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Abstract

The language-gap, for example between low-
literacy laypersons and highly-technical ex-
pert documents, is a fundamental barrier for
cross-domain knowledge transfer. This paper
seeks to close the gap at the thematic level
via topic adaptation, i.e., adjusting the top-
ical structures for cross-domain documents
according to a domain factor such as techni-
cality. We present a probabilistic model for
this purpose based on joint modeling of topic
and technicality. The proposed τLDA model
explicitly encodes the interplay between topic
and technicality hierarchies, providing an ef-
fective topic-level bridge between lay and ex-
pert documents. We demonstrate the use-
fulness of τLDA with an application to con-
sumer medical informatics.

1 Introduction

Although knowledge access is easier today than ever
with the availability of numerous information sources
on the Internet, transferring knowledge across domains
remains a critical challenge. Particularly, transferring
expert knowledge to lay users is hampered by the fun-
damental language-gap – lay users do not have enough
literacy to understand expert jargons and terminolo-
gies; likewise, experts might be unfamiliar with the
slang words to best popularize their expertise to, or
precisely capture the inquiries of, a common audience.

Existing research (Can & Baykal, 2007; Zeng et al.,
2006) attempts to close the gap at word-level by ex-
ploiting shallow word-correlations based on machine
translation techniques, e.g., by augmenting or sub-
stituting the words in a lay document with a bun-
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dle of technical words that are statistically or seman-
tically similar to the original text’s content. These
approaches are not entirely satisfactory because the
translation is neither interpretable nor organized.
They also turn to confuse different semantic themes as
documents are assumed to be topically homogeneous
throughout the corpus, which is, however, generally
not true (Blei et al., 2003). In this paper, we attempt
to close the gap at a deeper thematic level with a topic

bridge that connects different domains semantically.
We propose topic adaptation, a framework that adapts
the underlying topical structures (rather than content
words) according to a domain factor (e.g., time, sen-
timent, technicality) while the topics are discovered
from cross-domain texts.

Topic adaptation naturally arises in cross-domain
topic modeling. Probabilistic topic models (Blei et al.,
2003; Griffiths & Steyvers, 2004) interpret a document
d as a mixture θ over a set of topical bases (multino-
mial distributions) β. A basic assumption in exist-
ing topic models is that all the documents within a
corpus are drawn using the same shared topical struc-

tures (i.e., a single β). While this assumption works
well for texts from a single domain, it is undesirable
for texts from multiple domains where a significant
language gap usually arises. For example, while lay
texts in the topic “cancer” are dominated by common
words like “cancer”, “tumor” and “abnormal”, an ex-
perts’ knowledge base would favor technical words like
“neoplasm”, “carcinoma” and “metastasis”. Naively
learning the two domains with a single set of topical
bases will inevitable lead to models with unacceptable
fitting bias and in turn harm the quality of the ex-
tracted topics. Therefore, it is imperative to retain re-
lated but not identical topical bases β for each domain
and capture the correlations among βs so that topics
are both coherent within each domain and consistent
across domains according to the changes of a domain
factor (e.g., technicality). We refer to this problem as
topic adaptation (TA).

The learning task involved in TA is challenging. On
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the one hand, separately learning topical bases β lo-
cally from each domain corpus will lose the topical
correspondence among domains — there is no guar-
antee that the k-th topic learned from lay texts is
thematically relevant to the k-th topic of expert doc-
uments; On the other hand, simultaneously learning
multiple βs from the joint corpus requires decompos-
ing text contents into multiple sets of word occurrence
patterns (βs), which is intractable due to the lack of
appropriate supervision – we only observe the words
in each text but not their technicality stamps (i.e., the
degree of a word being technical). Of course, the task
would be greatly eased if the quantity of technicality,
ideally for each word in the vocabulary, could be as-
signed a priori. However, manual annotation is often
too expensive (e.g., vocabulary is huge, and dominated
power-law by rare words that could easily exceed any
individual’s scope of literacy) and unreliable (e.g., any
annotator could easily bias toward her own interest
areas) to be practical.

In this paper, we present the topic-adapted latent

Dirichlet allocation (τLDA) for topic adaptation from
cross-domain documents. The τLDA model devises a
technicality-hierarchy in parallel to the topic-hierarchy
of LDA, and encodes the interplay between the two
hierarchies in the generative process. It leverages a
mild supervision (the per-domain technicality stamps)
to guide cross-domain consistency, making sure top-
ics be adaptive to technicality changes. Moreover, it
retains domain-specific topic bases βs to ensure in-

domain coherence, which is efficiently parameterized
via a two-mode mixture. We derive efficient inference
and learning algorithm for τLDA based on variational
Bayesian methods and evaluate it with an application
to consumer medical informatics.

