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Abstract
Time series of counts arise in a variety of fore-
casting applications, for which traditional mod-
els are generally inappropriate. This paper in-
troduces a hierarchical Bayesian formulation ap-
plicable to count time series that can easily ac-
count for explanatory variables and share statis-
tical strength across groups of related time se-
ries. We derive an efficient approximate infer-
ence technique, and illustrate its performance on
a number of datasets from supply chain planning.

1. Introduction
Most classical time series forecasting models such as ex-
ponential smoothing (Hyndman et al., 2008) and ARIMA
models (Box et al., 2008) assume that observations are real-
valued and can take on both positive and negative values. In
addition, the majority of classical approaches provide nor-
mal predictive distributions, if they do so at all. However,
large segments of the practice of forecasting—for instance
in supply chain planning—deal with time series that depart
significantly from these assumptions: series, for example,
that may consist only of non-negative integer observations,
contain a large fraction of zeros, or are further character-
ized by long runs of zeros interspersed by some large non-
zero values. In other words, the classical assumptions of
conditional normality are grossly violated. Moreover, if
multiple contemporaneous series are considered, common
models either treat them completely independently, or—as
in vector autoregressive models (Box et al., 2008)—attempt
a more complex multivariate modeling that captures short-
range cross-correlations but becomes unwieldy when man-
aging hundreds of series; the common scenario of “weak
coupling” between related series (e.g. consumer demand
for a seasonal product at several stores of the same chain in
a given city, which could share seasonal behavior but not
strong cross-correlations) is not easily handled in classical
modeling frameworks.
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1.1. Motivating Applications

The starting point for the present work lies in the intermit-
tent demand series that frequently occur in supply chain op-
erations: these arise, for example, in the demand for spare
parts in aviation, or in the number of “slow-moving” items
sold in retail stores (Altay & Litteral, 2011). In addition
to the non-negativity, integrality, skewness and high frac-
tion of zeros attributes already outlined, these time series
are commonly quite short: many weekly and monthly de-
mand series encountered in practice may consist of some
30 to 100 observations. This makes it crucial to allow some
information sharing across related series to more reliably
capture posited common effects such as seasonalities and
the impact of causal determinants (such as the market re-
sponse to promotions or supply chain disruptions). These
are the modeling challenges that we address in this paper.

1.2. Related Work

Most of the literature on intermittent demand forecasting
relies on relatively simple techniques, typically variants of
Croston’s (1972) method which computes the expected de-
mand in the next period as the ratio of the expected non-
zero demand to the expected non-zero-demand time in-
terval, both estimated by simple exponential smoothing.
Croston’s method produces point forecasts only; Shenstone
& Hyndman (2005) studied variants with a proper stochas-
tic foundation that can produce predictive intervals, al-
though with no attempt to capture some known stylized
facts of intermittent demand patterns such as heavy tails
(Kwan, 1991). It is only with the recent work of Snyder
et al. (2012) that a reasonably modern formulation was pro-
posed in terms of a state-space model and distributional
forecasts. This model still tracks the expected demand
through an exponential-smoothing update, but emits pre-
dictive distributions that belong to the negative binomial
family (described in the next section); model parameters
are estimated by maximum likelihood (ML). Despite the
evidence of improved accuracy against common bench-
marks, this approach still exhibits a number of shortcom-
ings: it is fundamentally univariate, does not easily allow
explanatory variables, and the ML estimation framework
does not reflect model parameter uncertainty that arises
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with the very short series that are common in practice.

1.3. Contributions

This paper makes the following three contributions: (i)
introducing a hierarchical probabilistic state-space model
that is a good match to commonly-seen types of count data,
allowing for explanatory variables and permitting informa-
tion sharing across groups of related series (§2); (ii) in-
troducing an effective inference algorithm for computing
posterior distributions over latent variables and predictive
distributions (§3); (iii) assessing the proposed approach’s
performance via a thorough experimental evaluation (§4).

2. Hierarchical Model for Non-Negative
Integer Time Series

We introduce the proposed model in several stages, start-
ing with the basic state-space structure and integer-valued
observations (§2.1), introducing explanatory variables and
structural zeros (§2.2), and finishing with the hierarchical
structure allowing information sharing across series (§2.3).

