
Abstract
The objectives of this research were to develop and evaluate
an approach for object-oriented mapping of banana planta-
tions from SPOT-5 imagery, and to compare these results to
banana plantations manually delineated from high spatial
resolution airborne imagery. Cultivated areas were first
identified through large spatial scale mapping using spectral
and elevation data. Within the cultivated areas, separation
of banana plantations and other land-cover classes
increased when including image co-occurrence texture
measures and context relationships in addition to spectral
information. The results showed that a pixel size of �2.5 m
was required to accurately identify the row structure within
banana plantations, which enabled object-based separation
from other crops based on texture information. The user’s
and producer’s accuracies for mapping banana plantations
increased from 73 percent and 77 percent, respectively, to
94 percent and 93 percent after post-classification visual
editing. The results indicate that the data and processing
techniques used offer a reliable approach for mapping
banana plants and other plantation crops.

Introduction
Remote sensing has been used extensively for crop yield
estimation (Horie et al., 1992; Lobell et al., 2003; Singh
et al., 2002; Sun, 2000), crop management (Pinter et al.,
2003; Yang and Anderson, 1996), and precision farming
(Basso et al., 2001; Robert, 1997). Other approaches have
focused on a combination of crop models and the use of
remote sensing (Basso et al., 2001; Doraiswamy et al.,
2003; Moulin et al., 1998). Many of these approaches have
used empirical models and spectral vegetation indices to
predict crop variability, biomass, and yield (Tucker et al.,
1980; Wiegand et al., 1991). Remote sensing has been used
for mapping the extent of grain crops and to a limited
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extent, horticulture. However, there has been limited
application of high spatial resolution image data because
of the heterogeneity of the fields to be mapped in tradi-
tional per-pixel image classification (Navalgund et al.,
1991; Shrivastava and Gebelein, 2007; Tennakoon et al.,
1992; Yadav et al., 2002).

The segmentation of image pixels into homogenous
objects has been explored in several studies through cluster-
ing routines and region-growing algorithms (e.g., Haralick
and Shapiro, 1985; Ryherd and Woodcock, 1996). The
concept of segmentation is based on the theory of spatial
scale in remote sensing described by Woodcock and Strahler
(1987) who showed that the local variance of digital image
data in relation to the spatial resolution can be used for
selecting the appropriate image scale for mapping individual
land-cover features. Image data of the Earth’s surface can be
divided into homogenous objects at a number of different
spatial scales, which are interrelated in a hierarchy, where
large objects consist of several smaller objects (Burnett and
Blaschke, 2003; Muller, 1997). Wu (1999) and Hay et al.
(2003) explored different multi-scale image segmentation
methods and found image objects to be hierarchically struc-
tured, scale dependent, and with interactions between image
components.

Object-oriented image classification typically consists of
three main steps: (a) image segmentation, (b) development
of an image object hierarchy based on training objects, and
(c) classification (Benz et al., 2004; Blaschke and Hay, 2001;
Flanders et al., 2003). Object-oriented image classification is
based on the assumption that image objects provide a more
appropriate scale to map environmental features at multiple
spatial scales and more relevant information than individual
pixels (Gamanya et al., 2007). The advantage of using object-
oriented image analysis is the capability to define criteria
for image objects at set scales using spectral reflectance char-
acteristics, as well as within and between object texture,
shapes of features, context relationships, and ancillary spatial
data of different spatial resolution consisting of both thematic
and continuous data values (Bock et al., 2005). Recently,
object-oriented image classification has been used more
extensively due to improvements of object-oriented segmenta-
tion and classification routines such as Definiens Professional
5 and Definiens Developer 7 (Benz et al., 2004; Definiens,
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2006). Definiens object-oriented segmentation and classifica-
tion routines have been used for forest mapping (Johansen
et al., 2007; Lennartz and Congalton, 2004; Dorren et al.,
2003), mapping of mangrove species composition (Wang
et al., 2004), mapping of fractional cover of green and senes-
cent vegetation (Laliberte et al., 2007), mapping of agricul-
tural fields (Mueller et al., 2004), urban mapping (Herold et
al., 2003; Thomas et al., 2003), mapping of shrub encroach-
ment in arid and semi-arid grasslands (Laliberte et al., 2004),
as well as more general land-cover classifications (Bock
et al., 2005; Gamanya et al., 2007). The main conclusions
of these papers were that object-oriented classification:
(a) reduces misclassification caused by spectral variability
within land-cover classes, (b) enables analysis and classifica-
tion of landscape features at multiple spatial scales, and
(c) increases classification accuracies because of the ability
to include contextual information (such as object shape and
relative location of objects) in addition to spectral and textual
information. One of the main issues encountered were the
selection of an appropriate spatial scale for image segmenta-
tion to ensure multiple land-cover classes did not occur
within the same object. The majority of these studies also
recognized the suitability of using high spatial resolution
image data for object-oriented segmentation and classification.
Based on these findings, object-oriented image classification
may therefore be suitable for banana plantation mapping.

Banana production provides a significant export income
for many tropical countries, and management of banana
plantations requires spatial information for a number of
reasons (UNCTAD, 2007). For example, bio-security is a
focus area in Australia, especially in the wake of recent
cyclone destruction and disease outbreaks in banana planta-
tions. Also, state and national land-use mapping programs
in Australia are mostly based on manual visual interpreta-
tion to adjust the output from land-cover classifications
(Witte et al., 2006). Automated image processing routines
have the potential to be used for updating specific land-uses
more effectively in a timely manner.

