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Abstract

Falling can have fatal consequences for the elderly people especially if the fallen person is
unable to call for help due to loss of consciousness or any other associated injury. Automatic
fall detection systems can assist in overcoming this issue through prompt fall alarms which
then allow the triggering of a third party response, and to minimize the fear of falling when
living independently at home. Vision-based fall detection systems detect human regions
in the scene and use information from these regions to train classifiers for fall recognition.
However, the performance of these systems lack generalization to unseen environments due
to factors such as errors in the human detection stage and the unavailability of large-scale
fall datasets to learn robust features for fall recognition. In this paper, we present a deep
learning based framework towards automatic fall detection from RGB images captured
by a single camera. Our framework learns human skeleton and segmentation based fall
representations purely from synthetic data generated in a virtual environment. This de-
identifies personal information contained in the original images and preserves privacy which
is highly desirable in health informatics. Experiments on challenging real-world fall datasets
show that our framework performs successful transfer of fall recognition knowledge from
synthetic to real-world data and achieves high sensitivity and specificity scores showcasing its
generalization capability for highly accurate fall detection in unseen real-world environments.
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1. Introduction

Falling on the ground is considered to be one of the most critical dangers for the elderly
people living alone at home which can cause serious physical injuries and restricts normal
activities because of the fear of falling again Fleming and Brayne (2008). Automated fall
detection systems can produce prompt alerts in hazard situations. Furthermore, these
systems allow automatic collection and reporting of fall incidents which can be used to
analyse the causes of the falls and thus improving the quality of life of the elderly people
living alone at home. In this context, wearable devices based systems use sensors such as
switches, accelerometers and gyroscopes (embedded in wrist bands, garments, or walking
sticks). These devices capture high velocities (which occur during the fall), and provide alerts
when abnormalities are detected in the sensor data. Although these devices are low-cost,
they require frequent recharging and therefore pose problems for older people or persons
with coginitive impairment. Vision-based fall detection systems provide a low cost solution
to fall detection using videos or images. These systems do not cause sensory side effects
on the human health and do not affect the normal routines of people Zhao et al. (2012).
In a typical vision-based fall detection approach, features are extracted from the visual
data and fed to a machine learning classifier for fall recognition. For instance, methods
such as Mirmahboub et al. (2013); Huang et al. (2004) extracted human shape information
from camera images and used different classification models to distinguish fall from other
activities. The performance of these automatic systems depend on factors including: i) the
quality of human-region detection in the scene, ii) the type of information extracted from
the detected human-regions, and iv) the classifiers used to learn features for fall recognition.
Furthermore, the data used to train the classifiers plays a critical role in learning robust
features that can generalize to unseen environments. Due to the unavailability of large-scale
public fall datasets, most of the existing fall detectors are trained and evaluated using
simulated environments only or using restricted datasets (which cannot be shared publicly
due to privacy concerns). Consequently, the existing systems lack generalization capabilities
for fall detection in unseen real-world environments which is highly desirable for a commercial
product in the health care industry.

In this paper, we explore ways to overcome the above mentioned challenges and improve
human fall recognition generalization to unseen real-world environments while preserving
privacy of the people. For this, we present a deep learning based framework for automatic
fall detection using human pose and segmentation information from color images captured
by a video camera. In summary, the main contributions of this paper are as follows:

1. We present HPES, a Human Pose Estimation and Segmentation module (Sec. 3.1),
which combines multiple CNN structures to generate human proposals in the form
of human bounding boxes, segmentation masks, and body joints estimates. We also
present a novel method to refine the generated proposals based on joint confidence
scores and convex hull based heuristic rules.

2. We present a human-pose based fall representation (Sec. 3.1.2) which is invariant
to changes in human physical appearances (person identity), backgrounds, lighting
conditions, and person spatial locations in the scene. This de-identifies personal
information contained in the original images and preserves privacy which is highly
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desirable in health informatics. Experiments show that the proposed fall representation
enables a deep CNN to learn highly robust features which successfully generalize to
unseen real-world environments for fall recognition.

