
JMLR: Workshop and Conference Proceedings 14 (2011) 63–76 Yahoo! Learning to Rank Challenge

Winning The Transfer Learning Track of Yahoo!’s Learning
To Rank Challenge with YetiRank

Andrey Gulin gulin@yandex-team.ru
Yandex
Moscow, Russia

Igor Kuralenok solar@yandex-team.ru
Yandex
Saint Petersburg, Russia

Dmitry Pavlov dmitry-pavlov@yandex-team.ru

Yandex Labs

Palo Alto, California

Editor: Olivier Chapelle, Yi Chang, Tie-Yan Liu

Abstract

The problem of ranking the documents according to their relevance to a given query is a
hot topic in information retrieval. Most learning-to-rank methods are supervised and use
human editor judgements for learning. In this paper, we introduce novel pairwise method
called YetiRank that modifies Friedman’s gradient boosting method in part of gradient
computation for optimization and takes uncertainty in human judgements into account.
Proposed enhancements allowed YetiRank to outperform many state-of-the-art learning to
rank methods in offline experiments as well as take the first place in the second track of
the Yahoo! learning-to-rank contest. Even more remarkably, the first result in the learning
to rank competition that consisted of a transfer learning task was achieved without ever
relying on the bigger data from the “transfer-from” domain.

Keywords: Learning to rank, gradient boosting, IR evaluation

1. Introduction

The problem of ranking, defined as finding the order of search results in response to a user
query, has seen a surge of interest in the last decade, caused primarily by its commercial
significance and the ever increasing population of users on the Web. In particular, the search
market share of commercial search engines is widely believed to be directly dependent on
the quality of search result ranking they produce.

A lot of approaches to solving the learning to rank problem were proposed, a majority
of which are based on the ideas of machine learning. In the supervised learning context,
every query-document pair has an editorial judgement, reflecting the degree of relevance of
the document to the query, and is represented in a vector space of features, whose values
are either stored in the offline document index or computed in real-time when the query is
issued to the search engine.

c© 2011 A. Gulin, I. Kuralenok & D. Pavlov.

Gulin Kuralenok Pavlov

The machine learning problem then consists of learning a function that ranks documents
for a given query as close to the editorial order as possible. This editorial rank approxi-
mation task can be solved in a number of ways, including the pointwise approach (e.g.,
PRank (Crammer and Singer, 2001), (Li et al., 2008)), in which the relevance predictions
are optimized directly, the pairwise approach (e.g., FRank (Tsai et al., 2007), RankBoost
(Freund et al., 2003), RankNet (Burges et al., 2005), LambdaRank (Burges et al., 2006),
and RankSVM (Joachims, 2002) and (Herbrich et al., 2000)), that optimizes the objective
function on the pairs of documents retrieved for a query, and the listwise approach (e.g.,
AdaRank (Xu and Li, 2007), ListNet (Cao and yan Liu, 2007), SoftRank (Taylor et al.,
2008) and BoltzRank (Volkovs and Zemel, 2009)) that generalizes the pairwise approach
by defining the objective function that depends on the list of all documents retrieved for a
query.

In this paper, we introduce a novel pairwise ranking method YetiRank, describe its
properties and present results of its experimental evaluation. The main idea of YetiRank
is that it models uncertainty in the editorial judgements. In some cases, as for instance
with Yahoo!’s learning to rank task, the confusion matrix is not readily available, and has
to be inferred. In section 4.2 we present one of the methods of estimating the confusion
matrix based just on available query-document judgements. YetiRank also uses a special
computation of the residual between the tree and the gradient, that results in even more
“greedy” method than traditionally used, see section 3.4 for the details.

Modeling uncertainty in the editorial judgements and a special gradient computation
allow YetiRank to improve the performance over LambdaRank which is one of today’s
leading pairwise ranking methods. YetiRank took the first place in the transfer learning
track of Yahoo!’s Learning to Rank Challenge, outperforming all other methods, including
listwise ones. YetiRank managed to win without making any use of the bigger data from
the domain learning should have been transferred from. In the experimental results section,
we estimate the contribution of modeling the uncertainty in the editorial judgements and
the special gradient computation on the overall performance of YetiRank.