2.1. Core Model

For a single non-negative time series, the model is ex-
pressed in state-space form (e.g., Durbin & Koopman,
2012), where the latent state ηt at period t = 1, . . . , T
represents the log-expected value of the non-negative in-
teger observation yt. Of those, we shall assume that the
first T − h (h ≥ 1) are observed, and the last h consti-
tute the future values over which we would like to forecast.
Representation in log-space enforces the constraint that the
process mean can never become negative. The state space
structure makes all observations independent of each other
conditionally on the latent state; here we assume that ob-
servation yt is drawn from a negative binomial (NB) dis-
tribution with mean exp ηt and size parameter α (which is
independent of t),

yt ∼ NB(exp ηt, α).

The negative binomial distribution (parametrized by the
mean µ instead of the more usual probability of success
in a trial; e.g. Hilbe 2011) is given by

PNB(y | µ, α) =

(
α+ y − 1

α− 1

)(
α

µ+ α

)α(
µ

µ+ α

)y
,

(1)
where

(
n
m

)
≡ Γ(n+1)

Γ(m+1)Γ(n−m+1) is the binomial coefficient.
The negative binomial is appropriate for count data that is
overdispersed with respect to a Poisson distribution (with
the variance greater than the mean); the size parameter α >
0 governs the level of overdispersion. The limiting case
α→∞ converges to a Poisson distribution.

y1 y2 y3 y4 y5 y6

η1 η2 η3 η4 η5 η6

α

τ0 τ µ φ

Figure 1. Basic state-space model for a single time series as a fully
unfolded directed graphical model. Shaded nodes {y1, . . . , y4}
are observed values; variables y5 and y6 are values to be fore-
casted. The dependence of the latent log-intensity process {ηt}
on all hyperparameters is made explicit.

The dynamics of the process log-mean ηt depend on the
properties of the time series being modeled. For a station-
ary series, a mean-reverting autoregressive process is a sen-
sible and tractable choice. In a supply chain context, mean
reversion intuitively means that the long-run expected de-
mand for an item, when projected far in the future, should
fall back to a constant level in spite of any past transient
disturbances. We express latent dynamics as an AR(1) pro-
cess with normal innovations, with

η1 = µ+ ε1,

ηt = µ+ φ(ηt−1 − µ) + εt, t > 1,

ε1 ∼ N (0, 1/τ0 + 1/τ),

εt ∼ N (0, 1/τ), t > 1,

(2)

where µ ∈ R is the long-run level of mean reversion,
−1 < φ < 1 is the speed of mean reversion, τ > 0 is the
precision of the process innovations, and τ0 > 0 allows for
additional variance in the initial period. All εt are assumed
mutually independent. The model structure is depicted in
graphical form in Fig. 1. Forecasting in this model concep-
tually proceeds in three steps: (i) from the observed values
of the time series, we carry out inference over all unob-
served model variables (the clear nodes in Fig. 1); (ii) us-
ing the inferred process parameters (τ, µ, φ), we project the
latent dynamics into the future to obtain a distribution over
future values of the latent state (η5 and η6 in the figure);
and (iii) obtaining a predictive distribution over future ob-
servations (y5 and y6 in the figure). This description can
easily be extended to accommodate multivariate observa-
tions and latent states; the latent states would then follow a
vector autoregressive (VAR) process.

2.2. Explanatory Variables and Structural Zeros

Explanatory variables (which can include seasonal terms,
as well as factors that causally impact the observed time
series) can be incorporated by viewing them as local forc-
ing terms that temporarily shift the location of the latent
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Figure 2. Incorporating explanatory variables xt and zero-
inflation z into the model, where the plate indicates repetition over
time periods t. For brevity, license is taken to omit depiction of
the initial and final latent log-intensity, as well as representing the
unshaded {yt} over the forecasting period.

process mean. This is illustrated in Fig. 2. We assume that
explanatory variables at period t, xt ∈ RN , are always ob-
served, non-stochastic and known ahead of time (so that
we know the future values of {xt} over the forecasting
horizon). They are linearly combined through regression
coefficients θ to additively shift the latent ηt, yielding an
effective log-mean η̃t,

η̃t = ηt + x′tθ, (3)

where the {ηt} follows the same AR(1) process as previ-
ously. In latent (log) space, the addition operation corre-
sponds to a multiplicative impact of explanatory variables
on the process mean in observation space, which is often
a good fit to the underlying data generating process (e.g.
seasonalities, or consumer response to promotions or spe-
cial events). It also makes the regression coefficients θ rel-
atively independent of the scale of the series, and makes it
easier to share information across multiple time series as
described in §2.3.