3. We present FallNet (Sec. 3.2), an ensemble of multiple CNN structures which learn
fall representations based on human pose and segmentation information. Given a
multi-modal input data (in the form of human pose and segmentation masks), FallNet
takes advantage of both modality-specific and the complimentary information among
the two modalities and improves the quality of fall predictions compared to independent
classifiers.

4. We present Synthetic Human Fall Dataset, a large-scale dataset (Sec. 3.4) containing
synthetically generated human pose and segmentation data rendered using real-world
human motion captures of fall and other events. Our dataset open up new possibilities
for advancing human pose based fall detection using purely synthetic data.

5. We perform an ablation study of our framework in terms of different variations of
our fall representation and present Human Fall Detection (HFD) models which learn
highly robust mappings between the input representations and their corresponding
fall or no-fall labels. Experiments show that our HFD models when trained with only
synthetic data produced high fall recognition accuracy on an unseen real-world fall
dataset.

2. Related Work

Existing vision-based fall detection approaches focus on detecting human regions in the
scene through motion segmentation or background subtraction, and use the information
from the detected regions to train classifiers for fall recognition. For instance, the methods
of Miaou et al. (2006); Toreyin et al. (2005) used background subtraction to detect human
bounding boxes and compared the boxes against different thresholds in consecutive frames
of the MultiCam fall dataset Auvinet et al. (2010) to detect fall events. The methods
of Mirmahboub et al. (2013) combined shape and context information from the human
bounding boxes and used Support Vector Machine (SVM) for fall recognition. The method
of Huang et al. (2004) used extreme learning machines with shape features and achieved
fast computation. Most of the above mentioned methods strongly rely on the assumption
that the change in the visual information between subsequent image frames is significant
to achieve appropriate motion segmentation. This restricts their application in situations
where the change in information between subsequent frames is not sufficient (e.g., if a
person moves towards the camera). To overcome this limitation, 3D vision based methods
used information from multiple cameras or depth sensors (such as Microsoft Kinect), and
learned 3D features for fall recognition. For instance, the method of Hung et al. (2013)
used visual data from multiple cameras and produced decisions through voting amongst
different viewpoints. The methods of Gasparrini et al. (2014); Mastorakis and Makris (2014)
used Kinect depth maps to extract 3D silhouettes and 3D bounding box based features
for detecting falls. Although these multi-camera based systems produce more accurate fall
detection results compared to the single-camera based methods, the performance of these
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methods are largely affected by hardware limitations. For instance, multiple camera based
methods require accurate synchronization between the individual cameras. On the other
hand, depth camera based methods are affected by sensor inherent noise, narrow fields of
view and limited depth sensing restrictions. Furthermore, many public places such as elderly
care centres and health-care facilities restrict the use of depth-based camera systems due
to health related concerns. Consequently, accurate fall detection from monocular images is
considered to be highly relevant application domain in health care industry.

In this paper, we present a deep learning based framework which uses RGB images to
detect a fall in the scene. Compared to the existing methods, our work differs in several
ways. First, our framework integrates multiple CNN structures for human detection, pose
estimation, and segmentation. It uses a refinement method to correct pose and segmentation
errors and generates high quality human proposals especially for scenes with multiple people
or scenes with partial occlusions, compared to the methods Miaou et al. (2006); To6reyin
et al. (2005) which use background-foreground subtraction techniques for human region
detection and produce low true positives in these challenging situations. Second, we using
human-skeleton and segmentation based visual representations for deep feature learning.
Our visual representations preserve human privacy and they are invariant to appearance
variations and spatial translations of people in the scene. This enables our framework to
successfully generalize to unseen real-world environments compared to the methods (e.g.,
Mirmahboub et al. (2013); Miaou et al. (2006)) which learn fall recognition using appearance
data and suffer from poor generalization in the presence of large changes in appearance
characteristics.