The paper is organized as follows. Section 2 introduces notation and defines the main
ranking quality metrics we use: ERR and NDCG. In section 3, we describe our learning
algorithm in detail, in particular, section 3.4 presents our procedure for computing the gra-
dient and section 3.2 discusses how the uncertainty in editorial judgements is incorporated
into the computation. Section 4 details the confusion matrix computation methodology.
Section 5 presents the results of experimental evaluation showing YetiRank’s high stand-
ing among the set of the top competing models. We conclude the paper in section 6 by
summarizing our contributions and setting the directions of future work.

2. General framework

Let Q = {q1, . . . , qn} be the set of queries, Dq = {dq1, . . . , dqmq} be the set of documents
retrieved for a query q, and Lq = {lq1, . . . , lqmq} be the editorial relevance labels for the
documents from the set Dq. Every document dqi retrieved for the query q is represented in
the vector space of features, such as text relevance, link relevance, historical click activity,
and the like, describing the associations between the query and the document. We want to
learn the ranking function f = f(dqi), such that the ranking of documents dqi for all queries

64

Winning The Transfer Learning Track of Yahoo!’s Learning To Rank Challenge with YetiRank

from Q based on their scores xqi under f , xqi = f(dqi), is as close as possible to the ideal
ranking conveyed to us in the training data by the editorial judgements lqi.

We use ERR andNDCG ranking quality metrics to measure the deviation of the learned
ranking induced by the function f from the ideal one. The expected reciprocal rank metric,
or ERR, is defined for a given query q and the set of mq documents retrieved for q as follows

ERR =

mq∑
k=1

1

k
lqk
∏
j<k

(1− lqj), (1)

assuming that labels lqj stand for probabilities of user satisfaction after observing document
j for the issued query q.

In the same notation, the discounted cumulative gain (DCG) metric is defined as

DCG(qi) =

mq∑
k=1

lqk
log2 (k + 1)

, (2)

where lqk is the editorial relevance labels for the document retrieved for q at position k
counting from the top after sorting the documents with respect to the scores xqi = f(dqi),
and the denominator of the fraction under the sum serves the goal of limiting the influence
of prediction on the metric as the position grows.

The NDCG is a normalized version of the DCG metric, where the normalization is taken
with respect to the maximum achievable DCG for a given query and the set of editorial
judgements. The normalization used in NDCG allows us to compare the results of ranking
across different queries in a sound fashion. The full DCG and ERR are the averages of per
query DCGs and ERRs respectively.

Both ERR andNDCG are not continuous in relevance predictions xqi, and, thus, cannot
be directly optimized by the gradient boosting procedure. In section 3.2, we describe the
differentiable pairwise loss function which we use instead of discontinuous ERR andNDCG.

3. Learning

In this work, we use Friedman’s gradient boosting (Friedman, 2001) with trees as weak
learners as a basis for our approach which we describe in a nutshell in sec. 3.1. In sec. 3.2
we introduce pairwise loss function we use, in sec. 3.3 we provide details on our LambdaRank
implementation and finally in sec. 3.4 we show how one can improve gradient alignment by
sacrificing learning time.

3.1. Stochastic gradient descent and boosting

The problem of finding the minimum of function L(h) on a linear combination of functions
from a set H can be solved by the gradient descent, wherein the optimization starts with
a function h0(d) ∈ H and proceeds with iterations hk+1(d) = hk(d) + αδhk, where α is a
small step and δhk is a function from H. The choice of the loss function is in our hands, e.g.
if we set the loss to mean squared error then L(h) =

∑
qi(h(dqi)− lqi)2. By differentiating

L(h) we obtain the following gradient for each query/document pair:

dL(hk(dqi)) = 2(hk(dqi)− lqi)dhk(dqi), (3)

65

Gulin Kuralenok Pavlov

where q = 1, . . . , n; i = 1, . . . ,mq varies across all labeled query-documents available for
training. The idea of gradient boosting then consists of choosing an appropriate function
δhk from H such that adding it to the sum would most rapidly minimize the loss. In other
words we want to select δhk such that we would reduce our loss the most by moving along
it for certain distance. To find such δhk for our mean squared error loss we optimize the
following function:

argmin
δhk∈H

∑
q

mq∑
i=1

(δhk(dqi) + (hk(dqi)− lqi))2 (4)

Solution of (4) is not normalized, length of δhk is proportional to gradient, so moving along
it slows down as descent progresses.