In many real-world series, one observes an excess of zero
values compared to the probability under the NB (e.g.,
Lambert, 1992): this can arise for structural reasons in
the underlying process (e.g., out-of-stock items or supply
chain disruptions in a retail store context, both of which
would override the natural consumer demand modeled by
the NB). For these reasons, we add extra unconditional
mass at zero, yielding so-called zero-inflated NB observa-
tions,

yt ∼ z δ0 + (1− z) NB(exp η̃t, α), (4)

where δ0 represents unit probability mass at zero and z ∈
[0, 1] is the probability of structural zero. We assume a
Beta( 1

2 ,
1
2 ) prior for z. This is our final observation model.

2.3. Sharing Information Across Multiple Time Series

Finally, we allow for a group of L related time series
to share information, particularly in the form of a shared

y`,t

η̃`,t

η`,tη`,t−1 η`,t+1

α`

z`

τ` µ` φ`

ᾱ

κτ βτ µµ τµ φ+ φ−

θ`

τθ,`

θ̄

κθ

βθ

x`,t

t ∈ {1, . . . , T}

` ∈ {1, . . . , L}

Figure 3. Model with hierarchical structure, where the outer plate
indicates repetition across several time series `. Information shar-
ing across series is achieved by “global” hyperparameters located
outside all plates, in particular the regression coefficient prior θ̄.

hyperprior over regression coefficients and latent process
characteristics. In the spirit of hierarchical models studied
in statistics (Gelman & Hill, 2007) and machine learning
(Teh & Jordan, 2010; Fox et al., 2010), we let those pa-
rameters (for all time series ` ∈ {1, . . . , L} that belong to
the group being modeled simultaneously) share common
parents, as illustrated on Fig. 3. A new plate iterates over
the series-level parameters, which inherit as follows from
“global” parameters shared across all time series:

α` ∼ Exponential(ᾱ), µ` ∼ N (µµ, 1/τµ),

τ` ∼ Γ(κτ , βτ ), τ0,` ∼ Γ(κ0,τ , β0,τ ),

φ` ∼ Beta(φ+ + φ−, φ−), θ` ∼ N (θ̄, 1
τθ,`

I),

τθ,` ∼ Γ(κθ, βθ),

where Γ(a, b) represents the gamma distribution with shape
parameter a and scale parameter b, and Beta(a, b) is the
beta distribution with shape parameters a and b. The series-
level parameters (variables in plate ` on Fig. 3) all have the
same meaning as previously, except that the ` index makes
them dependent on a specific time series. The hyperpriors
that are used for the global parameters are given in the sup-
plementary material. The latent dynamics of {η`,t} and the
observation model are the same as in the previous sections.
For convenience, we shall denote all “global” variables in
Fig. 3 (except µµ, for reasons to be made clear shortly)
by ΘG = {ᾱ, τµ, κτ , βτ , κ0,τ , β0,τ , κθ, βθ, φ+, φ−, θ̄},
all series-`-level variables (except µ`) by Θ` =
{zl, α`, τ`, τ0,`, φ`,θ`, τθ,`}, and all latents over which we
should do inference by Θ = ΘG ∪ {Θ`} ∪ {µµ, µ`, η`,t}.

