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ABSTRACT

We propose a new multivariate method, partial sparse canon-
ical correlation analysis (PSCCA), for computing the statis-
tical comparisons needed by population studies in medical
imaging. PSCCA is a multivariate generalization of linear
regression that allows one to statistically parameterize imag-
ing studies in terms of multiple views of the population (e.g.,
the full collection of measurements taken from an image set
along with batteries of cognitive or genetic data) while con-
trolling for nuisance variables. This paper develops the theory
of PSCCA, provides an algorithm and illustrates PSCCA per-
formance on both simulated and real datasets. We show, as
a first application and evaluation of this new methodology,
that PSCCA can improve detection power over mass univari-
ate approaches while retaining the interpretability and biolog-
ical plausibility of the estimated effects. We also discuss the
strengths, limitations and future potential of this methodol-
ogy.

Index Terms— Multivariate modeling, Medical Imaging,
Spectral Methods

The number of neuroimaging studies published annually
has doubled from 9,938 in 2000-2001 to 19,676 in 2009-2010
(http://www.ncbi.nlm.nih.gov/pubmed/). This
growth has been accompanied by increasing diversity in the
types of data being collected; Imaging studies now often in-
clude not only various structural and functional modalities
but also neurocognitive batteries, genetics, and environmen-
tal measurements. However, the statistical methods have
changed relatively little over the past twenty years — until
very recently (e.g., [1]). The increasing size of imaging
datasets and the concomitant desire for performing integra-
tive studies across modalities points to the need for new
multivariate statistical methods that elegantly handle large,
multi-view datasets. These methods should retain or even im-
prove detection power over traditional mass-univariate (MU)
models such as statistical parametric mapping (SPM) which
uses the univariate form of the general linear model (GLM).
Repeatedly applying the univariate GLM (or linear regres-
sion) at each voxel leads to loss of detection power due to the
well-known multiple comparisons problem.

Canonical Correlation Analysis (CCA) [2] is a traditional

multivariate generalization of standard linear regression.
CCA inherently avoids the multiple-comparisons penalty
associated with MU methods by symmetrically maximizing
the correlation between the full matrices representing two
views of the data (here denoted Y and X). The matrix X
might represent a tabulation of all demographic data, includ-
ing genetics, diagnosis, behavioral measures, age, etc. while
Y may be a matrix of all the imaging measurements. In con-
trast, traditional univariate models only allow the predicted
value to be a vector while the predictors may be a matrix.

Recently, sparse (or penalized) canonical covariance anal-
yses (SCCovA) [3, 4, 5] have been proposed as an approxi-
mation to CCA specifically for the high dimensional (p > n)
setting.! The sparseness in penalized methods improves inter-
pretability by including in the model only the most important
variables from the large set of p (and/or g) predictors. From
a medical imaging researcher’s perspective, the benefit is that
only the most predictive variables (e.g. parts of the brain) will
emerge in the results provided by a penalized statistical tool.
Hence, brain regions are highlighted in a way that is simi-
lar to SPM. Furthermore, regions selected by SCCovA (or
similarly sparse canonical correlation analysis (SCCA)) are
treated statistically as a collective (or ‘network’) as opposed
to MU methods which treat each predictor as an independent
variable.

Despite prior studies using SCCovA and SCCA [6], we
are unaware of previous work that studies factoring (“par-
tialling”) out nuisance variables within the penalized CCA
framework. While this problem is addressed in the p < n
setting by partial canonical correlation analysis (PCCA)[7],
no penalized formulation has yet been proposed.

This paper contributes the theory of Partial Sparse CCA
(PSCCA) along with a novel and efficient iterative algorithm
for PSCCA. PSCCA (like CCA) performs a global multivari-
ate test of the association between two modalities that quan-
tify a study’s subjects while accounting for a third set of nui-
sance variables. It generalizes linear regression and is inher-
ently, sparsely multivariate in multiple views of the data un-

ISCCovA substitutes the identity matrix for within-view covariance ma-
trices and thus analyze cross-covariance structure, not correlation structure.
Thus, SCCA (unlike SCCovA) does not depend on how the observations are
scaled.



like MU and standard support vector machines (SVM).