We use a set of oblivious trees (those with the same condition in nodes of equal
depth (Kohavi and Li, 1995)) with 6 total splits and 64 leaves as a set of functions H,
and the solution hk resulting from optimization is a linear combination of trees like this.
On each descent iteration we add a tree aligned in a certain way with the gradient. We
construct the tree greedily by adding one split a time. To make oblivious tree of depth 6 we
add 6 splits. Tree construction is linear in the number of possible splits. We don’t consider
every possible split, it would be very costly for the method we use. For each feature we
sort feature values, split sorted values into 32 equal size bins and use bin min/max values
as possible splits. To improve stability and improve the quality of the final solution, we
follow Friedman’s recommendation (Friedman, 1999) and randomize the data we use at
every iteration by sampling the query-document records for the purposes of learning tree
splits. The final predictions in the leaves are still computed using full, unsampled data.

3.2. Pairwise ranking learning

YetiRank belongs to a family of pairwise learning methods that optimize the objective
function defined on pairs of documents retrieved for a given query. In this case, the quadratic
loss reviewed above in section 3.1 is replaced with log-loss on each pair of documents inspired
by RankNet (Burges et al., 2005):

L = −
∑
(i,j)

wij log
exi

exi + exj
, (5)

where index (i, j) goes over all pairs of documents retrieved for a query, wij is the weight of
a given pair of documents, xi and xj are predictions of the ranking function for the query
and documents i and j. In terms of section 3.1 xi = hk(dqi) for current iteration k and
some query q.

The treatment of the weight wij plays the key role in the effectiveness of the proposed
solution and we define it here precisely.

We use the following intuition: the weight of the pair is dependent on the position of
the documents in ranking so that only pairs that may be found near the top in ranking are
important, these are the documents that have the high score. To figure out which documents
may end up at the top we perform 100 random permutations of the scores according to the
following formula:

x̂i = xi + log
ri

1− ri
, (6)

66

Winning The Transfer Learning Track of Yahoo!’s Learning To Rank Challenge with YetiRank

where ri is a random variable uniformly distributed in [0, 1]. Once the new scores x̂i are
sampled, and the documents are re-ranked according to the new scores, an accumulated
weight of every pair of consecutive documents gets incremented with a score of 1/R, where
R is the rank of the highest ranked document of the two, and no other pairs of documents
are affected. After all 100 trials are complete, each pair of documents that was observed
occurring consecutively in at least one trial will have a non-zero accumulated weight, Nij ,
equal to the sum of its reciprocal ranks in these trials, all of the rest of the pairs of documents
will have a weight of 0. Nij is symmetrical since we are incrementing both Nij and Nji for
each pair.

For the final weight wij on the current iteration of the algorithm we adopt the following
model:

wij = Nijc(li, lj), (7)

where c(li, lj) is a function of manual labels of the documents i and j. A generic way to
account for labels is to use c(li, lj) = li − lj and take only pairs with positive c(li, lj). We
modify it as follows:

c(li, lj) =
∑
u

∑
v

1u>vp(u|li)p(v|lj), (8)

where u and v run over all unique numeric values of editorial labels, and the confusion
matrix p(u|v) represents the probability that the true label v is confused with label u by
the editors. This is the most important YetiRank’s modification that incorporates our
belief in the importance of modeling uncertainty in the editorial judgements. We discuss
the treatment of the confusion matrix in more detail in section 4.

Note that Nij and, hence, wij are dependent on the model scores that vary from one
iteration to another.

Let’s define the optimization problem that we will solve on each gradient boosting
iteration. The total differential of the pairwise loss function (5) looks like this:

dL =
∑
(i,j)

wij

(
(dxi − dxj)

exj

exi + exj

)
, (9)

In gradient boosting we are searching for the vector δx which minimizes dL. Let’s define
yt =

√
wij(δxi−δxj), at =

√
wij

exj

exi+exj
where t is index of pair in equation (9). Let’s search

for y of fixed length:

argmin
y,|y|=const

∑
t

ytat = argmin
y,|y|=const

(1 + 2
∑
t

ytat
|a||y|

+ 1) = ... = (10)

= argmin
y,|y|=const

∑
t

(
yt +

|y|
|a|
at

)2

(11)