3. The Proposed Framework

Fig. 1 shows the overall architecture of our framework which has three main components.
i) Human Pose Estimation and Segmentation (HPES) module, which uses multiple CNN
structures to generate human proposals in the form of body joint estimates and segmentation
masks in the scene. ii) Visual fall representation generation module, which encodes human
pose information in the form of a skeleton representation and a corresponding segmentation
mask. iii) FallNet, a CNN model which uses the skeleton and segmentation based visual
representations and learns high-level feature embeddings for fall recognition. In the following,
we describe in detail the individual components of the proposed framework.

3.1. The Proposed Human Pose Estimation and Segmentation (HPES)
Module (Fig. 1-A)

Our HPES module is composed of two models termed Model 1 and Model 2 as shown in Fig.
1-A. These models generate multiple human proposals in the scene which are then refined to
correct errors of the individual models.

3.1.1. MopEeL 1 (F1a. 2-A) AND MoDEL 2 (F1G. 2-B)

Our Model 1 uses the CNN model of He et al. (2017) to generate human-specific region
proposals as shown in Fig. 2-A. These proposals are then fed into a classification branch
consisting of fully connected layers ( fypor, feis) which estimate the bounding box coordinates
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Figure 1: Overview of the proposed framework. Given an RGB image as input, our frame-
work uses a Human Pose estimation and Segmentation (HPES) module (A) and
generates human proposals with joint locations and segmentation masks. The
proposals are refined through joints filtering (C) and segmentation correction
(G). The refined proposals fed into the proposed FallNet (E), a CNN model with
modality-specific layers, and a multi-modal embedding layer G. It learns high-level
feature embeddings (from the input pose and segmentation data) to distinguish
between fall and no-fall poses.

and confidence scores of the input proposals. The proposals are also fed into a segmentation
branch consisting of fully convolutional layers (Spask, Skps) Which predicts human-specific
segmentation masks and joint locations. The output of Model 1 consists of human segmenta-
tion masks, joint locations, and their corresponding confidence scores. Our Model 2 uses the
detector of Liu et al. (2016) to generate human-specific bounding boxes which are then fed
into a stacked hourglass network Newell et al. (2016) based pose estimator which produces
joint coordinates of the corresponding input proposals as shown in Fig. 2-B. It also uses
a Spatial Transformation Network to select dominant proposals for pose estimation. The
output of Model 2 consists of human-specific bounding boxes, joint estimates, and their
corresponding confidence scores.

3.1.2. THE PROPOSED FALL VISUAL REPRESENTATIONS (FI1G. 1-B)

Here, we build visual representations from the body joints estimates and human segmentation
masks. We considered two visual representations as shown in Fig.1-B. A binary skeleton,
where we construct a binary image by drawing the joint estimates and bones connecting the
joints for a target pose, and a segmentation mask representing the silhouette information of
the target pose.
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Figure 2: Overview of the proposed Human Pose Estimation and Segmentation (HPES)
module. It is composed of two main models. Model 1 starts with a Region
Proposal Network to generate human-specific proposals, which are fed into fully
connected layers fcppor and fcgs to produce human-centered bounding boxes and
their confidence scores. The proposals are also fed into a segmentation branch
consisting of fully convolutional layers S,qs1 and Sgys, which estimate human
segmentation masks and joint coordinates. Model 2 uses an independent human
detector to generate human proposals, which are spatially corrected through a
Spatial Transformation Network (STN), and finally fed into a Stacked Hourglass
Network to produce joint estimates.

