
k-Shortest Path: Average-Case Analysis and

Practical Improvements

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich 12

der Johann Wolfgang Goethe – Universität

in Frankfurt am Main

von

Alexander Schickedanz

aus Offenbach am Main

Frankfurt (2023)

(D 30)

vom Fachbereich 12 der

Johann Wolfgang Goethe – Universität als Dissertation angenommen.

Dekan: Prof. Dr. M. Möller

Gutachter: Prof. Dr. U. Meyer, Asst. Prof. Dr. D. Ajwani

Datum der Disputation: 06.10.2023

Creative Commons - CC BY-NC - Namensnennung - Nicht kommerziell 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/

Acknowledgements

First and foremost, I would like to thank my advisor, Ulrich Meyer. He not only guided

and supported me during the whole process, he also introduced me to Deepak Ajwani.

Deepak Ajwani in turn I am extremely grateful for bringing me into k-shortest path

and supporting me on the way. This endeavor would not have been possible without

both of them.

I am also sincerely grateful to Manuel Penschuck for the many valuable discussions

over the years – both scientific and private – as well as the helpful feedback for this

thesis. Special thanks goes to my close friends Kathrin Lehmer, Jonathan Weinberger,

and Katharina Beck for proofreading my thesis and tolerating my lack of time.

During the past six years I had the pleasure of working with the great people of the

“third floor” especially Mario Holldack, Hannes Seiwert, Hung Tran, David Hammer,

and Claudia Gressler. It was a fantastic and exciting time.

Last but not least, I am grateful to my family and friends for their support and

encouragement all along.

Alexander Schickedanz

October 18, 2023

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG)

under grant ME 2088/4-2.

Deutsche Zusammenfassung

Das Kürzeste-Wege-Problem ist eines der klassischen und fundamentalen Probleme in

der theoretischen Informatik. Eine Verallgemeinerung ist das sogenannte k-Kürzeste-

Wege-Problem. Dabei werden in einem Graphen G mit n Knoten undm Kanten die k

kürzesten Wege zwischen zwei Knoten s und t in nicht-absteigender Reihenfolge nach

der Gesamtlänge gesucht. Wir beschäftigen uns ausschließlich mit der Auf englisch “loopless”

oder “simple” genannt.

Variante des

k-Kürzeste-Wege-Problems, in der nur kreisfreie Wege betrachtet werden, d. h. kein

Knoten auf einem solchen Weg darf mehrfach besucht werden.

Das k-Kürzeste-Wege-Problem taucht in vielen Anwendungen auf wie z. B. Routing

in verschiedenen Netzwerken [38, 36, 78, 6, 64, 34, 61] und vielfältigen anderen Opti-

mierungsproblemen wie z. B. die Konstruktion virtueller Netzwerke [69], Chip-Layout

Optimierung [37, 71], Optimierung von Gruppentestungen [7] und Optimierung von

Datenbankanfragen [68].

Einer der bekanntesten k-Kürzeste-Wege-Algorithmen Yens Algorithmus:

R Abschnitt 3.2.1

ist Yens Algorithmus [76].

Ausgehend vom i-ten kürzesten Weg Pi, wird für jeden Knoten auf dem Weg eine kür-

zeste Verzweigung berechnet und diese in einer Liste von Kandidaten gespeichert. Eine

Verzweigung ist hier ebenfalls ein Weg von s nach t, der bis zum Verzweigungsknoten

mit dem Weg, von dem er abzweigt, übereinstimmt. Vom Verzweigungsknoten aus wird

dann eine andere Kante verwendet als im ursprünglichen Weg Pi. Für den restlichen

Verlauf der Verzweigung gibt es keine weiteren Einschränkungen, d. h. die Verzweigung

kann im Anschluss wieder Kanten verwenden, die bereits in Pi verwendet wurden,

solange die Verzweigung kreisfrei bleibt. Der i+1 kürzeste Weg wird dann aus der Liste

von Kandidaten ausgewählt, die sowohl die neuen Kandidaten des i-ten Wegs als auch

die übrigen Kandidaten aus den ersten i− 1 kürzesten Wege enthält. Yens Algorithmus

kommt auf eine Worst-Case-Komplexität von O(kn · spc(n,m)), wobei spc(n,m) die

Laufzeit des verwendeten Kürzeste-Wege-Algorithmus ist. Die Komplexität ergibt sich

daraus, dass für jeden Knoten auf jedem der kWege eine Verzweigung berechnet werden

muss und schlimmstenfalls jeder Weg Θ(n) Knoten hat.

Seit Yen seinen Algorithmus 1971 vorgestellt hat, wurden viele Detailverbesserungen

und Heuristiken [57, 47, 46, 63, 25, 74] entwickelt, um den Algorithmus in der Praxis

zu beschleunigen. Eine der neusten Verbesserungen ist Fengs Algorithmus [24]. Feng

Fengs Algorithmus:

R Abschnitt 3.2.2

unterteilt die Knoten im Graph in drei Kategorien:

• Rote Knoten: Knoten, die eine Verzweigung nicht besuchen darf, da sonst ein

Kreis geschlossen wird.

• Gelbe Knoten: Kürzeste Wege müssen

nicht eindeutig sein. Im

Baum kürzester Wege wird

durch die SSSP

Implementierung beliebig

einer ausgewählt.

Knoten, deren kürzester Weg zum Zielknoten durch einen roten

Knoten führt.

• Grüne Knoten: Alle übrigen Knoten.

Feng hat weiter gezeigt, dass kürzeste Verzweigungen zunächst nur aus roten, dann

nur aus gelben und zum Schluss nur aus grünen Knoten bestehen. Dank dieser Ei-

genschaft muss man den grünen Teil der Verzweigung nicht durch einen Kürzeste-

Wege-Algorithmus berechnen lassen. Stattdessen kann man diesen aus einem einmalig

Zusammenfassung

vorberechneten Baum kürzester Wege abfragen. Feng ersetzt also alle Kanten zu grünen

Knoten durch sog. Expresskanten, die direkt zum Zielknoten führen. Die Kürzeste-Wege-

Berechnung lässt sich so auf die Menge der gelben Knoten einschränken. Außerdem

kann die Kürzeste-Wege-Berechnung komplett übersprungen werden, wenn der nächste

Nachbar des Verzweigungsknotens ein grüner Knoten ist. Zusätzlich berechnet Fengs

Algorithmus eine neue Kantengewichtsfunktion, welche die Kürzeste-Wege-Berechnung

Richtung Zielknoten begünstigt, während alle Wege zwischen Start und Zielknoten

ihre relative Länge zueinander behalten. Fengs Algorithmus liefert in der Praxis bessere

Laufzeiten als Yens Algorithmus, führt aber leider nicht zu einer Verbesserung der

Worst-Case-Komplexität.

Unser Beitrag

In Kapitel 4Average-Case Analyse:

R Kapitel 4

analysieren wir deshalb die Average-Case-Komplexität, da diese die in

der Praxis zu beobachtenden Laufzeiten oftmals besser widerspiegelt als die Worst-

Case-Komplexität. Wir zeigen in den Sätzen 4.5 und 4.7 die Average-Case-Komplexität

von Yens Algorithmus, sowie in Satz 4.9 die Average-Case-Komplexität von Fengs

Algorithmus.

Zusätzlich zur Average-Case AnalyseVerbesserte Heuristiken

und empirische Vergleiche:

R Kapitel 5

schlagen wir auch praktische Verbesserungen

an den Heuristiken vor, welche wir in Kapitel 5 ausführlich beschreiben und auf diversen

Graphklassen verschiedener Größen empirisch vergleichen. Dabei zeigen wir, dass

unsere neuen Heuristiken, vor allem das erweiterte Überspringen von Kürzesten-Wege-

Berechnungen, die Laufzeiten deutlich verringern können.

Zuletzt beleuchtenParallelisierung der

k-shortest path

Algorithmen:

R Kapitel 6

wir zwei Strategien zur Parallelisierung von Yens und Fengs

Algorithmen auf Multicore Systemen und vergleichen diese in Kapitel 6.

Average-Case Analyse

Wir zeigen in Theorem 4.5, dass Yens Algorithmus auf G(n, p) Zufallsgraphen [30] mit

wenigstens logarithmischem Durchschnittsgrad und zufälligen KantengewichtenDie Kantengewichte

müssen einer

Zufallsverteilung folgen,

die zum einen nur

nicht-negative Werte

annehmen kann und zum

anderen eine positive

Dichte im Wert Null hat

(siehe Annahmen (A1) und

(A2) auf Seite 31).

mit

hoher Wahrscheinlichkeit in O(k · log(n) · spc(n,m)) Zeit läuft. Der Beweis nutzt aus,

dass kürzeste Wege in Zufallsgraphen mit hoher Wahrscheinlichkeit zwei Eigenschaften

haben. Einerseits ist ihre Länge nach oben beschränkt, andererseits haben kurze Wege

nur wenige Kanten. Wir zeigen dann, dass es wenigstens Ω(n) Wege von s nach t

gibt, deren Länge in der gleichen Größenordnung wie die des kürzesten Wegs liegen.

Auch wenn die im Beweis konstruierten Wege nicht unbedingt die k kürzesten sind,

beschränken sie doch deren Länge. Die k kürzesten Wege sind also kurz genug, dass

sie mit hoher Wahrscheinlichkeit maximal logarithmisch viele Kanten haben. Da Yens

Algorithmus für jeden Knoten einen neuen Kandidaten berechnen muss, folgt daraus

eine Average-Case-Komplexität von O(k · log(n) · spc(n,m)).

Auf Zufallsgraphen mit einem kleineren Durchschnittsgrad α = o(log n) und uni-

form verteilten Kantengewichten über [0; 1] zeigen wir in Theorem 4.7 eine etwas

schwächere Schranke für die Average-Case-Komplexität von Yens Algorithmus. Da

der Graph insgesamt deutlich weniger Kanten hat, haben die Pfade mit hoher Wahr-

VIII

scheinlichkeit einen Faktor O
(︂
logn
α

)︂
mehr Kanten. Dies schlägt sich direkt in der

Average-Case-Komplexität von O
(︂
k · log2 nα · spc(n,m)

)︂
nieder. Der Beweis ist analog

zum Beweis für Theorem 4.5.

Die Average-Case-Komplexität für Yens Algorithmus gilt auch für Fengs Algorith-

mus, da Fengs Algorithmus im Wesentlichen eine Heuristik für Yens Algorithmus ist.

Auf ungewichteten

Graphen berechnet die

Breitensuche die kürzesten

Wege von einem

Startknoten zu allen

anderen Knoten.

Im Falle von ungewichteten Graphen zeigen wir jedoch in Theorem 4.9 sogar eine

verbesserte Average-Case-Komplexität von O(k · spc(n,m)) solange k eine Konstante

ist. Dafür argumentieren wir, dass die Größe des Teilgraphen, auf dem die kürzeste

Verzweigung berechnet wird, exponentiell wächst und in Folge die Gesamtkomplexität

zur Berechnung all dieser kürzesten Wege nur linear in der Größe der Gesamteingabe

ist. Da wir in diesem Fall ungewichtete Graphen mit einem Durchschnittsgrad von

Ω(log n) voraussetzen, analysieren wir die Struktur des Baums der Analyse des Baums der

Breitensuche:

R Lemma 4.12

Breitensuche. Wir

beweisen, dass alle Teilbäume, die an Knoten einer bestimmten Ebene hängen, mit hoher

Wahrscheinlichkeit etwa gleich viele Knoten beinhalten bis auf einen Faktor der vom

Durchschnittsgrad abhängt.

Wir konnten experimentell demonstrieren, dass die Teilgraphen aus gelben Knoten

auch im Falle von gewichteten Graphen exponentiell wachsen. Die Ergebnisse legen also

nahe, dass Theorem 4.9 auch für gewichtete Graphen gilt. Der mathematische Beweis

ist jedoch noch offen.

Unsere Verbesserte Heuristiken

Die von Feng vorgestellten Optimierungen basieren auf der von ihm beschriebenen

Knotenfärbung. Die Berechnung der Knotenfärbung benötigt O(n+m) Zeit und O(n)
Speicher. Wir zeigen in Kapitel 5, dass die Optimierungen auch angewandt werden

können, ohne die Knotenfärbung explizit zu berechnen.

• Verwendet man einen Kürzeste-Wege-Algorithmus, der die Berechnung stoppt,

sobald der kürzeste Weg zum Zielknoten gefunden ist, z. B. Dijkstras Algorith-

mus, in Kombination mit der Kantengewichtsfunktion, die Feng beschrieben hat,

besucht der Kürzeste-Wege-Algorithmus eine ähnliche Anzahl Knoten, als wäre

er auf die gelben Knoten eingeschränkt. Insbesondere zeigen wir, dass im Median

nur wenige hundert Knoten erkundet werden.

• Feng zeigt, wie man Kürzeste-Wege-Berechnungen überspringen kann, Der nächste Nachbar muss

nicht eindeutig sein. Falls

es mehrere Nachbarn mit

gleicher Distanz gibt,

betrachtet Fengs

Algorithmus einen

beliebigen, abhängig von

der Implementierung.

wenn der

nächste Nachbar des Verzweigungsknotens grün ist. Wenn die Knotenfärbung

vorab nicht berechnet wurde, kann dennoch von einem einmalig vorberechneten

Baum kürzester Wege den kürzesten Weg zum Zielknoten betrachtet werden.

Falls dieser Weg keinen Kreis schließt, wäre der Knoten grün gefärbt worden und

die Berechnung kann übersprungen werden.

Ob die Verzweigung kreisfrei ist, kann in ZeitO(x log x) überprüft werden, wobei
x die Anzahl der Knoten ist, die die Verzweigung besucht. Dieser Zeitaufwand

steht in Konkurrenz zu der Zeit, die für die Knotenfärbung benötigt wird. Insbe-

IX

Zusammenfassung

sondere wenn die Verzweigungen nur wenige Knoten umfassen, kann es schneller

sein, auf Kreisfreiheit zu prüfen, als die Knotenfärbung zu berechnen.

WirDie Heuristiken, mit denen

Kürzeste-Wege-

Berechnungen

übersprungen werden,

setzen immer einen

vorberechneten Baum aller

kürzesten Wege zum

Zielknoten voraus. Eine

kürzeste Verzweigung lässt

sich so in konstanter Zeit

abfragen. Auch hier gilt,

dass die kürzesten Wege

nicht eindeutig sein

müssen und im Falle

mehrere kürzeste Wege

zwischen zwei Knoten ein

beliebiger durch die

Implementierung

ausgewählt wird.

erweitern außerdem die Heuristik, Kürzeste-Wege-Berechnungen zu übersprin-

gen, auf zwei Arten:

• Sowohl Yens als auch Fengs Algorithmus pflegen eine Liste mit Kandidaten für

die k kürzesten Wege. Sobald die Liste k Kandidaten enthält, kann die Länge des

längste Kandidatenpfads dazu verwendet werden, Kürzeste-Wege-Berechnungen

zu überspringen. Wenn die kürzeste Verzweigung zwar nicht kreisfrei, aber dafür

länger als der längste Kandidat in der Liste ist, ist auch die kürzeste kreisfreie

Verzweigung bereits zu lang, um als Kandidat in Frage zu kommen.

• Das Überspringen Kürzester-Wege-Berechnungen lässt sich in beiden Fällen, kreis-

freie Verzweigungen und zu lange Verzweigungen, von der kürzesten Verzweigung

auf die zweit kürzeste Verzweigung verallgemeinern. Dazu muss zunächst die

kürzeste Verzweigung berechnet werden. Für jeden Knoten dieser Verzweigung

muss dann eine weitere berechnet werden.

Alle diese Verzweigungen können wieder von einem Baum kürzester Wege be-

zogen werden. Die Anzahl der Verzweigungen hängt jedoch von der Anzahl der

Knoten auf der kürzesten Verzweigung ab.

Prinzipiell lässt sich das Verfahren auch auf die i-kürzeste Verzweigung verallge-

meinern. Allerdings wird der Aufwand für die Berechnung zunehmend größer,

während die Erfolgschancen kleiner werden, wie unsere Experimente nahe legen.

Es ergeben sich so insgesamt 14 Varianten von Yens und Fengs Algorithmus mit

verschiedenen Kombinationen von Optimierungen, die wir in Kapitel 5 miteinander

vergleichen. Dazu haben wir alle Algorithmen in C++ implementiert. Der Code ist unter

der Open Source Lizenz GPLv3 auf GitHub
1
verfügbar. Wir vergleichen die Algorithmen

auf G(n, p) Zufallsgraphen mit konstantem und logarithmischem Durchschnittsgrad

sowie auf Grid-Graphen jeweils in verschiedenen Größen von einer Millionen bis hin zu

256 Millionen Knoten. Die Kantengewichte sind in allen Fällen unabhängig und uniform

über dem Intervall [0; 1] verteilt.

Zunächst stellen wir fest, dass auf G(n, p) Zufallsgraphen zwischen 96 % und 100 %

aller Kürzeste-Wege-Berechnungen übersprungen werden können, während es auf Grid-

Graphen immer noch mehr als 94 % im Median sind. Etwa 90% der übersprungenen

Berechnungen auf G(n, p) Graphen lassen sich auf kreisfreie kürzeste Verzweigungen

zurückführen.Weitere 5 % bis 7 % könnenmit Hilfe der Länge der kürzesten Verzweigung

übersprungen werden. Auf die zweitkürzeste Verzweigung entfallen nur noch etwa 0,5 %.

Vergleicht man die Laufzeiten, ergibt sich folgendes Bild:Tabelle aller Algorithmen

und deren Features:

R Tabelle 5.1

Auf G(n, p) Graphen mit

konstantem Durchschnittsgrad und uniform verteilten Kantengewichten über [0; 1] sind

die Algorithmen Yen-gs-l und Yen-gs2-l um etwa einen Faktor fünf schneller als Fengs

Algorithmus. Dabei verwendet Yen-gs-l alle Optimierungen von Fengs Algorithmus,

1

https://doi.org/10.5281/zenodo.7713239

X

https://doi.org/10.5281/zenodo.7713239

jedoch ohne die Knotenfärbung zu berechnen. Zusätzlich überspringt Yen-gs-l Kürzeste-

Wege-Berechnungen, wenn die kürzeste Verzweigung bereits zu lang ist. Yen-gs2-l

überspringt zusätzlich Kürzeste-Wege-Berechnungen sollte die zweitkürzeste Verzwei-

gung kreisfrei oder zu lang sein.

Auf G(n, p) Graphen mit logarithmischem Durchschnittsgrad sind Yen-gs-l und

Yen-gs2-l ebenfalls schneller als Fengs Algorithmus jedoch mit kleinerem Abstand.

Das gleiche Verhalten sieht man auch auf Grid-Graphen. Hier sind Yen-gs-l und

Yen-gs2-l sogar um einen Faktor 40 schneller als Fengs Algorithmus. Jedoch lässt

sich hier auch Fengs Algorithmus selbst um einen Faktor von bis zu 13 beschleuni-

gen, wenn Kürzeste-Wege-Berechnungen auch bei zu langen kürzesten Verzweigungen

übersprungen werden.

Ergänzend vergleichen wir die Algorithmen auf dem Graph des sozialen Netzwerks

Orkut und dem europäischen Straßennetz miteinander. Da der Orkutgraph im original

ungewichtet ist, haben wir zusätzlich fünf verschiedene Gewichtsfunktionen verwendet.

Auf allen außer dem ungewichteten Graph zeigt sich, dass Algorithmen, die Kürzeste-

Wege-Berechnungen anhand der Verzweigungslängen überspringen, schneller laufen als

das jeweilige Pendant ohne diese Heuristik. Anders als auf den synthetischen Graphen

zeigt sich aber auf dem Orkutgraph, dass vor allem bei Gewichtsfunktionen, die längere

Gewichtsfunktionen, die

längere kürzeste Wege

erzwingen sind z.B. solche

die Kanten zu Knoten mit

hohem Grad ein besonders

hohes Gewicht zuordnen.