In the remainder of this paper, we call this model the hier-
archical negative-binomial state space (H-NBSS) model.
It must be stressed that this model assumes that all time
series in the group are conditionally independent given
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the series-level parameters. In particular, the model does
not allow expressing observation-level cross-correlations
across different time series `i 6= `j , except through com-
mon effects coming from explanatory variables.1

3. Inference
Due to the non-conjugacy between the zero-inflated
negative-binomial likelihood and the normal latent log-
mean process prior (and the general difficulty of finding
useful conjugate priors for negative-binomial likelihoods),
inference in the H-NBSS model does not have an analyti-
cally tractable solution. One must resort to approximation
techniques, which fall, broadly speaking, into two families:
deterministic and stochastic methods (Barber et al., 2011).
Of the deterministic approaches, early examples include as-
sumed density filtering (ADF, Maybeck, 1979), which is a
sequential projection approach, as well as numerical inte-
gration schemes such as the piecewise approximation of
Kitagawa (1987). More recently, the expectation propaga-
tion (EP) algorithm of Minka (2001), a generalization of
ADF, has proved successful in a number of non-linear fil-
tering and smoothing problems (Heskes & Zoeter, 2002; Yu
et al., 2006; Deisenroth & Mohamed, 2012). As to stochas-
tic approaches, they can take the form of variants of Gibbs
sampling, such as the recursive forward-filtering backward-
sampling (FFBS) algorithm (Robert et al., 1999; Scott,
2002) as well as sequential Monte Carlo techniques such as
particle filtering (reviewed by Doucet et al., 2001). Durbin
& Koopman (2000) present an alternative approach based
on importance sampling and antithetic variables. Static hi-
erarchical regression models have been widely studied in
the statistics literature (Gelman & Hill, 2007), where typ-
ical inference techniques rely on block Gibbs sampling.
Dynamic hierarchical models have been less commonly
studied, with the notable exception of the nonparametric
Bayesian model of Fox et al. (2010), who use an efficient
form of the Metropolis-Hastings algorithm for inference

It is imperative to contrast the benefits of a proposed algo-
rithm to the requirements of forecasting practice: for in-
stance, in a supply chain context, it is routine business to
process tens to hundreds of millions of time series on a
daily or weekly basis.2 Despite their inadequacies, prac-
titioners still rely on very computationally simple methods
such as exponential smoothing for the vast majority of their
tasks. Needless to say, for a forecasting approach to have
an impact in practice, its accuracy benefits must justify its
computational cost. This seems to rule out all stochastic

1And except, of course, if the observations y`,t are themselves
multivariate, which is outside the scope of this paper.

2For example, a large department retail store may sell 100K
different items (Stock Keeping Units, SKUs); a chain with 1000
stores would then require periodic forecasts for 100M series.

algorithms, as well as many deterministic ones such as EP.

We shall argue that for the H-NBSS model, a Gaussian ap-
proximation of the latent variables at their posterior mode,
known as the Laplace approximation (Bishop, 2006), yields
near-optimal performance at extremely attractive computa-
tional cost compared to the alternatives. One reason to ex-
pect good performance is that most of the important (for
forecasting) latent variables in the model ({µµ, µ`, η`,t})
have a conditionally normal prior; their posterior is nearly
always close to normality despite the non-linear likelihood.

3.1. Posterior Calculation

The Laplace approximation requires to calculate the log-
posterior probability up to an additive constant,

logP (Θ | Y) = logP (Θ) + logP (Y | Θ) + C, (5)

where Y = {y`,t}T−ht=1 is the set of all observed series
values in all groups and C is an unknown (and for the
Laplace approximation, unimportant) constant. The log-
likelihood term logP (Y |Θ) is derived straightforwardly
from the observation model (4) along with the negative bi-
nomial probability distribution (1). The first term—the log-
prior—decomposes into global-, series- and observation-
level terms,

logP (Θ) = logP (ΘG) +

L∑
`=1

logP (Θ` | ΘG)+

logP (µµ) +

L∑
`=1

logP
(
µ`, {η`,t} | Θ`, µµ

)
.

The second line of this equation expresses a prior over
jointly normally-distributed variables with a highly struc-
tured (and very sparse) precision matrix, a Gaussian
Markov random field (GMRF, see Rue & Held, 2005), to
which we now turn.

3.2. GMRF Prior

For the single time series process described in (2), assum-
ing that the initial η1 has the long-run process distribution
with precision of 1/(τ(1−φ2)),3 the joint prior over the la-
tent process {ηt} along with normally-distributed long-run
mean µ (having prior precision τµ) is normally distributed
with a tridiagonal precision matrix Q, except for the last
row and column (corresponding to µ), that follows the pat-
tern

Q =



τ −τφ 0 0 0 τφ̃

−τφ τ(φ2 + 1)
. . . 0 0 −τφ̃2

0 −τφ
. . . −τφ 0

...

