 1 (and
thus also that Gi ≥ 1), the dominating terms are the terms
1−δ
Ri

log(djδ) ≈ 1
Ri

log(djδ) and the divergence simplifies
to

DKL({p̃j|i}||{q̃j|i}) (24)

≈− 1

Ri

∑
j∈SMISS,i

log(djδ) + constant (25)

=
NMISS,i

Ri

[
log

1

δ
−
∑
j∈SMISS,i

log dj

NMISS,i

]
+ constant

(26)

=(1− recall(i)) ·
[
log

1

δ
−
∑
j∈SMISS,i

log dj

NMISS,i

]
+ constant,

(27)

where NMISS,i = |SMISS,i| is the number of missed true
neighbors which were not close to i on the display, and
recall(i) = 1− NMISS,i

Ri
is the standard definition of recall,

the proportion of true neighbors retrieved from the display
out of all the original true neighbors.

The last line of (27) provides an information retrieval in-
terpretation of the divergence between the conditional dis-
tributions. The term at left measures recall of neighbors.
The term at right is a weighting term interpreted as the av-
erage cost of the misses. In the weighting term, the cost
of missing high-degree neighbors is discounted, in order to
allow high-degree nodes to be kept farther from each other
than in the unweighted setting; this prevents high-degree
nodes from crowding and allows the method to distribute
the high- and low-degree nodes more evenly.

Thus, when ws-SNE minimizes the weighted average of
the Kullback-Leibler divergences (27), it optimizes recall
of true neighbors from the display, weighted by severity of
the missed neighbors.

2.2. Analysis of the marginal divergence

First, denote the unweighted marginal probability by qi =∑
j qij/

∑
kl qkl, and note that the weighted marginal out-

put distribution q̃i can then be written as

q̃i (28)

=
di
∑
j djqij∑

kl dkdlqkl
(29)

=
di

(
(
∑
j djqij)(

∑
j qij)

−1
)(

(
∑
j qij)(

∑
mn qmn)

−1
)

∑
k dk

(
(
∑
l dlqkl)(

∑
l qkl)

−1
)(

(
∑
l qkl)(

∑
mn qmn)

−1
)

(30)

=
diqiGi∑
k dkqkGk

. (31)

The weighted marginal probability attains high values for
nodes i that have high degree and that are near many other
nodes of high degree. Nodes that are far from the other
nodes (low qi) have low marginal weighted probability.

Now consider a simplified situation where some for some
nodes the marginal probability p̃i takes a high value A =
1−δ
R for R points and low value B = δ

N−R for others,
where δ is a very small positive number, and on the dis-
play the unweighted marginal probability qi takes a high
value C = 1−δ

K for K points and low value D = δ
N−K for

others. Denote the set where p̃i = A and qi = C by S′TP ,
the set where p̃i = A and qi = D by S′MISS , the set where
p̃i = B and qi = C by S′FP , and the set where p̃i = B and
qi = D by S′TN .

The Kullback-Leibler divergence of the marginal distribu-
tions can then be written as

DKL({p̃i}||{q̃i}) (32)

=−
∑
i∈S′

TP

A log q̃i −
∑

i∈S′
MISS

A log q̃i (33)
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−
∑
i∈S′

FP

B log q̃i −
∑
i∈S′

TN

B log q̃i + constant. (34)

Analysis of dominating terms, and information re-
trieval interpretation. Assuming again that each di ≥ 1
and thus also each Gi ≥ 1, the dominating terms are the
terms where i ∈ S′MISS since there the term under the log-
arithm is q̃i ∝ qi which is close to zero. The divergence
then simplifies to

DKL({p̃i}||{q̃i}) (35)

≈−
∑

i∈S′
MISS

A log q̃i + constant (36)

=−
∑

i∈S′
MISS

1− δ
R

log
( δ

N −K
· diGi∑

k dkqkGk

)
+ constant

(37)

where on the second line we inserted the form of q̃i from
(31). Further leaving out all but the dominating terms, this
simplifies to

DKL({p̃i}||{q̃i}) (38)

≈− 1

R

∑
i∈S′

MISS

log
(
δ · diGi∑

k dkqkGk

)
+ constant (39)

=
NMISS

R

[
log

1

δ
− 1

NMISS

∑
i∈S′

MISS

log
( diGi∑

k dkqkGk

)]
+ constant (40)

=(1− recall)
[
log

1

δ
− 1

NMISS

∑
i∈S′

MISS

log
( diGi∑

k dkqkGk

)]
+ constant (41)

where NMISS = |S′MISS | is the number of initial nodes
not chosen based on the display that were chosen based on
original data, and recall = 1− NMISS

R is the corresponding
standard definition of recall.