2 Related work

The language discrepancy between low-literacy laypeo-
ple and expert-produced documents has been widely
recognized as a fundamental barrier for cross-
domain knowledge transfer. (Zeng et al., 2002;
Schwartzberg et al, 2005) observed that the lan-
guage gap substantially degrades the performance of
medical information services. (Uijttenbroek et al.,
2008) reported a similar challenge in legal infor-
matics. Conventional efforts (Kripalani et al., 2006;
Bickmore et al., 2009) take a very manual approach,
e.g., by educating clinicians and manually constructing
communication scripts tailored for patients. Recently,
several researches attempted to close this gap via
word-level machine translation (Can & Baykal, 2007;
Zeng et al., 2006). In contrast, we attempt to bridge
domains at the topic level to capture the deeper the-
matic correlation among domains, with add-on bene-
fits such as readily interpretable results (e.g. the topic

and technicality structures offer a comprehensible or-
ganization of texts for browsing or summarization).

Topic models have been established for cross-
domain texts, for example, the cross-language topic

models (Zhao & Xing, 2006; Mimno et al., 2009;
Boyd-Graber & Blei, 2009). These works, however,
are fundamentally different from ours: in their set-
ting, topics are multinomials over different vocabu-
laries; whereas in ours, topics are different multino-
mials over the same vocabulary. In essence, we are
addressing the subtle variations within a language,
which are arguably (more) challenging. These mod-
els are also limited in applications as they require a
corpus containing approximately parallel documents.
Perhaps most relevant to our work is the dynamic top-

ical model (Blei & Lafferty, 2006; Wang et al., 2008),
which learns drifted topics from time-evolving do-
mains. Although such topic drifting is a special type of
topic adaptation, the assumptions for time factor (for
example, causality and Markov assumptions) are less
suitable for other domain factors such as technicality.

Technicality is an important factor of natural language
text, yet (surprisingly) rarely explored in topic mod-
eling. A noticeable exception is the recently proposed
hierarchical topic model or hLDA (Blei et al., 2010),
which extracts a tree structure for learned topics. Al-
though the depth of each topic in the hLDA topic tree
roughly reflects the degree of its specificity, the only
guidance for learning the tree is a nonparametric prior
(i.e., the nested Chinese restaurant process), which ad-
mits a plausible monotonic constraint for topics: high-
specificity topics are always contained by lower ones.
Because the regulation imposed by the nCRP prior is
rather weak and diminishing quickly as observations
increase, and the monotone assumption could be inac-
curate, the technicality quantified by hLDA is usually
unsatisfactory. Furthermore, hLDA is not applicable
to topic adaptation for cross-domain documents as it
models a single topic structure β.

Our prior work (Crain et al., 2010) established a
model for extracting topic structures for different di-
alects of a language (slang, common and technical)
using per-word technicality features. In this paper,
we further examine technicality in a continuous range
τ ∈ [0, 1] and explore how the topic structure β evolves
according to technicality τ . We do so by extracting
a family of aligned topic structures {β(τ)|τ ∈ [0, 1]},
where for any topic ID k the multinomials βk(τ1) and
βk(τ2) are semantically about the same theme (with
different technicalities). Such aligned topic structures
serve as a topic-level bridge which allow us to safely as-
sess the similarity (e.g., match query with documents
in IR) of two documents, d1 and d1, solely in terms of
the corresponding topic memberships θ1 and θ2 with-
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out worrying how different their technicalities are or
how they differ in BOW representations. The model
is also practically appealing as it requires only mild
corpus-level (rather than word-level) supervision.

3 Topic adaptation via topic-adapted

latent Dirichlet allocation

Assume we have a family of domains {D(τ) : τ ∈
[0, 1]}, distinguished from each other with distinct val-
ues of a domain factor1 τ . Without loss of general-
ity, we assume τ is a continuous variable in the range
[0,1]. A domain is a collection of documents with the
same τ , D(τ) = {(d, τd) : τd = τ}, and a document
is a finite sequence of words d = w1w2 . . . wn. Our
goal in topic adaptation is to infer the topical struc-
tures and guarantee its in-domain coherence and cross-
domain consistency for a given multi-domain corpus
D =

⋃

τ∈[0,1] D(τ).