0 0
. . . τ(φ2 + 1) −τφ −τφ̃2

0 0 0 −τφ τ τφ̃
τφ̃ −τφ̃2 · · · −τφ̃2 τφ̃ τµ + τψT

 ,

3So that τ0 would equal φ2/(τ(1− φ2)).
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where φ̃ ≡ φ− 1 and ψT ≡ T − 2(T − 1)φ+ (T − 2)φ2,
where T is the number of observations. The determinant of
this matrix is τT τµ(1 − φ2).4 The sparsity of Q makes it
extremely fast to compute the process prior term.

When considering the hierarchical model of section 2.3,
a similar sparsity pattern holds: the joint precision ma-
trix across all variables that belong to the GMRF prior has
block-diagonal structure, with one sub-matrix like Q for
each time series, and a final row/column linking the series
means {µ`} to the global mean µµ. Details are given in the
supplementary material.

3.3. Optimization and Predictive Distribution

Maximization of (5) over Θ can be carried out efficiently
using Quasi-Newton methods such as L-BFGS (Nocedal
& Wright, 1999).5 Let Θ̂ be the maximizing value and
Σ̂ the inverse of HΘ̂, the Hessian matrix of (5) evaluated
at Θ̂. The Laplace approximation posits that the posterior
distribution over Θ is jointly normal with mean Θ̂ and co-
variance matrix Σ̂. Due to the structure of the GMRF prior,
matrixHΘ̂ is nearly block-diagonal except for the variables
that belong to ΘG. This makes it efficient to compute Σ̂ by
sparse matrix solvers (e.g., Davis, 2006).

From the graphical model structure (Fig. 3) and the obser-
vation model (4), the predictive distribution over a future
value y`,t, t ≥ T − h + 1 depends only on the distribu-
tions of η̃`,t, α` and z`. In practice, the posterior uncer-
tainty over z` and α` is small and can be neglected. From
the observation model, the posterior distribution over y`,t
can be obtained by integrating out η̃`,t,

P (y`,t | Y) =

∫ ∞
−∞

P (y`,t | exp η̃`,t)P (η̃`,t | Y) dη̃`,t

= P
(
y`,t

∣∣∣ ∫ ∞
−∞

exp η̃`,tP (η̃`,t | Y) dη̃`,t

)
,

where a key use of the well-known summation property of
the negative binomial is made, wherein for IID variables
Xi ∼ NB(µi, α), we have

∑
iXi ∼ NB

(∑
i µi, α

)
, and

we assume that the summation converges to an integral in
the limit. Hence, only the posterior expectation of exp η̃`,t
is needed, which is readily obtained as

E
[

exp η̃`,t | Y
]

= exp
(
E [η̃`,t | Y] + 1

2Var [η̃`,t | Y]
)
,

4These results were obtained by direct symbolic matrix inver-
sion in Mathematica, and can be verified to yield the identity ma-
trix when multiplying Q with the joint {ηt, µ} covariance matrix.

5Local optima are not a problem in practice as long as the
{η`,t} are suitably initialized; a reasonable initialization for
η`,t, 1 ≤ t ≤ T − h can be taken as the midpoint between be-
tween log y`,t and the mean of log-values for series `, m`. Initial
values for T − h+ 1 ≤ t ≤ T can be taken to be m`.

since η̃`,t has a normal posterior under the Laplace approx-
imation. From (3),

E [η̃`,t | Y] = E[η`,t | Y] + x′`,tE[θ` | Y],

where the conditional posteriors for η`,t and θ` are directly
available in Θ̂. Similarly, the posterior variance for η̃`,t is

Var [η̃`,t | Y] = Var[η`,t | Y]+

x′`,tVar[θ` | Y]x`,t + 2x′`,tCov[η`,t,θ` | Y]

where the variances and covariances on the right-hand side
are from Σ̂.