Now we expand yt and at, define λ = |y|
|a| and lift the restriction on |y| being constant. Then

we get

argmin
λ,δx

∑
(i,j)

wij

(
(δxi − δxj) + λ

exj

exi + exj

)2

(12)

67

Gulin Kuralenok Pavlov

Solution of (12) is linear in λ in the sense that if we find a solution i.e. an optimal direction
for some fixed λ we can scale it and get a solution corresponding to the same direction for
any other λ. So the length of step along this direction can be tuned by scaling. The scaling
factor is defined by λ and boosting step α (see section 3.1). We choose λ = 1. With λ = 1
the gradient boosting optimization problem reduces to:

argmin
δx

∑
(i,j)

wij

(
(δxi − δxj) +

exj

exi + exj

)2

. (13)

3.3. LambdaRank approximation

For the sake of comparison we implemented an approximation of the LambdaRank method (Burges
et al., 2006). We use the same 64 leaf oblivious tree as a weak learner, and modify only the
loss function. Our LambdaRank approximation uses generic c(li, lj) and same Nij as other
methods in the paper.

In LambdaRank, finding solution of (13) is reduced to a pointwise optimization prob-
lem. Indeed, equation (13) can be interpreted as a set of springs attached to documents.
Each spring pushes a better scoring document up and the other down. Instead of (13)
LambdaRank optimizes the following function:

argmin
δx

∑
(i,j)

wij

[(
δxi +

1

2

exj

exi + exj

)2

+

(
δxj −

1

2

exj

exi + exj

)2
]
. (14)

All spring potentials are added up, and the following weighted quadratic optimization prob-
lem is solved:

V ali =
∑

j wji
1
2

exj

exi+exj
−
∑

j wij
1
2

exj

exi+exj

Wi =
∑

j wij +
∑

j wji

argmin
δx

∑
iWi(δxi − V ali

Wi
)2

(15)

Equation (15) can be solved with traditional gradient descent described in section (3.1).

3.4. Better gradient alignment

Solving minimization problem (13) for the set δxi gives us a direction in which the step
of gradient boosting needs to be performed. Unlike LambdaRank 3.3 we can optimize
equation (13) directly without reducing it to the pointwise problem. Note that in each
gradient descent iteration we are looking for the tree structure and the values in its leaves.
Since each document with score xi belongs to one and only leaf in the tree, we may define
and denote by Leafh(x) a function which maps documents to the leafs for a tree h. Let the
predicted value of the score of leaf n be cn. Then equation (13) can be rewritten as follows:

L =
∑
ij

wij

(
cleaf(di) − cleaf(dj) +

exj

exi + exj

)2

, (16)

68

Winning The Transfer Learning Track of Yahoo!’s Learning To Rank Challenge with YetiRank

In this form we get the regular least squares optimization problem and we can use matrix
algebra to solve it. In particular, we can introduce matrix A and vector b, such that each
row of A and the element of b correspond to a single term of equation (16).

A =


...

0 1 −1 0 . . .
1 0 −1 0 . . .

...

 (17)

b =


...

− ex3
ex2+ex3

− ex3
ex1+ex3

...

 (18)

Solving the equation (16) can be then reformulated as a problem of finding minimum of
(Ac− b)Tw(Ac− b), and the solution for c can be found as c = (ATwA)−1ATwb, where w
is a square diagonal matrix with wij on the main diagonal. We can save some computation
by precomputing ATwA and ATwb for each query in advance and projecting them on the
leaves for each candidate tree. Algorithms for doing this are presented below.

Proposed method increases tree split search complexity to O(NQuery ∗N2
QueryDoc) from

O(NQuery ∗ NQueryDoc) for methods with the pointwise reduction like in equations (15).
NQuery is query count and NQueryDoc is document per query count. Also it adds matrix in-
version with O(N3

LeafCount) complexity. Matrix inversion can take significant time especially
when using small training sets and complex trees.