The general PSCCA formulation has many applications.
PSCCA may be applied to almost any statistical scenario
in medical imaging studies traditionally handled by SPM.
PSCCA is able to identify the subset of the brain most cor-
related with non-imaging variable(s) of interest (for instance,
a cognitive battery) while factoring out confounding effects
(age, gender). Alternatively, we may apply PSCCA to the
case where both views of the data are high-dimensional, for
instance, to identify correlations between different imaging
modalities independently from covariates such as scanner,
gender, etc. PSCCA thus enables complex studies of multiple
view data that contains many more variables than observa-
tions.

1. BRIEF REVIEW: CCA AND SPARSE CCA (SCCA)

More specifically, given a set of n paired observation vectors
{(y1,21), -+, (Yn, T, ) }—in our case the two matrices are the
quantitative imaging measurement (Y) and age, gender, diag-
nosis (X) matrices —we would like to simultaneously find the
directions ¢y and ¢x that maximize the correlation of the
projections of Y onto ¢ with the projections of X onto ¢x.
This is expressed as
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where Yxx, Yvyy and Xxvy are the auto and cross co-
variance matrices i.e. X7X, YTY and XY, respectively.
The above objective can also be thought of as maximizing
the numerator ¢p%x Xxy ¢ subject to ¢p% Txxpx = 1 and
Py Syydy =1

Now, define change of basis as:
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Then, substituting (2) in (1) we get
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The whitening transform is used to convert covariances
to correlations and also to de-correlate auto-correlation ma-
trices. In CCA, this normalizes the data such that the opti-
mization can maximize the cross-correlation. The standard
whitening transform is defined as X, = XE;&? and Y, =

YE;¥2. Applying the whitening transform to (3)
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where ¥x v, = X2Y,.
As mentioned earlier, CCA results in vectors ¥, ¥+
that are not sparse, and these vectors are not unique if p > n.

In most biomedical imaging applications, p is large and, one
needs to find a linear combination of the variables in X, and
Y, that has large correlation but is also sparse in the variables
that enter the model.

While several researchers propose sparse formulations
of canonical covariance analysis [3, 4, 5], none of the these
methods handle confounding variables—a highly desirable
modeling property for many biomedical and neuroimaging
applications. In the next section, we detail the PSCCA solu-
tion to this problem.

2. PSCCA (PARTIAL SPARSE CANONICAL
CORRELATION ANALYSIS)

As described earlier, let X be the matrix with columns con-
taining voxels from one set of images of n subjects; Y is the
matrix with columns containing the second set of measure-
ments from the same n subjects and further let Z be the ma-
trix of confounding variables (age, gender, etc.) for our neu-
roimaging problem. The second set of measurements may be
voxels from another imaging modality, scores from a battery
of neuropsychological tests or a much simpler feature such as
a binary diagnosis variable. Also, let Ax and Ay (€ [0,1])
(where higher values indicate more sparsity) be the user de-
fined parameters which control the sparsity for either set of
the canonical variates. The sparseness parameters can, alter-
natively, be chosen automatically from the data so as to max-
imize the correlation (or likelihood) between the canonical
variates.

PCCA [7] finds the correlation between X and Y after
removing (“partialling out”) the linear effect of the confound-
ing variables Z. We denote the X and Y matrices with ef-
fect of Z “partialled” out as X\% and Y \%. Regressing X
against Z, using standard least squares (||X — ZB3||?) gives
B = X,,Z"X. Thus, the residual® can be written as X \% =
X — ZX,,Z"X. Applying the whitening transform to Z as
Z, = ZE;;Q, we get X\Z =X — Z,ZTX. We can write
similar equations for the residual when Y is regressed against
Z.

