
     325

Recursive Karcher Expectation Estimators And Geometric Law of
Large Numbers

Jeffrey Ho Guang Cheng Hesamoddin Salehian Baba C. Vemuri

Department of CISE
University of Florida, Gainesville, FL 32611

Abstract

This paper studies a form of law of large
numbers on Pn, the space of n× n symmet-
ric positive-definite matrices equipped with
Fisher-Rao metric. Specifically, we pro-
pose a recursive algorithm for estimating the
Karcher expectation of an arbitrary distribu-
tion defined on Pn, and we show that the es-
timates computed by the recursive algorithm
asymptotically converge in probability to the
correct Karcher expectation. The steps in the
recursive algorithm mainly consist of mak-
ing appropriate moves on geodesics in Pn,
and the algorithm is simple to implement
and it offers a tremendous gain in compu-
tation time of several orders in magnitude
over existing non-recursive algorithms. We
elucidate the connection between the more
familiar law of large numbers for real-valued
random variables and the asymptotic conver-
gence of the proposed recursive algorithm,
and our result provides an example of a new
form of law of large numbers for random vari-
ables taking values in a Riemannian mani-
fold. From the practical side, the computa-
tion of the mean of a collection of symmetric
positive-definite (SPD) matrices is a funda-
mental ingredient in many algorithms in ma-
chine learning, computer vision and medical
imaging applications. We report an experi-
ment using the proposed recursive algorithm
for K-means clustering, demonstrating the al-
gorithm’s efficiency, accuracy and stability.
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1 Introduction

Estimating the expectation (mean) of a distribution
is undoubtedly the most important and fundamen-
tal step in any statistical analysis. Given a sequence
X1,X2, ...Xk of i.i.d. samples from a probability mea-
sure dP on R

l, a simple estimator mk for the mean m

of dP is given by

mk =
X1 + ...+Xk

k
. (1)

The validity of the estimator of course is guaranteed by
the (weak) law of large numbers, which states that the
estimator mk converges to the true mean m in proba-
bility. This well-known result is perhaps first taught at
a college-level probability class, and for practitioners
in statistics, AI and machine learning, it is so deeply
grounded that many times we are using it without our
immediate awareness of it.

The problem of interest in this paper is concerned with
random variables taking values in a space that does not
have an additive (vector space) structure, and in par-
ticular, general distributions defined on (Riemannian)
manifolds. This absence of additive structure has an
important consequence since it means the formula in
Equation 1 that computes the estimator is no longer
valid and in fact, it is not clear how the mean should be
defined at all. Specifically, let (Ω, ω) denote a proba-
bility space with probability measure ω. A real-valued
random variable X (more generally, a vector-valued
random variable) is a measurable function defined on
Ω taking values in R (Rn, n > 1):

X : Ω → R (Rn).

The distribution of the random variable X is the push-
forward probability measure dPX = X∗(ω) on R, and
its expectation EX is defined by the integral

EX =

∫

Ω

X dω =

∫

R

x dPX(x). (2)

One important reason that the above integral can be
defined is that X takes value in a vector space, a space
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that allows additions of two points. However, if the
target of the random variable X does not have an ap-
parent additive structure, the definition of the expec-
tation through the above integral is no longer viable,
and in particular, the absence of additive structure
must be substituted by a useful structure of the target
space in order to properly and appropriately define the
expectation.

A manifold-valued (M-valued) random variable X is
a random variable that takes values in a manifold M.
Familiar examples of important manifolds in statistics
include spheres, Stiefel and Grassman manifolds used
in directional statistics [2, 6], and the space Pn of n×n
symmetric positive-definite matrices that parameter-
izes the space of all non-degenerated Gaussian distri-
butions in R

n. If the manifold M is assumed to be
Riemannian, then it is possible to compensate for the
lack of additive structure with its intrinsic geometric
structure. Let dM(x,y) denote the Riemannian dis-
tance between two points x,y ∈ M. The integral in
Equation 2 can be generalized to manifold-valued ran-
dom variable X by defining its Karcher expectation

as [4]

KEX = min
µ∗∈M

∫

Ω

d2
M(µ∗,X) dω. (3)

Note that, by definition, Karcher expectation of X is
indeed a point on M, and for an arbitrary manifold
M, the minimum of the above integral is generally not
unique, in contrast to the uniqueness of mean in the
Euclidean case. Nevertheless, [4] provides several char-
acterizations of the manifoldsM for which the Karcher
expectation is unique. In particular, for a complete
Riemannian manifold with negative sectional curva-
ture, the Karcher expectation is unique, and this result
applies to the manifold Pn of n×n symmetric positive-
definite matrices equipped with the Fisher-Rao metric,
which is different from the Euclidean (Frobenius) met-
ric.