Currently, no set approach for mapping the extent and
condition of banana plantations exists. High spatial resolution
multi-spectral and panchromatic SPOT-5 image data provide
a potential means for mapping the presence of banana planta-
tions. Image-based mapping can operate on spectral reflectance
and spatial (pattern) features in an environment (Laliberte
et al., 2004). Hence, the aim of this work was to develop a
new mapping approach that will capture both the spatial
and spectral reflectance properties of banana plantations to
separate them from other land-cover features. Reference data
for this work, i.e., maps showing the extent and age of banana
plantations in north Queensland, Australia, were derived
from manual delineation and visual interpretation of banana
plantations from very high spatial resolution airborne digital
image data. A semi-automated mapping approach was then
developed using SPOT-5 image data and compared with the
reference map produced from manual delineation. The objec-
tives of this research were (a) to develop and evaluate an
approach for mapping banana plantations from SPOT-5 image
data using object-oriented segmentation and classification, and
(b) to compare the semi-automated object-oriented mapping
results with the extent of banana plantations derived from
visual interpretation of airborne image data.

Data and Methods
Study Area
The study area was located in the Innisfail-Tully area of
north Queensland, Australia covering the full extent of a
SPOT-5 scene (60 km � 60 km) (Figure 1). The study area

receives a mean annual rainfall of 2,800 mm with the
majority of rain falling between December and May. The
major land-cover classes found within the study area con-
sisted of rainforest (conservation areas), rangelands (grazing
of natural vegetation), water bodies, and cultivated areas
(covering approximately 350 km2). Within the cultivated
areas of the study area, the most dominant practices identi-
fied within the land-use mapping (QLUMP) data described
below included production of irrigated and dryland agricul-
ture and plantations mainly consisting of banana plantations
and sugar cane fields.

Data Sets
Multi-spectral and panchromatic SPOT-5 images of the Tully
region were acquired on 04 June 2006 (Figure 1). The
images were radiometrically corrected using the SPOT-5
absolute calibration gains and subsequently georeferenced
in ERDAS Imagine® 9.0 using 150 reference points (Root
Mean Square Error � 3.78 m; maximum error � 7.02 m)
derived from the airborne digital image data set presented
below. These data were then orthorectified using a 30 m
Digital Elevation Model (DEM) where possible and a 90 m
DEM for the remaining areas. The SPOT-5 image data con-
sisted of multispectral bands located in the green, red, near
infrared (NIR), and mid infrared (MIR) part of the spectrum at
10 m pixels. In addition, a panchromatic band of 2.5 m
pixels was provided. The SPOT-5 image data were captured
at 30.1° off-nadir due to the urgent need for assessing the
destruction in this area caused by a category five tropical
cyclone (Cyclone Larry) on 20 March 2006 (Falco-Mam-
mone, 2006). The March to June period in this area experi-
ences extensive cloud cover, hence no cloud-free image
data were captured until 04 June. The SPOT-5 image was not
atmospherically corrected as time series analysis was not
required in this research, nor were the land-cover features
to be mapped highly similar in terms of their reflectance
values.

Airborne digital images of the Innisfail-Tully region
covering the full extent of the SPOT-5 scene were captured
on 04, 05, 06, 23, and 26 August 2006 at a scale of 1:5 000
using a Vexcel UltraCamD digital aerial camera (AEROme-
trex, 2006). The airborne images, consisting of blue, green,
and red bands of 0.45 m � 0.45 m pixels captured at 12 bits
per pixel, were geometrically calibrated prior to delivery
using the methods outlined by Honkavaara et al. (2006).

A land-use map of Queensland from 1999 outlining the
presence of irrigated crops was also used to assist with
identification of banana plantations. The data set is a prod-
uct of the Queensland Land Use Mapping Program (QLUMP)
and comprises a digital vector based map at nominal scales
of 1:50 000 and 1:100 000, depending on the intensity of
land-use in individual catchments. The land-use map was
based on Landsat TM and ETM� image data from 1999 to
2001 with a positional accuracy higher than 50 m, a digital
cadastral database, as well as a number of other database
sources. Verification of the land-use map was conducted
through field data and image interpretation.

A DEM of 90 m � 90 m pixels derived from the Shuttle
Radar Topography Mapping (SRTM) Mission was used to
identify elevation and terrain characteristics of the banana
plantations. The elevation data represent the reflective
surface illuminated by the Synthetic Aperture Radar, which
may be vegetation, man-made features, or bare earth. The
SRTM data used met the absolute horizontal and vertical
accuracies of 20 m (circular error at 90 percent confidence)
and 16 m (linear error at 90 percent confidence), respec-
tively, as specified for the mission (Rodriguez et al., 2006;
Slater et al., 2006).
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Manual Delineation of Banana Plantations from Airborne Images
The very high spatial resolution airborne image data and the
QLUMP data set were used to manually delineate boundaries
of banana plantations and visually interpret the plant age.
The delineated boundaries used in this research represented
banana plantations directly associated with any stage of
banana production, from fallow to mature plants, on the same
property at the time of airborne digital image capture (August
2006). This process allowed fallow and cultivated land to be
recorded in the data set. Field assessment was carried out to
confirm the reliability of banana plantation identification
and verify mapped boundaries and plant age. Plant age was
divided into the following groups: mature, variably aged,
young, damaged (caused by Cyclone Larry), and fallow. The
map products from the manual delineation were used to
calibrate and validate the image classification based on the
SPOT-5 image data and for comparison purposes.