Now, we can write the complete variance-covariance ma-
trix of the residuals as:
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The PCCA problem can therefore be written as:
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2Note that X \Z is actually what is called the residual X — Z3 in a least
squares regression problem.
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After some algebraic manipulation we can write the
PCCA objective compactly as
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where X, = X(E;(ZX)*I/2 and Y, = Y(235 ) V2.
Finally, the above objective after incorporating the user
specified ¢, sparsity penalties (Ax and Ay) and under the
constraints ¢§’¢)X = ¢§¢Y = 1 can be written as:
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Our optimization strategy for (7) combines power iteration
and soft thresholding to compute the canonical vectors while
satisfying the sparsity constraints. The approach, described in
the next section, uses an alternating least squares method [8]
extended to include sparsity constraints.

2.1. PSCCA Algorithm

Following [8], we propose a power iteration based algorithm
for PSCCA for the general problem of finding principal eigen-
vectors of the matrices. This numerical approach does not re-
quire one to ever explicitly form the full X2'Y,, matrix and is
therefore appropriate for large datasets where the number of
columns in both views may count in the millions or more. In
all steps below, we employ the pseudoinverse when needed.
In addition, the function (x)4 is equal to x if z > 0 and 0 if

x < 0and
-1, ifz<0
Sign(z) = ¢ 0, ifr =0 ®)
1, ifx >0

Note that positivity or negativity constraints on the ¥, ¥~
may be trivially included with a minor modification to Al-
gorithm 1. We use permutation testing on X, Y to assess
significance where the test statistic is the partial correlation
between the two main views.

3. RESULTS

The code for the PSCCAN implementation, the simulation
study and the neuroimaging study will be made available at
publication time.

3.1. Simulations

Define a “true” linear signal vector with n entries, v, such that
the value of each entry is v; = i/n where ¢ indexes the vec-
tor. A second signal is a vector drawn from a zero mean unit
variance Gaussian distribution, g, with p entries. The first
view is then X = vTg, and we similarly generate Y with
n X q entries. We optionally add noise to both views. In 100

Algorithm 1 Computing principal eigenvectors for
PSCCA
: Apply the whltenmg transformation to Z to get Z,,
Compute X\% and Y% and the whitened matrices X and Y,
Select the (fractional) sparsny parameters Ax and Ay
Randomly initialize 4% and %3, (~ N(0,1)) and set k = 0.
while A Corr(X k+1, w¢]§(+1) < edo
Compute 5™ = X' Yourby — X' ZuwZu Y urbh
Soft-Max Sparseness: 15 < (|5t — maz (i)
Ax)+Sign(9x™)
k+1
8:  Normalize: ™ + szﬂu

//Repeat Same Procedure for ¥,
9:  Compute Y5 =Y, "X, —
10:  Soft-Max Sparseness: %5 « (|[4p5T|
Ay )+ Sign(¢5)
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11:  Normalize: 1)y, R

12: k < k+1
13: end while

Simulation of variable selection given mixed signals
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Fig. 1. The black hollow circles show the non-zero entries in ¢
that are selected by SCCA, that is, the value of the vector ¢. The
red full circles show the non-zero entries in the vector ¢y that are
selected by PSCCA. The Z signal factors out the confounding signal
in the first half of the matrix leaving the second signal of interest in
the second half to be the source of the significant association.

low-noise simulations, SCCA produces a significant associa-
tion. However, when we use Z = v+ noise as a confounding
covariate in PSCCA on X and Y, then no significant associ-
ation exists. Both results are as expected and provide a sanity
check on our theory and implementation. The second experi-
mental validation of our implementation and theory generates
X and Y where the first p/2, ¢/2 columns are derived from
v. The second p/2, ¢/2 columns in X, Y are derived from a
different “true” signal (v2) with a less strong linear relation-
ship than in the first half of the matrices. Thus, when we use
SCCA with sparseness A\x = Ay = 0.25, the first half of the
matrix is selected. PSCCA selects the second half of the ma-
trix when Z is used as confounding covariate. Both are signif-
icant across permutations. Due to noise, in some simulations,
a few entries from the first half of the matrix may enter the
model with low weight. If we add a column containing signal
derived from vo to Z then, as predicted, PSCCA results be-
come insignificant. Figure 1 shows the vectors ¢x selected
by SCCA and PSCCA on the same input data where PSCCA
uses Z (derived from v alone) as confounding covariate.