3.1.3. THE ProOPOSED POSE REFINEMENT (F1G. 1-C AND FiG. 1-G)

Human detectors inevitably make errors in joint estimates and pixel-wise segmentation
predictions, which in turn produce incorrect skeletons and segmentation information. To
overcome these challenges, we present a pose refinement method which eliminates pose
redundancies and reject pose proposals with low-confidence joints and the proposals with
joints less than the minimum joints threshold (dxps = 7). Fig. 1-C illustrates our pose
refinement method. Let us denote poses ch and Ph+1 generated by models h and A + 1.
The pose P; has m joints denoted by {[k},c}], .. [klm, c'l}, where kf and C‘Z denote the jth
location and confidence score of the joints respectlvely. We compare the poses Pl-h and Pl-h+1
by joint types, and reject a joint in proposal Pih if its score ¢; is less than the score of its
corresponding joint type in PihH. We iteratively process all the joints in Pl-h and reject the
proposal Pih if the number of filtered joints in Pih is less than those in PihH. Similar to
joint estimation errors, pixel-wise segmentations produced by Model 1 (Fig. 2-A) are prone
to errors due to occlusions and variations in appearance characteristics. This can lead to
incorrect pose encodings for fall recognition. To corrects errors in segmentation predictions,
we compare the segmentation mask of a proposal with the convex hull estimation of its
corresponding joints data and reject the segmentation if the intersection area between the
segmentation and the convex hull is less than a threshold. Subsequently, we generate a new
segmentation using the joints data (through image dilation and binary thresholding) as
shown in Fig. 1-G. The refined joints and segmentation proposals are then used to build the
proposed visual fall representations as shown in Fig. 1-B.

44



PRIVACY PRESERVING HUMAN FALL DETECTION USING VIDEO DATA

3.2. The Proposed FallNet (Fig. 1-E)

FallNet consists of two sub-modules: a modality-specific module Fy, ¢ € {Q,S}, and an
embedding module G as illustrated in Fig. 1-E. The terms Q and S denote the skeleton and
segmentation based visual representations, respectively. The modality-specific module Fy
has a CNN structure similar to ResNet18 He et al. (2016). It is composed of bottle-neck
convolutions (with 3 x 3 and 1 x 1 sized filters) with Batch Normalization (BN) and Rectified
Linear Units (ReLUs). It produces 512 x 7 x 7—dimensions feature maps which are squeezed
to 512—dimensional vectors through a global average pooling operation. There is one Fy
module for each visual representation. Output feature vectors from the modality-specific
modules are then fed into the embedding module G which combines the multi-modal feature
inputs through summation and uses a Softmax operation on the combined feature vectors
and produces probabilistic distributions with respect to the target classes (fall and no-fall).
Let p; denote the outputs of G for the ¥ image. We define the loss over K images as:

Loss =Y Las(pi, p}), (1)
1€K

where p; represent the ground-truths. The term L. is a Cross Entropy Loss defined as:

N¢
£cls (X, C) = - Z yX,C 1Og(pX,C)v (2)
C=1

where ) is a binary indicator if class label C' is the correct classification for observation x,
and p is the predicted probability of observation x of class C.

3.3. Training and Implementation

We initialized the weights of the networks of the HPES module with the weights pre-trained
on MS COCO Keypoints dataset Lin et al. (2014), which contains 64K images including
260K person instances and 150K instances with key-point annotations. For FallNet, we
initialized the weights of the convolutional layers with the weights pre-trained on ImageNet
and initialized the weights of the embedding layers with zero-mean Gaussian distributions
(standard deviations were set to 0.01 and biases were set to 0). We trained the convolutional
and the embedding layers in an end-to-end manner for 150 epochs. The starting learning
rate was set to 0.01 and divided by 10 at 50% and 75% of the total number of epochs.
The parameter decay was set to 0.0005 on the weights and biases. Our implementation is
based on the framework of Torch library Paszke et al. (2017). Training was performed using
ADAM optimizer and an Nvidia Tesla K80 GPU.

3.4. The proposed Synthetic Human Fall Dataset

We present a synthetic human fall dataset which contains around 767K samples with body
pose and their corresponding segmentation ground truths, categorized into fall and no-fall
classes. Specifically, there are around 480K poses representing fall and 287K poses for no-fall.
For data generation, we first used the MakeHuman tool to generate 3D humanoid models
with associated pose skeletons. Next, we used Blender to create a rich library of scene
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Table 1: Ablation study of the proposed framework in terms of different visual representations
for fall recognition on the MultiCam fall dataset Auvinet et al. (2010) and the Le2i
fall dataset Charfi et al. (2013). Our Human Fall Detection Models were trained
only on the synthetic data and evaluated on the test datasets.