Insbesondere sind solche

gewichte nicht mehr

uniform auf [0; 1] verteilt.

kürzeste Wege erzwingen, Varianten von Fengs Algorithmus schneller laufen als die

von Yens Algorithmus. Auf dem europäischen Straßennetz ist Yen-gs2-l zwischen vier

und acht mal schneller als Fengs Algorithmus. Ähnlich wie auf dem Orkutnetzwerk, ist

auf den synthetischen Graphen Feng-gs2-l bis zu doppelt so schnell wie Yen-gs2-l und

somit etwa um einen Faktor 16 schneller als Fengs Algorithmus. Feng-gs2-l verwendet

die gleichen Optimierungen wie Yen-gs2-l, berechnet aber zusätzlich die Knotenfär-

bung, welche sowohl das Überspringen von Kürzeste-Wege-Berechnungen als auch

ausgeführte Kürzeste-Wege-Berechnungen beschleunigen kann. Das gleiche Verhalten

sehen wir auch, wenn als Kantengewichte statt der Distanz die Fahrzeit verwendet wird.

Hier sind die Unterschiede in den Laufzeiten sogar noch etwas größer.

Parallelisierung von Yens und Fengs Algorithmus

Abschließend beschreiben wir in Kapitel 6 zwei Möglichkeiten, Yens und Fengs Algo-

rithmus zu parallelisieren.

• Da alle Verzweigungen vom i-ten kürzesten Weg unabhängig voneinander be-

rechnet werden können, ist eine parallele Berechnung dieser möglich. Diese Form

der Parallelisierung ist nur erfolgreich, wenn für hinreichend viele Verzweigun-

gen die Kürzeste-Wege-Berechnung nicht übersprungen wird. Wir haben bereits

gezeigt, dass je nach Graphklasse mehr als 94 % der Kürzeste-Wege-Berechnungen

übersprungen werden können. Da in G(n, p) Graphen kürzeste Wege mit hoher

Wahrscheinlichkeit nur logarithmisch viele Kanten haben, bleiben nur einzelne

Berechnungen übrig, weshalb wir hier keine Beschleunigung durch die Paralleli-

sierung beobachten können. In Grid-Graphen haben kürzeste Wege mit hoher

Wahrscheinlichkeit Θ(
√
n) viele Kanten, d. h. es bleiben genug Verzweigungen

XI

Zusammenfassung

übrig, für die eine Kürzeste-Wege-Berechnung ausgeführt werden muss, was sich

entsprechend in den Laufzeiten widerspiegelt. Fengs Algorithmus lässt sich so

mit 16 Threads um einen Faktor von acht beschleunigen. Yen-gs2-l lässt sich mit

vier Threads um einen Faktor von zwei beschleunigen. Dies steigt jedoch auch

bei 16 Threads nicht über einen Faktor von 3, da deutlich mehr Kürzeste-Wege-

Berechnungen übersprungen werden als bei Fengs Algorithmus.

• Eine andere Variante besteht darin, einen parallelen Kürzeste-Wege-Algorithmus

wie z. B.∆-Stepping [51] zu verwenden. Auf allen von uns untersuchten Graphen,

wurden jedoch nur wenige hundert Knoten bei der Kürzeste-Wege-Berechnung

erkundet, weshalb wir hier keine Beschleunigung durch Parallelisierung demon-

strieren konnten.

• Prinzipiell lassen sich die beiden Varianten, parallele Verzweigungen und parallele

Kürzeste-Wege-Algorithmen, auch gleichzeitig verwenden. Dies lohnt sich jedoch

nur, wenn zum einen jede Variante einzeln eine Beschleunigung bewirkt und zum

anderen das eingesetzte System mehr Prozessorkerne hat, als von einer Variante

alleine ausgenutzt werden können.

Insgesamt konnten wir demonstrieren, dass das parallele Berechnen von Verzwei-

gungen prinzipiell funktioniert, jedoch sind die Optimierungen aus Kapitel 5 bereits so

gut, dass nur wenig parallelisierbare Berechnungen übrig bleiben. Sollten die Heuristi-

ken auf einer speziellen Eingabe weniger gut funktionieren, profitiert man stärker von

einer Parallelisierung, wie unsere Experimente zeigen.

XII

Abstract

The single-source shortest-path problem is a fundamental problem in computer science.

We consider a generalization of the shortest-path problem, the k-shortest path problem.

Let G be a directed edge-weighted graph with n nodes and m edges and s, t be two

fixed nodes. The goal is to compute k paths P1, . . . , Pk between two fixed nodes s and

t in non-decreasing order of their length such that all other paths between s and t are at

least as long as the kth path Pk . We focus on the version of the k-shortest path problem

where the paths are not allowed to visit nodes multiple times, sometime referred to as

k-shortest simple path problem.

The probably best known k-shortest path algorithm is Yen’s algorithm [76]. Yen’s algorithm:

R Section 3.2.1

It has a

worst-case time complexity
2
of O(kn · spc(n,m)), where spc(n,m) is the complexity

of the single-source shortest-path algorithm used as a subroutine. In case of Dijkstra’s

algorithm spc(n,m) is O(m+ n log n). One of the more recent improvements of Yen’s

algorithm is by Feng [24]. Feng’s algorithm:

R Section 3.2.2

Even though Feng’s algorithm is much faster in practice, it

has the same worst-case complexity as Yen’s algorithm.

The main results presented in this thesis are upper bounds on the average-case of

Yen’s and Feng’s algorithm, as well as practical improvements and a parallel implementa-

tion of Yen’s and Feng’s algorithms including these improvements. The implementation

is publicly available under GPLv3 open source license
3
.

We Average-case results:

R Theorems 4.5, 4.7,

and 4.9

show in our analysis that Yen’s algorithm has an average-case complexity of

O(k log(n) · spc(n,m)) on G(n, p) graphs with at least logarithmic average-degree

and random edge weights following a distribution with certain properties. On G(n, p)
graphs with constant to logarithmic average-degree and uniform Details about the

assumptions on the weight

distributions can be found

on page 31.

random edge-weights

over [0; 1], we show an average-case complexity of O
(︂
k · log2 nnp · spc(n,m)

)︂
. Feng’s al-

gorithm has an even better average-case complexity ofO(k · spc(n,m)) on unweighted

G(n, p) graphs with logarithmic average-degree and for constant values of k. We further

provide evidence that the same holds true for G(n, p) graphs with uniform random

edge-weights over [0; 1].

On the practical side, we suggest Sequential improvements:

R Chapter 5

new heuristics to prune even more single-source

shortest-path computations than Feng’s algorithm and evaluate all presented algorithms

on G(n, p) and Grid graphs with up to 256 million nodes. We demonstrate speedups by

a factor of up to 40 compared to Feng’s algorithm.

Finally we discuss two ways to parallelize Parallelizations of Yen’s

and Feng’s algorithm:

R Chapter 6

the suggested algorithms and evaluate

them on grid graphs showing speedups by a factor of 2 using 4 threads and by a factor

of up to 8 using 16 threads, respectively.

2

In our context, time complexity refers to the unit-cost RAM model.

3

https://doi.org/10.5281/zenodo.7713239

https://doi.org/10.5281/zenodo.7713239

Table of contents

Contents

1 Introduction 1
1.1 Applications . 1

1.2 Related Work . 2

1.3 Outline . 4

2 Preliminaries 7
2.1 Graphs . 7

2.2 Breadth First Search and Depth First Search 8

2.3 Single-Source Shortest-Path Algorithms 8

2.4 Probabilistic Preliminaries . 11

3 The k-Shortest Path Problem 13
3.1 General Notation . 13

3.2 Deviation Based k-Shortest Path Algorithms for Directed Graphs . . . 14

4 Average-Case Analysis of k-Shortest Path Algorithms 31
4.1 Graph Model and Assumptions . 31

4.2 Recap of Results on Short Path Properties 32

4.3 Average-Case Analysis of Yen’s Algorithm 34

4.4 Average-Case Analysis of Feng’s Algorithm 37

5 Comparison of Sequential k-Shortest Path Algorithms 49
5.1 Stop SSSP Computations as Early as Possible 50

5.2 Skipping SSSP Computations . 53

5.3 Implementation Details and Minor Optimizations 62

5.4 Experimental Performance Comparison 64

6 Empirical Comparison
of k-Shortest Path Algorithms on Multicores 73
6.1 Parallelization Strategies . 73

6.2 Implementation Details on Parallelization 74

6.3 Experimental Setup . 76

6.4 Experimental Results . 77

7 Conclusion 79
7.1 Summary . 79

7.2 Future Work and Open Questions . 80

A Appendix 83
A.1 List of Notations . 83

A.2 Experiments . 84

Bibliography 87

XV

1Introduction

Computing shortest paths between two nodes in a graph with n nodes and m edges is

one of the most fundamental optimization problems which appears in many applications.

In this thesis, we consider a generalization of the shortest path problem, the k-shortest

path problem, k-SP for short, where the goal is to compute k paths P1, . . . , Pk between

two fixed nodes s and t in non-decreasing order of their length such that all other paths

between s and t are at least as long as the kth path Pk. The k-shortest path problem

comes in two variants:

• Allowing loops, meaning that a path can visit a node multiple times.

• Disallowing loops. We call paths without loops loopless or simple.

We only consider the loopless variant of the k-shortest path problem in this thesis,

which is why we do not explicitly mention that the loopless variant is meant in later

chapters. We further focus on the k-shortest simple path problem on directed graphs

with edge-weights.

The length of these paths or the number of short paths can reveal deeper semantic

insights into the relationship between nodes and the underlying graph structure. As

such, the k-shortest path problem appears as a subproblem in many applications like link

prediction and recommendation systems. In settings with ill-defined or hard-to-optimize

constraints, one approach can be to compute several paths and choose a valid option

among them based on other criteria by another algorithm or even by a human expert.

1.1 Applications

An obvious application for k-shortest path is to find alternative paths in networks. The

k-shortest path problem appears in optical mesh network routing to optimize the traffic

throughput [38], in telecommunication network routing used in a learning algorithm

to improve the quality of service [36], routing in jellyfish topology networks, used

in compute clusters, with HPC workloads [78, 6]. It can also be found in concurrent

entanglement routing in quantum networks [64], and in evacuation routing to optimize

police resource allocation [34]. However, without further restrictions, k-shortest path

is usually not suitable to find multiple alternative paths on a road network. The k

shortest paths will most likely overlap by a lot and thus will probably not be considered

true alternative paths by a user. For this kind of application, one can look, e.g., at the

k-shortest path problem with limited overlap [14]. Another option is to compute the

Introduction

k-shortest path for a bigger k and filter paths using a similarity measure, as it is done in

[61] for stochastic routing optimized for autonomous driving.

Yet another application of k-shortest path concerns link predictions [4, 43] in net-

works with small diameters where most nodes are connected via short paths and so the

number of short paths between two nodes seems to be more relevant than the actual

length.

It has further use-cases in creating virtual networks while keeping the underlying

physical networks robust [69].

In computational linguistics, k-shortest path can be used for summary generation

and multi-sentence compression [26, 8]. Here multiple shortest-paths in a word-graph

are generated and filtered for certain properties.

In bioinformatics, it can be used to infer regulatory paths in gene networks [65],

to identify causal relations between genes. For gene recognition, it can be used in a

learning algorithm to predict gene structure [15].

In computer vision, k-shortest path can be used for multi-object tracking, e.g., to

track multiple players in sports analysis [44].

There are also applications of k-shortest path algorithms in chip design to optimize

wire length and pin-count on electrowetting-on-dielectric chips [37] and for full-chip

static electrostatic discharge verification [71], for predicting chemical reactions in solid-

state materials [48], in optimal group testing [7], in ranked enumeration of conjunctive

database queries [68], and many more.

While some of these applications require the variant of k-shortest path allowing cy-

cles, other applications require the loopless variant. Some machine learning applications

may benefit from both the variants as different features.

1.2 Related Work

In this thesis,Average-case analysis:

R Chapter 4

we focus on the loopless version of the k-shortest path problem introduced

by Clarke et al. [17] in 1963. More precisely, we focus on an analysis of the average-case

complexityPractical improvements:

R Chapter 5

of an exact algorithm by Yen [76], a more recent optimization of it by Feng

[24], as well as further practical improvements and parallelizations.

From an asymptoticParallelization:

R Chapter 6

worst-case complexity perspective the best algorithm for the

directed edge-weighted case is by Gotthilf and Lewenstein [31]. It achieves a worst-case

complexity of O(kn(m+ n log logn)) by solving the replacement path problem
1 O(k)

times on a graph with n nodes andm edges. Yet, as noted by Feng [24], the algorithm

does not seem to be practical. For directed unweighted graphs, Roditty and Zwick [59]

proved an upper bound of Õ(km√n)Õ is similar to O notation

but also ignores

logarithmic factors.

using a Monte Carlo algorithm, a randomized

algorithm allowing for a small probability to have an incorrect output.

Williams and Williams [75] showed that of a list of graph problems either all have

algorithms running in O
(︁
n3−ε

)︁
for a ε > 0, or none of them has. This list of graph

problems includes the all-pairs shortest paths problem as well as the replacement

1

Given a shortest path from s to t the replacement path problem asks for each edge e on that path for a

shortest s–t-path that avoids the edge e.

2

Related Work

path problem and the second-shortest path problem on edge-weighted directed graphs.

Agarwal and Ramachandran [2] showed a similar result for the sparse cases of a list of

graph problems including the replacement path problem and the second-shortest path

problem on directed edge-weighted graphs suggesting that they cannot be solved in

polynomial less than Õ(nm) time. Lawler [42] proved that the k-shortest simple path

problem can be solved in O
(︁
kn3

)︁
on directed edge-weighted graphs even if there are

negative edge weights.

Yen’s algorithm runs inO(kn(m+ n log n)) time in the worst-case using Dijkstra’s

algorithm [19] with Fibonacci heaps [27] as a subroutine. Although we cannot expect

asymptotic worst-case improvements for sparse directed edge-weighted graphs due

to the results just mentioned, many practical improvements have been found in the

last years. For example, Perko [57] demonstrated how to efficiently implement Yen’s

algorithm for large values of k in terms of memory usage. Martins et al. [47] generalized

Yen’s algorithm for the constrained k-shortest simple path problem and later Martins

et al. [46] presented an improved implementation of Yen’s algorithm. Sedeño-Noda

[63], Feng [25], and Wen et al. [74] also worked on improving runtimes and memory

consumption of Yen’s algorithm for certain graph classes.

Hershberger et al. [35] presented an algorithm that uses a fast branching technique

reporting to be up to eight times faster than Yen’s algorithm. The fast branching can

fail to find the correct branch in which case a slower exhaustive subroutine had to be

used. Thus, the algorithm does not come with asymptotic improvements. Vanhove and

Fack [70] suggested a k-shortest path algorithm that uses a precomputed shortest-path

tree to avoid shortest path computations but in turn only finds an approximation of

the kth-shortest path. Feng [24] Feng’s algorithm:

R Section 3.2.2

proposed a node-classification heuristic to improve the

average-case runtimes of Yen’s algorithm by pruning the size of the graph for shortest

path computations and allowing to skip some shortest path computations completely.

Kurz and Mutzel [41] presented an algorithm Kurz and Mutzel used

random graphs from the

ninth DIMACS

implementation challenge

including G(n,m) graphs

with up to 10000 nodes

and grid graphs with up to

160000 nodes.

that is not based on Yen’s algorithm

and showed in experiments that their algorithm is faster than Feng’s algorithm by

about a factor of 8 to 25 depending on graph class and size. Until then Feng claimed to

have the fastest k-shortest simple path algorithm in practice. Chen et al. [12] recently

suggested a new k-shortest path algorithm that updates and maintains a shortest path

tree rooted at the target node claiming to be faster than the current state of the art

algorithm. They report to be about 500 times faster than Yen’s algorithm but there is no

comparison to Feng’s algorithm or the algorithm by Kurz and Mutzel. In Chapter 5, we

describe some variants of Yen’s and Feng’s algorithm with some practical improvements.

In our experiments on sparse graphs, we observe speedups by a factor of 40 to 500

compared to Yen’s algorithm and by a factor of 4 to 40 compared to Feng’s algorithm,

respectively. Unfortunately, we did not manage to include a direct comparison to the

algorithms of Kurz and Mutzel as well as Chen et al. A fair comparison between all the

recently suggested k-shortest path algorithms is a huge task on its own as we describe

in Chapter 7.

There are only a few papers on parallelizing k-shortest path algorithms. One recent

attempt of parallelizing Yen’s algorithm is by Singh and Singh [66] achieving a speedup

3

Introduction

by a factor of 6 compared to a sequential implementation. The parallelization utilizes

GPUs by Nvidia using Compute Unified Device Architecture (CUDA) mainly based on

a parallel version of Dijkstra’s algorithm. Another work by Yu et al. [77] focuses on

a distributed algorithm for the k-shortest path problem on graphs with dynamically

changing edge weights. We haveParallelization:

R Chapter 6

parallelized our proposed algorithms to work on

multi-core shared memory systems. In our experiments, we see a speedup of a factor

of two on four threads and up to a factor of eight using 16 threads on grid graphs

depending on the algorithm variant.

Using a parallel SSSP algorithm is a simple way to make use of parallelism in

most k-shortest path algorithms. We focus on the ∆-stepping∆-Stepping:

R Section 2.3.2

algorithm by Meyer and

Sanders [49]. Implementations of this algorithm have been found to be among the

fastest on massively parallel computing environments [45], GPUs [72], multicores [53],

and distributed architectures [32, 20, 56]. ∆-stepping manages edges in a list of buckets

of a fixed width controlled by the parameter∆. There is also a rather new algorithm

called radius-stepping by Blelloch et al. [11] which uses an adaptive bucket width. Since

radius-stepping also requires a preprocessing step that introduces new edges to the

graph, we do not consider it for our implementation.

For undirected weighted graphs, Katoh et al. [40] presented a k-shortest simple

path algorithmKIM algorithm:

R Section 3.2.4

with an asymptotic worst-case running time of O(k(m+ n log n))

which is by a factor of n faster than the best known algorithm for directed graphs.

Hadjiconstantinou and Christofides [33] show an efficient implementation of the KIM

algorithm on dense graphs.

Even thoughDistance oracles are

precomputed data

structures to answer

distance queries fast.

it is out of scope for this thesis, we want to mention that there is

also work on approximation algorithms for the k-shortest simple path problem [9, 28],

distance oracles for the replacement path problem [18, 10], all-pair k-shortest simple path

algorithms [1], the k-shortest path algorithms that allow for loops [21, 5, 4] including

parallel algorithms [60], and top-k temporal closenessTemporal closeness is a

measurement for the

relevance of a node in a

temporal network.

in temporal networks [55].

Finally, we want to mention the k-shortest hyperpath problem [54, 23] which can

be solved using an adapted version of Yen’s algorithm working on hypergraphs where

edges connect multiple source nodes to a single target node.

1.3 Outline

The thesis is organized as follows. First we briefly define all necessary preliminaries

in Chapter 2. Chapter 3 then contains all the basics about the k-shortest path problem

as well as the details on Yen’s algorithm, Feng’s algorithm and a short overview of the

KIM algorithm by Katoh et al. [40].Yen’s average-case

complexity:

R Theorem 4.5

Chapter 4 follows with a detailed average-case

time complexity analysis of Yen’s algorithm which also holds for Feng’s algorithm

showing an average-case time complexity of O(k log(n) · spc(n,m)) on directed edge-

weighted graphs with n nodes and m = Ω(n log n) edges. For sparse directed edge-

weighted G(n, p) graphs with m = Θ(n), we show an average-case time complexityFeng’s average-case

complexity:

R Theorem 4.9

of

O
(︂
k · log2 nnp · spc(n,m)

)︂
. In both cases spc(n,m) denotes the worst-case complexity

of the SSSP algorithm in use. We further prove an even better average-case complexity

4

Outline

of O(km) for Feng’s algorithm for a constant k on directed unweighted graphs. We

also provide evidence that the same result should hold on edge-weighted graphs as well.

Chapter 5 is about implementation details and practical improvements of Yen’s and

Feng’s algorithm which result in several new algorithm variants which are evaluated in

that chapter. The thesis then closes with Chapter 6 containing details on how we paral-

lelized the algorithms described in the previous chapters including some implementation

details and an empirical performance comparison.