3.4. Accuracy Compared to MCMC

Ultimately, the validity of approximate inference is predi-
cated on its empirical performance, which is evaluated in
the next section. Here, we graphically contrast on Fig. 4
the inference results for a single series between the Laplace
approximation outlined previously and an equivalent model
computed with Markov chain Monte Carlo (MCMC). The
latter is implemented in the Stan modeling language (Stan
Development Team, 2013), which uses the “no-U-turn”
variant (Hoffman & Gelman, 2013) of Hamiltonian Monte
Carlo (HMC). We combined the results of four indepen-
dent chains, each run with 1500 burn-in iterations followed
by 18500 sampling iterations. Overall, we note the sim-
ilarity of the posterior distributions between the two ap-
proaches, although the Laplace approximation slightly un-
derestimates the posterior variance in ηt over the forecast
horizon (the region denoted “Fcast” in the plots) compared
with MCMC. Should additional accuracy be required in the
Laplace approximation, one could turn to a numerical inte-
gration technique for hyperparameters of models equipped
with GMRF priors, the so-called integrated nested Laplace
approximation (INLA, Rue et al., 2009).

Of significant importance for practical applications, how-
ever, is computational time. For the results illustrated in
Fig. 4, whereas our implementation of the Laplace approx-
imation (coded in the interpreted language R) converges
in a few seconds, a roughly equivalent run of the MCMC
sampler takes 30 times longer (and Stan is a very efficient
engine, compiling the model into C++ code with analytical
gradient computation for HMC). As will be clear from the
experimental results, the additional computational cost of
MCMC does not translate into a performance advantage in
forecasting.

4. Experimental Evaluation
We evaluate model performance on three datasets obtained
from supply chain operations. The first one (RAID) is the
sales of bug spray at 26 locations of a major US retailer.
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Figure 4. Comparison of inference results between the Laplace
approximation (top) and MCMC (bottom). The observed de-
mand (green vertical lines) and model expectation of yt (continu-
ous orange line) should be interpreted according to the left axis.
The latent variables ηt (red curve, denoted “log-intensity”) and
level of mean-reversison (blue horizontal line) should be inter-
preted according to the right axis. Shaded areas are 95% credible
intervals. The posteriors between the two approaches are close.

The second one (GLUE) is the sales of gluestick at 2033
US retail locations. The third (PARTS) is the demand for
spare parts of a major European IT firm, previously studied
by Syntetos et al. (2012). The first two datasets illustrate
variability at the location level for the same item (SKU),
whereas the third one illustrates variability at the item level.
All time series are non-negative integers, some with a large
fraction of zeros, and all series of a given dataset covers the
same date range; Table 1 shows some summary statistics.
The “mean non-zero value” is the mean series value, con-
ditional on the value being positive; the “mean non-zero
inter-period” is the number of periods between non-zero
observations; and the “mean sq. coef. of variation” is
the square of the coefficient of variation (CV2), which is
σ2/m2 for a series with mean m and standard deviation σ.

Model performance is evaluated by the out-of-sample fore-
casting accuracy over the horizon h (where h varies from
1 to 12 periods), measured according to the negative log-
likelihood (NLL) per period, relative mean squared error
(MSE) and relative mean absolute error (MAE). To reduce
the scale dependence of the MSE and MAE, the MSE is
normalized by the in-sample variance and the MAE is nor-
malized by the in-sample mean absolute deviation from the
in-sample mean. We evaluate performance by a sequential
re-training procedure that alternates between model train-
ing and testing, moving at each iteration the first observa-
tion of the (previous) test set to the end of the (new) train-

Table 1. Summary statistics of datasets evaluated. The categoriza-
tion of demand patterns into “smooth” (high non-zero demand
rate, low CV2), “erratic” (both high), “intermittent” (both low)
and “lumpy” (low demand rate, high CV2) follows Syntetos et al.
(2005). The chosen datasets cover a broad mix of patterns.

RAID GLUE PARTS

Number of time series 24 2033 3055
Sampling period Weekly Weekly Monthly
Nb. of observations per series 66 79 48
Initial training set duration 53 65 24
Mean non-zero value 6.31 1.53 23.73
Mean non-zero inter-period 1.15 4.02 3.82
Mean sq. coef. of variation (CV2) 0.39 0.29 1.29

% Smooth 57% 1% 4%
% Erratic 27% 0% 15%
% Intermittent 17% 90% 14%
% Lumpy 0% 9% 67%

ing set. This simulates the action of a decision-maker act-
ing in real-time, retraining models as new information be-
comes available. All reported results are averages of out-
of-sample performance under this procedure. The initial
training set durations for each dataset are given in Table 1.