Image Processing and Object-oriented Mapping
Initially, an image mask for the SPOT-5 image data was
produced in Definiens Professional 5 using object-oriented
segmentation and image classification to identify cultivated
areas. The separability of banana plantations and other land-
cover classes were then assessed within the cultivated areas
at the object level, i.e., clusters of spectrally homogenous
pixels, using both spectral, textural, and spatial pattern
information. Based on the separability assessment, image
object features (attribute representing certain information
concerning an object, e.g., describing spectral, form, or hier-
archical properties of an object such as “object area”), mem-
bership functions (relationship between feature values and
the degree of membership to a class defined by a minimum

and maximum value in combination with the function
slope), and associated thresholds and intervals were set
to map the location of banana plantations in Definiens
Professional 5. The map products derived from the SPOT-5
image data were accuracy assessed against stratified ran-
domly selected points derived from the very high spatial
resolution airborne image data. Finally, the areal extent of
banana plantations mapped from the object-oriented classifi-
cation using SPOT-5 image data was compared to that of
the manual delineation of banana plantations using the
airborne image data.

Image Masking
To reduce data storage and image processing time, an image
mask was initially developed to mask out large proportions of
the image consisting of rainforest, rangelands, and water
bodies. Prior to the segmentation, the pixel size of the SPOT-5
image was resampled to 30 m in ENVI 4.3 (Research Systems,
Inc., 2005) using the pixel aggregate function (Bian and
Butler, 1999) to decrease the total number of pixels, which
significantly reduced the processing time. This produced
larger objects more suitable for image masking of broad land-
cover classes. The Process Tree in Definiens Professional 5
was used for producing the image mask. The Process Tree in
Definiens is used to produce a sequence of processes consist-
ing of algorithms and image objects domains (indicating
which objects are included in the process). This enables the
user to structure the workflow from the initial segmentation
to the final output map (Definiens, 2006). Multi-resolution
segmentation with the composition of the homogeneity
criterion (which measures how homogeneous or heteroge-
neous an image object is within itself and is defined by a

Figure 1. Study area showing the full extent of the SPOT -5 scene located in the Tully
region of north Queensland, Australia. A color version of this figure is available at the
ASPRS website: www.asprs.org .
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combination of spectral homogeneity and shape homogeneity)
set to 0.9 for color, and 0.1 for shape with compactness and
smoothness of 0.5 was used as a parent process to segment
the image into spectrally homogenous objects based on the
red, NIR, and NDVI bands. The size of the objects produced
by the multi-resolution segmentation is determined by the
user-defined scale parameter, which is an abstract term that
defines the maximum allowed heterogeneity of each object.
Using the QLUMP land-use data for training, the segmentation
of rainforest, rangelands, and water bodies in the study area
required the scale parameter to be set to produce very large
objects due to the large spatial extent of these land-cover
classes. Spectral difference segmentation merges neighboring
objects according to their main layer intensity values. Prior
to classification, the spectral difference segmentation process
was used to combine adjacent objects with similar spectral
properties to maximize spectral homogeneity and create larger
objects easier to classify.

A second parent process in the Process Tree was added
to perform the classification. A parent process does nothing
except executing child processes. Using parent and child
processes allows the user to group processes that may be
running the same algorithm on different image objects. Creat-
ing different parent processes (e.g., for segmentation and clas-
sification) makes it easier to structure the processing flow in
the Process Tree. Individual child processes were produced
for each land-cover class. The first child process was used
to map “water bodies” and ‘”not water bodies.” Those areas
classified as “not water bodies” were used in a second child
process to classify “rainforest” and “not rainforest.” The “not
rainforest” areas were then further subdivided by additional
child processes into rangelands and then cultivated land.
The red, NIR, and NDVI bands and the 90 m SRTM DEM were
used to classify the image. Subsequent minor visual editing
(approximately 10 minutes) was performed based on visual
assessment of the multispectral SPOT-5 image data. The final
classification was used to produce an image mask for subset-
ting the image data to include only cultivated areas, where
banana plantations occur.

Texture Analysis
Image based mapping can operate on spectral reflectance
and spatial features in an environment. Due to the spatial

scale of the SPOT-5 image pixels (10 m), multispectral pixels
are larger than individual banana plants, but significantly
smaller than the size of an individual banana plantation.
As a result, it is not possible to map individual trees, but
criteria may be defined based on characteristic spatial
patterns or texture found in banana plantations. Individual
banana plants were not visible at the 2.5 m pixel size of
the SPOT-5 panchromatic band, but identification of the
row structure of the banana plantations was possible at
this spatial scale

