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Traditionally, there have been two methods of deriving the theorems of 

geometry: the analytic and the synthetic. While the analytical method is based on the 
introduction of numerical coordinates, and so on the  theory of real numbers, the idea 
behind the synthetic approach is to furnish the subject of geometry with a purely 
geometric foundation in which the theorems are then deduced by purely logical means 
from an initial body of postulates.  
 The most familiar examples of the synthetic geometry are classical Euclidean 
geometry and the synthetic projective geometry introduced by Desargues in the 17th 
century and revived and developed by Carnot, Poncelet, Steiner and others during the 
19th century. 
 The power of analytic geometry derives very largely from the fact  that it permits 
the methods of the calculus, and, more generally, of mathematical analysis, to be 
introduced into geometry, leading in particular to differential geometry (a term, by the 
way, introduced in 1894 by the Italian geometer Luigi Bianchi). That being the case, the 
idea of a “synthetic” differential geometry seems elusive: how can differential geometry 
be placed on a “purely geometric” or “axiomatic” foundation when the apparatus of the 
calculus seems inextricably involved? 
 To my knowledge there have been two attempts to develop a synthetic 
differential geometry. The first was initiated by Herbert Busemann in the 1940s, 
building on earlier work of Paul Finsler. Here the idea was to build a differential 
geometry that, in its author’s words, “requires no derivatives”: the basic objects in 
Busemann’s approach are not differentiable manifolds, but metric spaces of a certain 
type in which the notion of a geodesic can be defined in an intrinsic manner. I shall not 
have anything more to say about this approach. 
 The second approach, that with which I shall be concerned here, was originally 
proposed in the 1960s by F. W. Lawvere, who was in fact striving to fashion a decisive 
axiomatic framework for continuum mechanics. His ideas have led to what I shall 
simply call synthetic differential geometry (SDG) (sometimes called smooth infinitesimal 
analysis). SDG is formulated within category theory, the branch of mathematics created 
in 1945 by Eilenberg and Mac Lane which deals with mathematical form and structure 
in its most general manifestations. As in biology, the viewpoint of category theory is that 
mathematical structures fall naturally into species or categories. But a category is 
specified not just by identifying the species of mathematical structure which constitute 
its objects; one must also specify the transformations or maps linking these objects. 
Thus one has, for example, the category Set with objects all sets and maps all functions 
between sets; the category Grp with objects all groups and maps all group 
homomorphisms; the category Top with objects all topological spaces and maps all 
continuous functions; and Man, with objects all (Hausdorff, second countable) smooth 
manifolds and maps all smooth functions. Since differential geometry “lives” in Man, it 
might be supposed that in formulating a “synthetic differential geometry” the category-
theorist’s goal would be to find an axiomatic description of Man itself. 
 But in fact the category Man has a couple of “deficiencies” which make it 
unsuitable as the object of axiomatic description: 
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1.  It lacks exponentials: that is, the “space of all smooth maps” from one manifold to 
another in general fails to be a manifold. And even if it did— 

2.  It also lacks “infinitesimal objects”; in particular, there is no “infinitesimal” or 
incredible shrinking manifold ∆ for which the tangent bundle TM of an arbitrary 
manifold M can be identified as the exponential “manifold” M∆ of all “infinitesimal 
paths” in M. (It may be remarked parenthetically that it is this deficiency that 
makes the construction of the tangent bundle in Man something of a headache.) 

 
Lawvere’s idea was to enlarge Man to a category S—a category of so-called smooth 
spaces or a smooth category—which avoids these two deficiencies, admits a simple 
axiomatic description, and at the same time is sufficiently similar to Set for 
mathematical construction and calculation to take place in the familiar way. 

The essential features of a smooth category S are these: 
 
• In enlarging Man to S no “new” maps between manifolds are added, that is, all 

maps in S between objects of Man are smooth. (Notice that this is not the case 
when Man is enlarged to Set.) 

• S is Cartesian closed, that is, contains products and exponentials of its objects in 
the appropriate sense. 

• S satisfies the principle of microstraightness. Let R be the real line  considered as a 
object of Man, and hence also of S. Then there is a nondegenerate segment ∆ of R 
around 0 which remains straight and unbroken under any map in S. In other words, 
∆ is subject in S  to Euclidean motions only. 

 
∆ may be thought of as a generic tangent vector. For consider any curve C in a 

space M—that is, the image of a segment of R (containing ∆) under a map f into M. 
Then the image of ∆ under f may considered as a short straight line segment lying along 
C around the point p = f(0) of C. 
 