4.1. Benchmark Models

We compare the forecasting performance of the pro-
posed H-NBSS model against the following benchmarks:
(i) Croston’s (1972) method, (ii) simple exponential
smoothing (E-S) with additive errors and an automatically-
adjusted smoothing constant, and (iii) the damped dynamic
model with negative binomial observations of Snyder et al.
(2012). The first two approaches are as implemented by
the corresponding functions in the R forecast package
(Hyndman et al., 2013). Since they provide point forecasts
only, we evaluate predictive distributions under two alter-
natives: a Gaussian distribution, with variance given by the
variance of training residuals, or a Poisson distribution. In
both cases, the mean is given by the point forecast.

4.2. Performance Results

Seasonalities are significant on the RAID dataset, which
are incorporated into the H-NBSS through explanatory
variables; for this dataset, we report H-NBSS results both
without and with seasonalities, for both the Laplace and
MCMC approximate inference. Seasonalities are omitted
from GLUE and PARTS for space reasons since they yield
very similar performance to the model without seasonal
effects. Moreover, H-NBSS results in this section con-
sider each dataset series independently of the others (i.e.
groups of size 1). The benefits of hierarchy are exam-
ined in the next section. Out-of-sample performance results
for all datasets and models at selected forecasting horizons
are given in Table 2. NLL results at all horizons appear
in Fig. 5. We observe that on the NLL measure (which
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Table 2. Forecasting performance at various horizons. For all measures, a lower value indicates a higher accuracy; best results are bolded.
Normalized NLL Relative MSE Relative MAE

Dataset: RAID

Forecast Horizon (periods) 1 4 8 1 4 8 1 4 8
Croston (Gaussian) 2.408 2.461 2.523 0.879 1.003 1.133 0.900 0.969 1.024
Croston (Poisson) 2.457 2.620 2.827 0.879 1.003 1.133 0.900 0.969 1.024
E-S Additive (Gaussian) 2.284 2.356 2.492 0.708 0.830 1.047 0.824 0.883 0.981
E-S Additive (Poisson) 2.312 2.447 2.775 0.708 0.830 1.047 0.824 0.883 0.981
Snyder-Ord-Beaumont 2.285 2.340 2.384 0.749 0.822 0.869 0.836 0.871 0.893
H-NBSS w/o Seas (Laplace) 2.251 2.275 2.378 0.677 0.732 0.837 0.811 0.836 0.876
H-NBSS w/o Seas (MCMC) 2.286 2.380 2.595 0.728 0.847 1.026 0.835 0.893 0.972
H-NBSS w/ Seas (Laplace) 2.228 2.219 2.265 0.656 0.669 0.714 0.800 0.808 0.814
H-NBSS w/ Seas (MCMC) 2.231 2.278 2.362 0.634 0.654 0.693 0.796 0.821 0.849

Dataset: GLUE

Forecast Horizon (periods) 1 4 8 1 4 8 1 4 8
Croston (Gaussian) 1.238 1.256 1.269 1.126 1.141 1.144 1.029 1.032 1.031
Croston (Poisson) 0.881 0.880 0.880 1.126 1.141 1.144 1.029 1.032 1.031
E-S Additive (Gaussian) 1.241 1.254 1.267 1.123 1.132 1.130 0.997 0.998 0.994
E-S Additive (Poisson) 0.871 0.868 0.866 1.123 1.132 1.130 0.997 0.998 0.994
Snyder-Ord-Beaumont 0.872 0.876 0.889 1.122 1.137 1.139 0.982 0.985 0.985
H-NBSS w/o Seas (Laplace) 0.830 0.827 0.825 1.112 1.124 1.127 0.975 0.976 0.977
H-NBSS w/o Seas (MCMC) 0.835 0.832 0.829 1.111 1.124 1.126 1.002 1.006 1.006