To select a feasible window size for co-occurrence
texture analysis, spatial profiles of image pixel digital num-
bers were produced perpendicular to the row structure of the
banana plantations to identify the level of spatial information
extractable from different spectral bands. The six spatial
profiles based on the green, red, NIR, MIR, NDVI, and panchro-
matic bands showed that the multi-spectral bands (10 m
pixels) had peaks and troughs every 20 to 50 m, while the
panchromatic band (2.5 m pixels) had peaks and troughs
every 7.5 to 12.5 m (Figure 2). As the red and panchromatic
bands provided the most information on spatial changes,
these were used for texture analysis. The peaks in digital
numbers corresponded to the ground reflectance between
each row within the banana plantations, which occurred
approximately every 7.5 m. Based on Figure 2 and a semi-
variogram analysis of spectral variability within the banana
plantations, a window size of 5 � 5 pixels for the red and
panchromatic bands were used to derive the texture meas-
ures. The five pixels in the red (50 m) and panchromatic
(12.5 m) bands indicated the distance at which pixels were
no longer correlated and hence were related to the size of
the largest and most dominant elements within the banana
plantations, i.e., several rows of banana plants clustered
together (Franklin et al., 1996). To reduce processing time
in Definiens Professional 5, the following co-occurrence
texture measures were calculated in ENVI 4.3 and subse-
quently imported into Definiens: variance; homogeneity,
dissimilarity, entropy, contrast, second moment, and correla-
tion (Haralick et al., 1973; Research Systems, Inc., 2005).

Separability Assessment
A critical component of object-oriented classification is the
examination of separability of individual land-cover classes.

Figure 2. Spatial profiles located perpendicular to the banana plant rows showing the
spatial variation in reflectance of six spectral bands.
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Definiens provides several tools for both visual and quantita-
tive assessment of the difference in spectral, spatial, and
contextual characteristics of individual objects (Feature
Viewer, Image Object Information, Feature Space Optimizer,
Feature Space Plots, and the Sample Editor). The most
suitable of these functions for the separability assessment
of banana plantations and non-banana plantations was the
Sample Editor, as it can display the histogram and range of
multiple samples of each land-cover class and membership
function. In addition, the samples for two land-cover classes
can be displayed simultaneously for comparison.

To develop a land-cover class hierarchy, the separability
of banana plantations in terms of image spectral reflectance
and texture for each of the following land-cover classes was
first assessed: sugar cane fields, remnant patches of rainfor-
est/riparian vegetation, grasslands, rangelands, cleared areas,
fallow land, and water bodies. The separability was assessed
at the object level (e.g., banana plantations) by selecting
50 to 60 test training objects for each land-cover class.
The bands included in the separability assessment of each
land-cover class were the green, red, NIR, MIR, NDVI, and
panchromatic bands and the variance, homogeneity, dissimi-
larity; entropy, contrast, second moment, and correlation
texture co-occurrence measures derived from the red and
panchromatic bands using a window size of 5 � 5 pixels.
For each individual land-cover class, all spectral bands were
used in the Sample Editor in Definiens to identify the most
suitable of the following membership functions: layer mean
values per object, standard deviation per object, mean differ-
ence to scene per object, ratio to scene per object, minimum
pixel values per object, area per object, shape index per
object (the border length of the image objects divided by

four times the square root of the image objects’ area), border
index, and rectangular fit. Subsequently, box-and-whisker
plots were produced for those bands, land-cover classes, and
membership functions that provided the best discrimination
between banana plantations and other land-cover classes
to depict the median, range, and the 5 and 95 percentiles
to determine the level of overlap between land-cover classes
(StatSoft, Inc., 2007). The box-and-whisker plots were used,
as they provided useful information on the level of separa-
tion based on the percentiles and identification of outliers,
which cannot be derived from the Sample Editor in Definiens.
Based on the box-and-whisker plots, the final image bands,
membership functions, and their associated thresholds and
intervals were selected for optimizing the differentiation
between banana plantations and other image objects repre-
senting non-banana plantation land-cover classes.

Segmentation, Class Hierarchy, and Classification
Using the masked SPOT-5 image consisting of cultivated land,
only one scale parameter was required for mapping individual
banana plantations due to their similar size, homogenous
internal row structure, and the distinct separation between
individual fields (Figure 3). Multi-resolution segmentation
with the composition of the homogeneity criterion set to 0.9
for color and 0.1 for shape with compactness and smoothness
of 0.5 was used to segment the image based on the NIR (weight
� 1), NDVI (weight � 1), and panchromatic (weight � 3) bands
(Benz et al., 2004). As the panchromatic band provided more
distinct separation of banana plantations due to the narrow
tracks between each plantation, the panchromatic band was
given a weight of three in the segmentation process. The scale
parameter analysis function in Definiens Professional 5 was

Figure 3. (a) Field photo, (b) airborne image (45 cm pixels), (c) SPOT -5 panchromatic
image (2.5 m pixels), and (d) SPOT -5 multi-spectral image (10 m pixels) of banana
plantations in the Tully region, Queensland, Australia. A color version of this figure is
available at the ASPRS website: www.asprs.org .
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used to optimize the segmentation so that each banana
plantation represented a single object (Definiens, 2006).
Membership functions and associated thresholds and intervals
derived from the separability assessment were used to classify
the SPOT-5 image subset consisting of cultivated areas. In case
the box-and-whisker plots of banana plantations and non-
banana plantation classes were overlapping based on the
training data, thresholds were set to optimize both user’s and
producer’s accuracies of the banana plantation land-cover
class. The classified image was further improved by visual
editing performed purely on the basis of the panchromatic
SPOT-5 band. This was done in Definiens by manually recod-
ing objects that were visually identified as incorrectly classi-
fied. Approximately 40 minutes were spent on visual editing.