 
 
 
                                                                                                 C 
                                                                                                                                                                             
                                                                                                                          p 
         ∆                                                                                                             
           
                                                                                                                           M 
 
 
   
 
 
In fact, by considering the curve in R × R given by f(x) = x5, we see that ∆ is the 
intersection of the curve y = x5  with the x-axis:       
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That is,  
 

∆ = {x ∈ R: x5 = 0}. 
 

Thus ∆ consists of nilsquare infinitesimals, or microquantities. We use the letter ε to 
denote an arbitrary microquantity.  
 Now classically ∆ coincides with {0}, but a precise version of the principle of 
microstraightness—the Principle of Microtaffineness—ensures that this is not the case in 
S. The principle states that 
 
• in S, any map f: ∆ → R is (uniquely) affine, that is, for some unique   b ∈ R, we 

have, for all ε, 
f(ε) = f(0) + bε. 

 
Here b is the slope of the segment N in the diagram: 
 
 
                                                           y = f(x) 
 
                                              N 
                                        
 
                                               ∆ 

  
 

Thus the principle of microaffineness asserts that each map  ∆ → R has a unique slope. 
This reduces the development of the differential calculus to simple algebra. 
 The principle of microaffineness asserts also that the map           R∆ → R × R 
which assigns to each f ∈ R∆ the pair (f(0), slope of f) is an isomorphism: 

 
R∆ ≅ R × R. 

 
Since R∆ is the tangent bundle of R, so is R∆. 
 This suggests that, for any space M in S, we take the tangent bundle TM of M to 
be the exponential  M∆. Elements of M∆ are called tangent vectors to M. Thus a tangent 
vector to M at a point p ∈ M is just a map t: ∆ → M with t(0) = x That is, a tangent vector 
at p is a micropath in M with base point p. The base point map π: TM → M is defined by 
π(t) = t(0). For p ∈ M, the fibre π–1(p) = TpM is the tangent space to M at p.  
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 Observe that, if we identify each tangent vector with its image in M, then each 
tangent space to M may be regarded as lying in M. In this sense each space in S is 
“infinitesimally flat”.  

We check the compatibility of this definition of TM with the usual one in the 
case of Euclidean spaces: 
 

T(Rn) = (Rn)∆ ≅ (R∆)n ≅ (R × R)n ≅ Rn × Rn.   
 
 The assignment M  TM can be turned into a functor in the natural way—the 
tangent bundle functor.  (For f: M → N, Tf: TM → TN is defined by (Tf)t = f  t for t ∈ TM.)  
 The whole point of synthetic differential geometry is to render the tangent bundle 
functor representable: TM becomes identified with the space of all maps from some fixed 
object—in this case ∆)—to M. (Classically, this is impossible.) This in turn simplifies a 
number of fundamental definitions in differential geometry. 
 For instance, a vector field on a space M is an assignment of a tangent vector to 
M at each point in it, that is, a map ξ: M → TM = M∆ such that ξ(x)(0) = x for all x ∈ M. 
This means that π  ξ is the identity on M, so that a vector field is a section of the base 
point map. 
 A differential k- form ((0, k) tensor field) on M may be considered as a map        
M∆n  → R.  
 Recall the condition that S be Cartesian closed. This means that for any pair S,T 
of spaces in S, S also contains their product S × T and their exponential TS, the space of 
all (smooth) maps S → T. These are connected in the following way: for any spaces S, T, 
U, there is a natural bijection of maps  
 

S → TU   
                                                              S × U → T 
 
In the usual function-argument notation, this bijection is given by: 

 
(f: S × U → T)  (f^: S → TU)    with   f^(s)(u) = f(s, u) for s ∈ S, u ∈ U. 

 
This gives rise to a bijective correspondence between vector fields on M and what we 
shall call microflows on M: 
 
                                   ξ: M → M∆      (vector fields on M) 
                                ξ^: M × ∆ → M      (microflows on M), 
with 
 

ξ^(x,ε) = ξ(x)(ε). 
 
Notice that then ξ^(x,0) = x. 
 We also get, in turn, a bijective correspondence between microflows on M and 
micropaths in MM with the identity map as base point: 
 
                                 ξ^: M × ∆ →  M    (microflows on M) 
                                  ξ*: ∆ → MM      (micropaths in MM), 
 
with 

ξ*(ε)(x) = ξ^(x,ε) = ξ(x)(ε). 
 