The code of all variants of Yen’s and Feng’s algorithm listed in Table 5.1 is publicly

available on GitHub under an open source license at

https://doi.org/10.5281/zenodo.7713239

It is written in C++20 in a modular way such that SSSP algorithms and some data

structures can easily be replaced or extended in future experiments.

5

https://doi.org/10.5281/zenodo.7713239

2Preliminaries

2.1 Graphs

Let a graph G = (V,E) be a pair of two sets V and E ⊂ V × V . We interpret the

elements of V as nodes and the elements of E as edges. There are two major types of

graphs:

• Directed graphs. We denote edges (u, v) ∈ E as a pair.

• Undirected graphs. For each edge (u, v) ∈ E the edge (v, u) is also in E. We

denote undirected edges as a set {u, v} to indicate that edges in both directions

are present in the graph.

We mostly consider weighted graphs which are graphs with an additional edge-

weight function A table of notations can be

found in Appendix A.1.1

on page 83.

d(e) for each edge e ∈ E and we define d(e) :=∞ for all e /∈ E. On

undirected graphs d((u, v)) = d((v, u)) holds for all edges {u, v} ∈ E. This does not

have to be true on directed graphs even if both directions of an edge are present.

A path in a graph is a tuple of nodes P = (v1, . . . , vr), such that the edges

(vi, vi+1) ∈ E for all i = 1, . . . , r − 1 exist in the graph.

We extend the notation of edge-weights to the length of a path. In order to not

confuse the length of a path and the number of its hops, we will call the sum of a path’s

edge-weights the weight-length denoted by d(·)

d(P) = d(v1, . . . , vr) =

r−1∑︂
i=1

d(vi, vi+1)

with |P | := r and the number of its edges Especially when talking

about the number of edges

of a path, the edges are

sometimes called hops.

the hop-length denoted by d(·).
If the actual nodes on the shortest path are not relevant, we denote the shortest

path in terms of weight by u ‧‧➡ v and by u ↠ v for a shortest path in terms of hops.

In this context we denote a single edge as u→ v. Even though the shortest path has

not to be unambiguous, the shortest distance is well-defined in both cases. So we write

d
(︁
u ‧‧➡ v

)︁
for the weight-length of the shortest path in terms of weight and d

(︁
u ↠ v

)︁
for the hop-length of the shortest path in terms of hops from u to v. If there exists no

path from u to v in G, we define d
(︁
u ‧‧➡ v

)︁
:=∞ and d

(︁
u ↠ v

)︁
:=∞.

Following this notation, we denote the diameter of a graph with

Diam(G) := max
s,t∈V

{︁
d
(︁
s ‧‧➡ t

)︁}︁
and Diam(G) := max

s,t∈V

{︁
d
(︁
s ↠ t

)︁}︁

Preliminaries

in terms of edge-weights and hops, respectively.

Given two paths P1 = (u1, . . . , ur) and P2 = (v1, . . . , vr′), we denote the joined

path P by P1 ◦ P2 defined as follows.

P1 ◦ P2 :=

{︄
(u1, . . . , ur, v2, . . . , vr′) if ur = v1

(u1, . . . , ur, v1, . . . , vr′) if ur ̸= v1 and (ur, v1) ∈ E

2.2 Breadth First Search and Depth First Search

Breadth First Search, BFS for short, and Depth First Search, DFS for short, are two of the

most basic graph traversal algorithms. Being at a node u with neighbors v1, . . . , vk , BFS

first visits all neighbors of v1, . . . , vk before visiting their neighbors starting with the

neighbors of v1 and ending with the neighbors of vk . DFS visits first v1 and its neighbors

before visiting the other neighbors of u. The process recurses without revisiting nodes.

Algorithm 1 shows how to implement both BFS and DFS in a sequential way. The only

difference is that BFS uses a queue to organize the nodes to visit next while DFS uses

a stack. Note that the order of the neighbors is not defined by the algorithm and only

determined by their order in the adjacency list.

Both algorithms can be used to find all nodes in a graph that can be reached from a

given source node. If the particular order does not matter, DFS can be faster due to a

better cache locality of the stack, which is why we use DFS instead of BFS in Algorithm 4.

On an unweighted graph, BFS can be used as SSSP algorithm, since it visits the nodes

in order of non-decreasing hop-distance. Since both BFS and DFS have a worst-case

running time of O(n+m), BFS is preferred over a general SSSP algorithm like, e.g.,

Dijkstra’s algorithm.

Algorithm 1: Breadth First Search / Depth First Search

Input :Graph G = (V,E), edges are stored as adjacency lists, the start node u ∈ V .

1 visited[v]← false ∀ v ∈ V // initialize array of visited nodes

2 L← {u} // L is a queue for BFS and a stack for DFS

3 while L.isNotEmpty() do
4 v ← L.pop() // store the next element in v and remove it from L

5 if not visited[v] then // If v was not visited yet . . .

6 visited[v]← true // . . .mark it as visited and . . .

7 for w ∈ E[v] do // . . . store all its neighbors to visit in the future.

8 L.push(w)

2.3 Single-Source Shortest-Path Algorithms

The k-shortest path algorithms throughout this thesisk-shortest path algorithms:

R Chapter 3

have to compute many shortest

deviation paths in order to find the relevant k paths. They all use a single-source shortest-

path algorithm, SSSP algorithm for short, as a subroutine to fulfill this task. However,

8

Single-Source Shortest-Path Algorithms

the k-shortest path algorithms do not require it to be a specific SSSP algorithm. So in

order to keep it simple one can always think of the well known Dijkstra’s algorithm.

Even though one could use any SSSP algorithm, k-shortest path

optimizations:

R Sections 5.1 and 5.2

some optimizations require the

following features:

• Stop the computation as soon as the distance and path to a target node is settled.

This is sometimes referred to as single-pair shortest-path problem, SPSP for short.

• Stop the computation as soon as it is settled that the target node is further away

than a certain distance.

Note that the actual used SSSP algorithm is not the focus of the optimizations we

consider in this thesis. There are other options like, e.g., Radius Stepping [11]. If needed,

one could always interchange the SSSP algorithm by a faster algorithm or an algorithm

specialized for a certain graph type.

2.3.1 Dijkstra’s algorithm

Dijkstra’s algorithm [19] is a label-setting algorithm computing the shortest path in

a directed, edge-weighted graph. Starting with a source node s, Dijkstra’s algorithm

maintains a priority queue of nodes where the node with the shortest tentative distance

to the source node s has the highest priority. In each step the node with the highest

priority gets settled and its out-edges get relaxed, updating the distances to the connected

nodes. See Algorithm 2 for details.

Algorithm 2: Dijkstra’s SSSP algorithm

Input :Graph G = (V,E), distances d(u, v) ∀ (u, v) ∈ E, the source node s ∈ V .

Output :Distances tentDist[v] and parent nodes tentDist[v] for each node v ∈ V .

1 tentDist[v]←∞ ∀ v ∈ V // the array of tentative distances

2 tentDist[s]← 0 // set the source nodes distance to zero

3 parent[v]← none ∀ v ∈ V // the array of parent nodes

4 parent[s]← s // mark the source node as root

5 P← {s} // the priority queue of nodes to be relaxed

6 while P.isNotEmpty() do
7 v ← P.pop() // get the node with the smallest tentative distance

8 forall (v, w) ∈ E do // Iterate over all out-edges of the settled node v

9 if tentDist[w] > tentDist[v] + d(v, w) then // if the edge improves the distance. . .

10 tentDist[w]← tentDist[v] + d(v, w) // . . . relax the edge. . .

11 parent[w]← v // . . . remember which node realizes the tentative distance. . .

12 if w ∈ P then
13 P.decreaseKey(w) // . . . and update the position of node w in the PQ . . .

14 else
15 P.push(w) // . . . or insert the node w into the PQ for the first time

Algorithm 2 computes both distances and an array of parent nodes that realize

these distances. Tracking the array of parent nodes back to the source node results in a

9

Preliminaries

shortest path. If one is only interested in distances and not the actual paths, the lines 3,

4, and 11 can be deleted.

If the priority queue is implemented using Fibonacci heaps [27], Dijkstra’s algorithm

has a worst-case time complexity of O(m+ n log n).

2.3.2 ∆-Stepping

Since we later want to look into parallelizing k-shortest path algorithms, we use∆-step-

ping by Meyer [50] as the SSSP algorithm in all our implementations and experiments.

It also has a linear average-case time complexity which fits in theAverage-case analysis of

k-shortest path algorithms:

R Chapter 4

picture with our

average-case analysis of k-shortest path algorithms.

Given a graph G = (V,E) with edge weights d(e) > 0 for each edge e ∈ E, a

source node s ∈ V , and a parameter ∆ > 0, called the bucket width, ∆-stepping works

roughly speaking like Dijkstra’s algorithm [19], but eligible nodes are organized in a

bucket list, where the ith bucket contains all nodes v with a tentative distance tent(v)

with i · ∆ ≤ tent(v) < (i + 1) · ∆ in no particular order. In addition, edges e are

distinguished into light (d(e) < ∆) and heavy (d(e) ≥ ∆) edges. When it comes to

processing the ith bucket, this is done in phases.

1. For each light out-edge e of all nodes in the ith bucket a relax-request is stored in

a list and all nodes from the ith bucket are removed from the current bucket and

stored in a buffer.

2. After all relax-requests are generated, the requests are executed in parallel, updat-

ing the tentative distances and adding nodes where the tentative distance changed

to their respective bucket. This could reintroduce nodes to the current bucket,

so the first two phases need to be repeated as long as the current bucket is not

empty.

3. When the current bucket is empty, for each node from the buffer all heavy out-

edges e are relaxed once in parallel. In this phase nodes cannot be reintroduced

into the current bucket, since the new tentative distances are at most

dist(v) + d(e) ≥ i ·∆+∆ = (i+ 1)∆

After all heavy edges are relaxed, the buffer is cleared and the next bucket can be

processed.

At the beginning of the third phase the distances of all nodes in the buffer are already

settled. The algorithm stops if all buckets are empty.

∆-stepping runs in O(|V |+ |E|) average time, when edge weights are chosen

uniformly at random over [0; 1] and∆ is chosen to be ∆ = 1/max {deg(v) : v ∈ V }
as shown in [50]. In order to achieve the linear average-case running time, ∆-stepping

uses an adaptive bucket-splitting that is used to handle the case when to many nodes

are in a single bucket. In our implementation we only use the simple version without

the adaptive bucket-splitting described in [50].

10

Probabilistic Preliminaries

2.4 Probabilistic Preliminaries

Throughout this thesis we will give some bounds on the outcome of random events.

For a random event A, P[A] denotes the probability for A to happen. E[X] denotes

the expected value of a random variable X . We say that a bound that depends on a

parameter n holds with high probability, short whp., if it holds with probability at least

1 − o(n−ε) for a constant ε > 0. If it holds only with probability 1 − o(1), we say it

holds almost surely.

2.4.1 Chernoff Bounds

We will use the well-known Chernoff bounds [13] in the following form.

Lemma 2.1. LetX =
∑︁n

i=1Xi be the sum of n independent, not necessary identically

distributed, random variables over [0; 1]. Then

P[X < E[X]− εE[X]] = P[X < (1− ε)E[X]] ≤ exp

(︃
−ε2E[X]

2

)︃
(2.1)

holds for any 0 < ε < 1 and equivalent to that for any a < E[X]

P[X < E[X]− a] = P
[︃
X <

(︃
1− a

E[X]

)︃
E[X]

]︃
≤ exp

(︃
− a2

2E[X]

)︃
(2.2)

Similarly, it holds for any ε > 0:

P[X > E[X] + εE[X]] = P[X > (1 + ε)E[X]] ≤ exp

(︄
−min

{︁
ε, ε2

}︁
E[X]

3

)︄
(2.3)

◀

2.4.2 Stochastic Dominance

Given two random variablesX and Y distributed according to distribution functions FX

and FY , respectively. We say that Y stochastically dominates X , denoted asX ≤st Y , if

P[X > t] ≤ P[Y > t] (2.4)

holds for all t ∈ R. This can also be interpreted as

P[Y ≤ t] ≤ P[X ≤ t] . (2.5)

X ≤st Y also implies E[X] ≤ E[Y]. One example withX ≤st Y is binomial distributed

random variables X ∼ Bin[t1, p] and Y ∼ Bin[t2, p] with t1 < t2, where Bin[n, p] is

the binomial distribution with n independent experiments and success probability p.

11

3The k-Shortest Path Problem

This chapter is an introduction to the k-shortest path problem itself as well as Yen’s and

Feng’s algorithm, which we analyze further in Chapter 4. Even though we include the

pseudocode here in order to explain the algorithms as clearly as possible, the details on

the implementations as well as new algorithmic improvements can be found in Chapter 5

where we have a closer look at sequential running times. Details on the parallelization

can be found in Chapter 6.

3.1 General Notation

The k-shortest path problem, short k-SP problem, is a generalization of the well known

shortest path problem.

Given We are only interested in

the loopless case. In

contrast to the loopy

variant, algorithms are

often more complex for the

loopless variant.

a directed graph G = (V,E) with non-negative edge weights d(e) for each

edge e ∈ E, we are interested in finding the k shortest simple paths, in terms of weight,

between two fixed nodes s and t such that all other paths from s to t are at least as long

as the k shortest. We call a path P = (v1, . . . , vr) simple or loopless if vi ̸= vj holds for

all 1 ≤ i < j ≤ r.

Let P1, . . . , Pk be the k shortest paths with Pi ̸= Pj for all 1 ≤ i < j ≤ k in

non-decreasing order by their weight-length. We denote the ith-shortest path as

Pi =
(︂
v
(i)
1 , . . . , v

(i)
|Pi|

)︂
with A table of notations can be

found in Appendix A.1.1

on page 83.

v
(i)
1 = s and v

(i)
|Pi| = t for all 1 ≤ i ≤ k. We also define

Ri(j) :=
(︂
v
(i)
1 , . . . , v

(i)
j

)︂
, Si(j) :=

(︂
v
(i)
j , . . . , v

(i)
|Pi|

)︂
to be the prefix path to the jth node and the suffix path from the jth node of Pi, respec-

tively. Keep in mind that, even though all the k shortest paths are pairwise different,

they are not necessarily edge disjoint.

The k shortest paths can be viewed as a hierarchy of deviating paths. We say path

Pj , with j ≥ 2, deviates at node dev(Pj) = v
(j)
di(Pj)

∈ V , called the deviation node from

path Pi at deviation node index di(Pj), with i < j if Pi is the longest path in terms of

edge-weights having the same prefix path Ri(di(Pj)) from s to dev(Pj) as Pj and Pi

itself deviated not after dev(Pj) from the path it deviated from. We call Pi = par(Pj)

the parent path of Pj (see Figure 3.1 for an illustration). For simplicity Figure 3.1 does

not show that paths can join before the target node t. This is possible and not even

uncommon depending on the structural properties of the graph.

The k-Shortest Path Problem

Figure 3.1: An illustra-

tion of the relation be-

tween k shortest paths.

Path P3 deviates from P1

and not P2 because P2

deviates after dev(P3).

Paths P4 and P5 devi-

ate from the same node

but we say that P4 is the

parent of P5 since P4 is

longer, in terms of weight,

than P3.

v
(1)
i1,1

= dev(P3) v
(1)
i1,2

= dev(P2)

P1 = par(P2)

P2

v
(3)
i3,1

= dev(P4) = dev(P5)

P3 = par(P4)

P4 = par(P5)

P5

s t = par(P3)

3.2 Deviation Based k-Shortest Path Algorithms for Directed Graphs

In this thesis we focus on the deviation based k-shortest path algorithms by Yen and Feng

for directed graphs. From a high level perspective these algorithms do the following on

a given directed graph G = (V,E), with source node s ∈ V and target node t ∈ V :

1. Create an empty list C of candidate paths.

2. Compute the shortest path in terms of edge-weights from s to t in G and add it

to the candidate list C .

3. For i in 1, . . . , n:

(a) Remove the shortest path in the candidate list C and call it Pi.

(b) For each node v
(i)
j , j ̸= |Pi|, on path Pi compute the shortest deviation path

P ′
i,j from v

(i)
j to t such that Pi,j = Ri(j) ◦ P ′

i,j is neither in C nor one of

the first i shortest paths P1, . . . , Pi.

(c) Add Pi,j as a new candidate to C .

Section 3.2.1 about Yen’s algorithm goes into detail on how to compute deviations

without finding paths multiple times. Section 3.2.2 about Feng’s algorithm then adds

heuristics to reduce the overall computational work.

3.2.1 Yen’s k-Shortest Path Algorithm

Starting with the shortest path, Yen’s algorithm [76] computes a set of candidates for the

(i+1)th-shortest path by computing deviations from the ith-shortest path by temporarily

removing edges from the graph that would lead to already found paths.

3.2.1.1 Detailed Description

Be given a graph G = (V,E) with edge weights d(e) for each edge e ∈ E, two nodes

s, t ∈ V , and k ∈ N>0.

14

Deviation Based k-Shortest Path Algorithms for Directed Graphs

Algorithm 3: Yen’s Algorithm
Input :Directed weighted graph G, nodes s and t, the number k of paths to compute

Output :The k shortest s–t-paths P1, . . . , Pk sorted by increasing length

1 P ←sssp(G, s, t) // compute the shortest path from s to t in G

2 C ← {(P, 1, {})} // priority queue of candidates

3 for i← 1, . . . , k do
4 (Pi,di(Pi), Di)← C.popMin() // the shortest path among the candidates

5 if i = k then return
6 for j ← di(Pi), . . . , |Pi| − 1 do // compute all deviations from ith-shortest path

/* compute the temporary graph G
(i)
j ; Di,j is used as defined in (3.1) */

7 G
(i)
j ← G.removeAllEdgesTo(v

(i)
1 , . . . , v

(i)
j)

8 G
(i)
j ← G

(i)
j .removeEdges(Di,j)

/* compute the shortest path in the reduced graph G
(i)
j */

9 P ← (v
(i)
1 , . . . , v

(i)
j) ◦ sssp(G(i)

j , v
(i)
j , t)

/* add the new candidate path P , the deviation index, */

/* and the set of already used edges to the candidate list */

10 C .push((P, j,Di,j))

The algorithm first computes the shortest path P1 = (v
(1)
1 , . . . , v

(1)
|P1|) using an

arbitrary single-source shortest-path algorithm, e.g., We use ∆-stepping in our

implementations.

Dijkstra’s algorithm. Let then

C = {(P1, 1, {})} be the set of candidates for the k shortest paths.

For i = 1, . . . , k Yen’s algorithm chooses the shortest path (Pi, di(Pi), Di) that

is currently in the set of candidates C , with di(Pi) being the index of the deviation

node dev(Pi) where Pi deviated from its parent path, and Di As an intuition, the setsDi

are used to remember

which paths are already

found and which edges

cannot be used in order to

find other paths.

being the set of edges

that was already used when deviating from dev(Pi) while having the same prefix path

Ri(di(Pi)). It computes new candidates as follows:

For j = di(Pi), . . . , |Pi| − 1 let G
(i)
j = (V

(i)
j , E

(i)
j) be the graph induced from G by

removing all nodes v
(i)
1 , . . . , v

(i)
j−1 along with their incident edges. For j = di(Pi) all

edges from Di also get removed. Then it computes the shortest path c
(i)
j from v

(i)
j to t

in G
(i)
j using a single-pair shortest-path algorithm and adds (Ri(j) ◦ c(i)j , j,Di,j) to the

set of candidates C , with

Di,j =

⎧⎪⎪⎨⎪⎪⎩
{︂(︂

v
(i)
j , v

(i)
j+1

)︂}︂
∪Di : j = di(Pi){︂(︂

v
(i)
j , v

(i)
j+1

)︂}︂
: j ̸= di(Pi)

(3.1)

The pseudocode can be found in Algorithm 3. In order to keep it simple, the

pseudocode does not contain exception handling, e.g., the case that there are less than k

paths in total or if there is no deviation found.