While Karcher’s result guarantees that for any distri-
bution defined on Pn, its Karcher expectation with re-
spect to the Fisher-Rao metric is unique, it is not clear
how the cherished mean estimator given in Equation
1 should be generalized to estimate the Karcher ex-
pectation from a collection of i.i.d. samples. A direct
approach would be to interpret mn in Equation 1 as
the finite mean and accordingly define the nth Karcher
estimator mn as

mk = min
µ∗∈Pk

k
∑

i=1

d2(µ∗, Xi). (4)

However, this approach is undesirable because the
computation of mk requires an optimization, and for

large number of samples, it is usually unappetizing.
Instead, we will generalize a slightly different but en-
tirely equivalent form of Equation 1,

mk =
(k − 1)mk−1 +Xk

k
. (5)

This incremental form is advantageous because it in-
volves only two points and in an Euclidean space R

n,
we can interpret it geometrically as moving an appro-
priate distance away from mk−1 towards Xk on the
straight line joining Xk and mk−1. Based on this
idea, we propose a recursive algorithm for computing
Karcher estimator that is entirely based on traversing
geodesics in Pn and without requiring any optimiza-
tion such as in Equation 4. The main theorem proved
in this paper shows that in the limit, as the number
of samples goes to infinity, the recursive Karcher es-
timator converges to the (unique) Karcher expectation
in probability. It is this result that provides us with
a new form of law of large numbers, and the main
difference between the Euclidean and non-Euclidean
settings is that the additions are now replaced by the
geometric operations of moves on the geodesics. An-
other distinguishing feature is that the finite estima-
tors computed by Equations (4) and (5) are the same
in Euclidean space but generally quite different in non-
Euclidean spaces, and in particular, the result also de-
pends on the ordering of the sequence X1,X2, ...Xk.
Asymptotically, it is immaterial because the limit will
always converge to the unique Karcher expectation.
Furthemreo, our recursive algorithm based on Equa-
tion (5) leads to a gain in computation time of several
orders in magnitude over existing non-recursive algo-
rithms based on Equation 4.

The rest of the paper is organized as follows. In sec-
tion 2, we will present a few important and relevant
background material on the Riemannian manifold Pn

with the Fisher-Rao metric that are needed in the
statement and proof of the main theorem. The re-
cursive estimator for Karcher expectation on Pn and
the main theorem is presented in section 3, with the
proof (which is surprisingly simple) given in section 4.
The last section provides several experimental results
that include an application to K-means clustering on
Pn.

2 Preliminaries

In this section, we gather together relevant and well-
known differential geometric properties of Pn and we
use [3] as our main reference (and also [8]). Let Pn

denote the space of n × n symmetric positive-definite
(SPD) matrices, and as a manifold, the tangent space
TM at a pointM ∈ Pn can be identified with the space
of n×n symmetric matrices. Furthermore, Pn admits
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an action of the general linear group GL(n) (n × n
non-singular matrices) according to the formula:

∀g ∈ GL(n), ∀M ∈ Pn, g∗M = gMg⊤.

This action is transitive, and there is a GL(n)-
invariant (affine-invariant) Riemannian metric defined
by

< U ,V >M= Tr(M−1UM−1V), (6)

where Tr denotes the trace and < U ,V >TM
denotes

the inner-product of two tangent vectors U,V ∈ TM.
The invariance of the Riemannian metric is easily
checked using the action defined in the equation above:
for any g ∈ GL(n),

< g∗U , g∗V >g∗M=< U ,V >M .

This particular Riemannian metric on Pn is special in
two ways. First, this metric is the Fisher-Rao metric
whenPn is considered as the parameter domain for the
set of all normal distributions with a fixed mean [1] and
its importance and relevance in statistics follow from
this connection. Second, this metric has been stud-
ied quite extensively in differential geometry since the
mid-twentieth century [?], and its various important
properties have long been established, including that
it is a Riemannian symmetric space and is geodesically
complete with constant negative sectional curvature.
In particular, there are closed-form formulas for com-
puting the geodesics and Riemannian distances: for
any two points M,N ∈ Pn, their Riemannian distance
is given by the formula

d2(M,N) = Tr((Log(M−1N))2),

where Log is the matrix logarithm, and the unique
geodesic γ(s) joining M,N is given by the formula