As in the latent Dirichlet allocation (LDA) model
(Blei et al., 2003), we decompose the document-word
co-occurrence matrix in terms of document-specific
topic mixtures θd and a set of topical bases β (multino-
mial distributions). However, instead of a single com-
mon set of bases as in LDA, we retain domain-specific
topic bases {β(τ) : τ ∈ [0, 1]}, which requires the non-
trivial task of learning a functional family of multino-
mials. For simplicity, we adopt a two-mode mixture to
efficiently parameterize β(τ). Particularly, we assume
any β(τ) is a mixture of two extremes β0 = β(0) and
β1 = β(1), that is: β(τ) = (1 − τ)β0 + τβ1.

We establish a probabilistic generative model for topic
adaptation. The key innovations are as follows: (1)
we assume a hierarchy for technicality, in parallel to
the LDA topic hierarchy; (2) we model the interplays
between the topic and technicality hierarchies at the
latent level; and (3) we let each word sampling be
conditioned on both latent topic and latent technical-
ity assignments. Specifically, the topic-adapted latent

Dirichlet allocation (τLDA) model assume the follow-
ing generation process for each document-technicality
pair, (d, τd), in the joint corpus D:

1. Draw topic mixture θ ∼Dir(α)
2. For each topic, draw topic-level technicality

πk ∼Beta(λ1k, λ2k)
3. For each word:

a) Choose a topic assignment zn ∼Mult(θ);
b) Choose domain (i.e., technicality) assignment

tn ∼ Bernoulli(πzn
);

c) Sample word wn ∼ Mult(βtn

zn
);

4. Generate document technicality τ ∼ p(τ |t1:N , ω).

1Hereafter, the domain factor τ always refers to techni-
cality, although other factors such as sentiment and time
might be equally applicable.
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Figure 1: The topic-adapted latent Dirichlet allocation
(τLDA) model for cross-domain texts.

In the model, we assume the number of topics,
K, is a priori specified and fixed (in practice, it
could be determined via Bayesian model comparison
(Griffiths & Steyvers, 2004)). As in the plain LDA
model, the per-document topic mixture θ is drawn
from a K-dimensional Dirichlet distribution Dir(α),
and the per-word topic assignment z is from a dis-
crete distribution conditioned on θ, i.e., Mult(θ). In
parallel to this topic hierarchy, we also model a tech-
nicality hierarchy. The per-document technicality π is
a K-vector, with each entry πk specifying the degree
of technicality for each topic; each πk is drawn in-
dependently from a Beta distribution2 Beta(λ1k, λ2k).
The per-word technicality assignment t is a binary
scalar, it is generated conditioned on both π and z
from Bernoulli(πz). Basically, when the i-th topic is
sampled (i.e., zi = 1) and its technicality πi is given,
t further specifies a domain – from which of the two
extreme domains the topic is sampled (e.g., whether
the “cancer” topic is talked about in layman or ex-
pert domain). Thereafter, a word is sampled condi-
tioned on both topic and domain (technicality) assign-
ment from a multinomial distribution Mult(βt

z), where
βt = (β0)1−t(β1)t; both β0 and β1 are K × V matri-
ces, where V is the size of the vocabulary. Finally, the
technicality stamp associated with each document is
modeled as a response variable generated conditioned
on all the technicality assignments: p(τ |ω⊤ȳ), where

ȳ = 1
N

∑N
n=1 yn, yn = tnzn is a topic-aware code of

tn. For now, we use a cosine regression model that en-
joys the best interpretability (Yang et al., 2010); other
models will be explored later. Particularly, we assume
p(τ |ω⊤ȳ) = 1

Z
exp(τω⊤ȳ), a degraded log-linear model

with constant partition Z =
∫ 1

0
exp(τω⊤ȳ)dτ = const.

This model leads to regression by maximizing the
Frobenius inner product between the model prediction
and the ground-truth: ω = argmax〈τ1:M , ω⊤ȳ1:M 〉.
The overall model is depicted with a graphical repre-
sentation in Figure 1. For each (d, τ) pair, the joint

2In our implementation, we assume λ1k + λ2k =const
for all k to further reduce parameters.
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distribution is given by:

Pd =p(θ, π, z1:N , t1:N , w1:N , τ |α, λ, β0, β1, ω)

=p(θ|α)p(τ |ω⊤ ȳ)
∏K

k=1
p(πk|λ·k)

∏N

n=1
p(zn|θ)p(tn|πzn

)p(wn|βtn

zn
).