3.2. Comparison of regression and PSCCA on OASIS
data

Our first evaluation on real data employs PSCCA as a form of
multivariate regression between imaging, diagnosis and nui-
sance variables. We employ a subset of the freely available
OASIS dataset to compare PSCCA to mass-univariate linear
regression. This subset of the OASIS data contains elderly
subjects (n=38) in addition to subjects with Alzheimer’s dis-
ease (n=31) of both genders (39 F, 30 M) and with ages that
range between 62 and 98 years. Our evaluation criterion com-
pares both methods’ power to detect the known anatomical
distribution of AD-related atrophy in gray matter (hippocam-
pus, cuneus, temporal lobe) [6] where gray matter was seg-
mented and normalized by using standard open source soft-
ware. We use the whole brain, in template space, as region
of interest in order to challenge the power of the MU method
relative to the single test performed by multivariate PSCCA.
We assume that the researcher has pre-selected the sparseness
parameter for the study. We choose A (sparsity parameter) for
the gray matter voxels such that 10% of the ROI (contained in
the X matrix) will be selected by PSCCA. The Y matrix, in
this case, is the diagnosis vector that defines whether a sub-
ject is control or patient. The nuisance matrix Z contains age
and gender variables. We run both the MU statistics (via the
R program) and our own independently developed PSCCA
implementation (C++ based, BSD license, open-source) on
identical input data. Using false discovery rate (FDR) correc-
tion on the regression-based p-values for diagnosis, we find
that the minimum q-value is 0.183, thus insignificant after
correction. In contrast, PSCCA shows significant effects at
the p = 0.041 level, 10000 permutations. We visualize the re-
gions that emerge from PSCCA by overlaying the first canon-
ical vector ¢ on the brain. Figure 2 compares the PSCCA
output with the regression results overlaid on the brain at the
level of p = 0.01 uncorrected.

4. DISCUSSION AND CONCLUSION

In this paper we proposed a new statistical tool that is ideal for
multivariate imaging studies. Results on synthetic and real
world data (OASIS) further corroborate our hypothesis that
PSCCA is able to increase detection power in the presence
of covariates and extract biologically plausible, multivariate
patterns from neuroimaging data. Specifically, PSCCA re-
veals significant patterns of difference between elderly and
AD subjects that are within brain regions known to be af-
fected by Alzheimer’s tauopathy. Although the MU model
fails to reveal significant effects, there is notable similarity
between regions selected by PSCCA and those voxels in the
brain that had uncorrected p-value < 0.01. In our experiments
we only use the primary eigenvector from PSCCA; Future
work will analyze the effect of including additional eigenvec-
tors and will seek to further investigate alternatives for assess-

Fig. 2. PSCCAN (right) versus mass-univariate uncorrected statis-
tics (left). Both methods reveal similar areas of the brain. However,
the mass-univariate results cannot be considered significant (after
FDR correction) due to the multiple comparisons problem. It is pos-
sible that another correction method would retain some of the mass-
univariate effects but we choose FDR because it is standard and only
moderately conservative. We show, at right, the relationship of esti-
mated significance to variations in the sparseness parameter (for the
image voxel matrix X) and PSCCA correlation. The significant re-
gion is outlined in a dashed box. In a real study, one would only use
the pre-selected sparseness parameter.

ing PSCCA significance in interpretable ways. Finally, as in
standard correlation, one should take care to visualize PSCCA
results to investigate the potential impact of outliers.
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