γ(s) = M
1
2 (M− 1

2NM− 1
2 )sM

1
2 . (7)

We note that in the above formula, γ(0) =

M, γ(1) = N, and M− 1
2NM− 1

2 is indeed an SPD

matrix. If M− 1
2NM− 1

2 = UDU⊤ denote its eigen-
decomposition with D diagonal, then the fractional
exponent (M− 1

2NM− 1
2 )s can be computed as UDsU,

where Ds exponentiates the diagonal entries of D. An
example of Equation 7 that will become useful later is
the geodesic γ(s) between the identity matrix I and a
diagonal matrix D. Let

D =







D1

. . .

Dn






=







ed1

. . .

ddn






,

where di = logDi for i = 1, ..., n. The path γ(s) de-
fined by

γ(s) =







esd1

. . .

esdn






(8)

is the unique geodesic joining the identity I and D

such that γ(0) = I, γ(1) = D.

For a probability measure dP (x) on Pn, the Rieman-
nian distance d can be used to define its Karcher ex-
pectation (which is unique according to [4]) and its
variance:

MP = arg min
µ∈Pn

∫

Pn

d2(µ,x) dP (x),

Var(P ) =

∫

Pn

d2(MP ,x) dP (x).

3 Algorithm and Theorem

The law of large numbers for real-valued random vari-
ables states that for a sequence of identically and in-
dependently distributed random variables X1,X2, ...,
the sequence Sn = (X1 +X2 + ... +Xk)/k converges
to EX1 in probability as k → ∞

Sk = (X1 +X2 + ...+Xk)/k → EX1.

Or equivalently, the sequence

Sk+1 =
kSk +Xk+1

k + 1
=

k

k + 1
Sk +

1

k + 1
Xk+1

converges to EX1 in probability as k → ∞. The
above equation can be interpreted geometrically as
the update formula for Sk+1 moving the current es-
timator Sk towards the new sample Xk+1 along the
line joining Sk and Xk+1 with the size of the move
given by the weights 1

k+1
, k
k+1

. Since we are seeking a
geometric generalization of the law of large numbers,
this particular geometric interpretation using straight
lines (geodesics) can be applied to any space that has
geodesics connecting any pair of points. For the space
Pn, this immediately leads to the following recursive
algorithm:

Recursive Karcher Expectation Estimator Let
X1,X2, ... ∈ Pn be i.i.d. samples from a probability
distribution P (x) on Pn. The recursive Karcher ex-
pectation estimator Mk is defined as

M1 = X1, (9)

Mk+1 = M
1
2

k (M
− 1

2

k Xk+1M
− 1

2

k )wk+1M
1
2

k , (10)

where wk+1 = 1

k+1
. Note that, formally, Mk corre-

sponds to Sk above and the update formula for Mk+1

in Equation 10 simply moves Mk along the geodesic
(See Equation 7) joining Mk and Xk+1 with the size of
the move given by wk+1. This is in complete agreement
with the geometric interpretation of the Euclidean up-
date formula discussed above. Perhaps more surpris-
ingly, this simple recursive algorithm can be shown to
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converge to the correct Karcher expectation accord-
ing to the following main theorem of the paper, whose
proof will be given in the next section:

Theorem 1 (Geometric Law of Large Numbers).
For any arbitrary distribution defined on Pn and
a sequence of i.i.d samples X1,X2, ..., the recur-
sive Karcher expectation estimator converges to the
Karcher expectation in probability as k → ∞.

4 Proof of the Main Theorem

Let P denote the given distribution on Pn with
Karcher expectation M ∈ Pn and X1,X2, .... a se-
quence of i.i.d. samples. Let Mk denote the kth

Karcher estimator according to Equation 10 and de-
note by Pk its distribution. The main point of the
proof is to show that the integral

∫

Pn

d2(x,M)dPk(x) ≤
1

k
Var(P ) (11)

converges to zero as k → ∞. Notice that the above
integral computes the variance of the kth Karcher es-
timator Mk with respect to the true Karcher expecta-
tion M, and the bound shows that this variance con-
verges to zero as k → ∞, which implies the conver-
gence of the recursive Karcher estimator Mk to M.