(1)

4 Inference and learning

Both parameter estimation and inferential tasks
in τLDA involve the intractable computation of
marginalizing Pd over the latent variables. In this
section, we derive approximate algorithms based on
variational methods (Jaakkola & Jordan, 2000).

4.1 Variational approximation

We lower bound the log likelihood by applying the
mean-field variational approximation:

log p(d, τ |α, λ, β0, β1, ω) = log

∫

θ,π

∑

z,t

Pd

=L(γ, Φ, η, µ) + KL(q||p) ≈ max
γ,Φ,η,µ

L(γ, Φ, η, µ),

where the posterior p(θ, π, z, t|d, τ, α, λ, β, ω) is ap-
proximated by a variational distribution q. Here, we
assume a fully-factorized distribution (per document)
on the latent variables:

q(θ, π, z1:N , t1:N |γ, φ, η, µ)

=Dir(θ|γ)

K
∏

k=1

Beta(πk|η·k)

N
∏

n=1

Mult(zn|φn)Ber(tn|µn)

Denote Hq the entropy of q, ℓ the operator log p(·),
the variational lower bound (variational free energy)
of the log likelihood, L, is given by:

L = Eq[ℓ(θ|α)] +

N
∑

n=1

Eq[ℓ(zn|θ)] +

K
∑

k=1

Eq[ℓ(πk|λ·k)] + Hq

+
N

∑

n=1

(

Eq[ℓ(tn|πzn
)] + Eq[ℓ(wn|β

tN

zn
)]

)

+ Eq[ℓ(τ |ω
⊤

ȳ)].

The terms in the first line are similar to those in LDA.
The terms in the second line are given (in order) by:

Eq[ℓ[t]] =

K
∑

k=1

φnk (µnΨ(η1k) + (1 − µn)Ψ(η2k) − Ψ(η1k + η2k))

Eq[ℓ[w]] =
K

∑

k=1

φnk

(

µn log β
1
kv + (1 − µn) log β

0
kv

)

(2)

Eq[ℓ[τ ]] =
1

N

∑N

n=1

K
∑

k=1

τµnωkφnk

where v is the index of wn in the vocabulary. By
setting the derivatives of L̃ (the Lagrangian relaxation

of L) w.r.t. the variational parameters to zero, we
obtain the following coordinate ascent algorithm:

γk = αk +
∑N

n=1
φnk (3)

η1k = λ1k +
∑N

n=1
φnkµn (4)

η2k = λ2k +
∑N

n=1
φnk(1 − µn) (5)

φnk ∝ (β0
kv)1−µn(β1

kv)µn exp{Ψ(γk) − Ψ(η1k + η2k)

+ µnΨ(η1k) + (1 − µn)Ψ(η2k) + bkµn} (6)

µn = ζ(
K

∑

k=1

φnk(Ψ(η1k) − Ψ(η2k) + log
β1

kv

β0
kv

+ bk)) (7)

where Ψ(·) is the digamma function, the logistic map-
ping ζ(x) = 1

1+exp(−x) , and bk is a supervision bias

due to the response model. For the cosine regression
model, we have bk = 1

N
τωk.

These formulas are intuitively interpretable. We ob-
serve that the per-word topic distribution, φ, is learned
as a result of negotiation between the two extreme
domains. This can be seen by rewriting Eqn.(6) as
φnk ∝ (φ0

nk)1−µn(φ1
nk)µn , where φi

nk = Eq[znk|tn = i],
i = 0 or 1. Particularly, each word occurrence is split
according to its technicality into two parts, µn and
1 − µn; then φ0 and φ1 are inferred individually in
each domain conditioned on topic, domain, word as
well as technicality samplings; and finally, the two do-
mains negotiate with each other and output the com-
bined results φnk. Another interesting observation is
how the algorithm assigns technicality for each word.
It uses a logistic regression model, where the per-topic
regressors (consisting of three parts: the prior contrast
Ψ(η1k)−Ψ(η2k), the domain contrast log β1

kv/β0
kv, and

the supervision bias bk) are weighted by per-word topic
distribution φ and then mapped by a logistic function.

We finally note that our variational inference algo-
rithm for τLDA is efficient enough. From Eqn.(3-7),
it requires O(KN) operations per iteration, which is
the same complexity as LDA.

4.2 Parameter estimation

The parameters of τLDA are learned by maximizing
the evidence lower bound:

maxL =

M
∑

m=1

Lm(α, λ, β, ω; γm, φm, ηm, µm).