In the worst-case Yen’s algorithm computes for each hop on each of the first k − 1

shortest paths a deviation candidate. Since simple s–t-paths in a graphwithn nodes have

at most O(n) hops, this results in a total of at most O(kn) deviations to compute. Let

15

The k-Shortest Path Problem

s

a b

c d

t
1

3

1

1 3

1

3

1

3

1

s

a b

c d

t
1

3

1

1 3

1

3

1

3

1

s

a b

c d

t
1

3

1

1 3

1

3

1

3

1

s

a b

c d

t
1

3

1

1 3

1

3

1

3

1

Figure 3.2: The directed

graph G with edge

weights. The dashed

edges are part of the

shortest path P1. The

square nodes are the

respective deviation

nodes with red nodes and

edges being temporarily

removed from the graph

when computing the

deviations.

spc(n,m) be theworst-case time complexity of the SSSP algorithm in use, then theworst-

case complexity of Yen’s algorithm is O(kn · spc(n,m)), which is O(kn(m+ n log n))

if Dijkstra’s algorithm with Fibonacci heaps is used [27].

We show in Chapter 4 that the average-case complexity of Yen’s algorithm is much

better than its worst-case complexity.

3.2.1.2 A Small Example

Given the directed graphG visualized in Figure 3.2, we want to compute the k = 3 short-

est paths from s to t. Yen’s algorithm first computes the shortest path P1 = (s, a, b, t).

Since it is not a deviation path, we set the deviation index di(P1) = 1 and the set of

forbidden edges to D1 = {}. Now, Yen’s algorithm computes a deviation path for each

node but the last on the shortest path (see Fig. 3.2).

• Deviating from node s: D1,1 = {(s, a)} ∪ D1 contains only the out-edge of s,

since D1, the set of previously used edges, is empty by definition. So the edge

(s, c) has to be used in the shortest deviation. This gives us the candidate path

c1,1 = (s, c, d, t) and we store (c1,1, di(c1,1) = 1, D1,1) in the candidate list C

with a total weight-length of d(c1,1) = 5.

• Deviating from node a: D1,2 = {(a, b)} contains also only a single edge because

a is not the deviation node of P1. This forces the SSSP algorithm to choose

the edge (a, c) resulting in the deviation path c1,2 = (s, a, c, d, t). We store

(c1,2, di(c1,2) = 2, D1,2) in the candidate list C with a total weight-length of

d(c1,2) = 4.

• Deviating from node b: Similar to the last deviation,D1,3 = {(b, t)} contains only
a single edge and we get c1,3 = (s, a, b, d, t) and store (c1,3, di(c1,3) = 3, D1,3)

in the candidate set C with a weight-length of d(c1,1) = 6.

Now all deviations of P1 are computed yielding P2 = c1,2 as the second-shortest path

with di(P2) = 2 andD2 = {(a, b)}while c1,1 and c1,3 remain in the candidate list C . In

order to compute the third-shortest path Yen’s algorithm computes the candidates from

the second-shortest path. Since the deviation node index is di(P2) = 2, Yen’s algorithm

does not compute a deviation from node s and instead starts with node a (see Fig. 3.3).

• Deviating from node a: The set of already used out-edges D2,2 = {(a, c)} ∪D2

contains all out-edges of a, which is why we cannot find a deviation path here.

• Deviating from node c: With D2,3 = {(c, d)} we find the shortest deviation path

to be c2,3 = (s, a, c, b, t) and add (c2,3,di(c2,3 = 3, D2,3)) as a new candidate to

C with a length of d(c2,3) = 6.

• Deviating from node d: The only out-edge of node d leads to a which is at that

time temporarily removed from the graph as it would introduce a loop to any

found deviation paths. Thus we cannot find any deviation paths.

16

Deviation Based k-Shortest Path Algorithms for Directed Graphs

s

a b

c d

t
1

3

1

1 3

1

3

1

3

1

s

a b

c d

t
1

3

1

1 3

1

3

1

3

1

s

a b

c d

t
1

3

1

1 3

1

3

1

3

1

Figure 3.3: The dashed

edges are part of the

second-shortest path P2.

The square nodes are the

respective deviation nodes

with red nodes and edges

are temporarily removed

from the graph when com-

puting the deviations.

After all deviations are computed, P3 = c1,1 is the shortest path in the candidate list C

with a length of d(c1,1) = 5. Note that the third-shortest path deviated from the first

shortest path and not from the second one. Since we found all k = 3 shortest paths,

Yen’s algorithm stops here.

3.2.1.3 Correctness

Assume that Yen’s algorithm correctly computed the first i shortest paths. Let Pl =

par(Pi) be the parent path of Pi. In order to compute the (i+ 1)th-shortest path, the

algorithm computes deviations in addition to the deviations from the other paths that

are already in the list of candidates. We have to check three cases of deviations.

1. Deviations at nodes v
(i)
j with j < di(Pi). The prefixes Ri(j) are identical to the

prefix paths Rl(j) of the parent path of Pi. So all deviations from those nodes

would lead to paths that were already computed from Pl or even earlier and thus

are skipped by Yen’s algorithm.

2. The node v
(i)
j with j = di(Pi) is the deviation node, where Pi deviated from

its parent path Pl (see Figure 3.4a). To compute a deviation it is not enough to

remove only the edge ej =
(︂
v
(i)
j , v

(i)
j+1

)︂
, because this would result in finding the

parent path Pl or an even shorter path again. So in addition to ej all edges need

to be removed, that were already used by Pl and its predecessors at this deviation

node. All these edges are collected in Di.

3. Deviations at nodes v
(i)
j with j > di(Pi) (see Figure 3.4b). For these nodes the

prefix path Ri(j) is unique among the first i shortest paths and thus only the

edge

(︂
v
(i)
j , v

(i)
j+1

)︂
has to be removed.

In addition to the edges in Di,j all in-edges to the nodes v
(i)
1 , . . . , v

(i)
j get removed

to prevent loops, since these are the nodes on the prefix path Ri(j) and thus cannot be

visited again without closing a loop. The reduced graphG
(i)
j still contains all paths from

v
(i)
j to t that do not visit a node in the prefix path Ri(j), except for those which have

already been computed before. Starting with the shortest path from s to t computed in

the full graph G, the correctness of Yen’s algorithm follows by induction.

3.2.2 Feng’s k-Shortest Path Algorithm

Feng’s algorithm works just like Yen’s algorithm but adds additional strategies to reduce

the average complexity. Namely these are:

• (guiding) A preprocessing step, that computes an improved edge weight function

to guide the single-source shortest-path algorithm into the right direction.

• (coloring) A node coloring to reduce the size of the graphs G
(i)
j on which the

single-pair shortest-path algorithm needs to be executed on.

• (skipping) Attempt to skip calls to an SSSP algorithm.

17

The k-Shortest Path Problem

s

v
(i)
j = dev(Pi)

v

v
(i)
j+1

v
(l)
j+1

t

(a) Deviating from Pi at the node where Pi deviated from its parent path Pl. Since Pi deviated at dev(Pi)

from Pl, there are at least two edges that cannot be used again with the given prefix path.

s

dev(Pi)

v
(i)
j

v
(i)
j+1

v

t

(b) Deviating from nodes after the deviation node. Since the edge used after the deviation node dev(Pi)

makes the prefix path unique, only the edge

(︂
v
(i)
j , v

(i)
j+1

)︂
cannot be used.

Figure 3.4: Visualization of how candidate paths deviate from their parent path Pi at the

deviation node of Pi (Fig. 3.4a) and at other nodes (Fig. 3.4b). Nodes on the prefix path Ri(j)

(gray bold dashed arrow) cannot be visited since this would introduce a loop. The gray edges

must also not be used since this would rediscover Pi itself or an even shorter path.

The pseudocode of Feng’s algorithm can be found in Algorithm 5 at the end of the

section.

3.2.2.1 The Reverse Shortest Path Tree

AllG′
is the graph obtained

from G by removing all

in-edges of s and

out-edges of t as well as

inverting the direction of

all other edges.

three strategies use the reverse shortest path tree T . Given the directed input graph

G = (V,E)with a weight function d, a source node s ∈ V , and a target node t ∈ V , the

reverse shortest path tree is the shortest path tree T computed on the graphG′ = (V,E′)

with E′ := {(u, v) : (v, u) ∈ E, u ̸= s, v ̸= t} and weight function d′(u, v) := d(v, u)

for each edge (u, v) ∈ E′
. The reverse shortest path tree T contains for each node

v ∈ V a shortest path from t to v in G′
that does not go through s. These paths are

equivalent to the shortest paths in G from v to t that do not go through s. Removing

shortest paths that go throughThe shortest path from s

to t does not go through s

but starts in s.

s from the graph is a simple optimization because such

path can never be loopless since all s–t-paths already start at node s. However, T still

contains a shortest path from s to t, so computing the reverse shortest path tree saves

us computing the shortest s–t-path separately.

We want to point out that shortest paths do not have to be unique. If multiple

shortest paths from v to t exist, the reverse shortest path tree contains only one of them.

Which one is arbitrary and decided by the implementation of the SSSP algorithm in use.

18

Deviation Based k-Shortest Path Algorithms for Directed Graphs

s c d

a b t

1

1

1

3

1

1

1

2

1

2

3

11

(a) Graph G with edge weights according to d.

s c d

a b t

3

1

0

0 0

2

0

1

1

0

(b) Graph G∗
with edge weights according to d∗

.

Figure 3.5: A graph G

(Fig. 3.5a) and the graph

G∗
(Fig. 3.5b) generated

fromG by the graph pre-

processing described in

Section 3.2.2.2. Dashed

edges are part of the re-

verse shortest path tree

rooted in t.

3.2.2.2 Preprocessing the Graph

Feng’s algorithm precomputes an additional graph G′
and G∗

contain the

same edges but in G′
all

directions are reversed

while edges in G∗
point in

the same direction as in

the original graph G.

G∗ = (V,E∗) with E∗ := {(u, v) ∈ E : u ̸= s, v ̸= t} (3.2)

removing all in-edges of s and out-edges of t from G. Since all s–t-paths start with

the node s, an in-edge of s can never be used without introducing a loop. A similar

argument holds for the out-edges of t. So the removal of these edges does not change

the result in any way. However, it removes all paths from the graph, that go through

the source node s and so cannot be part of the k shortest simple paths. Then it uses

the reverse shortest path tree T to compute an improved edge weight function d∗(u, v)

defined as The edge-weight function

d(·) is defined in G but

since E∗ ⊆ E holds, it

also applies to G∗
. The

notation
G∗
‧‧➡ indicates that

we talk about a shortest

path within G∗
and not

within G even though we

use the edge-weight

function d.

d∗(u, v) :=

{︄
d(u, v) + d(v G∗

‧‧➡ t)− d(u G∗
‧‧➡ t) : d(v G∗

‧‧➡ t) <∞
∞ : d(v G∗

‧‧➡ t) =∞
(3.3)

for each edge (u, v) ∈ E∗
as a replacement for the given weight function d(·). The

weight function d∗(·) reduces the weight of edges leading toward the target node, and

increases the weight of edges leading away from it. Figure 3.5 shows an example of how

the preprocessing affects shortest paths and edge weights.

Lemma 3.1. Given a directed graph G = (V,E) with a non-negative edge-weight

function d, a source node s ∈ V , and target node t ∈ V . Then in the graph G∗
as

defined in Equation (3.2), the edge weight function d∗(u, v) as defined in Equation (3.3)

has the following properties:

a) d∗(u, v) ≥ 0 holds for all edges (u, v) ∈ E∗
.

b) Let P be an arbitrary path from u to t in G∗
. Then d∗(P) = d(P)− d(u G∗

‧‧➡ t)

holds for all nodes u ∈ V .

c) d∗
(︁
u ‧‧➡ t

)︁
= 0 holds for all nodes u ∈ V .

d) Let P1 and P2 be two different paths from u to t inG∗
with d(P1) ≤ d(P2). Then

d∗(P1) ≤ d∗(P2) holds.

e) Let (u1, u2, . . . ur, t) be a shortest path from u1 to t in G∗
. Then d∗(u1, u2) = 0

holds. ◀

19

The k-Shortest Path Problem

Note that the shortest paths u G∗
‧‧➡ t are defined by the weight function d but

restricted to only use edges in G∗
. However, Lemma 3.1 implies that shortest paths

in terms of the original weight function d are also shortest paths in terms of the new

weight function d∗.

Proof. Property b) directly implies property c) by choosing P = u G∗
‧‧➡ t. Property b)

also implies property d), since the lengths of all paths from u to t are shifted by the

same value d(u G∗
‧‧➡ t). Property e) follows directly from properties a) and c). So we are

left to show the first two properties.

a) Assume d∗(u, v) < 0 would hold. This translates to d(u, v) + d
(︁
v G∗
‧‧➡ t

)︁
<

d
(︁
u G∗
‧‧➡ t

)︁
which means that the path (u, v, . . . , t), with a detour over v to t, is

shorter than the shortest path from u to t. This is a contradiction, so d∗(u, v) ≥ 0

needs to hold.

b) Let P = (u1, . . . ur, ur+1 = t) be an arbitrary path from u1 to t, then d∗(P) can

be written as

d∗(P) =
r∑︂

i=1

d∗(ui, ui+1)

=
r∑︂

i=1

(︁
d(ui, ui+1) + d

(︁
ui+1

G∗
‧‧➡ t

)︁
− d
(︁
ui

G∗
‧‧➡ t

)︁)︁
=

r∑︂
i=1

d(ui, ui+1) +
r+1∑︂
i=2

d
(︁
ui

G∗
‧‧➡ t

)︁
−

r∑︂
i=1

d
(︁
ui

G∗
‧‧➡ t

)︁
We say the length of the

shortest path from a node

to itself has a length of

zero.

= d(P) + d
(︁
t G∗
‧‧➡ t

)︁
− d
(︁
u1

G∗
‧‧➡ t

)︁
= d(P)− d

(︁
u1

G∗
‧‧➡ t

)︁
□

By Lemma 3.1 d) the preprocessing step preserves the relative order of all s–t-paths

according to their lengths, and the shortest path has a weight-length of zero. So the

resulting graph of this precomputation G∗
, used by Feng’s algorithm, can also be used

as an input by any other k-SP algorithm, such as Yen’s algorithm, without any change

to the algorithm. We compare Yen’s algorithm using the preprocessing with Feng’s

algorithm later in Chapter 6.

3.2.2.3 Node Coloring

Feng [24] showed that the nodes ofG fall into three categories depending on the current

deviation node v
(i)
j :

1. Red nodes: Nodes that must not be visited anymore in order to avoid loops. These

nodes are v
(i)
1 , . . . , v

(i)
j , the prefix nodes of the ith-shortest path.

2. Yellow nodes: Nodes u where the shortest path from u to t in the reverse shortest

path tree goes through at least one of the red nodes v
(i)
1 , . . . , v

(i)
j .

3. Green nodes: All nodes that are not yellow or red.

20

Deviation Based k-Shortest Path Algorithms for Directed Graphs

t

v
(i)
j+1

v
(i)
j

s

Figure 3.6: An example

for the node coloring de-

scribed by Feng, when de-

viating from v
(i)
j . The

ith shortest path Pi runs

along the black dashed

line. The gray arrows

are paths within the re-

verse shortest path tree

T rooted at t, while Pi

can use edges that are

not part of T . Note

that s has no yellow sub-

tree since all in-edges

are removed from the

graph as described in Sec-

tion 3.2.2.2.

We refer to Figure 3.6 for an example. When deviating from the ith-shortest path Pi at

node v
(i)
j the shortest path uses only yellow nodes until it hits the first green node u.

From there on it only uses green nodes.

Lemma 3.2. When deviating from the ith-shortest path Pi at node v
(i)
j the shortest

deviation path has the form

c
(i)
j = Pr ◦ Py ◦ Pg

where Pr consists of only red nodes, Py of only yellow nodes and Pg of only green

nodes. ◀

Proof. The red prefix path is the prefix Ri(j) of the path Pi we currently deviate from.

Since these nodes are already part of the deviation path, they must not be visited later

because this would introduce a loop. So the shortest path from the deviation node v
(i)
j

to t consists of some yellow and some green nodes. Let g be the first green node on

that path. By the definition of green nodes we know that the shortest path from g to t

does not go through a red node. So this needs to hold for all nodes on the shortest path

g ‧‧➡ t. If it would hit a yellow node y, the shortest path from y to t would pass a red

node r by definition of yellow nodes and thus the shortest path from g to t would also

go through r. In this case g could not have been green in the first place.

Thus the deviation path cannot go through any red or yellow nodes after hitting the

first green node. So after the all-red prefix path comes a yellow subpath that could be

empty followed by an all-green suffix path. □

21

The k-Shortest Path Problem

The yellow subpath needs to be computed by an SSSP algorithm within the induced

yellow subgraph Y
(i)
j = (V

(i)
j , E

(i)
j), which consists of the nodes v

(i)
j , t, and all yellow

nodes with respect to v
(i)
j . The yellow graph contains all induced edges (u, v) ∈ E with

u, v ∈ Y
(i)
j as well as an express edge (v, t) for each edge (v, g) ∈ E with v ∈ Y

(i)
j and

a green node g with d(v, t) = d(v, g) + d
(︁
g ‧‧➡ t

)︁
or d∗(u, t) = d∗(u, v), respectively.

The yellow graph needs to be recomputed for each deviation node and the path it is

on. This can be done by a depth first search from each of the red nodes on the reverse

shortest path tree T , which in total takes O(n) time due to the following Lemma:

Lemma 3.3. Let r1 ̸= r2 be two red nodes and let Y1 and Y2Note that the sets Yi are

not whole subtrees but a

specific subset of nodes.

Have a look at Figure 3.6

for an illustration.

be the sets of yellow nodes

such that ri is the first red node on the shortest path from y ∈ Yi to t according to

reverse shortest path tree for i = 1, 2. Then Y1 ∩ Y2 = {} holds. ◀

Proof. Since the color of a node is determined by a DFS traversal from a red node in the

reverse shortest path tree, each yellow node has a unique first red node on the shortest

path to t. Thus Y1 and Y2 cannot share any nodes. □

By Lemma 3.3 the yellow graph Y
(i)
j can be computed by adding the yellow nodes

hanging from v
(i)
j to the yellow graph Y

(i)
j−1. So computing the node coloring can be

done inO(n) time in total by reusing the yellow graphs. In order to maintain the express

edges we need to check for each express edge (u, t) if its original head node changed

from green to either yellow or red. If so, the express edge needs to be removed and

the original edge has to be restored. This takes O(m) time per deviation, but is still

dominated by the time needed for the SSSP computation.

After the candidate path is computed within the yellow subgraph, the express

edge that leads from a yellow node directly to the target node t, is expanded to the

corresponding shortest path, which can be pulled from the reverse shortest path tree T .

Algorithm 4 shows the pseudocode to compute the yellow graph, when deviating

from the ith-shortest path at the jth node.

3.2.2.4 Skipping SSSP Computations

According to Lemma 3.2, no SSSP computation is needed if the closest neighbor of the

deviation node v
(i)
j is green. When deviating at the source node s, SSSP computations

can always be skipped since s has no in-edges after the preprocessing step and thus all

neighbors are green.

Lemma 3.4. Given a directed graph G = (V,E) with a non-negative edge weight

function d, a source node s, and a target node t ∈ V . Let G∗ = (V,E∗) be defined

as in Equation (3.2) and d∗ as in Equation (3.3). Then all deviations at node s can be

computed without the need to call an SSSP algorithm using the reverse shortest path

tree T only. ◀

Proof. All deviations at the source node s are of the form s → u ‧‧➡ t, where u is a

neighbor of s. The shortest paths u ‧‧➡ t do not pass through s since s has no in-edges

22

Deviation Based k-Shortest Path Algorithms for Directed Graphs

Algorithm 4: Subroutine computeYellowGraph

Input :Directed graph G = (V,E), edge weight function d, reverse shortest path tree T ,

set of edges to remove Di,j , path Pi =
(︂
v
(i)
1 , . . . , v

(i)
|Pi|

)︂
, deviation node index j.