Accuracy Assessment
The accuracy of the classified images both with and without
post-classification visual editing was assessed against strati-
fied randomly selected points on the airborne images. The
randomly selected points were derived from banana planta-
tions that were confidently identified on the airborne images
or verified through in-situ identification. To ensure geomet-
ric compatibility between the two image data sets, ground
control points used for the accuracy assessment were located
at least 10 m from the edge of banana plantations identified
in the airborne image data and classified from the SPOT-5
image data set.

Comparison of Banana Plantations Mapped from Object-oriented
Classification of SPOT Imagery and Manual Delineation of Airborne Imagery
The results of the object-oriented classification approach
based on the SPOT-5 image data were compared to those
results derived from the manual delineation of banana
plantations based on the airborne digital image data set.
This comparison was conducted in terms of areal extent and
location of mapping boundaries of banana plantations. The
object-oriented image classifications of banana plantations
with and without post-classification visual editing were first
exported from Definiens as vector files. The area of intersec-
tion between the classified banana plantations and the
manually delineated plantations derived from the airborne
image data was then calculated to determine errors of
omission and commission.

Results
Image Mask
An image mask was developed at moderate spatial resolu-
tion (30 m � 30 m pixels) to mask out non-cultivated areas
within the SPOT-5 image (Figure 4). Based on the QLUMP
data set and visual interpretation, the mapping result was
effective at separating cultivated areas from rainforest,
rangelands, and water bodies. Using the resampled SPOT-5
image significantly reduced the segmentation time in
Definiens and improved the separation in the segmentation
process between cultivated land and adjacent rainforest. The
number of membership functions and their corresponding
thresholds required for separating the four land-cover classes
(cultivated land, rainforest, rangelands, and water bodies)
was significantly reduced compared to that required at a
pixel size of 10 m � 10 m due to reduced within-class
variability. Figure 5 shows that either one or two image
object features were required in Definiens Process Tree to
progressively classify each land-cover class when excluding
pixels already classified. The SRTM DEM data were useful in
identifying the location of rangelands and cultivated areas
within the study area, as these areas were located at differ-
ent elevations within the SPOT-5 image scene.

Separability Assessment
The separability of land-cover classes was assessed at the
object level by comparing the median, 5 and 95 percentiles,
and the range of samples for each land-cover class (banana
plantations, other cropped fields, bare ground, water bodies,
fallow fields, grasslands, rainforest/riparian zones, and
rangelands). Although the image mask was used to isolate
cultivated areas, the spatial scale of mapping was too coarse
to mask out small remnant patches of rainforest, water in
creeks, and small areas of rangelands. The box-and-whisker
plots showed that banana plantations and other land-cover
classes with significantly different spectral characteristics
(bare ground, water bodies, fallow land, and grasslands) could
be discriminated using the image object feature based on the
mean NDVI difference of individual objects and the scene
(Figure 6a). Other crops, the majority being sugar cane, could
not be spectrally separated from banana plantations. However,

Figure 4. Map based on multi-spectral SPOT -5 image
data resampled to a pixel size of 30 m � 30 m and
used for masking out non-cultivated areas. A color
version of this figure is available at the ASPRS website:
www.asprs.org .

Figure 5. Domains, land-cover classes, image object
features, membership functions and thresholds used for
development of the image mask in Definiens Process
Tree. Land-cover classes on the right hand side of the
decision trees obey the membership function thresholds.
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image co-occurrence texture measures such as entropy
calculated from windows of 5 � 5 pixels in the panchromatic
band were found effective for separation due to the distinct
row structure of the banana plantations (Figure 6b). In the
majority of cases (54 out of 58), image objects consisting of
rangelands could be discriminated from banana plantations
using the green band when calculating the ratio of the object
to the scene (Figure 6c). Grasslands could be discriminated
from banana plantations using the NIR ratio to scene (Figure 6d).
Remnant patches of rainforest and riparian zones were found
to have very similar spectral and spatial characteristics to
mature banana plantations, while those plantations with
young or damaged banana plants had different green and NDVI
reflectance values. Contextual features, such as area, shape
index, and rectangular fit, and their corresponding member-
ship functions provided additional separation between
banana plantations and the other land-cover classes. The
image object features and membership functions used in the
final classification were determined based on the separability
analysis (Table 1). It was found that all the image object
features and associated membership functions and thresholds
were required for mapping the banana plantations within the
cultivated area. However, only a subset of these features was
required for individual areas covering smaller spatial extents.
Both spectrally and spatially, fallow banana plantations could
not be automatically separated at the object level from fallow
areas of other crops (mainly sugarcane).

Classification and Accuracy Results With and Without Visual Editing
Banana plantations were classified based on the separability
assessment (Table 1) of the land-cover classes present within

the area initially classified as cultivated land (Figure 7). The
enlarged area in Figures 7 and 8 shows some fallow banana
plantations as well as some plantations with young re-growing
banana plants. Most of the banana plantations consisting of

Figure 6. Box-and-whisker plots showing the median, 5 and 95 percentiles, and the
range for land-cover classes present within the area classified as cultivated land using
the following image object features: (a) NDVI mean difference to scene; (b) entropy man
difference to scene; (c) green ratio to scene; and (d) near infrared ratio to scene.