This two-layer optimization involves two groups of pa-
rameters, corresponding to τLDA and its variational
model respectively. Optimizing alternatively between
these two groups leads to a Variational Expectation
Maximization (VEM) algorithm, where the E-step cor-
responds to applying variational approximation (i.e.,
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Table 1: The cross-domain corpus is a combination of document collections from five domains.

Domains Yahoo! PubMed MeSH CDC WebMD
τ 0.0 1.0 1.0 0.7 0.3
#doc 74226 161637 25588 192258 275620

Eqn.(3-7)) to each observation (dm, τm) in the corpus
and the M-step maximizes L with respect to the model
parameters. Particularly, for the topic bases, we have:

β0
kv ∝

∑

m,n,k

(1 − µmn)φmnkwv
mn,

β1
kv ∝

∑

m,n,k

µmnφmnkwv
mn,

(8)

where wv
mn = 1(wmn = v), 1(·) is the indicator func-

tion. From Eqn.(8), we see again that each word oc-
currence is split according to its technicality into two
part, µ and 1−µ, which contribute to the two extreme
topic bases β1 and β0 respectively.

Then, both the topic and technicality mixture pri-
ors, α and λ, are solved (independently) by Newton-
Raphson procedures conditioned on values of γ and η
respectively. And finally, the response parameter, ω is
learned by maximizing the conditional likelihood:

max
ω

Eq[log p(τ1:M |ȳ1:M , ω)] = 〈τ1:M , ω⊤
Eq[ȳ1:M ]〉,

s.t. : ||τ1:M || = ||ω⊤
Eq[ȳ1:M ]||, (9)

where we pose a constraint to eliminate the scale free-
dom of ω. Based on the Karush-Kuhn-Tucker opti-
mality of Eqn.(9), we derive a very simple close-form
solution for ω:

ω̂ = h̄/||h̄||A,

where h̄ = 1
M

∑

m τmEq[ȳm], Eq[ȳ] = 1
N

∑

n µnφnk,
and A = Eq[ȳ1:M ]Eq[ȳ1:M ]⊤/||τ1:M ||2, ||x||A =√

x⊤Ax denotes the A-weighted l2-norm.

4.3 Technicality analysis

Here, we derive empirical Bayesian methods to quan-
tify technicality at different granularities. The first
task is to predict the document technicality, which en-
ables domain identification (Yang et al., 2009; 2010).
For a given document d, we first run variational in-
ference on d, then, we have: τ̂ = ω⊤ȳ. Note that
the terms involving the supervision bias should be re-
moved3 in variational inference as τ is unobserved for
incoming documents.

At a more compact level, topic technicality directly re-
flects the specificity of each topic, similar to the node-
depth in the hLDA topic tree (Blei et al., 2010). Here,

3For the cosine regression model, set τd=0.5 ∀d; for LR
and LAD, set bk = 0.

we have:

π̂k = Ed(Eq[πmk|dm]) =
1

M

M
∑

m=1

ηm,1k

ηm,1k + ηm,2k

. (10)

Finally, word technicality analysis provides a function
mapping for the vocabulary: t(v) : V → [0, 1], which
quantifies the relative specificity of a word w.r.t a tar-
geted expertise-intensive domain and also the relative
difficulty for a lay user to grasp. Again, we use empir-
ical Bayesian:

t̂v = Ed(Ew[Eq{tmn|wmn = v}|dm])

=
∑

m,n

wv
mnµmn/

∑

mn

wv
mn.

5 Experiments

In this section, we apply τLDA to medical documents.
We wish to find how a same topic is expressed differ-
ently in lay and expert languages, and how topics are
shifted according to domain technicality.

Data As shown in Table 1, our corpus is a combi-
nation of documents collected from five different do-
mains. The Yahoo! subset is a collection of user
questions and corresponding answers from the health
category of Yahoo! QA (answer.yahoo.com), repre-
senting lay domain labeled with lowest technicality
(τ=0). The PubMed (medical journal articles from
www.pubmedcentral.nih.gov) and MeSH (medical
subject descriptors from www.nlm.nih.gov/mesh), in
the other extreme, represent expert domain with high-
est technicality (τ=1). In between, WebMD (docu-
ments crawled from www.webmd.com) represents mildly
non-technical domain (τ=0.3), and CDC (crawled
from www.cdc.gov) mildly technical domain (τ=0.7)4.
Note that these coarsely-assigned per-domain techni-
cality labels, {τ}, are the only pieces of supervision
information we used for topic adaptation in τLDA.