The last line of (41) provides an information retrieval inter-
pretation of the divergence between the marginal distribu-
tions. The term at left evaluates recall of the initial nodes.
The term on the right is again a weighting term evaluat-
ing the cost of initial nodes left out (missed). The misses
here denote points with low qi that are far from other nodes
and would not be chosen as initial nodes based on the vi-
sual arrangement on the display. The weighting term dis-
counts missing high-degree nodes (more precisely, nodes
with high degree di and high degree Gi of nearby neigh-
bors), and thus allows them to be placed in sparser areas of
the display than in an unweighted setting; this allows the
high and low-degree nodes to be placed more evenly on the
display.

Conclusion. Based on the separation of the ws-SNE cost
function into two kinds of divergences, and the informa-
tion retrieval interpretation of both kinds of divergences,
we conclude that the ws-SNE cost function corresponds to
a two-stage information retrieval task of first choosing ini-
tial nodes and then choosing neighbors for them. For both
retrieval tasks, the method minimizes cost of errors in such
retrieval which are dominated by costs of misses, and the
degree (importance) of nodes is taken into account by dis-
counting the costs of high-degree nodes in order to avoid
crowding of the high-degree nodes on the display.

3. Additional visualizations
Figure 1 in the paper is high resolution, and readers can
find more details by zooming in. The visualizations in this
supplemental document provide extra information that can-
not fit to the paper due to space limit. Moreover, we also
provide the results of two other datasets.

• Figures 1 to 4 shows the large visualization of the
worldtrade dataset using ws-SNE. It also displays
the countries names and different node sizes to facili-
tate comparison to our common knowledge.

• Figures 5 to 8 shows the large visualization of the
usair97 dataset using ws-SNE. It also displays the
airport names and different node sizes to facilitate
comparison to our common knowledge.

• Figures 9 to 12 shows the large visualization of the
mirex07 dataset using ws-SNE. It also displays the
class names and different node sizes to facilitate com-
parison to our common knowledge.

• Figure 13 shows the geographical layout (ground
truth) of the luxembourg dataset, which can be used
to compared the sixth row in Figure 1 in the paper.

• Figure 14 shows the visualizations of the jazz
dataset using graphviz, LinLog, t-SNE, and ws-SNE.

• Figure 15 shows the visualizations of the ca-GrQc
dataset using graphviz, LinLog, t-SNE, and ws-SNE.

• Figure 16 shows the full visualization of the
shuttle dataset using EE with λ = 1.

• Figure 17 shows the full visualization of the
shuttle dataset using ws-SNE.

• Figure 18 shows the full visualization of the MNIST
dataset using EE with λ = 1.
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Figure 1. Visualizations with text labels for the worldtrade dataset using graphviz. The node size is proportional to the square root
of its degree.
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Figure 2. Visualizations with text labels for the worldtrade dataset using LinLog. The node size is proportional to the square root of
its degree.
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Figure 3. Visualizations with text labels for the worldtrade dataset using t-SNE. The node size is proportional to the square root of
its degree.
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Figure 4. Visualizations with text labels for the worldtrade dataset using ws-SNE (Cauchy kernel). The node size is proportional to
the square root of its degree.
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Figure 5. Visualizations with text labels for the usair97 dataset using graphviz. The node size is proportional to the square root of its
degree.
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Figure 6. Visualizations with text labels for the usair97 dataset using LinLog. The node size is proportional to the square root of its
degree.
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Figure 7. Visualizations with text labels for the usair97 dataset using t-SNE. The node size is proportional to the square root of its
degree.
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Figure 8. Visualizations with text labels for the usair97 dataset using ws-SNE (Cauchy kernel). The node size is proportional to the
square root of its degree.
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Figure 9. Visualizations with class names (shown by legend) for the mirex07 dataset using graphviz. The node size is proportional to
the square root of its degree.
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Figure 10. Visualizations with class names (shown by legend) for the mirex07 dataset using LinLog. The node size is proportional to
the square root of its degree.
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Figure 11. Visualizations with class names (shown by legend) for the mirex07 dataset using t-SNE. The node size is proportional to
the square root of its degree.



Supplemental Document

Figure 12. Visualizations with class names (shown by legend) for the mirex07 dataset using ws-SNE (Cauchy kernel). The node size
is proportional to the square root of its degree.
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Figure 13. Geographical layout (ground truth) of the luxembourg dataset.
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Figure 14. Visualizations of the jazz dataset using A) graphviz, B) LinLog, C) t-SNE, and D) ws-SNE. Cauchy kernel was used in
ws-SNE. A desired layout should clearly reveal the two musician groups, LinLog and ws-SNE are able to do so.
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Figure 15. Visualizations of the ca-GrQc dataset using A) graphviz, B) LinLog, C) t-SNE, and D) ws-SNE. Cauchy kernel was used
in ws-SNE. Leskovec et al. (2009) has shown that for large coauthor networks, there is a central big community, as well as one or
more small communities in periphery. Thus we expect that a good layout will here as well show both a central community and smaller
peripheral communities as ws-SNE does.
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Figure 16. Full visualization of shuttle using EE with λ = 1.
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Figure 17. Full visualization of shuttle using ws-SNE with the Cauchy kernel.
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Figure 18. Full visualization of MNIST using EE with λ = 1.
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