TABLE 1. IMAGE OBJECT FEATURES , M EMBERSHIP FUNCTIONS AND THRESHOLDS
AND RANGE VALUES USED IN THE FINAL CLASSIFICATION

Image object features Membership function Value

Object area Threshold �11,000m2

Minimum value of Interval 12 - 159
object, NIR

Shape index Interval 1.225 - 2.729

Rectangular fit Interval 0.4217 - 0.9803

Mean value of Interval 87.6 - 117.35
object, Green

Mean value of Interval 70.82 - 122.13
object, MIR

Mean value of Interval 0.1 - 0.573
object, NDVI

Mean value of object, Interval 0.0862 - 0.2492
Second moment

Mean difference to Interval 0.05 - 0.498
scene, NDVI

Mean difference to Interval 1.05 - 2.142
scene, Entropy

Ratio to scene, Green Interval 2.903 - 4.021

Ratio to scene, NIR Interval 3.15 - 5.183 
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mature banana plants could be classified using the object-
oriented classification. However, those banana plantations
with young regrowth banana plants or damaged plants (from
Cyclone Larry in March 2006) were not automatically mapped.
Subsequently, visual editing enabled identification of most of
these plantations in the panchromatic SPOT-5 image (Figure 8).
The fallow banana plantations could not be discriminated
from other fallow agricultural fields using either the panchro-
matic or the multi-spectral SPOT-5 image data. Some smaller
banana plantations or parts of plantations located next to
riparian zones were not classified as banana plantations as

these were found within image objects consisting of a combi-
nation of riparian vegetation and banana plantations because
of the similarity in spectral and textural characteristics of
these two land-cover classes (Figure 8b; the dotted polygon).

The accuracy of the object-oriented SPOT-5 image
classification with and without visual editing was assessed
against randomly selected points from the reference map
derived from the airborne image data. As the fallow banana
plantations could not be identified in the SPOT-5 image data,
these were not included in the accuracy assessment. Using
the object-oriented classification approach in Definiens

Figure 7. Maps showing (a) cultivated land within the study area, (b) areas
delineated as banana plantations using manual airborne image interpretation,
(c) areas classified as banana plantations using the object-oriented approach
in Definiens, and (d) areas classified as banana plantations using the object-
oriented approach in Definiens with subsequent visual editing. A color version
of this figure is available at the ASPRS website: www.asprs.org .
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produced producer’s accuracies of 92.64 percent and 76.72
percent with and without post-classification visual editing,
respectively (Table 2). The user’s accuracies were 94.45
percent and 72.88 percent, respectively, for the image
classification with and without visual editing (Table 3).

Comparison of Manual Delineation from Aerial Images and Image
Segmentation/Classification of Banana Plantations
The results of the comparison of areas mapped as banana
plantations in the SPOT-5 and airborne image data showed
that 86.19 percent (25.59 km2 / 29.69 km2) of banana
plantation areas classified and visually edited based on the
SPOT-5 image data overlapped the manually delineated
banana plantations based on the airborne image data. A total
of 80.54 percent (25.59 km2 / 31.78 km2) of the manually
delineated area overlapped the banana plantations classified
and manually edited from the SPOT-5 image data (Table 4).
These levels of overlap were only achieved when including
the panchromatic SPOT-5 image data (2.5 m pixels), as
textural information from the plantation row structure were
lost using the multi-spectral bands (10 m pixels).

Generally, the fallow plantations could not be identified
from the SPOT-5 image data. Table 4 and Figure 9 show the

effects that the inclusion of fallow areas in banana planta-
tions had on the overall area mapped and the effect of the
visual editing of the object-oriented classification of the
SPOT-5 image data. Including fallow areas such as un-
cropped plantations and surrounding tracks and other
features in close proximity to the banana plantations
significantly increased the area mapped as banana planta-
tions (31.78 km2 to 41.04 km2). Gaps between plantations
were not classified as banana plantations using the object-
oriented classification approach, but were included in the
manual delineation of the airborne image data (Figure 10a).
This resulted in overestimation of the area of banana
plantations manually delineated from the airborne image
data, which would not need to be included for a plant area
application, as this would lead to overestimates of plant
related features, e.g., canopy cover and biomass.

Visual editing of the banana plantations mapped from
the SPOT-5 image data made a significant difference to the
area estimate derived, irrespective of whether or not fallow
areas were included in the definition of banana plantations
(Table 4 and Figure 9). The visual editing mainly involved

Figure 8. Subsets of the object-oriented image classification (a) without visual editing,
and (b) with visual editing overlayed on the airborne image data. A color version of this
figure is available at the ASPRS website: www.asprs.org .