Human Fall MultiCam fall dataset Le2i fall database
Detection models F1Score Precision Recall | F1Score Precision Recall
Skeleton 0.8677 0.8685 0.8671 | 0.8517 0.8668 0.8529
Segmentation 0.8071 0.8448 0.7964 | 0.8529 0.8535 0.8529
Multi-modal (MM) 0.8708 0.8703 0.8715 | 0.9244 0.9245 0.9244
MM (without pose refinement) 0.8384 0.8380 0.8441 | 0.9034 0.9031 0.9032

templates containing humanoid meshes with the required cameras and lights configurations.
Finally, we simulated the humanoid models using the MoCap data from CMC (2003) (which
provides motion capture pose data of human individuals performing everyday life activities
in an indoor environment). For each MoCap motion sequence, we generated outputs in the
form of i) segmentation masks, ii) body joint locations, and iii) a label representing the
pose as “fall” or “no-fall” for each pose in the motion sequence. Fig. 3-left shows some
sample frames from the proposed Synthetic Human Fall dataset.

4. Experiments

To evaluate the generalization capability of our framework for fall detection in unseen real-
world environments, we trained framework using the proposed synthetic dataset and tested
framework on the public MultiCam fall dataset of Auvinet et al. (2010). The MultiCam
dataset consists of 24 different scenarios where each scenario is comprised of a video sequence
of people performing a number of activities. Each scenario is recorded using 8 different
cameras installed at different locations in an indoor environment. For all scenarios, the video
data is annotated for 9 different activities (such as walking, falling, lying on the ground,
crouching, moving up/down, sitting, lying on a sofa, and moving horizontally). The dataset
is challenging for single camera based fall detection because, different camera viewpoints
produce occlusions and significant variations in the spatial locations, scale, and orientations
of the fall events. We also used the the Le2i fall dataset Charfi et al. (2013) for our
evaluations. The Le2i dataset contains 221 videos of different actors performing fall actions
and various other normal activities in different environmets. The dataset is challenging
due to variable lighting conditions and occlusions. To quantify the recognition performance
of our framework, we computed the weighted F1 score, precision and recall scores. We
used these measures as they are not biased by imbalanced class distributions which make
them suitable for the test datasets where the number of fall samples are considerably small
compared to the number of non-fall samples.

4.1. Results

Here, we evaluated the generalization capability of our framework for fall detection in
unseen real-world environments. For this, we trained our models using only the proposed
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Sample images from the proposed Model 1 output: Human pose Model 2 output: Human pose Fall ground truth (green) and
synthetic dataset estimation and segmentation estimation predictions (yellow)

Figure 3: Left: Sample frames from our Synthetic Human Fall dataset with a variety of
poses and viewpoints. Right: Qualitative results of our fall detection on the
MultiCam fall dataset.

synthetic data and evaluated the models on the test datasets. Table 1 shows the results of
these experiments, where we present different variants of our framework termed “Human
Fall Detection (HFD) models”, trained using different visual representations. The results
show that our framework achieved high precision, recall, and F1 scores which demonstrate
the generalization capability of our framework in successfully transferring fall recognition
knowledge learnt purely from synthetic data to unseen real-world environments. Fig. 3-right
shows qualitative results on sample images from the MultiCam fall dataset Auvinet et al.
(2010). From the results, we observe that our fall detector is robust to partial occlusions, and
variations in the spatial locations, scale, and orientations of falls in the scene. We attribute
this successful generalization of our fall detector from synthetic-to-real data to our three key
contributions as described in the following sub-sections.
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Table 2: Ablation study of our framework in terms of model generalization when trained on
one dataset and tested on a different dataset for different input data modalities.