Output :The yellow graph Y
(i)
j , weight function dy , express edge mapping M

1 E′ ← E \Di,j

/* set of yellow nodes Y */

/* at the beginning all nodes are implicitly green, therefore Y is empty */

2 Y ← {}
3 R←

{︂
v
(i)
1 , . . . , v

(i)
j

}︂
// set of red nodes

4 S ← {} // empty stack used for the DFS traversal of T

5 for l← 1, . . . , j do // find the yellow nodes

6 S.pushMultiple(T.getNeighborsOf(v
(i)
l))

7 while S is not empty do
8 v ← S.pop()

/* the coloring stops if a red node is discovered */

/* yellow nodes cannot be rediscoverd since T is a tree */

9 if v ̸∈ R then
10 Y ← Y ∪ {v}
11 S.pushMultiple(T.getNeighborsOf(v))

12 X ← {} // set of express edges

13 M ← {} // the map from express edges to original edges

14 dy ← d

15 foreach (u, v) ∈ {(u, v) ∈ E′ : u ∈ R ∪ Y, v /∈ R ∪ Y } do // Add the express egeds

16 X ← X ∪ {(u, t)}
/* check if the new express edge is shorter than the old express edge */

/* we assume dy(u, t) =∞ if not defined otherwise */

17 if d(u, v) < dy(u, t) then
18 M [u]← v

19 dy(u, t)← d(u, v)

20 Y
(i)
j ←

(︂
Y ∪

{︂
v
(i)
j , t

}︂
, {(u, v) ∈ E′ : u, v ∈ Y } ∪X ∪

{︂
(u, v) ∈ E′ : u = v

(i)
j

}︂)︂

within G∗
. So these paths can simply be pulled from the reverse shortest path tree T

without any extra computations. □

3.2.2.5 Correctness and Complexity of Feng’s Algorithm

Lemmas 3.1, 3.2, and 3.4 show that none of the additional work Feng’s algorithm does

changes or removes any s–t-paths in the graph. So the correctness follows from the

correctness of Yen’s algorithm.

The preprocessing is dominated by a full run of an SSSP algorithm. Computing the

yellow graph takes only linear time in the number of edges. So both are dominated by

the calls of the running time for the SSSP algorithm computing the actual deviation

path. Even though Feng’s algorithm has a lower average-case complexity than Yen’s

23

The k-Shortest Path Problem

Algorithm 5: Feng’s AlgorithmImplementation details:

R Section 5.3 Input :Directed weighted graph G, nodes s and t, the number k of paths to compute

Output :The k shortest s–t-paths P1, . . . , Pk sorted by increasing length.

1 G∗ ← G.removeAllInEdgesOf(s).removeAllOutEdgesOf(t)

2 T ← computeReverseSSSPTree(G∗, t) // get the shortest path from s to t from T

3 P ← T.getShortestPathFrom(s)

4 C ← {(P, 1, {})} // priority queue of candidates

5 for i← 1, . . . , k do
6 (Pi,di(Pi), Di)← C.popMin() // the shortest path among the candidates

7 if i = k then return
8 for j ← di(Pi), . . . , |Pi| − 1 do // compute all deviations from ith-shortest path

/* see Algorithm 4 for details; Di,j is defined in (3.1); d∗ as defined in (3.3) */

9 Y
(i)
j ,dy,M ← computeYellowGraph(G∗,d∗, T,Di,j , Pi, j)

10 u← Y
(i)
j .getClosestNeighbor(v

(i)
j)

/* attempt to skip the SSSP computation */

11 if u is green then // edges to green nodes point directly to t in Y
(i)
j

12 P ← Ri(j) ◦ T.getShortestPathFrom(u)
13 else

/* compute the shortest path in the yellow graph Y
(i)
j */

14 P ← Ri(j) ◦ sssp(Y (i)
j ,dy, v

(i)
j , t)

/* the last edge is always an express edge */

15 M.mapExpressEdgeToPath(P, T)

/* add the new candidate path P , the deviation index, and the set of */

/* already used edges to the candidate list */

16 C .push((P, j,Di,j))

algorithm, they both have the same worst-case complexity. In Chapter 4 we analyze the

average-case complexity of Yen’s and Feng’s algorithms.

3.2.3 Variants Between Yen’s and Feng’s Algorithm

The three optimizations used by Feng’s algorithm (graph preprocessing, node coloring,

and skipping SSSP computations) can mostly be used independently and give reason to

take a closer look into three algorithms, that are to some extend hybrids between Yen’s

and Feng’s algorithm. Namely these are:

• Yen-s: Yen’s algorithm as described in Section 3.2.1, but also attempting to skip

SSSP computations. In order to do such attempts, Yen-s needs the reverse shortest

path tree as described in Section 3.2.2.1. From there it can pull the shortest paths

as needed. Contrary to Feng’s algorithm, Yen-s cannot check if the neighbor is

green since it does not compute the yellow graph. Instead it needs to make sure

that the path it gets from the reverse shortest path tree does not intersect with

the prefix path Ri(j) when deviating at the jth node from the ith-shortest path.

24

Deviation Based k-Shortest Path Algorithms for Directed Graphs

• Yen-g: Yen’s algorithm as described in Section 3.2.1 but using the preprocessing

described in Section 3.2.2.2 beforehand.

• Yen-gs: Just like Yen-s as described before but using the preprocessing described

in Section 3.2.2.2 in addition.

We discuss these algorithms and further heuristic improvements in Chapter 5.

3.2.4 The KIM Algorithm

Yen’s algorithm as well as Feng’s algorithm, presented in Sections 3.2.1 and 3.2.2, work

on both directed and undirected graphs. However, there is also an algorithm by Katoh,

Ibaraki, and Mine [40] specialized for undirected graphs further referred to as KIM.

The KIM algorithm exploits properties of undirected graphs and achieves a worst-case

time complexity of O(k · spc(n,m)) for computing k shortest paths on an undirected

edge-weighted graph with n nodes and m edges, where spc(n,m) is the complexity

of the used SSSP algorithm. Compared to the time complexity of Yen’s and Feng’s

algorithm, the time complexity of KIM is better by a factor of n. So on first glance it

looks like KIM should always be preferred on undirected graphs, but, as we see later in

Chapter 4, the respective average-case time complexities of Yen’s and Feng’s algorithm

are far better than their worst-case complexity. We further show in Chapter 5 that on

G(n, p) graphs an SSSP algorithm only has to explore a tiny fraction of the graph and

most of the SSSP computations can be skipped completely which makes some versions

of Yen’s and Feng’s algorithm competitive to KIM as we show in Section 5.4.3.

Since the KIM algorithm is not the main focus of this thesis, we keep this section

short and refer to [40] for more details and proofs.

3.2.4.1 Finding the Second-Shortest Path

The KIM algorithm is based on Lemma 3.5.

Lemma 3.5. [40, Lemma 2.1] Given an undirected graph G = (V,E) and two nodes

s, t ∈ V , let P1 be the shortest path from s to t. Furthermore let T (s) and T (t) be the

SSSP trees rooted in s and t, respectively. If G contains simple paths The prefix path R1(α)

contains the first α nodes

of the path P1 as defined

on p. 13.

from s to t that do

not contain the prefix path R1(α) of P1, let P be a shortest of them. Then P is either of

Type 1 or Type 2:

Type 1 P is of the form s ‧‧➡ u ‧‧➡ t, where s ‧‧➡ u only uses edges of T (s),

u ‧‧➡ t only uses edges of T (t), and s ‧‧➡ u deviates from P1 at the β
th

node with β < α.

Type 2 P is of the form s ‧‧➡ u→ v ‧‧➡ t, where u→ v is an edge that is neither

in T (s) nor T (t) and s ‧‧➡ u deviates from P1 at the β
th
node with β < α.

◀

Shortest paths of Type 1 can be found by iterating over all nodes in G that are

not in P1 and looking for the smallest combined distance in T (s) and T (t) in O(n)

25

The k-Shortest Path Problem

time. Similarly,Comparison between KIM

and Yen’s algorithm:

R Section 3.2.4.5

shortest paths of Type 2 can be found by iterating over all edges that

are not in P1 in O(m) time. So in total the second-shortest path can be computed in

O(n)+O(m)+O(spc(n,m)) = O(spc(n,m)), where computing both of the shortest

path trees T (s) and T (t) takes O(spc(n,m)) time each.

Katoh et al. use a subroutine called FSPFSP algorithm:

R Algorithm 6

in order to find a shortest path in the setting

of Lemma 3.5.

Algorithm 6: Subroutine FSP
Input :G = (V,E), s, t ∈ V,R1(α)

Output :The shortest s–t-path P in G that does not contain the prefix R1(α).

/* compute both SSSP trees storing for each node u the respective distance d
(︁
s ‧‧➡ u

)︁
*/

/* and d
(︁
t ‧‧➡ u

)︁
, the predecessor nodes Fs(u) and Ft(u) of u in s ‧‧➡ u and t ‧‧➡ u, */

/* respectively, the indexes ξ(u) and ζ(u) where s ‧‧➡ u and t ‧‧➡ u deviate first from */

/* P1, respectively, and the set of nodes S(u), such that s ‧‧➡ u is a prefix of the */

/* shortest path s ‧‧➡ v for each node v ∈ S(u). */

1 T (s)← sssp(G, s)

2 T (t)← sssp(G, t)

3 H ← {} // a node (Type 1) or an edge (Type 2) that results in the shortest deviation

4 L←∞ // the length of the deviation defined by H

5 N ← {s} // a stack of nodes to be processed initialized with the source node s

6 while N ̸= {} do // starting with s explore the nodes in DFS orderThe while-loop and the

stack (lines 5–19) are

referred to as the recursive

subroutine SEP in [40].

7 u← N.pop() // store the top element in u and remove it from the stack

8 if ξ(u) < ζ(u) then // Type 1

9 D ← d
(︁
s ‧‧➡ u

)︁
+ d
(︁
t ‧‧➡ u

)︁
10 if D < L then
11 L← D, H ← u

12 else if ξ(u) = ζ(u) then // Type 2

13 foreach v ∈ {v : {u, v} ∈ E} \ S(u) with ξ(v) < α do
14 D ← d

(︁
s ‧‧➡ u

)︁
+ d(u, v) + d

(︁
t ‧‧➡ v

)︁
15 if D < L then
16 L← D, H ← (u, v) // the direction of the edge matters

17 if ξ(u) ≤ ζ(u) then
18 foreach v ∈ S(u) with ξ(v) < α do
19 N.push(v)

20 P ← {} // initialize the result as empty

21 if H = u∗
is a node then // H is a node (Type 1)

22 P ←
(︁
L, ξ(u∗), s ‧‧➡ u∗ ‧‧➡ t

)︁
23 else if H = (u∗, v∗) is an edge then // H is an edge (Type 2)

24 P ←
(︁
L, ξ(u∗), s ‧‧➡ u∗ → v∗ ‧‧➡ t

)︁

3.2.4.2 Finding the Third-Shortest Path

For the third-shortest path there are now three possible types of deviations from the

second-shortest path to be considered. Let α = di(P2) be the index where P2 deviated

26

Deviation Based k-Shortest Path Algorithms for Directed Graphs

from P1. Then there are three candidates for the third-shortest path:

1. Pa deviates from P2 at the (α+1)th node or later meaning Pa containsR2(α+ 1)

as prefix. This deviation can be computed by removing the nodes v
(2)
1 , . . . , v

(2)
α

fromG and using v
(2)
α+1 as source node while prohibiting the suffix path S2(α+ 1).

Let P be the shortest path from v
(2)
α+1 to t, then Pa = R2(α+ 1) ◦ P is the first

candidate.

2. Pb deviates from P1 at the α
th
node or later but cannot contain R2(α+ 1) as a

prefix. This deviation can be computed by removing the nodes v
(2)
1 , . . . , v

(2)
α−1 and

the edge

{︂
v
(2)
α , v

(2)
α+1

}︂
fromG and using v

(1)
α as source node while prohibiting the

suffix path S1(α). Let P be the shortest path from v
(1)
α to t, then Pb = R1(α) ◦ P

is the second candidate.

3. Pc deviates from P1 before the α
th
node. The shortest path from s to t is then Pc,

the third candidate.

The third-shortest path is now the shortest one in terms of weight of the three

candidate paths Pa, Pb, and Pc. Each of these candidates can be computed by FSP on

the respective graphs with appropriate source and target nodes.

3.2.4.3 Finding the kth
-shortest Path

Computing the third-shortest path can now be generalized to the kth-shortest path.

The (k − 1)th-shortest path does only introduce three new candidates of the types

described for the third-shortest path. Thus computing these three new candidates will

still only require O(spc(n,m)) time. The generalization is done by restricting each

of the three deviations Pa, Pb, and Pc to a subgraph of G that only allows for new

deviation candidates. In order to do so, the algorithm needs to keep track of the ranges

of deviation node indexes where new deviations can branch off from the jth path. These

index ranges are stored in setsWj for 1 ≤ j ≤ k with

Wj := {di(Pj) + 1, |Pj |} ∪ {di(Pi) : for all Pi deviated from Pj .} .

The algorithm also needs to keep track of the edges used by the deviation nodes to

prevent finding the same paths over and over again. The edges are stored in sets Bj(α)

which are all empty at the beginning of the algorithm and get updated over time. KIM

then runs on subgraphs Gj(α) where the nodes v
(j)
1 , . . . , v

(j)
α−1 and their incident edges

are removed.

In order to keep this section short we spare further details on the general case and

only show the pseudocode in Algorithm 7. More details and proofs can be found in [40].

As for the previously described algorithms, the pseudocode does not contain any error

handling in case a deviation is not found or there exist less than k simple paths from s

to t in total.

27

The k-Shortest Path Problem

Algorithm 7: KIM algorithm

Input :undirected weighted graph G, nodes s and t, the number k of paths to compute

Output : the k shortest s–t-paths P1, . . . , Pk sorted by increasing length.

1 P1 ← sssp(G,s,t) // can be stopped as soon as the shortest path is found

2 W1 ← {1, |P1|}
3 P ← FSP(G, s, t, P1) // compute the second-shortest path

4 C ← {(P, 1,di(P))} // the candidate list

5 for i← 2, . . . , k do
6 (Pi, j, α)← C.popMin() //We use α = di(Pi) as an

abbreviation.

the shortest path among the candidates

7 if i = k then return
8 Wi ← {α+ 1, |Pi|}
9 Bj(α) = Bj(α) ∪

{︂
v
(i)
α+1

}︂
// we assume all Bj(α) to be initialized as empty set

/* compute deviation from Pi after α */

10 if α+ 1 ̸= |Pi| then
11 Pa ← Ri(α+ 1) ◦ FSP(Gi(α+ 1), v

(i)
α+1, t,Si(α+ 1))

12 C ← C ∪ {(Pa, i,di(Pa))}
/* compute deviation from Pj from the αth

node on but before the γth
node */

13 γ ← min {β ∈Wj : α+ 1 ≤ β ≤ |Pj |}
14 G← Gj(α).removeEdges(

{︂{︂
v
(j)
α , v

}︂
: v ∈ Bj(α)

}︂
)

15 R← (v
(j)
α , . . . , v

(j)
γ)

16 Pb ← Rj(α) ◦ FSP(G, v
(j)
α , t, R)

17 C ← C ∪ {(Pb, j, di(Pb))}
/* compute deviation from Pj from the γth

node on but before the αth
node */

18 if α /∈Wj then
19 Wj ←Wj ∪ {α}
20 γ ← max {β ∈Wj : di(Pj) + 1 ≤ β < α}
21 G← Gj(γ).removeEdges(

{︂{︂
v
(j)
γ , v

}︂
: v ∈ Bj(γ)

}︂
)

22 R← (v
(j)
γ , . . . , v

(j)
α)

23 Pc ← Rj(γ) ◦ FSP(G, v
(j)
γ , t, R)

24 C ← C ∪ {(Pc, j, di(Pc))}

3.2.4.4 KIM Cannot be Modified for Directed Graphs

At first glance one might think that the KIM algorithm can also be used for directed

graphs if the reverse shortest path tree is used for T (t). Unfortunately this is not possible

as the example in Figure 3.7 shows. Here the second-shortest path P2 with

P2 = (s, a, b, e, f, g, c, d, t)

does not satisfy Lemma 3.5 because it uses two edges, (e, f) and (f, g), that are neither

in T (s) nor in T (t), with T (t) being the reverse shortest path tree in this case. All paths

covered by Lemma 3.5 contain a loop, e.g., a Type 1 path C1 with

C1 = s ‧‧➡ e ‧‧➡ t = (s, a, b, e, a, b, c, d, t)

28

Deviation Based k-Shortest Path Algorithms for Directed Graphs

s a b c d t

e f g

1 1 1 1 1

1 1 1 1 1 1

2 2

Figure 3.7: Example graph showing why KIM does not work on directed graphs. The second-

shortest simple path (s, a, b, e, f, g, c, d, t) does not satisfy Lemma 3.5.

contains the loop (a, b, c, a) and the Type 2 path C1 with

C2 = s ‧‧➡ e→ f ‧‧➡ t = (s, a, b, e, f, b, c, d, t)

contains the loop (b, e, f, b).

3.2.4.5 Comparison with Yen’s Algorithm

The good worst-case complexity of O(k · spc(n,m)) of the KIM algorithm comes from

the fact that for each of the k shortest paths at most three new candidates need to

be computed requiring two full SSSP computations each. In contrast, Yen’s algorithm

computes one candidate for the next shortest path for each node of the kth-shortest

path between the deviation node and the target node, which can be up to O(n) many

candidates. However, Yen’s algorithm needs only one SSSP computation per candidate

path and each SSSP computation can be stopped as soon as the distance to the target

node is settled. Being able to stop SSSP computations early can make a huge difference

in practical running times as we show in Section 5.1.

So there might be graphs where the k shortest paths are expected to have sufficiently

few hops each, in which case Yen’s or Feng’s algorithm might actually be faster than

KIM even though KIM has a much better worst-case complexity. In Section 5.4.3 we

present a runtime comparison between KIM and variants of Yen’s and Feng’s algorithm

suggesting that there is only a constant factor in the average-case complexities of KIM

and variants of Yen’s and Feng’s algorithm, respectively. In our experiments, KIM was

more than an order of magnitude slower than some of these variants.

29

4
Average-case Analysis of

k-Shortest Path Algorithms

In this chapter we show that the number of hops of the k shortest paths are bounded

whp. by O(log n) on dense G(n, p) graphs with an at least logarithmic average de-

gree and by O
(︂
log2 n
np

)︂
on sparse G(n, p) graphs with an at least constant average

degree. Using this Average-case complexity of

Yen’s algorithm:

R Theorems 4.5 and 4.7

we can show that the average-case time complexity of Yen’s al-

gorithm is O(k · log(n) · spc(m,n)) on directed edge-weighted graphs with n nodes

and Ω(n log n) edges. On sparse G(n, p) graphs the average-case time complexity is

O
(︂
k · log2 nnp · spc(n,m)

)︂
. These results also hold for Feng’s algorithm.

We further show Average-case complexity of

Feng’s algorithm:

R Theorem 4.9

that on directed unweighted G(n, p) graphs with Ω(n log n) edges,

Feng’s algorithm has an even better average-case complexity of O(k spc(n,m)) for

constant values of k. In addition, we provide some evidence that the same should hold

on edge-weighted graphs, too.

We will utilize some results of Priebe [58] and Meyer [51] who showed upper bounds

on the diameter of random graphs and on the number of hops of short paths which we

briefly recap in Section 4.2.

4.1 Graph Model and Assumptions

Let G(n, p) graphs:
R Appendix A.2.1.1

D(n, p, F) be the set of directed, edge-weighted graphs G = (V,E) with |V | = n

nodes following the G(n, p) model, where each edge (u, v) ∈ V × V exists with

independent probability p, and edge-weights distributed according to a distribution

function F . By Chernoff bounds, such graphs have Θ
(︁
n2p
)︁
edges whp. Such graphs

can contain edges of the form (v, v) called self-loops. However, such edges cannot be

part of a shortest path and thus are not relevant in practice.

Each edge-weight is drawn at random and independently according to a common

distribution function F . In our experiments we use

the uniform random

distribution over [0; 1].

We assume the distribution function F to be independent of

the graph. In order to get useful results we assume F to have the following properties:

(A1) F is concentrated on [0; +∞) and F (0) = 0 holds.

(A2) F ′(0), the derivative of F also called density function, exists and is strictly positive.