TABLE 2. PRODUCER ’S ACCURACIES AND ERRORS OF OMISSION OF THE OBJECT-
ORIENTED CLASSIFICATION OF BANANA PLANTATIONS

Reference data

No visual editing Visual editing
Banana plantations Banana plantations

C
la

ss
if

ie
d

 d
at

a

Banana plantations 323 390

Non-banana
plantations

98 31

Total 421 421

Producer’s accuracy 76.72% 92.64%

Error of omission 23.28% 7.36%

TABLE 3. USER’S ACCURACIES AND ERRORS OF COMMISSION OF THE OBJECT-
ORIENTED CLASSIFICATION OF BANANA PLANTATIONS

Classified data

No visual editing Visual editing

Banana plantations Banana plantations

R
ef

er
en

ce
 d

at
a

Banana plantations 489 545

Non-banana
plantations

182 32

Total 671 577

User’s accuracy 72.88% 94.45%

Error of 
commission

27.12% 5.55%
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TABLE 4. OVERLAPPING AREAS OF BANANA PLANTATIONS CLASSIFIED FROM THE SPOT-5 I MAGE DATA AND MANUALLY DELINEATED 
FROM THE A IRBORNE IMAGE DATA

SPOT-5 image data

Area classified as banana 
plantations with visual 

editing � 29.69km2

Area classified as banana
plantations with no visual

editing � 29.95km2

A
ir

bo
rn

e 
im

ag
e 

d
at

a Area of manually delineated banana plantations
excluding fallow land � 31.78km2

25.59km2 20.72km2

Area of manually delineated banana plantations
including fallow land � 41.04km2

27.21km2 21.91km2

Figure 9. Areas of banana plantations mapped from
manual delineation of the airborne images (both including
and excluding mapping of fallow areas) and the overlap-
ping plantation areas derived from object-oriented
processing of SPOT -5 image data. Plantation area esti-
mates from the SPOT -5 imagery are presented both with
and without post-classification visual editing.

adding plantation areas in the image that were missed by
the object-oriented mapping approach. The areas of omission
included plantations mainly with young and damaged
banana plants. Areas of commission only occurred in few
instances, where banana plantations were located next to
riparian areas. Small temporal changes had occurred in the
time gap between the SPOT-5 image capture (04 June 2006)
and the acquisition of the airborne image data (August
2006). For example some damaged banana plantations had
been cleared between June and August (Figure 10b). How-
ever, the identified amount of changes in the time gap
between the image captures (�0.4 km2) did not affect the
results significantly.

Discussion
Mapping of Banana Plantations from SPOT-5 Image Data
The assessment of land-cover class separability at the object
level showed that there is a trade-off between user’s and
producer’s classification accuracies, i.e., a choice between
mapping all banana plantations at a medium accuracy and
mapping only some plantations at a highly accurate level.
In this study, user’s and producer’s accuracies were bal-
anced to obtain approximately equal levels of accuracy by
adjusting the thresholds and intervals of the membership
functions. Some plantations with banana plants of variable

age, or consisting of damaged or young banana plants were
not identified, as these caused confusion between other
crops and fallow land. Differences between the areal extent
of banana plantations mapped by the object-oriented classifi-
cation approach and the manual delineation method were
identified. Geometric mis-registration between the two image
data sets was smaller than 7.02 m with an average displace-
ment of 3.78 m, but could have contributed to differences
in the comparison of the two data sets. Banana plantations
were in some cases merged with riparian zones in the
segmentation process when located next to each other, as
both land-cover classes had spectrally and texturally low
contrast relative to each other. Mueller et al. (2004) also
found that low brightness contrast between neighboring
objects can cause under-segmentation. Conversely, variation
within banana plantations larger than the homogeneity
threshold set by Definiens’ scale parameter caused over-
segmentation (segmenting areas with the same land-cover
classes into multiple objects) in some cases, where parts
of plantations consisted of damaged banana plants.

The off-nadir angle of 30.1° of the SPOT-5 image data
caused an increase in the effective pixel size and hence
reduced the ability to identify a clear row structure within
some mature banana plantations. The off-nadir angle may
also have reduced the spectral variation in the multi-spectral
bands. The regular structure of the plantations could be seen
in the panchromatic band, but the spatial resolution of the
multi-spectral bands was too low to discriminate the 7.5 m
structure. This was evident in the spatial profile in Figure 4,
where reflectance peaks did not appear every 7.5 m, which
was the approximate distance between rows measured from
the airborne image data. The classification results may be
improved if the image data are captured close to nadir.
Addition of clues such as distance to water bodies or ripar-
ian vegetation indicating a source of water for irrigation may
also improve mapping accuracies, as objects mapped as
banana plantations in areas with no drainage network are
likely to be incorrectly classified.

The developed approach worked in terms of mapping
banana plantations, as the segmentation in Definiens allowed
characteristic scales of features to be mapped, e.g., the plant-
row structure in banana plantations is highly characteristic
and evident in panchromatic SPOT-5 data and higher spatial
resolution data. At the pixel level, each plantation contained
a multitude of spectrally different pixels, but averaged at the
object level, unique information on the banana plantations
was derived and used for mapping. Similar instances of this
type of combined feature mapping are found in Bock et al.
(2005), Gamanya et al. (2007), and Mueller et al. (2004). The
approach did not work when trying to assess more detail
than the broad cover types, e.g. individual tree characteris-
tics and detection of earlier growth stages of banana plants.
Higher spatial resolution multi-spectral sensors such as
QuickBird and Ikonos should provide more suitable data for
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Figure 10. (a) Difference between the object-oriented classification based on SPOT -5
image data and manual delineation from airborne image data; (b) Presence of banana
plants on the SPOT -5 image data (04 June 2006) and clearing of banana plants on the
airborne image data (August 2006). A color version of this figure is available at the
ASPRS website: www.asprs.org .

this scale of application and enable individual tree canopies
and inter-row spacing to be assessed in more detail.