It turns out that the proof relies heavily on the follow-
ing inequality:

Theorem 2 (Master Inequality). Let R,S,T be three
arbitrary points in Pn, and let γ(s) denote the geodesic
joining R and S such that γ(0) = R, γ(1) = S. Then,
for all s ∈ [0, 1],

d2(γ(s), T) ≤ (1− s)d2(R,T) + sd2(S,T)

− s(1− s)d2(R,S).

We remark that the above inequality relating the dis-
tances between three points R,S, γ(t) on a geodesic
and an arbitrary point T is a general property of any
Riemannian manifold with negative sectional curva-
ture (see [5]). Here, we give a self-contained proof for
Pn that uses only its algebraic property and the GL-
invariance of the metric. In fact, we show a stronger
result for Pn that

d2(γ(s), T) = (1− s)d2(R,T) + sd2(S,T)

− s(1− s)d2(R,S).

Proof. The theorem will follow if we can show that the
function Γ(s)

Γ(s) = (1− s)d2(R,T) + sd2(S,T)

− s(1− s)d2(R,S)− d2(γ(s)T),

has zero second derivative, Γ′′(s) = 0, on an open
interval containing the closed unit interval [0, 1]. Since
Γ(0) = Γ(1) = 0, the result follows.

Since the inequality concerns only three points, we can
use the GL-invariance of the distance to simplify the
calculation by transforming the three points R,S,T
to I,D,Q, where I is the identity, D a diagonal ma-
trix and Q is some matrix in Pn. This can be eas-
ily accomplished by first applying R− 1

2 to R,S,T
to get I,R− 1

2SR− 1
2 ,R− 1

2TR− 1
2 . Let UDU⊤ =

R− 1
2SR− 1

2 denote the eigen-decomposition, and ap-
plying U⊤ to the transformed triple to obtain
I,D,U⊤R− 1

2TR− 1
2U = Q. Since the distance is GL-

invariant, it suffices to prove the result for the normal-
ized triple I,D,Q with Γ(s)

Γ(s) = (1− s)d2(I,Q) + sd2(D,Q)

− s(1− s)d2(I,D)− d2(γ(s), Q).

By direct calculation, we have

Γ′′(s) = 2d2(I,D)−
d2

ds2
d2(γ(s), Q).

The geodesic γ(s) joining I and D is given in Equa-
tion 8 and we will denote γ(s) = Ds. Since
d2(Ds,Q) = Tr(Log2(D−1

s Q)), we let Ws =
Log(D−1

s Q)).

d

ds
Tr(W2

s) = 2Tr(Ws

dWs

ds
),

and

d2

ds2
Tr(W2

s) = 2Tr((
dWs

ds
)2 +Ws

d2Ws

ds2
).

We have

dWs

ds
= (D−1

s Q))−1 dD
−1
s

ds
Q = Q−1Ds

dD−1
s

ds
Q,

and

d2Ws

ds2
= Q−1 dDs

ds

dD−1
s

ds
Q+Q−1Ds

d2D−1
s

ds2
Q.

Using Equation 8, we further have

dDs

ds
=







d1e
sd1

. . .

dne
sdn






, (12)

dD−1
s

ds
=







−d1e
−sd1

. . .

−dne
−sdn






, (13)

d2D−1
s

ds2
=







d21e
−sd1

. . .

d2ne
−sdn






. (14)
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Using the above three equations and Equation 8, we
have

dDs

ds

dD−1
s

ds
+Ds

d2D−1
s

ds2
= 0,

and hence d2Ws/ds
2 = 0. Furthermore, since

Ds

dD−1
s

ds2
=







−d1
. . .

−dn






,

we have

Tr((
dWs

ds
)2) = d21 + ...+ d2n = d2(I,D).

This shows that Γ′′(s) = 0 for all s ∈ [0, 1].

The master inequality in turn implies the following
inequality:

Proposition 1. Let P be an arbitrary distribution de-
fined on Pn, and M denote its Karcher expectation.
Then for any y ∈ Pn,

∫

Pn

[d2(x,y)− d2(x,M)] dP (x) ≥ d2(y,M). (15)

Note that we already know that

∫

Pn

d2(x,y)dP (x) ≥

∫

Pn

d2(x,M)dP (x),

and the difference between the two sides are in fact
lower-bounded by the squared distance between y and
M.

Proof. Let γ(s) denote the geodesic joining y and M

such that γ(1) = y and γ(0) = M. Consider the
function λ(s),

λ(s) =

∫

Pn

d2(x, γ(s))dP (x)−

∫

Pn

d2(x,M)dP (x).