Assumption (A1) is needed to make sure that edge weights are non-negative while

assumption (A2) allows for a linear Taylor-approximation

F (x) = F ′(0) · x+ o(x) > 0 for x↘ 0 (4.1)

Average-case Analysis of k-Shortest Path Algorithms

for x close to zero. From the Taylor-approximation (4.1) we can conclude that there

exists a constant ε0 <
1

1.2·F ′(0) such that

0.9 · F ′(0) · x ≤ F (x) ≤ 1.1 · F ′(0) · x (4.2)

holds for all x < ε0. Priebe uses the bounds in Equation (4.2) in the proofs of Lemma 4.1

and Lemma 4.2 in his PhD thesis [58] and we also use them later in the proof of

Lemma 4.6.

4.1.1 Edge Weight Distributions Fulfilling the Assumptions

Assumption (A1) is barely any restriction in the context of edge weights, since it en-

forces non-negative edge weights and a positive probability for non-zero edge weights.

Assumption (A2), however, requires a positive density at zero. This rules out, e.g.,

uniform distributions over [a; b] with a, b ∈ R and 0 ⪇ a < bNote that we do not need

F ′(0) > 0 to assure

positive probability for

zero-weight edges. Instead

we need this to allow for a

general and easy to use

approximation of the

probability for edges with

small weights.

but still allows for many

probability distributions like

• Uniform distribution over [0; b] for b ∈ R>0

• Beta distribution B(α, β) with α, β ≥ 1

• Triangular distribution over [0; b]

• Exponential distribution

4.2 Recap of Results on Short Path Properties

We utilize some results of Priebe [58]. He showed upper bounds on the diameter of

random graphs and on the number of hops on short paths.

Lemma 4.1. [58, Lemma 3.4] Let (G, d) be a directed graph with edge weights d(·)
drawn uniformly at random from D(n, p, F), where F satisfies (A1) and (A2). If

np
logn is

sufficiently large, then the diameterRecall that Diam(G)

denotes the diameter in

terms of edge-weights and

Diam(G) is defined to be

infinity on disconnected

graphs.

Diam(G) is bounded by O
(︂
logn
np

)︂
whp. ◀

In order to prove Lemma 4.1 one observes that the diameter Diam(G) of the graph

G can be viewed as

Diam(G) = max{Diam(G, s) : s ∈ V }

withDiam(G, s) := max
{︁
d
(︁
s ‧‧➡ v

)︁
: v ∈ V

}︁
being theweight-length of the longest

of the shortest paths from s to any other node v. We also observe that Diam(G, s) are

identical distributed for all s ∈ V , thus for any x

P[Diam(G) > x] ≤
∑︂
v∈V

P[Diam(G, v) > x] = nP[Diam(G, s) > x]

holds. Now it is enough to prove thatDiam(G, s) is bounded byO
(︂
logn
np

)︂
for a random

but fixed node s ∈ V . Instead of showing the bound for the longest path in terms of

weight in the shortest path tree rooted in s, we use the so called spanning arborescence

rooted in s.

32

Recap of Results on Short Path Properties

Given a graph G = (V,E), the spanning arborescence T (s) =
(︁⋃︁

i V
(i), E′)︁

,

where V =
⋃︁

i V
(i)

is a partition of the set of all nodes V , is a special spanning tree

approximating a shortest path tree. Assuming that the adjacency list of each node

is sorted by increasing edge weights, the v-rank of a node w is the rank of w in the

adjacency list of v.

T (s) is constructed in stages. In the zeroth stage, V (0)
consists only of the node

s while E′
is empty. In the first stage V (1)

consists of node u with s-rank 1 and the

corresponding edge (s, u) is added to E′
. Note that V (i)

can contain

multiple nodes for i ≥ 2.
In the ith stage, for all nodes vj ∈ V (j)

with

0 ≤ j < i, V (i)
consists of all nodes w ∈ V with vj-rank of i− j as long as the edge

(vj , w) does not close a cycle in
(︂⋃︁i

l=0 V
(l), E′

)︂
and the corresponding edges (vj , w)

are added to E′
. This process ends as soon as V =

⋃︁
i V

(i)
holds or no more nodes can

be added.

Frieze and Grimmett [29, Theorem 5.1] showed that the construction of T (s) stops

after O(log n) stages whp. for graphs in D(n, p, F).

Lemma 4.1 and the spanning arborescence can then be used to show Lemma 4.2.

Lemma 4.2. Let (G,d) be a directed graph with edge weights d(·) drawn uniformly at

random from D(n, p, F), where F satisfies (A1) and (A2). If
np

logn is sufficiently large,

then all shortest paths in G consist of O(log n) edges whp. [58, Lemma 3.10]. ◀

The proof of Lemma 4.2 actually shows that it is highly unlikely for paths with a

small weight-length to have many edges which then also holds for the shortest paths

under the given conditions. Hence, Lemma 4.2 can also be used for all paths of limited

weight-length and not only for the shortest paths between two nodes.

Corollary 4.3. Let (G,d) be a directed graph with edge weights d(·) drawn uniformly

at random from D(n, p, F), where F satisfies (A1) and (A2) and let Diam(G) be the

diameter of G. If
np

logn is sufficiently large, then paths of weight-length O(Diam(G))

consist of O(log n) edges whp. ◀

With Lemma 4.1 in mind, Corollary 4.3 only holds for paths of constant length.

Meyer [51] further improved the analysis for a special case:

Lemma 4.4. Let (G,d) be a directed graph with edge weights d(·) drawn uniformly at

random from D(n, p, F), where F is the uniform distribution over [0; 1]. There exists a

constant c∗ > 1 such that for np > 3c∗ the maximum shortest-path weight-length is

bounded by O
(︂
logn
np

)︂
whp. [51, Theorem 10] ◀

Lemma 4.4 yields the same result as Lemma 4.1 for p = Ω
(︂
logn
n

)︂
. But it also provides

an upper bound on weight-length of short paths in sparse G(n, p) graphs with a constant
average-degree. Note that Lemma 4.4 considers the maximum shortest-path length and

not the diameter of the graph. For a constant average-degree, G(n, p) graphs are not
strongly connected. However, Karp [39] shows that in G(n, p) graphs with np > 1 the

set of nodes V (s) ⊂ V reachable from a source node s is either |V (s)| = O
(︂
logn
np

)︂
or |V (s)| = Θ(n). In contrast to Lemma 4.1, Lemma 4.4 was only shown for uniform

random edge-weights over [0; 1].

33

Average-case Analysis of k-Shortest Path Algorithms

4.3 Average-Case Analysis of Yen’s Algorithm

In this section, we prove in Theorem 4.5 an average-case complexity of Yen’s algorithm to

be O(k · log(n) · spc(n,m))spc(n,m) is the

average-case complexity of

the SSSP algorithm in use.

for graphs with at least logarithmic average-degree using

Lemma 4.6. After that, we show an average-case complexity ofO
(︂
k · log2 nnp · spc(n,m)

)︂
for graphs with at least constant average-degree, as stated in Theorem 4.7 using

Lemma 4.8.

Theorem 4.5. For random directed graphs G = (V,E) ∈ D(n, p, F), with |V | =
n, |E| = m, F satisfying (A1) and (A2), and p = Ω

(︂
logn
n

)︂
, the average-case time

complexity of Yen’sYen’s algorithm:

R Section 3.2.1

k-SP algorithm with k = O(n) is O(k log(n) · spc(n,m)), where

spc(n,m) is the worst-case time complexity of computing a single-source shortest-path

in G. ◀

Proof. TheReminder: Pi and the path

it deviates from are

identical up to the

deviation node dev(Pi),

where Pi deviates from Pj .

So for all nodes up to

dev(Pi) no new

candidates need to be

computed.

work done by Yen’s algorithm depends on the number of deviations com-

puted. Assume we already have found the ith-shortest path Pi. This means Yen’s

algorithm has already computed the shortest deviations from each node of each of the

the first i− 1 paths to the target node t. To compute the (i+ 1)th-shortest path, Yen’s

algorithm is now going to compute a deviation path for each node from dev(Pi) to t. In

order to compute one such deviation path at the lth node with l ≥ di(Pi) it removes all

edges from the graph that would lead to paths it already found which is at most O(m)

edges. This can be done inO(n+m) time by iterating over all edges and mark in-edges

of nodes v
(i)
1 , . . . , v

(i)
l on the prefix path of Pi and all out-edges of v

(i)
l stored in Di,lThe sets Di,l are defined

in Equation (3.1).

as

removed. After that it computes the shortest path from dev(Pi) to t on the remaining

graph, which takes O(spc(n,m)) time.

Lemma 4.6 shows that the number of hops of the ith-shortest path is O(log n) whp.,
for i ≤ k = O(n) proving the bound of O(k log(n) · spc(n,m)) for the average-case

complexity of Yen’s algorithm. □

The bound can be simplified using Dijkstra’s algorithm with Fibonacci heaps [27]

having a worst-case complexity of O(m+ n log n). Due to our choice of p, the graph

has at least m = Ω(n log n) edges whp. and thus the total time complexity to compute

one deviation path simplifies to O(m) whp. Hence, the overall average-case complexity

of Yen’s algorithm simplifies to O(km log n).

Lemma 4.6. For random directed graphs G = (V,E) ∈ D(n, p, F) with |V | = n,

|E| = m, p = Ω
(︂
logn
n

)︂
, F satisfying (A1) and (A2), and random but fixed nodes s, t ∈ V

the ith-shortest path from s to t consists of O(log n) hops whp. for i = O(n). ◀

Proof. Using Corollary 4.3, we only need to show that there are enough short paths

in terms of weight between the two nodes s and t. Even if the paths we are about

to construct, are not the actual k shortest paths, they yield an upper bound on the

weight-length for k shortest paths and so Corollary 4.3 applies showing that the k

shortest paths also only have O(log n) hops whp.

34

Average-Case Analysis of Yen’s Algorithm

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Es Est

Ets Et

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Figure 4.1: Scheme of

the adjacency matrix of

a G(n, p) graph G as de-

scribed in the proof of

Lemma 4.6.

For the purpose of this analysis, we can think about the generation of G as a two

step process:

1. Draw two graphsGs = (Vs, Et) andGt = (Vt, Et) at random and independently

from D(n2 , p, F) with Vs ∩ Vt = {}. We will then choose s ∈ Vs and t ∈ Vt.

2. For all pairs (vs, vt) ∈ Vs × Vt add edges (vs, vt) independently at random to a

new edge set Est with probability p and analogously for Ets ⊂ Vt × Vs.

The graphG = (V,E)with V = Vs∪Vt andE = Es∪Et∪Est∪Ets is a random graph

from D(n, p, F). Note that p is the same for all three graphs. In order for Corollary 4.3

to hold for the graphs Gs and Gt, the value
n
2
p

log n
2
needs to be sufficiently large because

both graphs only have halve the number of nodes of the full graphG each. Corollary 4.3

then automatically holds for G, too, since
np

logn is approximately twice as big as

n
2
p

log n
2
.

Finally we need to make sure that there are enough short paths from s to t. Due to

our lower bound on p, Lemma 4.1 holds forGs andGt and thus the diametersDiam(Gs)

and Diam(Gt) are finite whp. meaning that Gs and Gt are strongly connected. So for

each node u ∈ Gs there is a path from s to u of length at most Diam(Gs). Additionally,

for each node u ∈ Gs there are
n
2 potential edges (u, v) with v ∈ Gt. Let Iu be the

indicator variable that at least one of these edges exists and has a weight of at most

d = 1
npF ′(0) . Due to d = o(1), the probability for a single such edge to exist follows

from (4.1) to be

pF
(︁
d
)︁
= p ·

(︁
F ′(0) · d+ o

(︁
d
)︁)︁

=
1

n
+ o

(︃
1

nF ′(0)

)︃
which is pF

(︁
d
)︁
≥ 0.9

n for big enough n by (4.2). The probability for Iu = 1 can now be

bounded by

P[Iu = 1] ≥ 1− (1− 0.9
n)

n
2 ≥ 1− e−

0.9
2 >

1

4

holds and thus 0 < E[Iu] < 1 follows. With that it follows by Chernoff bounds that∑︁
u∈Gs

Iu = Θ(n) holds whp. which implies that there areΘ(n) paths from s to t with

length bounded byDiam(Gs)+Diam(Gt)+d ≤ 3Diam(G). They are not necessarily

the actual k shortest paths, but we showed that there are enough such short paths to

provide an upper bound on the weight-length of the kth-shortest path. Since they are all

short enough, Corollary 4.3 holds and each of them has O(log n) hops whp. □

Theorem 4.5 only holds for G(n, p) graphs with p = Ω
(︂
logn
n

)︂
meaning they have

at least an expected logarithmic average degree. For sparser graphs, we show a slightly

weaker average-case complexity in Theorem 4.7.

Theorem 4.7. For random directed graphs G = (V,E) ∈ D(n, p, F), with |V | = n,

|E| = m, F being the uniform distribution over [0; 1], p > 3c∗

n and p = O
(︂
logn
n

)︂
The constant c∗ is the
same as in Lemma 4.4.

,

the average-case complexity of Yen’s k-shortest path algorithm with k = O(n) is
O
(︂
k · log2 nnp · spc(n,m)

)︂
, where spc(n,m) is the worst-case complexity of computing

a single-source shortest-path in G. ◀

35

Average-case Analysis of k-Shortest Path Algorithms

Proof. The proof works analogously to the proof of Theorem 4.5. Lemma 4.8 shows

that the number of hops on each of the k shortest paths can be bounded by O
(︂
log2 n
np

)︂
whp., so computing a shortest path for each node on each of the k shortest paths takes

at most O
(︂
k · log2 nnp · spc(n,m)

)︂
time in total whp.We believe that

Theorem 4.7 holds for

more general edge-weight

distributions. But in order

to prove this, all results

Theorem 4.7 is based on

need to be proven for more

general edge-weight

distributions first.

□

For p = Θ
(︂
logn
n

)︂
both Theorem 4.5 and Theorem 4.7 yield the same average-case

complexity of Yen’s algorithm. But keep in mind that Theorem 4.7 is only proven for

uniform random edge-weights over [0; 1] while Theorem 4.5 holds for more general

edge-weight distributions.

Lemma 4.8. For random directed graphs G = (V,E) ∈ D(n, p, F) with |V | = n,

|E| = m, p > 3c∗

n , p = O
(︂
logn
n

)︂
, F being the uniform distribution over [0; 1], and

random but fixed nodes s, t ∈ V the ith-shortest path from s to t consists of O
(︂
log2 n
np

)︂
hops whp. for i = O(n) if t is reachable from s. ◀

Proof. Just like in the proof of Lemma 4.6, we think of G as follows.

1. Draw two graphsGs = (Vs, Et) andGt = (Vt, Et) at random and independently

from D(n2 , p, F). We will then choose s ∈ Vs and t ∈ Vt.

2. For all pairs (vs, vt) ∈ Vs × Vt add edges (vs, vt) independently at random to a

new edge set Est with probability p and analogously for Ets ⊂ Vt × Vs.

The graph G = (V,E) with V = Vs ∪ Vt and E = Es ∪ Et ∪ Est ∪ Ets is a random

graph from D(n, p, F).

According to Karp [39], the set of nodes V (s) ⊂ V reachable from a source node s

is either small with |V (s)| = O
(︂
logn
np

)︂
or giant with |V (s)| = Θ(n). We assume t to

be reachable from s, so t ∈ V (s). If V (s) is small, the number of hops on every simple

path is bounded by |V (s)|. In this case we have nothing more to show. So now we

assume V (s) to be giant.

As in the proof of Lemma 4.6, we show that there are enough s–t-paths. From

Lemma 4.4 we know, that the weight-length of the shortest paths from s to any node

u ∈ Vs ∩V (s) can be bounded byO
(︂
logn
np

)︂
whp. The same holds for the weight-length

of the shortest paths from any node v ∈ Vt∩V (s) to t. The proofs by Karp [39] can also

be used to show that Vs ∩ V (s) as well as Vt ∩ V (s) have both Θ(n) nodes. Thus, by

Chernoff bounds, we know that there areΘ(n) edges (u, v) ∈ (Vs∩V (s))×(Vt∩V (s))

whp. Unlike in the proof of Lemma 4.6, we cannot only use short edges due to the

lower bound on p. So instead we use edges of any weight. Since we assume F to be the

uniform distribution over [0; 1], an edge can have at most a weight of 1.

Now we knowa ‧‧➡ b denotes a shortest

path from node a to node

b in terms of edge-weights.

that whp. G contains Θ(n) paths of the form s ‧‧➡ u → v ‧‧➡ t

with u ∈ Vs and v ∈ Vt. The weight-length of these paths is bounded by

d
(︁
s ‧‧➡ u

)︁
+ d(u, v) + d

(︁
v ‧‧➡ t

)︁
= O

(︃
log n

np

)︃
+ 1 +O

(︃
log n

np

)︃
= O

(︃
log n

np

)︃
.

36

Average-Case Analysis of Feng’s Algorithm

Recall that, like for the proof of Lemma 4.6, these are not necessarily the k shortest

paths. But they give us an upper bound on the length of the k shortest paths which we

now can use to get an upper bound on the number of hops on the k shortest paths.

The paths we just constructed are not short enough for Corollary 4.3 to apply.

So we split up the paths into Θ
(︂
logn
np

)︂
subpaths such that each subpath has a small

enough constant weight-length. For each of these subpaths Corollary 4.3 does now

apply showing that each subpath consists of O(log n) hops whp. So in total all paths

with a weight-length of O
(︂
logn
np

)︂
have O

(︂
log2 n
np

)︂
hops whp. □

4.4 Average-Case Analysis of Feng’s Algorithm

Feng’s algorithm Feng’s algorithm:

R Section 3.2.2

is essentially a heuristic on top of Yen’s algorithm, which does not

improve the worst-case complexity, but could drastically reduce the computation time

since it prunes a lot of nodes from the graph the shortest paths are computed on. If

the yellow graphs computed by Feng’s algorithm would consist of all nodes in the

graph, then Feng’s algorithm would be identical to Yen’s algorithm. Thus Theorems 4.5

and 4.7 also hold for Feng’s algorithm. Currently, we cannot show a better average-case

complexity for the weighted case, but in the unweighted case we prove in Section 4.4.1

that Feng’s algorithm has an even better average-case complexity for computing the

kth-shortest path for k = Θ(1). Although we cannot prove the same in the weighted

case, we provide some evidence that the same results should hold in Section 4.4.2.

4.4.1 Theoretical Analysis on Unweighted G(n, p) Graphs

Theorem 4.9. For random directed, unweighted graphs G = (V,E) following the

G(n, p) model, with |V | = n, |E| = m, and p = Ω
(︂
logn
n

)︂
, the average-case complexity

of Feng’s algorithm for computing the kth-shortest path is O(m) for k = Θ(1). ◀

Proof. Feng’s algorithm consists of three main steps.

i) Computing the reverse shortest path tree Γ = Γ(t) from all nodes to t: The

computation happens only once and the shortest path from s to t is part of the

result. The reverse shortest path tree can be computed in O(n+m) time by a

BFS since we assume G to be unweighted.

ii) Computing the yellow graphs: This is done on the ith-shortest path Pi for each

node between dev(Pi) and t. The yellow graph Y
(i)
j can be decomposed as

Γ
(︂
v
(i)
j

)︂
∪Y (i)

j−1, where Γ
(︂
v
(i)
j

)︂
is the subtree of Γ hanging from v

(i)
j , meaning that

we do not need to recompute Y
(i)
j−1. This can be done in O

(︂
m+

∑︁|Pi|−1
j=1

⃓⃓⃓
Y

(i)
j

⃓⃓⃓)︂
time for the (i+ 1)th-shortest path.

iii) Computing the shortest path from the deviation node to t in the yellow graphs:

In the unweighted case, this can be done using BFS in O
(︂
m+

∑︁|Pi|−1
j=1

⃓⃓⃓
Y

(i)
j

⃓⃓⃓)︂
time for the (i+ 1)th-shortest path.