Dataset: PARTS

Forecast Horizon (periods) 1 4 8 1 4 8 1 4 8

Croston (Gaussian) 68.28 78.87 98.66 132.39 150.31 155.10 1.982 2.212 2.332
Croston (Poisson) 14.53 15.88 16.76 132.39 150.31 155.10 1.982 2.212 2.332
E-S Additive (Gaussian) 69.07 78.11 81.19 132.50 150.45 155.26 1.879 2.116 2.238
E-S Additive (Poisson) 14.17 16.52 18.49 132.50 150.45 155.26 1.879 2.116 2.238
Snyder-Ord-Beaumont 8.80 19.48 38.24 132.51 150.48 155.28 1.833 2.063 2.180
H-NBSS w/o Seas (Laplace) 4.21 4.51 4.91 132.48 150.43 155.23 1.866 2.097 2.217
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Figure 5. Average out-of-sample NLL for all datasets as a func-
tion of the forecasting horizon. The proposed H-NBSS model
with the Laplace approximation exhibits the best performance.

Table 3. Forecasting performance for the masked series in the
RAID dataset, for which only four observations are available.

Normalized Relative Relative
NLL MSE MAE

Independent models 79.04 7.69 2.13
Hierarchical model 72.77 4.13 1.75

measures predictive distributional accuracy) the H-NBSS
model consistently yields the best performance, with the
Laplace approximation slightly beating MCMC (both ap-
proximations are very close). The MSE and MAE mea-
sures tell a consistent story, the only exception being the
PARTS dataset where Croston very slightly bests the other
approaches in the forecast of the mean (MSE measure).
This can be explained by high proportion of “lumpy” se-
ries in PARTS (cf. Table 1), which exhibit high demand
variability, and hence low predictability.

4.3. Benefits of Hierarchy

We close this section by outlining the benefits of the hi-
erarchical structure in H-NBSS. The major advantage of
sharing information across several series in a group lies in
the ability to increase “statistical strength”, in particular for
series for which little history is available. We illustrate this
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Figure 6. Top 4 panels: Example of information sharing in the hierarchical model. The time series for 4 stores of the RAID dataset are
included in the group, the first two with a full history (green vertical lines) and the bottom two with only four observations of history
each (which appear just before the start of the forecasting period). The realized observations are indicated by the solid blue lines and the
expectation under the model distribution is the orange line; we note that the model deduces sensible seasonalities over the forecasting
horizon for Locations 3 and 4 even with only four observations in their respective histories, and can reasonably “backcast” over the
missing history as well. Bottom 2 panels: Results with an independent model for each series (no sharing); with only four observations
in the history, the models cannot do much better than fit a constant.

in Fig. 6, which shows that when groups of time series can
share information, useful patterns can be learned even for
series with very short histories (here, four observations). In
contrast, with no sharing, the model cannot do much better
than fit a constant.

These results translate quantitatively in Table 3. On 20 of
the 24 series of the RAID dataset, we provided only the
four observations before the forecasting horizon; for the
other 4 series, we provided the full history. The table con-
trasts the performance of a H-NBSS model trained sepa-
rately for each series (“independent models”), versus a sin-
gle H-NBSS model grouping the 24 series together (“hi-
erarchical model”) and reports average performance only
on the 20 masked series. There is a dramatic gain in per-
formance attributable to sharing in the hierarchical model:
seasonalities learned on the four complete series transfer to
the incomplete ones.

5. Conclusion
This paper introduced a modeling methodology for groups
of related time series of counts, such as the small-integer
series frequently encountered in supply chain operations.
We outlined the sizable accuracy gains possible through
jointly modeling several time series in a hierarchical
Bayesian framework and presented an effective approxi-
mate inference algorithm to make the H-NBSS model use-
ful in practice. Future work should investigate other trade-
offs on the accuracy–computational cost spectrum, such as
the INLA approach (Rue et al., 2009), recently revisited
by Han et al. (2013). Beyond its increased accuracy, the
H-NBSS model can provide real-world benefits in applica-
tions where count data dominate, for instance by supplying
useful forecasts for new stores with very little (or no) his-
tory and improving the efficiency of inventory management
policies with better distributions of future demand.
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