Thus, in particular,  
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ξ*(0)(x) = ξ(x)(0) = x, 

 
so that ξ*(0) is the identity map on M. Each ξ*(ε) is a microtransformation of M into 
itself which is "very close" to the identity map. 
 Accordingly, in S, vector fields, microflows, and micropaths are equivalent. 
Classically, this is a metaphor at best. 
 The notions of affine connection, geodesic, and the whole apparatus of 
Riemannian geometry can also be developed within SDG, as has been shown by Bunge, 
Kock and Reyes. Guts and Grinkevich have shown how Einstein’s field equations can 
be formulated within SDG, resulting in a synthetic theory of relativity. 

In a spacetime the metric can be written in the form 
 
(*)                    ds2  =  Σgµνdxµdxν        µ,ν = 1,2,3,4. 
 
In the classical setting (*) is in fact an abbreviation for an equation involving derivatives 
and the “differentials” ds  and  dxµ are not really quantities at all. What form does this 
equation take in SDG? Notice that the “differentials” cannot be taken as nilsquare 
infinitesimals since all the squared terms would vanish. But the equation does have a 
very natural form in terms of nilsquare infinitesimals. Here is an informal way of 
obtaining it. 
 We think of the dxµ as being multiples kµe of some small quantity e. Then (*) 
becomes  
 

ds2  =  e2Σgµνkµkν, 
 

so that  
ds  =  e[Σgµνkµkν]2 

 
 
Now replace e by a nilsquare infinitesimal ε. Then we obtain the metric relation in SDG: 
 

ds  =  ε[Σgµνkµkν]2. 
 

This tells us that the “infinitesimal distance” ds between a point P  with 
coordinates (x1, x2, x3, x4) and an infinitesimally near point Q with coordinates (x1 + k1ε, 
x2 + k2ε, x3 + k3ε, x4 + k4ε) is ε[Σgµνkµkν]2. Here a curious situation arises. For when the 
“infinitesimal interval” ds between P and Q is timelike (or lightlike), the quantity Σgµνkµkν 
is nonnegative, so that its square root is a real number. In this case ds may be written 
as εd, where d is a real number. On the other hand, if ds is spacelike, then Σgµνkµkν is 
negative, so that its square root is imaginary. In this case, then, ds assumes the form 
iεd, where d is a real number (and, of course   i = 1− ). On comparing these we see 
that, if we take ε as the “infinitesimal unit” for measuring infinitesimal timelike 
distances, then iε serves as the “imaginary infinitesimal unit” for measuring 
infinitesimal spacelike distances.  

For purposes of illustration, let us restrict the spacetime to two dimensions (x, 
t), and assume that the metric takes the simple form ds5 = dt5 – dx5. The infinitesimal 
light cone at a point P divides the infinitesimal neighbourhood  at P  into  a  timelike  
region T and a spacelike  region  S, 
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bounded by  the  null  lines l and l′ respectively. If we take P as origin of coordinates, a 
typical point Q in this neighbourhood will have coordinates (aε, bε) with a and b real 
numbers: if |b| > |a|, Q lies in T; if a = b, P lies on l or l′; if |a| < |b|, P lies in S. If we 
write d = |a5n b5|2, then in the first case, the infinitesimal distance between P and Q is 
εd, in the second, it is 0, and in the third it is iεd. 

Minkowski introduced “ict” to replace the “t” coordinate so as to make the metric 
of relativistic spacetime positive definite. This was, despite its daring, purely a matter of 
formal convenience, and was later rejected by (general) relativists (see, for example Box 
2.1, Farewell to “ict”, of Misner, Thorne and Wheeler Gravitation [1973]). In conventional 
physics one never works with nilpotent quantities so it is always possible to replace 
formal imaginaries by their (negative) squares. But spacetime theory in SDG forces one 
to use imaginary units, since, infinitesimally, one can’t “square oneself out of trouble”. 
This being the case, it would seem that, infinitesimally, Wheeler et al.’s dictum needs to 
be replaced by 

 
Vale “ic(t)”, ave “iε” !  

 
To quote once again from Misner, Thorne and Wheeler's massive work,   

 
Another danger in curved spacetime is the temptation to regard ... the tangent 
space as lying in spacetime itself. This practice can be useful for heuristic 
purposes, but is incompatible with complete mathematical precision.  

 
The consistency of synthetic differential geometry shows that, on the contrary, yielding 
to this temptation is compatible with complete mathematical precision: there tangent 
spaces may indeed be regarded as lying in spacetime itself. If (as Hilbert said) set theory 
is "Cantor's paradise" then I would submit that SDG is nothing less than "Riemann's 
paradise"! 