Algorithm 1 Precompute per query M q = ATA and vq = AT b for query q

1: M q = 0 (mq x mq)
2: vq = 0 (mq)
3: for all (i, j) do
4: vqi−= wij

exj

exi+exj

5: vqj+= wij
exj

exi+exj

6: M q
ii+= wij

7: M q
ij−= wij

8: M q
ji−= wij

9: M q
jj+= wij

10: end for

4. Confusion Matrix

The ideas of expert judgement variations have been known for quite some time now (Voorhees,
1998). Given the variability inherent to the editorial judgements, it makes sense to model
the judgement as a random variable with fixed probabilities of a mark u being confused with
v. Below we address several questions related to confusion matrix: whether it depends on

69

Gulin Kuralenok Pavlov

Algorithm 2 Selecting split to add to the tree

Require: M q - precomputed ATA for query q
Require: vq - precomputed AT b for query q
Require: docq - the documents retrieved for query q
1: for each candidate split of tree h do
2: Mall = 0 {(leafCount * leafCount)}
3: vall = 0 {(leafCount)}
4: for each query q do
5: for i = 1...mq do
6: vall[leafh(docq[i])]+= vqi
7: for j = 1..mq do
8: ni = leafh(docq[i])
9: nj = leafh(docq[j])

10: Mall[ni][nj]+= M q
ij

11: end for
12: end for
13: end for
14: c = (Mall)−1vall {c is leaf values}
15: tree score = cTMallc− 2vallc
16: end for

instructions given to the experts only or it also varies from one group of editors to another,
how to use confusion matrix for model training and how to infer the confusion matrix based
just on the labeled query-document pairs.

4.1. Editors Do Vary

In most of the manual data collection approaches to learning to rank problem that we are
aware of, the judges follow the shared set of instructions to assign labels to query-document
pairs. It is clear that the confusion probability P (true mark u|editor mark v) depends on
the value of u as well as the set of instructions. In Yandex practice, we obtain labels from
editors, who, for instance, may reside and label data in different geographical regions but
follow the common set of instructions. Similarly, in the framework of the transfer learning
track of Yahoo!’s learning to rank competition, the instructions were likely defined by the
company and then used by two groups of editors for data labeling: one for a smaller regional
data and the other one for bigger “transfer-from” data. Here we explore the question of
variability of grades in a situation like this.

The only way to get data on confusion matrix is an experiment on real editors. To model
variability, we took 100 editors working on labeling the data for Yandex’s .ru domain,
and the corresponding 154,000 query-document judgements, and 23 editors working on
the Ukrainian data along with their 56,000 query-document judgements. Every query-
document pair mentioned above was judged at least twice, and allowed us to construct
confusion matrices for each of these domains that we present in table 1. Analysis of entries
in this table clearly illustrates the differences between the groups of editors in terms of their
labeling mistakes. For instance, the “excellent” grade is much closer to “perfect” in the set

70

Winning The Transfer Learning Track of Yahoo!’s Learning To Rank Challenge with YetiRank

Bad Poor Good Exc. Perf.

Bad 0.75 0.22 0.02 0 0

Poor 0.34 0.54 0.11 0.01 0

Good 0.07 0.13 0.73 0.06 0.01

Exc. 0.04 0.04 0.52 0.32 0.08

Perf. 0.03 0.02 0.05 0.08 0.83

Bad Poor Good Exc. Perf.

Bad 0.88 0.09 0.02 0 0

Poor 0.26 0.65 0.07 0.01 0

Good 0.05 0.08 0.78 0.07 0.01

Exc. 0.03 0.02 0.24 0.60 0.10

Perf. 0.03 0.02 0.03 0.05 0.86

Table 1: Probability to change editors mark (rows) to true mark (columns) for Russian
(left) and Ukrainian (right) editors.

Bad Poor Good Exc. Perf.

Bad 0.869 0.103 0.02 0.001 0.007

Poor 0.016 0.878 0.1 0.005 0.002

Good 0.003 0.098 0.85 0.046 0.004

Exc. 0 0.01 0.094 0.896 0

Perf. 0 0 0.019 0.016 0.965

Table 2: Inferred confusion matrix for yahoo LTRC track 2

of Ukrainian judgements than in the set of Russian judgements. This observation leads us
to a conclusion that to attempt a straight mixing of the two data sets available for transfer
learning without accounting for label confusion is likely a subpar idea.

As one may see from the tables, the confusion matrices are not symmetric. This may
be caused by many reasons. One of them is that the separate instruction for each level
of relevance, these instructions having different levels of preciseness. If J1 was defined in
a more precise way then J2, then p(J1|J2) could be different from p(J2|J1). For example
“excellent” mark is way less clear for editors then “good” in our instruction and people
set “excellent” marks for better then average “good” documents but this opinion is rarely
supported by other experts.