Testing data

Multi-modal 0.8708 0.8703 0.8715 | 0.9244 0.9245 0.9244

Training data  Modality MultiCam fall dataset Le2i fall database
F1Score Precision Recall | F1Score Precision Recall
MultiC RGB 0.9860 0.9860 0.9861 0.7351 0.7604 0.7405
am Multi-modal ~ 0.9627  0.9627  0.9628 | 0.8449 0.8512 0.8456
. RGB 0.8631 0.8671 0.8699 0.6421 0.7874 0.6775
Synthetic

4.1.1. IMPROVED HUMAN PROPOSAL GENERATION

Our framework utilizes the domain knowledge of human pose estimation learnt from the
large scale MS COCO database and produces multiple human proposals which are refined
by our pose refinement method. Consequently, our HPES module produces highly accurate
and reliable human proposals compared to motion-segmentation based proposals Wang et al.
(2016) which suffer errors if there is no significant change between subsequent frames of
the video sequence. Table 1 shows the improvements in fall recognition precision and recall
scores obtained using the proposed pose refinement method.

4.1.2. MULTI-MODAL CNN ARCHITECTURE

Our FallNet combines modality-specific convolutions and multi-modal embedding layers
and takes advantage of both the modality-specific and complimentary information in the
body pose and segmentation based visual representations for discriminating fall and no-fall
poses. This enables our model to learn features which are more robust compared to the
methods such as Hung et al. (2013) which only utilize modality-specific feature learning
for fall recognition. Table 1 shows the improvements in fall recognition precision and recall
scores obtained using the proposed multi-modal architecture compared to independent data
modalities.

4.1.3. INVARIANCE TO PHYSICAL APPEARANCES AND BACKGROUND

Here we further evaluate the generalization capability of our fall detector by training the
model on one dataset and testing the model on a different dataset. Table 2 shows the
results of these experiments. From Table 2, we see that an RGB-based detector (using
color information of human proposals for fall recognition), when trained on the MultiCam
dataset Auvinet et al. (2010) produced good fall recognition accuracy on the MultiCam
test set but did not generalize well on the Le2i dataset Charfi et al. (2013). This is due to
the differences in the physical appearance of human actors and different backgrounds of
Le2i dataset Charfi et al. (2013) compared to the MultiCam dataset Auvinet et al. (2010).
On the other hand, our multi-modal skeleton-segmentation based representation produced
competitive fall recognition performance when trained and tested on the MultiCam fall
dataset Auvinet et al. (2010). Also, our model produced improvements of at least 11% in the
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average weighted f1 scores on the Le2i dataset demonstrating its generalization capability
across multiple real-world datasets. Similarly, an RGB-based model trained on our synthetic
dataset produced inferior generalization across the MultiCam and Le2i datasets compared to
our skeleton-segmentation based model. These improvements are attributed to our human
pose-based fall representation which is invariant to appearance characteristics, thus making
our framework robust to different human actors and unknown background in real-world
scenes. On the contrary RGB-based fall detector fails to generalize to scenes which have
large variations in the appearance characteristics of people and backgrounds.

5. Conclusion and Future Work

In this paper we present a deep learning framework towards automatic human fall detection
from images captured by a single camera. Our framework produces human proposals
with body joint locations and segmentation information. These proposals are refined and
transformed into multi-modal visual representations for input to FallNet, a CNN model
which uses modality-specific and multi-modal layers and learns highly discriminative feature
embeddings for fall recognition. We also present a human fall dataset which consists of
human pose and segmentation data synthetically generated under different camera viewpoints.
Experiments on challenging public fall datasets show that our framework trained using
only synthetically generated pose data successfully generalizes to unseen environments and
achieves high precision and recall scores for fall recognition. Trained on pure synthetic data,
our framework is highly robust to variations in appearance characteristics, scale changes,
and different camera viewpoints. This opens up new possibilities for advancing privacy
preserving human fall detection which is highly desirable in health informatics. In future, we
plan to expand our framework for the recognition of other activities to enhance its potential
for general human activity recognition. We also plan to reduce the computational burden
of our fall detector through parameter-pruning and memory efficient CNN structures for
low-powered GPU devices.
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