This increased level of detail from higher spatial resolu-
tion image data is also likely to improve the detection of
variably aged and damaged banana plantations, as plantations
with banana plants of different ages, e.g., young versus mature
banana plants, would be both spatially and spectrally differ-
ent. Therefore, banana plantations with different characteris-
tics would have to be treated as separate land-cover classes
to avoid a large interval range of membership functions.
Generally, the larger the interval range is, the more likely it
is that the interval range will overlap those of other land-cover
classes, and hence, prevent discrimination of individual land-
cover classes (Brandtberg, 2002). The mapping of (a) mature,
(b) young, (c) variably aged, and (d) damaged banana plants at
the object level with high spatial resolution image data would
most likely require these growth stages to be mapped as sepa-
rate land-cover classes using different features, membership
functions, and certainly different thresholds and intervals to
find unique spectral, spatial, and contextual characteristics of
each land-cover class. However, this theory is still to be tested

with object-oriented image classification of banana plantations.
Furthermore, the level of discrimination of different stages of
banana plant growth will depend on the characteristics of
other land-cover classes present in the area to be mapped. If
this knowledge gap is addressed, it is likely to have applica-
tion not just for mapping banana plantations, but many other
types of plantation and horticultural productions exhibiting
distinct spectral, textural, or contextual characteristics at the
object level.

Future Opportunities for Banana Plantation Mapping
The manual delineation mapping based on airborne digital
image data of 0.45 m pixels created the foundation for
establishing a database including information on banana
plantations, location, area, and plant age. This research
shows the importance of using high spatial resolution image
data for object-oriented image classification to achieve map-
ping accuracies feasible for the banana industry. The SPOT-5
panchromatic band was essential for mapping banana planta-
tions. Both airborne hyperspectral and light detection and
ranging (lidar) data sets may be used for mapping banana



plantations with high accuracies, but are less likely to gain
widespread application because of the limited availability
of hyperspectral image data and the acquisition costs of lidar
data. Higher accuracies are also likely to be achieved using
high spatial resolution QuickBird and Ikonos image data,
as these image data enable clear identification of the row
structure of banana plantations. Some of the commonly-used
airborne digital cameras such as the Zeiss/Intergraph DMC,
Vexcel UltracamD and UltracamX, and Leica Geosystems
ADS40 cameras (Johansen et al., 2008) may also be important
data sources for banana plantation mapping applications.
These multispectral sensors could be used for regularly
updating a database on banana plantations, but also expand
the application of remotely sensed image data towards crop
management, disease control, production yield, and related
income prediction for banana growers. The method presented
in this research is considered transferable to other high
spatial resolution image data sets allowing analysis of the
image texture of banana plantations. Some banana planta-
tions within the SPOT-5 image used for this research had
suffered cyclone damage prior to image capture. This pro-
duced several growth stages of banana plants, which lowered
the mapping accuracy. Hence, other high spatial resolution
image data sets captured of areas consisting mainly of mature,
and hence homogenous, banana plantations are likely to
produce similar or better results than those presented in this
research. A database including ancillary information such as
management practices, yield, plant age, soil type, monthly
precipitation, and level of irrigation could potentially be
used to develop algorithms for prediction of yield and
for crop management optimization. Similar approaches
have been proposed for citrus plantations in Florida, USA
(Shrivastava and Gebelein, 2007).

Conclusions and Futur e Work
The mapping of banana plantations worked well as spectral,
textural, and contextual characteristics provided distinct
information at the object level, i.e., homogenously segmented
clusters of pixels the size of the individual plantations.
Separation of banana plantations and other land-cover
features with spectrally similar characteristics at the object
level (e.g., sugarcane fields) required textural information
derived from the SPOT-5 panchromatic band to enable
differentiation. The row structure of the banana plantations
produced distinct textural information at the object level.
Context relationships, such as object area and shape, added
further information to the object-oriented classification, while
elevation data were useful for separation of large spatial scale
land-cover classes. However, to increase the user’s and
producer’s accuracies to �90 percent, post-classification
minor visual editing (approximately 40 minutes) based on
the panchromatic band (2.5 m pixels) was required.

The comparison of the manually delineated banana
plantations based on the airborne image data and those
classified from the SPOT-5 image data using object-oriented
classification and post-classification visual editing showed
that plantations with damaged, young or variably aged
banana plants were difficult to identify at the object level.
This was because of the “limited” spatial resolution of the
SPOT-5 image data, which did not provide the required level
of detail necessary for mapping of different growth stages of
banana plants. Fallow banana plantations could not be
reliably separated from fallow sugarcane fields.

This study showed a high potential for partial automa-
tion of the banana plantation mapping process from
remotely sensed image data. However, a requirement is the
use of high spatial resolution image data with pixels �2.5 m
captured close to nadir for inclusion of additional textural

information. Both hyperspectral and light detection and
ranging (lidar) data sets may be used for mapping banana
plantations with high accuracies, but are less likely to be
used because of the limited availability of hyper-spectral
image data and the acquisition costs of lidar data. Future
work should focus on (a) testing high spatial resolution
satellite image data such as QuickBird and Ikonos data, and
(b) mapping different characteristics of banana plantations as
individual land-cover classes, i.e., different growth stages, to
avoid confusion between other land-cover classes.
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