37

Average-case Analysis of k-Shortest Path Algorithms

Figure 4.2: Visualization

of the shortest path in

the reverse BFS tree Γ in-

cluding the nested sub-

trees Γ(s), Γ
(︂
v
(1)
2

)︂
and

Γ
(︂
v
(1)
3

)︂
.

v
(1)
r1 = t

s = v
(1)
1

v
(1)
2

v
(1)
3

Thus the overall complexity for Feng’s algorithm to compute the (i+1)th-shortest path,

for i < k, is O
(︂
m+

∑︁|Pi|−1
j=1

⃓⃓⃓
Y

(i)
j

⃓⃓⃓)︂
. We show in Lemma 4.10 that

|Pi|−1∑︂
j=1

⃓⃓⃓
Y

(i)
j

⃓⃓⃓
= O(n+m)

holds for i < k = Θ(1) whp., which proves the average complexity of Feng’s algorithm

to be O(m). □

Lemma 4.10. ForWe published a special

case of this Lemma in [62].

The proof we provided was

lacking some important

details. But as we show

here, the Lemma holds

even in a more general

version.

random directed, unweighted graphs G = (V,E) following the

G(n, p) model, with np > 2 log n and |E| = m, the combined size of the yellow

graphs is

∑︁|Pi|−1
j=1

⃓⃓⃓
Y

(i)
j

⃓⃓⃓
= O(n+m) whp. for the ith-shortest path with i < k and

k = Θ(1). ◀

Proof. First, we show that

∑︁l
j=1

⃓⃓⃓
Y

(1)
j

⃓⃓⃓
= O(n+m) holds for the second-shortest

path. Then we use this result to show that it also holds for a constant k.

Let Y
(i)
j =

(︂
V

(i)
j , E

(i)
j

)︂
and

⃓⃓⃓
Y

(i)
j

⃓⃓⃓
=
⃓⃓⃓
V

(i)
j

⃓⃓⃓
+
⃓⃓⃓
E

(i)
j

⃓⃓⃓
. We show that

∑︁|P1|
j=1

⃓⃓⃓
V

(1)
j

⃓⃓⃓
=

O(n) holds whp. From this we argue that

∑︁|P1|
j=1

⃓⃓⃓
E

(1)
j

⃓⃓⃓
= O(m) also holds whp.

In the case of an unweighted graph, the yellow graphs Y
(1)
j are the subtrees of the

reverse BFS tree Γ = Γ(t) rooted at t where all edges are oriented towards the root.

Consider the jth node v
(1)
j on the shortest path P1 =

(︂
v
(1)
1 , . . . , v

(1)
r1

)︂
from s to t

where r1 = |P1| is the number of nodes of P1. Notice that the index of the nodes of P1

starts at the source, thus the node v
(1)
j is in the (r1− j)th layer of the reverse BFS tree Γ

and vr1 = t is the only node in layer 0.

Let Γ̂i and Γ̌i be defined asFigure 4.3 shows a

schematic of this

definition. Γ̂i :=
⋃︂
j<i

Γj and Γ̌i :=
⋃︂
j>i

Γj = V \ (Γ̂i ∪ Γi). (4.3)

As we will se from Lemma 4.11 that the size of the ith layer is at least |Γi| = Ω
(︁
(np)i

)︁
whp. for all i ≤ i0, where i0 is the biggest index such thati0 is calculated as such

during the proof of

Lemma 4.11.

⃓⃓⃓
Γ̂i0

⃓⃓⃓
=
⃓⃓⃓⋃︁i0−1

j=0 Γj

⃓⃓⃓
<
√
n

holds. So the same is true for

⃓⃓⃓
Γ̂i

⃓⃓⃓
and

⃓⃓⃓
V \ Γ̂i

⃓⃓⃓
= Θ(n) follows for all i ≤ i0.

38

Average-Case Analysis of Feng’s Algorithm

t

Γ̂i

ui vi
Γi

Γ̌iΓ(ui) Γ(vi)

Figure 4.3: A diagram of

the situation in a BFS

tree rooted in a node t

looking at a layer iwhere

ui ∈ Γi is the first node

visited in the layer and

vi ∈ Γi is the last one.

Given that the sizes of subtrees Γ(u), Γ(v) hanging from nodes u, v ∈ Γi, with

i < i0, differ at most by a factor of Θ(np), as will be shown in Lemma 4.12, the total

number of nodes in a single subtrees hanging from a node in layer i can be bounded as

follows. Let Xi be the size of the biggest subtree hanging from a node in layer i. For

i < i0 a total of Θ(n) nodes are distributed to the subtrees hanging from the nodes in

layer i. The smallest subtree must have Θ
(︂
Xi
np

)︂
nodes by Lemma 4.12. Assuming that

all subtrees except for the biggest ones are as small as possible, we can bound the size

of the biggest subtree by

Θ(n) = Xi +Ω
(︁
(np)i

)︁
·Θ
(︃
Xi

np

)︃
= Xi · Ω

(︁
(np)i−1

)︁
. (4.4)

From (4.4) it now follows that

Xi = O
(︃

n

(np)i−1

)︃
(4.5)

is an upper bound of the size of the subtrees hanging from nodes in layer i < i0.

Nowwe split up the sum of all subtrees along the shortest pathP1 =
(︂
v
(1)
1 , . . . , v

(1)
r1

)︂
into three parts.

• The Recall that the target node

t is the the root of the BFS

tree since the BFS tree is a

reverse shortest path tree

in our case.

whole BFS tree as it is the subtree hanging from the target node. It trivially

contains O(n) nodes.

• Big trees hanging from nodes that are between one and i0−1 hops away from the

target node t. Even if we assume that all these trees are always as big as possible

their size is bounded as in (4.5).

• Small trees hanging from nodes at least i0 hops away from the target node t. Each

of these trees is smaller than the smallest of the big trees. We do not know an

exact bound but we can just say that they have the same size as the smallest of

the big trees which is O
(︂

n
(np)i0−1

)︂
. We can assume that i0 ≥ 2 holds. Otherwise

np >
√
n would hold whp. in which case the BFS tree has only a constant depth

and the sum of the sizes of a constant number of subtrees is clearly bounded by

39

Average-case Analysis of k-Shortest Path Algorithms

O(n).The Lemma assumes

np > 2 log n.
So assuming the smallest i0 and choosing np as small as possible, the sizes

of the small subtrees are bounded by O
(︂

n
logn

)︂
. Since the diameter of the given

G(n, p) graphs are log n whp. by Lemma 4.2, we have at most that many small

subtrees.

Now we can bound the sum of the sizes of all subtrees as follows:

r1∑︂
i=1

⃓⃓⃓
Γ
(︂
v
(1)
i

)︂⃓⃓⃓
=

r1−i0∑︂
i=1

⃓⃓⃓
Γ
(︂
v
(1)
i

)︂⃓⃓⃓
⏞ ⏟⏟ ⏞

small subtrees

+

r1−1∑︂
i=r1−i0+1

⃓⃓⃓
Γ
(︂
v
(1)
i

)︂⃓⃓⃓
⏞ ⏟⏟ ⏞

big subtrees

+
⃓⃓⃓
Γ
(︂
v(1)r1

)︂⃓⃓⃓

= O(log n) · O
(︃

n

log n

)︃
+ n

i0∑︂
i=1

O
(︃

1

(np)i−1

)︃
+O(n) = O(n)

This concludes the proof for the second-shortest path.

For the kth-shortest path we look at the edge (u, v) used to deviate from the (k−1)th-
shortest path. Such a deviation edge cannot follow a path in the BFS tree and so the

subtree Γ(u) is not included in Γ(v). Both u and v could be on layer 1 and thus

|Γ(u)| = Θ(n) and |Γ(v)| = Θ(n) can hold simultaneously. Since only one such edge

t

s

Figure 4.4: Visualization of kth-shortest path in the reverse BFS tree. The kth-shortest path

follows the dotted and dashed edges and subpaths. The solid and dotted edges and subpaths

are part of the BFS tree, while dashed edges are not part of the BFS tree.

is introduced when going from the (k − 1)th to the kth-shortest path, the kth-shortest

path can only have k such edges. All other edges follow the BFS tree and the sizes of

the hanging trees sum up to at most O(n), just as for the second-shortest path, totaling
up to

rk∑︂
i=1

⃓⃓⃓
Γ
(︂
v
(k)
i

)︂⃓⃓⃓
= O(n) + k · O(n) = O(n) .

Now that we have bounded the combined number of nodes in the yellow graphs, we

can bound the total number of edges in all yellow graphs combined byO
(︁
n2p
)︁
= O(m)

whp. since the number of adjacent edges of any node is bounded by Chernoff bounds to

be at most O(np). □

40

Average-Case Analysis of Feng’s Algorithm

Since the average-case complexity of Feng’s algorithm depends on the sizes of the

yellow subgraphs, is not sufficient to show that there exist enough paths from s to t

with certain properties, like we did for Yen’s algorithm. Instead one needs to argue that

the combined sizes of all yellow subtrees is small enough. Since s–t-paths could jump

multiple times between two yellow subtrees, Lemma 4.10 only holds for constant values

of k.

Lemma 4.11. Let G = (V,E) be a random directed, unweighted graph following the

G(n, p) model, with np ≥ c log n Minimal hop-distance of i

also means that the nodes

are in the ith BFS layer.

for a constant c > 2. Given a random but fixed node t

let Γi be the set of nodes with a minimal hop-distance i to t.

Then the following holds whp.:

a) |Γi| = Ω
(︁
(np)i

)︁
for all 1 ≤ i ≤ i0 =

1
2

logn
log(np) [16, Lemma 8]

b) |Γi| ≥
√
n for i0 < i < i1 where i1 is the smallest index such that⃓⃓⃓⃓

⃓
i1⋃︂
i=0

Γi

⃓⃓⃓⃓
⃓ > n− 2

√
n (4.6)

◀

Proof. Part a) can be shown by induction over i. Starting with i = 1, Γ1 consists of all

nodes u such that (u, t) is an edge inG. The expected number of such edges is (n− 1)p.

By Chernoff bounds Here we use the Chernoff

bounds as stated in (2.1).

we show that |Γ1| ≥ c1(np)
1
holds whp. for c1 = 1−

√︂
2
c − ε with

ε > 0.

P[|Γ1| ≤ (c1 + λ)(n− 1)p] = P[|Γ1| ≤ (1− (1− c1 − λ))(n− 1)p]

≤ exp

(︃
−(1− c1 − λ)2(n− 1)p

2

)︃
≤ exp

(︃
−(1− c1 − λ)2c(n− 1) log n

2n

)︃

= exp

⎛⎝− log n ·
(︄√︃

2

c
+ ε− λ

)︄2

· c(n− 1)

2n

⎞⎠
= n− (1−c1−λ)2c(n−1)

2n

= o
(︁
n−1

)︁
(4.7)

Equation (4.7) We use the parameter λ to

find a constant factor such

that the bounds we want to

show hold.

is true for all positive λ and ε such that

0 < λ < ε−
√︃

2

c

(︃√︃
n

n− 1
− 1

)︃
and 0 < ε < 1−

√︃
2

c

holds. So |Γ1| ≥ (c1 + λ)np holds with probability at least 1− o
(︁
n−1

)︁
.

Let Keep in mind that we

construct a tree where all

edges point to the root.

Ni =
⋃︁i

j=0 Γj be the set of nodes with a hop-distance to t of at most i. For i > 1,

the number of edges (u, v) with u ∈ V \Ni−1 and v ∈ Γi−1 is distributed according to

Bin[ti, p] with ti = |Γi−1| · (n− |Ni−1|). But some edges could have the same source

41

Average-case Analysis of k-Shortest Path Algorithms

node, meaning that the size of Γi is at most the number of edges from V \Ni−1 to Γi−1

and could be smaller. Given Γi−1 and Γi, the number of edges from Γi to Γi−1 would

be distributed following Bin[|Γi−1| · |Γi| , p] if Γi were independent from Γi−1. So |Γi|
stochastically dominates a random variable Xi ∼ Bin[t′i, p] with

t′i < |Γi−1| · (n− |Ni−1|)− |Γi−1| · |Γi| = |Γi−1| · (n− |Ni|).

Let now t′i = |Γi−1| (n−
√
n). Then |Γi| stochastically dominates Xi as long as

|Ni| <
√
n (4.8)

holds and we have

P
[︂
|Γi| ≤ E[Xi]− σ

√︁
E[Xi]

]︂
≤ P

[︂
Xi ≤ E[Xi]− σ

√︁
E[Xi]

]︂
≤ exp

(︃
−σ2

2

)︃

for E[Xi] = t′ip and σ <
√︁

t′ip. This implies that

|Γ2| ≥ |Γ1| ·
(︁
n−√n

)︁
p− σ

√︂
|Γ1| ·

(︁
n−√n

)︁
p

≥ (c1 + λ)np
(︁
n−√n

)︁
p− σ

√︂
(c1 + λ)np

(︁
n−√n

)︁
p

= (c1 + λ)(np)2
(︂
1− n− 1

2

)︂
− σ

√︂
(c1 + λ)(np)2(1− n− 1

2)

= (c1 + λ)(np)2

⎛⎝1− n− 1
2 − σ

√︂
1− n− 1

2√︁
(c1 + λ)(np)2

⎞⎠
≥ (c1 + λ)(np)2

(︄
1− n− 1

2 − σ√︁
c1(np)2

)︄

holds with probability at least

(︁
1− o

(︁
n−1

)︁)︁(︃
1− exp

(︃
−σ2

2

)︃)︃
= 1− o

(︁
n−1

)︁
− exp

(︃
−σ2

2

)︃
.

By induction on i > 2 we get

|Γi| ≥ (c1 + λ)(np)i
i∏︂

j=2

(︄
1− n− 1

2 − σ√︁
c1(np)j

)︄

with probability at least

1− o
(︁
n−1

)︁
− i exp

(︃
−σ2

2

)︃
.

42

Average-Case Analysis of Feng’s Algorithm

Using σ =
√
5 log n and with i < log n finally results in

|Γi| ≥ (c1 + λ)(np)i
i∏︂

j=2

(︄
1− n− 1

2 − σ√︁
c1(np)j

)︄

≥ (c1 + λ)(np)i

⎛⎝1− in− 1
2 − σ√

c1

i∑︂
j=2

√︂
(np)−j

⎞⎠
≥ (c1 + λ)(np)i

⎛⎝1− in− 1
2 − σ

np
√
c1

i∑︂
j=2

√︂
(np)−j−2

⎞⎠
≥ (c1 + λ)(np)i

⎛⎝1− in− 1
2 − σ

np
√
c1

∞∑︂
j=0

√︂
(np)−j

⎞⎠
≥ (c1 + λ)(np)i

(︄
1− in− 1

2 − σ

np
√
c1
· 1

1− (np)−
1
2

)︄

≥ (c1 + λ)(np)i
(︃
1− in− 1

2 − σ

np
√
c1
·
√
c log n√

c log n− 1

)︃
≥ (c1 + λ)(np)i

(︃
1− i√

n
−
√
5 log n

c log(n)
√
c1
·
√
c log n√

c log n− 1

)︃
≥ (c1 + λ)(np)i

(︃
1− log n√

n
−
√︃

5

c · c1
· 1√

c log n− 1

)︃
≥ (c1 + λ)(np)i

(︃
1−O

(︃
1√
log n

)︃)︃
≥ c1(np)

i

for n large enough. As mentioned before, |Γi| ≥ c1(np)
i
holds for all i with |Ni| <

√
n

(4.8). Let i0 be the maximal value for i such that

√
n ≥ |Ni0 | =

⃓⃓⃓⃓
⃓⃓ i0⋃︂
j=0

Γj

⃓⃓⃓⃓
⃓⃓ = i0∑︂

j=0

|Γj | ≥
i0∑︂
j=0

c1(np)
j = c1 ·

(np)i0+1 − 1

np− 1

holds. From this we calculate i0 to be as follows: Note that
1
c1

> 1 is a

constant and for n big

enough

(︂
1− 1

np

)︂
· 1
c1

> 1

holds.

log
(︂√

n·(np−1)
c1

+ 1
)︂

log(np)
− 1 ≥

log
(︂√

n·(np−1)
c1

)︂
log(np)

− 1

≥
log
(︂√

n · np ·
(︂
1− 1

np

)︂
· 1
c1

)︂
log(np)

− 1

=

1
2 log(n) + log(np) + log

(︂(︂
1− 1

np

)︂
· 1
c1

)︂
log(np)

− 1

≥ 1

2

log n

log(np)
+ 1 + o(1)− 1 ≥ 1

2

log n

log(np)
= i0

43

Average-case Analysis of k-Shortest Path Algorithms

This concludes Part a).

We show Part b) by contraposition. Assume |Γi| <
√
n for one i with i0 < i < i1.

The BFS layers partition VΓ̂i and Γ̌i are defined as in

(4.3). See Figure 4.3 for a

diagram of the partition.

into three disjoint sets

Γi, Γ̂i =

i−1⋃︂
j=0

Γj , Γ̌i = V \ (Γi ∪ Γ̂i), (4.9)

such that there exist no edges (u, v) with u ∈ Γ̂i and v ∈ Γ̌i. By the definitioni1 was defined in (4.6) as

the smallest index such

that Γ̂i1 > n− 2
√
n holds.

of i1 we

know

⃓⃓
Γ̌i

⃓⃓
> 2
√
n. The probability for such a partition can be bounded as follows using

Stirling’s approximation:(︃
n

|Γi|

)︃
·
(︃
n− |Γi|⃓⃓

Γ̌i

⃓⃓)︃ · (︃n− |Γi| − ⃓⃓Γ̌i

⃓⃓⃓⃓⃓
Γ̂i

⃓⃓⃓)︃
· (1− p)|Γ̌i|·|Γ̂i|

=

(︃
n

|Γi|

)︃
·
(︃
n− |Γi|⃓⃓

Γ̌i

⃓⃓)︃ · (1− p)|Γ̌i|·|Γ̂i|

≤
(︃

n

|Γi|

)︃
·
(︃

n⃓⃓
Γ̌i

⃓⃓)︃ · (1− p)|Γ̌i|·|Γ̂i|

≤
(︃

n√
n

)︃
·
(︃

n⃓⃓
Γ̌i

⃓⃓)︃ · (1− p)|Γ̌i|·(n−√
n−|Γ̌i|)

≤
(︃

ne√
n

)︃√
n

·
(︄

ne⃓⃓
Γ̌i

⃓⃓)︄|Γ̌i|(︃
1− c log n

n

)︃n|Γ̌i|
(︃
1−

√
n
n

−|Γ̌i|
n

)︃

≤
(︃

ne√
n

)︃√
n

·
(︁
e
√
n
)︁|Γ̌i| · e

−c log(n)|Γ̌i|
(︃
1−

√
n

n
−|Γ̌i|

n

)︃

≤ exp

(︃(︃
1

2
log(n) + 1

)︃√
n+

(︃
1

2
log(n) + 1

)︃ ⃓⃓
Γ̌i

⃓⃓
− c log(n)

⃓⃓
Γ̌i

⃓⃓ (︃
1− 3√

n

)︃)︃
= exp

(︃(︃
1

2
log(n) + 1

)︃
·
(︁√

n+
⃓⃓
Γ̌i

⃓⃓)︁
− c log(n)

⃓⃓
Γ̌i

⃓⃓ (︃
1− 3√

n

)︃)︃
≤ exp

(︃
3

2

⃓⃓
Γ̌i

⃓⃓ (︃1

2
log(n) + 1

)︃
− c log(n)

⃓⃓
Γ̌i

⃓⃓ (︃
1− 3√

n

)︃)︃
= exp

(︃⃓⃓
Γ̌i

⃓⃓ (︃3

2

(︃
1

2
log(n) + 1

)︃
− c log(n)

(︃
1− 3√

n

)︃)︃)︃
= exp

(︃⃓⃓
Γ̌i

⃓⃓ (︃3

4
log(n) +

3

2
− c log(n)

(︃
1− 3√

n

)︃)︃)︃
= exp

(︃⃓⃓
Γ̌i

⃓⃓ (︃3

2
+ log(n) ·

(︃
3

4
− c+

3c√
n

)︃)︃)︃
=
(︂
e

3
2 · n

3
4
−c+ 3c√

n

)︂|Γ̌i|
(4.10)

With c > 2 and 3c√
n
< 1 we find the exponent to be

3
4 − c+ 3c√

n
< −1 for all n > 576.