Results The language gap leads to a substantial dis-
crepancy of word usages between different domains,
making it difficult to maintain a global vocabulary that
is effectively balanced across domains (Otherwise, the

4WebMD is intended to be generally comprehensible,
yet it contains substantially more technical words than Ya-
hoo!. CDC is intended for both medical experts and public
readers, more technical than average.
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Table 2: Example topics found by τLDA: each topic is shown by the top-ten words in both layman domain (β0) and
expert domain (β1); the top row indicates the technicality of each topic.

#1: π = 0.06 #2: π = 0.15 #3: π = 0.18 #4: π = 0.19 #5: π = 0.26 #6: π = 0.54

β0 β1 β0 β1 β0 β1 β0 β1 β0 β1 β0 β1

who protein problem activ better nucleic how relat treatment gene recommend data
ask associ risk chemic below structur think program weight analysi medicin method
much immunolog you process she same you report your determin not import
bodi psycholog your therapi children inhibitor someth previous food blood tell deriv
you purif fill substanc farther genom femal web profession model littl depart
not virolog thought poison abl possibl googl various fda amino past diagnost
eat enzymolog skin conserv print pcr mmwr file health enzym test measur
period induc anyth organ transmiss express histori databas diet biosynthesi quit complet
sometim parasitolog face virus season chromosom partner establish fat signal social design
agre patholog regular cell treatment dna websit analys dose yeast progress generat

0 1

you,what,feel,eat,food,people,sleep,diseas,oral

daili,take,visit,like,healthi,exercis,tri,warn,check

virolog,enzymolog,immunolog,pharmacolog,patholog,dna

nucleic,metabol,protein,dna,organ,cell,urin,genom,plasmid

doctor,pill,diabet,medic,drug,symptom,pain,side,depress,test,vitamin,spiritu,nutrient,pregnanc,fda,peak,pellet

Figure 2: Example words with low-, medium- and high- technicalities.

vocabulary could be extremely skewed such that the
majority of words come from lay domains). To this
end, we first select terms (after stemming and stop-
word removal) locally from each domain based on DF
(document frequency) scores, and then interleave the
sub-selection round-robin to form the global vocabu-
lary (over 10K words).

An important issue for implementing τLDA is how to
initialize β’s. Although reasonable results are obtained
by totally random initialization, we find that a simple
pre-feeding initialization procedure leads to substan-
tial performance improvement. Particularly, we first
profile the technicality for each word by using the em-
pirical average technicality of the training documents
containing the word, i.e. µ̂v =

∑

{d:fv

d
>0} fv

d τd, where

fv
d denotes the term frequency of word v in document

d; we then train a plain LDA model and compute the
initial β’s using Eqn.(8), where the pre-feeded word
technicalities µ̂ are used in place of µ.

We train the τLDA model on a 60% subset of randomly
sampled documents, and test on the rest. The results
are averaged over 5 repeats. The variational algorithm
is efficient: for each iteration, τLDA takes (on average)
7.6 more time than LDA (the LDA-C implementation)
to converge.

Table 2 shows an intuitive view of six example top-
ics found by τLDA. For each topic, we list the top-
10 most probable words for lay (i.e., high values of
β0) and expert (i.e., high β1) domains respectively.
These results reveal a notable language gap between
the two domains – almost all the representative words
for lay domain are commonly-used or even slang words,
in contrast, most words on the expert-domain side

are highly-technical medical terminology (for example,
words suffixed by “-ology”). The language gap is even
evident when the same topic is concerned, indicating
that laypeople and experts interpret differently even
the same ideas.

As a reference, the technicality of each topic is also
shown in the top row of Table 2. A very interesting
observation is that there is no highly-technical topic —
the maximum technicality for topics are around 0.5. In
essence, this indicates that the language gap is asym-
metric: experts can occasionally talk about topics of
lay interests (but in a language mixing common words
and their jargon), but laypeople are unlikely to be in-
terested in expert’s highly-technical topics. The ab-
sence of highly-technical topics in lay domain makes
the corresponding word-occurrence pattern too sub-
missive (infrequent) in the overall corpus to be cap-
tured by the model. To validate this hypothesis, we
plot the topic distance between domains D(β0

k||β1
k)