4.2. Inferring confusion matrix from data

Often the confusion matrix between judgement labels is either too expensive or simply
impossible to estimate directly as is the case in learning to rank challenge. In this case we
have no chance of getting correct confusion matrix. On the other hand we can try to infer
this matrix from the data we have. Optimal inferring method depends heavily on the type
of data available.

To infer confusion matrix from the contest data we define buckets of query-document
pairs that are extremely close to each other (ideally mapped to the same point in feature
space) b = {di : ∀dj ∈ b, |di − dj | < ε} and treat these buckets as several judgments for
single query-document pair. We can compute likelihood of such bucket with confusion
matrix p(true mark|editor mark) if we know the true mark j for the bucket and assume

71

Gulin Kuralenok Pavlov

Figure 1: ERR test scores for MSE on track 1 data.

ERR NDCG

MSE 0.4607 0.7766

Equal pair weights 0.4598 0.7813

Weighted pairs 0.4624 0.7800

LambdaRank 0.4629 0.7809

Better gradient alignment 0.4635 0.7845

YetiRank 0.4638 0.7870

Table 3: Maximal scores on track 2 test set.

the judgments independence:

p(b|j) =

|b|∏
i=1

p(j|j(di)) =

|J |∏
i=1

p(j|ji)|{dt∈b:J(dt)=Ji}| =
|J |∏
i=1

p(j|ji)nb(ji) (19)

where nb(ji) – number of judgments with mark ji in bucket b. Searching for the confusion
matrix maximizing likelihood of all observed buckets bi solves the problem:

C∗ = argmax
C

|B|∑
i=1

log p(bi|ji) = argmax
C

|B|∑
i=1

|J |∑
k=0

nbi(jk) log p(ji|jk) (20)

C – is the confusion matrix. The open question is how to define “true” mark for the bucket.
We did this by randomly choosing mark from those in the bucket, weighted by the amount
of such mark in the bucket. Table 2 contains the result of this procedure on the Yahoo!’s
contest second track data.

5. Experiments

In this section we measure influence of our improvements on final scores. Experiments
were performed on the real-world data from the transfer learning track of Yahoo! ranking

72

Winning The Transfer Learning Track of Yahoo!’s Learning To Rank Challenge with YetiRank

Figure 2: ERR (top) and NDCG (bottom) test scores for proposed algorithms as a function
of the number of iterations/trees.

73

Gulin Kuralenok Pavlov

challenge at ICML-2010. We’ve used track 2 data to compare different methods. Proposed
algorithm in its presented form does not converge on track 1 data within reasonable number
of iterations, see fig. 1 so it is computationally difficult to find maximum scores for track
1 data. Second problem we found in track 1 data is a number of almost same documents
with different marks. Our model assigns same score to such documents and order becomes
random, we plotted 2 graphs on fig. 1 to indicate minimum and maximum possible scores
that could be achieved by permuting same score documents.

There were 6 experimental setups on track 2 data:

• plain MSE gradient boosting as a baseline;

• pairwise model with equal weights assigned to all pairs, wij = 1 if li > lj and wij = 0
otherwise;

• pairwise model with generic c(i, j) and N(i, j) = 1, so we account only label difference,
pair position is ignored;

• pairwise model a la LambdaRank from section 3.3;

• better aligned model from section 3.4;

• and finally one for YetiRank.

Figure 2 illustrates how ERR and NDCG metrics respectively behave as a function
of the number of trees learned in gradient boosting process. We were using 0.02 shrinkage
parameter value with slight variation across methods to ensure comparable convergence rate.
The optimization uses the inferred confusion matrix presented in table 2 and described in
section 3.4. Note that both ERR and NDCG metrics show improvement after 5000+
iterations over LambdaRank.

The optimal model we built contained 6000 trees total, thus requiring 6000*7 flops per
document (6 comparisons for every oblivious tree and one addition). Training takes around
8 hours on a single Linux box with 4 cores.

We also want to underscore that the bigger “transfer-from” data of the contest was not
used at all in the optimization, yet yielded the best overall model among all participants.
This is not due to the lack of trying, in particular, we tried learning the confusion matrix on
the bigger data and also mix the two data sets together, none of which produced a better
result. We hypothesize that the bigger data set was too dissimilar to the smaller one and
finer instruments needed to be used to try and obtain a better model.