Note that λ(0) = 0 and to complete the proof, we
need to show that λ(1) ≥ d2(y,M). For each 0 ≤ s ≤
1, applying the master inequality with x = T,R =
M,S = y and integrating, we have

0 ≤ λ(s) ≤ sλ(1)− s(1− s)d2(y,M).

This is true for all 0 ≤ s ≤ 1 and in particular,

λ(1) ≥ (1− s)d2(y,M),

for all s > 0. Letting s → 0, we have the desired
inequality

λ(1) ≥ d2(y,M).

With the above two inequalities in hand, the proof of
the main theorem is straightforward:

Proof. We will prove the inequality in Equation 11
by induction as it holds trivially for k = 1. By
Equation 10, each Mk+1 = γ( 1

k+1
) where γ(t) is

the geodesic joining Mk,Xk+1 such that γ(0) =
Mk, γ(1) = Xk+1. Using the master inequality, we
have

d2(Mk+1,M) ≤
k

k + 1
d2(Mk,M) +

1

k + 1
d2(Xk+1,M)

−
k

(k + 1)2
d2(Mk,Xk+1).

Taking the expectations, we have

Var(Mk+1) ≤
k

k + 1
Var(Mk) +

1

k + 1
Var(P )

−
k

(k + 1)2
EMk

EXk+1
d2(Mk,Xk+1),

where Var(Mk+1),Var(Mk) are variances of
Mk+1,Mk with respect to M, respectively. Since

EXk+1
d2(Mk,Xk+1) =

∫

Pn

d2(Mk,x) dP (x)

and using Equation 15, we obtain

EXk+1
d2(Mk,Xk+1) ≥

∫

Pn

d2(Xk+1,M) dP (x)

+d2(Mk,M) = Var(P ) + d2(Mk,M).

This implies

EMk
EXk+1

d2(Mk,Xk+1) ≥ Var(P ) +Var(Mk).

Putting these together, we have

Var(Mk+1) ≤
k

k + 1
Var(Mk) +

1

k + 1
Var(P )

−
k

(k + 1)2
(Var(Mk) +Var(P )),

with the right-hand-side equals

k2

(k + 1)2
Var(Mk) +

1

(k + 1)2
Var(P ).

By induction hypothesis, it is in turn upper-bounded
by

k2

(k + 1)2
1

k
Var(P )+

1

(k + 1)2
Var(P ) =

1

k + 1
Var(P ).
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Figure 1: Running time comparison of the recursive
(red) versus non-recursive (blue) Karcher expectation
estimators for data on P5.

5 Experiments

In this section, we demonstrate the accuracy and effi-
ciency of our proposed recursive algorithm through a
set of experiments.

5.1 Performance of the Recursive Karcher

Expectation Estimator for Symmetric

Distributions

We illustrate the performance of our recursive estima-
tor on a set of random samples on Pn drawn from
a symmetric distribution, and compare the accuracy
and computational efficiency of the recursive Karcher
expectation estimator, RKEE, and the non-recursive
Karcher mean, KM, for the given dataset. To this
end, a set of 100 i.i.d samples from a log-Normal dis-
tribution [7] on P5 is generated, and the Karcher ex-
pectation is computed using RKEE incrementally as
well as the non-recursive method. We set the expec-
tation and the variance of log-Normal distribution to
the identity matrix and one, respectively. The error in
estimation is measured by the geodesic distance from
each estimated point to the identity. Further, for each
new sample, the computation time for each method
is recorded. Figure 1 illustrates the significant differ-
ence in running time between RKEE and KM. It can
be seen that the time taken by our method is consid-
erably shorter than the non-recursive method, and is
almost constant as a function of the number of sam-
ples.

The errors of the two estimators are shown in Fig-
ure 2. It can be seen that the recursive estimator pro-
vides roughly the same accuracy as its non-recursive
counterpart. Furthermore, for large numbers of sam-
ples, the recursive estimation error converges to zero.
Therefore, the recursive algorithm performs more ac-
curately as the number of data becomes larger.

Figure 2: Error comparison of the recursive (red) ver-
sus non-recursive (blue) Karcher expectation estima-
tors for data on P5.

Figure 3: Convergence of the recursive Karcher ex-
pectation estimator for an asymmetric distribution on
P3.