(the Jensen-Shannon divergence) as a function of topic
technicality πk in Figure 3(a). As expected, we see an
evident negative correlation between D and π, suggest-
ing that the closer πk is to the middle, the more β0

k and
β1

k are overlapped. Also note that the technicality of
a topic k does not depend on the word-distribution of
β0

k or β1
k, but rather on how much probability (i.e.,

relative frequency, see also Eq.(10)) a topic is present
in technical than lay domain. Therefore, although the
first topic in Table 2 seemingly covers the most tech-
nical words in its β1, it has the lowest technicality –
it clusters very common word in β0 and very-technical
word in β1, but the former appears far more frequent
than the latter.
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β0 and β1 are two different distributions over the same
vocabulary. Because different words have different in-
trinsic frequencies (e.g. technical words are less fre-
quent), a better way to understand the learned top-
ics might be to label each topic with most represen-
tative terms based on foreground-background contrast
(e.g. by selecting words with highest ratio scores βτ/β,
where β is a background multinomial regardless of do-
mains, τ ∈ {0, 1}). According to this analysis5, the
two sets of topic bases are nicely aligned. Here, for ease
of comparison with results of existing topic models, we
comply with conventional topic labeling standard and
demonstrate (in Table 2) each topic with most fre-
quent words (i.e. solely according to foreground multi-
nomial). Even from this somewhat naive analysis, we
can still see that, except the first one, the two topi-
cal structures are approximately aligned. For exam-
ple, topic #2 is about beauty and health, #3 birth
and heredity, #4 medical records, #5 diet and weight
control, #6 diagnosis and laboratory, etc. This ob-
servation indicates that, for a given k, β0

k and β1
k are

roughly talking about the same topic. Such aligned
topical bases are the key to cross-domain knowledge
transfer. They fundamentally provide a topical bridge
between lay domain and expert domain such that (1)
documents from different domains can be mapped to
the same simplex space S = {θ : ||θ||1 = 1, θk > 0},
and (2) the distances between θ’s precisely captures
the semantic similarity between documents, no matter
they are from same or different domains.

To quantitatively evaluate the quality of topic align-
ment, we perform an information retrieval task based
on the topic mixture θ learned by τLDA. Our evalua-
tion is confined by the availability of labeled data. As
a preliminary test, we use a small number of lay docu-
ments as queries to retrieve technical documents. The
results are manually graded on a 4-point scale rang-
ing from 0 (irrelevant) to 4 (relevant). Based on this
small data set of 25 queries with 100 documents per
query 6, we report the performance in terms of the
normalized Discounted Cumulative Gain on the top-
five results (nDCG@5 ). The nDCG@5 for τLDA is as
high as 0.51 – a huge improvement over 0.38 of LDA
based retrieval model (Wei & Croft, 2006).

τLDA also provide a simple mechanism to quantify
technicality for words, which was previous achieved
only by sophisticated models (e.g., hLDA). A rough
view of word technicality learned by τLDA is given in
Figure 2. We see that most results reasonably coincide
with human intuition.

5www.cc.gatech.edu/~syang46/Topic_Label.50.txt
6Labeled data for this task is extremely expensive as

it requires annotators with moderate medical knowledge.
We are working on collecting more labeled data from paid
annotators and extending this experiment.

It would be interesting to examine the relationship be-
tween the topic bases learned by LDA (i.e., β) and
those by τLDA (β0 and β1). For this purpose, we use
an element-wise interpolation: βkv = xkvβ1

kv + (1 −
xkv)β0

kv or log βkv = xkv log β1
kv + (1 − xkv) log β0

kv,
and examine the distribution of the interpolation co-
efficient x. We find that the interpolations are dis-
tributed quite diversely: (1) a majority of β entries
(about 68.3%, see also Figure 3(d)) are within the
convex span of β0 and β1 (i.e., x ∈ [0, 1]), the rest
31.7% are not; (2) while the distribution peaks around
x = 0 and x = 1, there is no singe dominant x that
could fit all the entries well; (3) the correlation be-
tween [xkv ]1:V and [tv]1:V is very low (in the range
[−0.05, 0.1]), hence using a global per-word technical-
ity function tv to assist plain LDA (as in the initial-
ization procedure) could not work either. These ob-
servations indicate that the interaction with techni-
cality has fundamentally changed the topic structure
so that from β to (β0, β1) is non-trivially a nonlinear
decomposition. From another perspective, the obser-
vations also suggest that no single topic structure β
is able to interpret a cross-domain corpus adequately
well, hence, models with a unanimous β such as LDA
will inevitably lead to substantial learning bias if bru-
tally applied to this scenario.