6. Conclusion

In this paper, we presented a YetiRank algorithm for learning the ranking function that
performed well on the Yahoo! learning to rank competition task winning the first place in
the transfer learning track and likely deserves more attention and further exploration. In
our experiments, we established that the gradient boosting approach employing decision
trees as a base learner still remains the best approach, however two modifications make it
even more powerful: the special gradient alignment computation and using the additional
information about the uncertainty in judgments. We demonstrated the effect of each of

74

Winning The Transfer Learning Track of Yahoo!’s Learning To Rank Challenge with YetiRank

these modifications on the quality of ranking. We also established that several groups of
experts differ in their confusion about various labels, and proposed a way of accounting for
this confusion in the modeling process. We further explored ways of learning the confusion
matrix between the relevance labels from the query-document labeled data directly and
used it in learning to rank competition. One of the possible directions for future research
consists of exploring methods of noise reduction in building the transition matrix.

References

Chris Burges, Tal Shaked, Erin Renshaw, Matt Deeds, Nicole Hamilton, and Greg Hullen-
der. Learning to rank using gradient descent. In ICML, pages 89–96, 2005.

Chris Burges, Robert Ragno, and Quoc V. Le. Learning to rank with nonsmooth cost
functions. In NIPS, pages 193–200, 2006.

Zhe Cao and Tie yan Liu. Learning to rank: From pairwise approach to listwise approach.
In Proceedings of the 24th International Conference on Machine Learning, pages 129–136,
2007.

Koby Crammer and Yoram Singer. Pranking with ranking. In Advances in Neural Infor-
mation Processing Systems 14, pages 641–647. MIT Press, 2001.

Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting
algorithm for combining preferences. In JOURNAL OF MACHINE LEARNING RE-
SEARCH, volume 4, pages 170–178, 2003.

Jerome H. Friedman. Stochastic gradient boosting. Computational Statistics and Data
Analysis, 38:367–378, 1999.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals
of Statistics, 29:1189–1232, 2001.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank boundaries for
ordinal regression. MIT Press, Cambridge, MA, 2000.

Thorsten Joachims. Optimizing search engines using clickthrough data. In KDD ’02:
Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 133–142, New York, NY, USA, 2002. ACM. ISBN 1-58113-567-X.

Ron Kohavi and Chia-Hsin Li. Oblivious decision trees graphs and top down pruning. In
Proceedings of the 14th international joint conference on Artificial intelligence - Volume 2,
pages 1071–1077, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc. ISBN
1-55860-363-8. URL http://portal.acm.org/citation.cfm?id=1643031.1643039.

Ping Li, Christopher Burges, and Qiang Wu. Mcrank: Learning to rank using multiple
classification and gradient boosting. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis,
editors, Advances in Neural Information Processing Systems 20, pages 897–904. MIT
Press, Cambridge, MA, 2008.

75

http://portal.acm.org/citation.cfm?id=1643031.1643039

Gulin Kuralenok Pavlov

Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. Softrank: optimizing
non-smooth rank metrics. In WSDM ’08: Proceedings of the international conference on
Web search and web data mining, pages 77–86, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-927-9.

Ming-Feng Tsai, Tie-Yan Liu, Tao Qin, Hsin-Hsi Chen, and Wei-Ying Ma. Frank: a ranking
method with fidelity loss. In SIGIR ’07: Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval, pages
383–390, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-597-7.

Maksims N. Volkovs and Richard S. Zemel. Boltzrank: learning to maximize expected
ranking gain. In ICML’09: Proceedings of the 26th Annual International Conference on
Machine Learning, pages 1089–1096, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-516-1.

Ellen M. Voorhees. Variations in relevance judgments and the measurement of retrieval
effectiveness. In SIGIR ’98: Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, pages 315–323, New
York, NY, USA, 1998. ACM. ISBN 1-58113-015-5.

Jun Xu and Hang Li. Adarank: a boosting algorithm for information retrieval. In SIGIR’07:
Proceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 391–398, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-597-7.

76

	Introduction
	General framework
	Learning
	Stochastic gradient descent and boosting
	Pairwise ranking learning
	LambdaRank approximation
	Better gradient alignment

	Confusion Matrix
	Editors Do Vary
	Inferring confusion matrix from data

	Experiments
	Conclusion