5.2 Performance of the Recursive Karcher

Expectation Estimator for Asymmetric

Distributions

For asymmetric distributions, we use a mixture of two
log-Normal distributions and repeat the same experi-
ment as above. The first distribution in the mixture is
centered at the identity matrix with the variance 0.25,
and the second component is centered at a randomly-
chosen matrix with variance 0.12. A set of 800 samples
are drawn from this distribution for the experiment.
To measure the error, we compute the gradient vector
of the objective function in Equation 4 (k = 800) and
it norm. Figure 3 illustrates the error of RKEE for
this asymmetric distribution. It can be seen that as
the number of samples increases, the error converges
to zero. This demonstrates our algorithm’s accuracy
and stability.
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5.3 Application to K-means Clustering

In this section we evaluate the performance of our
proposed recursive algorithm for K-means clustering.
K-means clustering is of fundamental importance for
many applications in computer vision and machine
learning. Due to the lack of a closed-form formula
for computing the Karcher mean, mean computation
is the most time consuming step in applying K-means
to SPD matrices, since at the end of each iteration the
mean for each estimated cluster needs to be recom-
puted. The experimental results in this section demon-
strate that, for SPD matrices, our recursive estimator
can significantly speed up the clustering process with-
out any observable degradation in its accuracy when
compared with the non-recursive method.

RKEE is applied to K-means clustering for SPD ma-
trices as follows. At the end of each iteration, we
only consider matrices whose cluster assignments have
changed For each of these “moving” samples, the
source cluster center is updated by subtracting the
sample, and the destination cluster center is updated
by adding the new matrix. Both of these updates can
be efficiently performed using our recursive formula
given in Equation 10, with appropriate weights. A set
of experiments are performed using different scenar-
ios to illustrate the effectiveness of our method. In
each experiment, a set of random samples from mix-
tures of log-Normal distributions on Pn are generated
and used as inputs to the K-means algorithm. In the
first experiment, we increase the number of samples
and compare the accuracy and running time of recur-
sive and non-recursive estimates for each case. In the
second experiment, we increase the number of clusters,
i.e. number of log-Normal components, to observe how
each estimator behaves. In the last experiment, we
evaluate the performance of each algorithm with re-
spect to matrix dimension. To measure the clustering
error, the geodesic distance between each estimated
cluster center and its true value is computed and they
are summed over all cluster centers.

Figures 4 and 5, respectively, compare the running
time and the clustering error of each method with
increasing number of samples. It is evident that
the recursive formula outperforms the non-recursive
method, while the errors for both methods are very
similar. Moreover, as the number of samples increases,
recursive algorithm improves in accuracy. In Figures 6
and 7, with increasing number of clusters, the pro-
posed method is still far more computationally efficient
than the non-recursive version. Also Figure 8 illus-
trates a significant difference in running time between
these two methods, while Figure 9 shows that the er-
rors for both methods are roughly the same. These ex-
periments verify that the proposed recursive method

Figure 4: Comparison of running time for K-
means clustering based on recursive and non-recursive
Karcher expectation estimators, for varying number of
samples from three clusters on P3

Figure 5: Comparison of accuracy for K-means clus-
tering based on recursive and non-recursive Karcher
expectation estimators, for varying number of samples
from three clusters on P3

is far more computationally efficient for K-means clus-
tering with SPD matrices.

6 Conclusions

In this paper, we have presented a novel recursive
Karcher expectation estimator for symmetric positive-
definite (SPD) matrix-variate random variables. The
validity of the recursive estimator is provided by the
paper’s main theorem that guarantees, asymptotically,
the estimators converge to the Karcher expectation.
Because the update formula for the estimator uses
the geodesics, we interpret this result as a geomet-
ric form of law of large numbers. The novel recur-
sive Karcher expecation estimator is used for comput-
ing the cluster centers in a K-means clustering algo-
rithm applied to SPD manifold-valued data, and ex-
perimental results clearly demonstrate the significant
improvement in computational efficiency over the non-
recursive counter part.
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Figure 6: Comparison of running time for K-
means clustering based on recursive and non-recursive
Karcher expectation estimators, for 5000 SPD matri-
ces from varying number of clusters on P3

Figure 7: Comparison of accuracy for K-means clus-
tering based on recursive and non-recursive Karcher
expectation estimators, for 5000 SPD matrices from
varying number of clusters on P3.

Figure 8: Comparison of running time for K-
means clustering based on recursive and non-recursive
Karcher expectation estimators, for 2000 samples from
three clusters with varying sizes

Figure 9: Comparison of accuracy for K-means clus-
tering based on recursive and non-recursive Karcher
expectation estimators, for 2000 samples from three
clusters with varying sizes.
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