We also examined the TF difference (i.e., β1
kv − β0

kv

or log β1
kv − log β0

kv) between domains as a function of
word-technicality tv. Figure 33(b&c) shows the rela-
tionship for an example topic k, where the differences
are normalized to [-1,1]. We see that the topic struc-
tures are nicely consistent with technicality: technical
words are more frequent in technical domain than in
lay domain, and vice versa.

We finally report the prediction performance of τLDA.
Our first evaluation is based on the test-set log likeli-
hood (Wallach et al., 2009; Chang et al., 2009), a com-
monly used measure for topic models. We compare7

τLDA with LDA and its supervised version (sLDA,
(Blei & Mcauliffe, 2008)). The results are shown in
Figure 3(e). We see that τLDA significantly outper-
forms both LDA and sLDA. This observation suggests
that, by retaining topic bases for each domain, τLDA
is more suitable for cross-domain topic learning than
the other two competitors, which learn a single struc-
ture β for all the domains. We then apply τLDA to
domain identification, i.e., to predict technicality τd for
an unseen document d. Considering that our labeling
of τ is very coarse (piecewise constant) and that pre-
cisely quantifying the degree of technicality for each
domain is usually impractical in practice, this task re-

7We use fold-in evaluation, e.g. for τLDA: p(wn|D) =
∑

k
φ̂k(µ̂nβ̂1

kv + (1 − µ̂n)β̂0
kv), where v is the ID of wn in

vocabulary. This comparison is fair across different models.

www.cc.gatech.edu/~syang46/Topic_Label.50.txt
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Figure 3: (a) topic variation vs. topic-technicality; (b-c) TF variation vs. word-technicality; (d) τLDA topics
and LDA topic interpolation; (e) test-set predictive likelihood; (f) domain identification accuracy.

quires a model capable of handling noisy data. The
cosine regression model is too sensitive to noise to ful-
fill this purpose. Here, we consider two other response
models. The first one is linear regression (LR):

p(τ |ω⊤ȳ) = N (τ |ω⊤ȳ, σ2);

The other is least absolute deviation (LAD):

p(τ |ω⊤ȳ) = L(τ |ω⊤ȳ, δ),

where L denotes the Laplacian distribution. For these
two models, the inference algorithms are almost the
same as that of cosine regression except that the su-
pervision bias bk is different. In particular, for LR:

bk =
1

Nσ2
τωk − 1

2N2σ2
[
∑

i6=n

∑

j

ωjωkφijµm + ω2
k].

For LAD, we have:

bk = sign(τ−Eq[ȳ])
ωk

Nδ
, where Eq[ȳ] =

1

N

∑

nk

ωkµnφnk.

Similarly, the learning procedure is different only in
estimating ω. Specifically, for the LR model:

ω̂ = (Y ⊤Y )−1Y T where Y = ȳ1:M , T = τ1:M .

The LAD regression leads to an iterative reweighted

least square algorithm, which iterative updates:

Λnew = diag(ω̂old⊤Y ),

ω̂new = (Y ⊤ΛnewY )−1Y ⊤ΛnewT.

The results are reported in Figure 3(f) with the root

mean squared error (RMSE) as evaluation metric. The

performance of τLDA with cosine regression is much
worse than the others (RMSE>0.3) and is therefore
omitted. We can see that, although sLDA is worse
than LDA in terms of predictive log-likelihood, it ob-
tains better technicality prediction than LDA; yet, the
two τLDA variants consistently outperform both LDA
and sLDA (over 20% improvements). Also, less sur-
prisingly, the LAD version of τLDA obtains signifi-
cantly better performance than the LR variant as the
former is more robust to noise.

6 Conclusion

We presented a generative model to learn related topic
structures for documents from multiple domains. The
τLDA model encodes both topic and domain factor
(e.g., technicality) hierarchies as well as the interac-
tions between them, providing an effective way to dis-
cover topic structures that are coherent within each
domain and consistent among domains. The model
offers a topic-level bridge for cross-domain knowledge
transfer as demonstrated in eHealth tasks.

Today’s personalized information services (e.g. Web
2.0) call for machine learning algorithms that are capa-
ble of capturing such subtle cognitive aspects of users
(e.g. interests, capability, literacy, expertise, learning
style) from their contextual texts and in turn adapt-
ing services accordingly. The τLDA offers a promising
startpoint for learning user’s literacy and expertise. It
would be interesting to explore how other cognitive as-
pects of a user can be captured based on the texts she
crafted/read. We plan to extend τLDA and the gen-
erative models for supervised classification and disam-
biguation (Yang et al., 2009; 2010) for this purpose.
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