Thus (4.10) simplifies to

(︂
e

3
2 · n

3
4
−c+ 3c√

n

)︂|Γ̌i|
<

(︄
e

3
2

n

)︄|Γ̌i|
= o
(︂
n−|Γ̌i|

)︂

44

Average-Case Analysis of Feng’s Algorithm

for n big enough. Summing over all possible values for

⃓⃓
Γ̌i

⃓⃓
> 2
√
n we end up with a

total probability bound of

n∑︂
x=2

√
n

o
(︁
n−x

)︁
< n · o

(︂
n−2

√
n
)︂
= o
(︂
n−2

√
n+1
)︂

for a partition described in (4.9) to exist. In turn this means that Γi contains at least
√
n

with probability 1− o
(︂
n−2

√
n+1
)︂
for n big enough. □

Lemma 4.12. Let G = (V,E) be a random directed, unweighted graph following the

G(n, p) model, with np ≥ c log n for a constant c > 2. Let Γi be the i
th
layer of the

reverse BFS tree Γ = Γ(t) rooted in a random but fixed node t. Then for all nodes

u, v ∈ Γi the sizes of subtrees Γ(u) and Γ(v) of Γ differ by a factor of at mostO(np). ◀

Proof. During construction of the reverse BFS tree Γ, the first nodes visited in layer

i are likely to have more children than the last nodes in this layer, since nodes from

layer i + 1 with multiple out-edges to nodes in layer i will connect to the first node

discovering them. Let i2 be the first layer with
⃓⃓⃓
Γ̂i2 ∪ Γi2

⃓⃓⃓
= Ω

(︂
1
p

)︂
, so

⃓⃓
Γ̌i

⃓⃓
= Θ(n)

holds for all i < i2, where Γ̂i and Γ̌i are defined as in

(4.3). See Figure 4.3 for a

diagram of the partition.Γ̂i =
⋃︂
j<i

Γj and Γ̌i =
⋃︂
j>i

Γj = V \ (Γ̂i ∪ Γi).

Let ui be the first node processed in layer i and vi be the last one. Then the number

of children nc(ui) and nc(vi) can be bounded whp. using Chernoff bounds by

|nc(ui)| < (1 + δ1)
⃓⃓
Γ̌i

⃓⃓
p (4.11)

|nc(vi)| > (1− δ2)
(︁⃓⃓
Γ̌i

⃓⃓
− |Γi| · |nc(ui)|

)︁
p

> (1− δ2)
(︁⃓⃓
Γ̌i

⃓⃓
− |Γi| · (1 + δ1)

⃓⃓
Γ̌i

⃓⃓
p
)︁
p

= (1− δ2)
⃓⃓
Γ̌i

⃓⃓
p
(︁
1− (1 + δ1) |Γi| p⏞ ⏟⏟ ⏞

x

)︁
(4.12)

for constants 0 < δ1 < 1 and 0 < δ2 < 1 as long as |Γi| = o
(︂
1
p

)︂
holds. In this case x,

the reduction due to the loss of possible child nodes, is bounded by o(1), so its effect is

negligible.

This We assume p ≥ c logn
n .changes in layer i2 where

⃓⃓⃓
Γ̂i2 ∪ Γi2

⃓⃓⃓
= Ω

(︂
1
p

)︂
holds for the first time because

we expect each node in Γ̌i2 to have Ω(1) edges to Γ̂i2 ∪ Γi2 . We cannot argue that all

these edges go from Γ̌i2 to Γi2 , since both sets are not fully randomly selected. So instead

we argue that two arbitrary sets of nodes without any edges between them cannot be

too big.

Given an arbitrary subset B ⊂ V with |B| = Ω
(︂

n
logn

)︂
, we can bound the size of

a set A ⊂ V with A ∩ B = {} such that there exists no edge (a, b) ∈ A× B in E as

45

Average-case Analysis of k-Shortest Path Algorithms

follows:

P[∄ (a, b) : a ∈ A, b ∈ B] = (1− p)|A||B|

<

(︃
1− log n

n

)︃|A|·Ω
(︂

1
p

)︂
=

(︃
1− log n

n

)︃|A|·Ω
(︂

n
np

)︂

< e
− log(n)·|A|·Ω

(︂
1
np

)︂
= n

−|A|·Ω
(︂

1
np

)︂

So from |A| · Ω
(︂

1
np

)︂
= Ω(1) we see that such a set A with |A| = Ω(np) nodes does

not exist whp. and thus |A| = o(np) follows.

This means that, given

⃓⃓⃓
Γ̂i2 ∪ Γi2

⃓⃓⃓
= Ω

(︂
1
p

)︂
, we know that

⃓⃓⃓
Γ̂i2+1 ∪ Γi2+1

⃓⃓⃓
= Θ(n)

and

⃓⃓
Γ̌i2+1

⃓⃓
= o(np) holds whp. because the set of nodes without edges to Γ̂i2 ∪ Γi2

cannot have more than Ω(np) nodes as we just showed. So either during processing

layer i2 or layer i2 + 1 the set of nodes not yet connected to the BFS tree shrinks from

Θ(n) nodes to o(np) nodes. The consequence is that at the first nodes processed in

the layer have O(np) neighbors while the last nodes processed have only a constant

number of neighbors or none at all in the BFS tree whp.

In summary the nodes in each layer have a similar number of successor nodes in the

BFS tree up to the layer where the set of unconnected nodes runs out of nodes. In this

layer the first processed nodes have up to O(np) neighbors while the last ones have
only a constant number or none at all. The remaining o(np) nodes will most likely not

only connect to the first processed node in the last layer but even if they do, this would

only double the number of nodes in the subtree which is covered by the factor of O(np)
Lemma 4.12 claims. Keep in mind that a subtree always contains the root itself and thus

have at least one node.

So we have shown that for all nodes u, v ∈ Γi with i ≤ i2 the subtrees Γ(u) and

Γ(v) differ at most by a factor of O(np) in size whp. □

4.4.2 Empirical Evidence on Weighted G(n, p) Graphs

We want to stress that the result of Theorem 4.9 only holds for unweighted graphs

following the G(n, p)model. It seems to be much harder to prove a similar result for the

weighted case. Instead we provide some empirical evidence that even in the weighted

case the yellow graphs grow exponentially.

We computed on several G(n, p) graphs the k = 50 shortest paths for 20 random

pairs of source and target nodes. For each computed deviation, we computed the size of

the yellow graph hanging from each of the deviation nodes. In order to make the sizes

comparable, the index of the deviation nodes i ∈ {0, r} were normalized to an relative

index between i′ ∈ [0; 1] by dividing i by the number of hops r of the deviation path.

Figure 4.5 contains all these sizes except for the source node, which would always have

zero nodes in the yellow graph, and the target node, which we never deviate from.

Figure 4.5 (top) shows that the size of the yellow graph grows exponentially for

directed, weighted G(n, p) graphs with p = 64
n . For 220 ≤ n ≤ 226 this p is of order

of Θ
(︂
logn
n

)︂
as in Theorem 4.9. However, the yellow graphs also grow exponentially

46

Average-Case Analysis of Feng’s Algorithm

0.0 0.2 0.4 0.6 0.8 1.0

Deviation node index relative between s and t

0

2

4

6

8

10

12

14

16

18

20

22

24

26

S
iz

e
of

ye
ll
ow

gr
ap

h
(l

og
2
)

mean

0.0 0.2 0.4 0.6 0.8 1.0

Deviation node index relative between s and t

regression

n = 220

n = 221

n = 222

n = 223

n = 224

n = 225

n = 226

Yellow graph sizes for G(n, p) graphs with p = 64
n

0.0 0.2 0.4 0.6 0.8 1.0

Deviation node index relative between s and t

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

S
iz

e
of

ye
ll
ow

g
ra

p
h

(l
og

2
)

mean

0.0 0.2 0.4 0.6 0.8 1.0

Deviation node index relative between s and t

regression

n = 220

n = 221

n = 222

n = 223

n = 224

n = 225

n = 226

n = 227

n = 228

Yellow graph sizes for G(n, p) graphs with p = 4
n

Figure 4.5: Sizes of yel-

low graphs per deviation

node index relative to the

number of nodes on the

respective shortest path.

Averaged over 20 runs

computing the k = 50

shortest paths on G(n, p)
graphs with p = 64

n (top)

and p = 4
n (bottom) as

well as uniform random

edge weights over [0; 1].

We observe an exponen-

tial growth of the yellow

graphs in both cases.

for the very sparse case of p = 4
n as Figure 4.5 (bottom) shows. So according to the

empirical evidence, the Theorem 4.9 does not only hold for unweighted graphs but also

for weighted G(n, p) graphs with p = Ω
(︂
logn
n

)︂
as well as weighted G(n, p) graphs

with p ≥ 4
n . We also want to point out that Theorem 4.9 only holds for constant values

of k. In the experiments we used k = 50 which is about a logarithmic in the number of

nodes of the graphs we used. This may indicates that Theorem 4.9 also holds for some

k = ω(1). However, constant and logarithmic values are hard to distinguish even on

graphs that barely fit in memory.

47

5
Comparison of

Sequential k-Shortest Path Algorithms

After analyzing the average-case complexity of Yen’s and Feng’s algorithm in Chapter 4,

this chapter discusses how the two algorithms compare in practice and also how the

other variants of Yen’s algorithm fit into the picture. Before we turn to the comparison

of the sequential performance of the algorithms in Section 5.4.2, we take a closer look

at two novel heuristic improvements in Sections 5.1 and 5.2 as well as some minor

optimizations and implementation details in Section 5.3.

The algorithms we consider in our comparisons are Yen’s and Feng’s algorithms

each with a certain subset of algorithmic improvements, namely:

• Graph preprocessing (G), sometimes called guiding, denoted by “g” in the algo-

rithm name.

• Skipping SSSP

computations:

R Section 5.2

Skipping an SSSP computation by a loopless shortest deviation (SD) or second-

shortest deviation (SSD) pulled from the reverse SSSP tree denoted in the algorithm

name by “s” and “s2”, respectively.

• Skipping an SSSP computation by a shortest deviation (SDL) or second-shortest

deviation (SSDL) that is already too long to be considered as a candidate for the

kth-shortest path denoted by “l”.

For clarity Table 5.1 contains a full list of algorithms and their respective features.

Note that all algorithms always use the early stopping optimization described in Sec-

tion 5.1 which is why it is not accounted for in the algorithm names.

Algorithm

Feature

Y
e
n

Y
e
n
-
s

Y
e
n
-
s
-
l

Y
e
n
-
s
2

Y
e
n
-
s
2
-
l

Y
e
n
-
g

Y
e
n
-
g
s

Y
e
n
-
g
s
-
l

Y
e
n
-
g
s
2

Y
e
n
-
g
s
2
-
l

F
e
n
g
-
g
s

F
e
n
g
-
g
s
-
l

F
e
n
g
-
g
s
2

F
e
n
g
-
g
s
2
-
l

ES D D D D D D D D D D D D D D
G D D D D D D D D D
SD D D D D D D D D D D D D
SDL D D D D D D
SSD D D D D D D
SSDL D D D
Y D D D D

Table 5.1: All algorithm

variants and their respec-

tive features. Early stop-

ping (ES) is always used

and mentioned just for

completeness which is

why it is not reflected

in the algorithm names.

Yellow graph (Y) is an

exclusive feature to vari-

ants of Feng’s algorithm.

Comparison of Sequential k-Shortest Path Algorithms

We refer to Feng’s algorithm in its basic form as Feng-gs to underline that it uses

the graph preprocessing and skips SSSP computations if the shortest deviation pulled

from the SSSP tree is loopless, even though this is redundant since Feng’s algorithm is

based on these features.

Throughout this chapter we present the results of several experiments. In order to

focus on the relevant information, we moved some of the metadata to Appendix A.2.3.

5.1 Stop SSSP Computations as Early as Possible

There are two situations that allow us to stop an SSSP computation early, from now on

referred to as early stopping.

1. Since, in most cases, we are only interested in the shortest path to the target node

t, we can stop the SSSP computation as soon as the distance to t is settled. For

∆-stepping this is the case after t was in the latest processed bucket.

2.Any upper limit for the

path length would work.

If k, the number of paths to compute, is known and the candidate list contains

already k candidates, we can use the length of the kth candidate to stop the SSSP

computation as soon as we see that t is further away than the kth candidate is

long.

s u v w t

Figure 5.1: Example showing the ith-shortest path deviating at node u. The node coloring is

according to Feng. When the graph preprocessing is used, all edges between green nodes have

a weight of zero. In the yellow graph the edge (v, w) is replaced by the express edge (v, t).

StoppingGraph Preprocessing:

R Section 3.2.2.2

the SSSP computation early is especially powerful when used in com-

bination with the graph preprocessing used by Feng’s algorithm. Using the yellow

graph analysis in Section 3.2.2.3 and Lemma 3.1 e), we can see that as soon as the SSSP

algorithm settles a node w that would be colored green, as shown in Figure 5.1, all nodes

on the shortest path from w to t have the same distance from the source node as w since

all edges between green nodes have a weight of zero due to the graph preprocessing.

Thus, these nodes, including the target node, are settled next and the SSSP computation

can be stopped. While settling the green nodes distances, all out-edges are relaxed,

including the gray edges shown in Figure 5.1. These relaxations are skipped when the

yellow graph is used by replacing the edge (v, w) by an express edge (v, t). So if the

the average degree is small enough and the number of green nodes on the shortest path

to t is also small, the fraction of explored nodes when using the graph preprocessing

without the yellow graph should be comparable to when the yellow graph is used. If

neither the graph preprocessing nor the yellow graph is used, all gray edges are relaxed,

50

Comparison of Sequential k-Shortest Path Algorithms

Figure 5.3: The ratio

of SSSP computations

stopped before settling

the distance to the target

node for G(n, p) and

Grid(n, r, p) graphs

with uniform random

edge weights over [0; 1].

Most SSSP computations

can be stopped early;

over 60% on sparse

G(n, p) graphs and

about 90% on denser

G(n, p) as well as

Grid(n, r, p) graphs.

220 221 222 223 224 225 226 227 228

n of G(n, 4
n) graph

0.0

0.2

0.4

0.6

0.8

1.0

ra
ti

o

220 221 222 223 224 225 226

n of G(n, 64
n) graph

Feng-gs

Yen-gs

Yen-s

218 220 222 224

n of Grid(n, 4, 0.8) graph

Ratio of SSSP computations stopped without reaching the target

We have a similar picture for denser G(n, p) graphs with p = 64
n and forGrid(n, r, p)

graphs with r = 4 and p = 0.8 with minor differences. For denser G(n, p) graphs
using the yellow graph much less nodes get explored compared to if only the graph

preprocessing is used. This is due to the higher average degree of the nodes that are

skipped by the express edges. On grid graphs the graph preprocessing is about as good

as the yellow graphs when it comes to the number of explored nodes. But we see that

without graph preprocessing a lot more nodes get explored, more than
1
24

of all nodes

in most cases. So here early stopping with graph preprocessing makes an even bigger

difference than for the sparse G(n, p) graphs.
When used with the graph preprocessing, early stopping seems to make the yellow

graph rather an analysis tool than an actual temporary graph representation. Our

experiments in Section 5.4.2 show that on our synthetic graphs the yellow graph does

slow down the algorithms in most cases. But we see in Section 5.4.4 that this is not true

for all graphs.

One advantage the yellow graph could also have over the full graph with prepro-

cessing is that it can be implemented in a way that the number of nodes gets actually

reduced. If it is implemented in such a way, it could in turn allow for a smaller memory

footprint reducing time for memory allocation and possible cache misses. However, such

an implementation would also require a map between yellow graph nodes and original

graph nodes to be maintained. We actually did this in [3] but since then implemented

a simpler and faster version described in Section 5.3, so our current implementation

of SSSP tree and ∆-stepping does not benefit from a potentially small yellow graph in

terms of memory usage.

While stopping the SSSP computation as soon as the target’s distance is settled will

prune the work of settling most distances to nodes further away than the target node t,

stopping when noticing that the target node itself is too far away will prune even more

work if it happens early enough. Figure 5.3 shows that in median more than 60% of the

SSSP computations were stopped before settling the target nodes distance on sparse

52

Skipping SSSP Computations

220 221 222 223 224 225

n of G(n, 4
n) graph

100

101

102

103

104

ru
n
ti

m
e

(s
ec

on
d

s)

Performance comparison with and without stopping SSSP computations early

Algorithm

Yen

Yen-g

Yen-s

Yen-gs

Feng-gs

Early Stopping

False

True

Figure 5.4: Runtimes

of the algorithms Yen,

Yen-g, Yen-s, Yen-gs,

and Feng-gs with and

without early stopping

of SSSP computations.

Yen-s, Yen-gs, and

Feng-gs have a very

similar runtime. Early

stopping speeds up

all algorithms, most

by about an order of

magnitude, Yen-g by

about two orders of

magnitude.

G(n, p) graphs and close to 90% on denser G(n, p) and Grid(n, r, p) graphs. This is, as

expected, the same for all examined algorithms because all experiments were performed

on the same set of random inputs and the respective distances are only shifted by the

graph preprocessing such that ∆-stepping stops after processing the same respective

bucket in all cases. Note that this data is measured on the SSSP computations that

were not skipped completely. SSSP Skipping:

R Section 5.2

Only for Yen-s there are two minor differences on two

instances of the denser G(n, p) graphs. These come from the missing preprocessing

resulting in a slightly different graphs and potentially other skipped SSSP computations.

Since it costs almost no time to check if the SSSP algorithm can be stopped early,

this optimization is always part of our implementations and thus is not reflected in the

algorithm names. To demonstrate its impact, we did a small performance comparison

between the five basic algorithms Algorithm features:

R Table 5.1

Yen, Yen-g, Yen-s, Yen-gs, and Feng-gs. As Figure 5.4

shows, all algorithms benefit highly from using an SSSP algorithm with early stopping.

Yen speeds up by about an order of magnitude when using early stopping and becomes

comparable with Yen-s, Yen-gs, and Feng-gs without early stopping while Yen-g

becomes about two orders of magnitude faster. Yen-s and Yen-gs also speed up by

about an order of magnitude, for Feng-gs it is about a factor of three. Figure 5.4 also

shows that Yen with early stopping is about as fast as Feng-gs without early stopping.

We want to stress the fact that Yen-g with early stopping is even faster than Feng-gs

with early stopping besides the fact that Yen-g is not using SSSP skipping like Feng-gs

is. This shows the power of early stopping in combination with graph preprocessing on

one side and the costs of maintaining a yellow graph on the other side.

5.2 Skipping SSSP Computations

Even better than stopping SSSP computations as early as possible is skipping the whole

SSSP computation completely. But in contrast to early stopping this optimization is not

entirely free since it requires to construct a reverse graph where all edges are inverted

as well as to compute a full SSSP tree on the reverse graph to be able to look up shortest

53

Comparison of Sequential k-Shortest Path Algorithms

s u v0 t

v1v2

×

Figure 5.5: Illustration of what deviating at node u can look like. Solid arrows are edges, dotted

arrows are paths going only through nodes of the same color as the node they start at. The

edge (u, v0) cannot be used since it was already used before. The node colors are according to

Feng’s node coloring described in Section 3.2.2.3. However, the coloring is not required in order

to be able to skip SSSP computations. If graph preprocessing is used, the edges (u, v1) and

(u, v2) carry the total weight of the shortest paths u→ v1 ‧‧➡ t and u→ v2 ‧‧➡ t, respectively,

and all other edges on the respective shortest paths have weights zero. If d(u, v1) < d(u, v2),

the SSSP computation can be skipped since the deviation is loopless. Otherwise the shortest

path goes through a red node and introduces a loop. If the graph preprocessing is not used,

d(u, v1) > d(u, v2) could hold while u→ v1 ‧‧➡ t is shorter than u→ v2 ‧‧➡ t. In this case

all valid neighbors need to be checked for their distance to the target node.

paths fast. Skipping SSSP computations by looking at the shortest deviation path pulled

from a precomputed reverse SSSP tree was introduced by Feng [24] in the context of

Feng’s algorithm as described in Section 3.2.2.4 in terms of the yellow graph. We used

OptYen from [3] is here

called Yen-s due to a

broader spectrum of

optimizations.

SSSP skipping without the yellow graph to improve the running time of Yen’s algorithm

resulting in the algorithm OptYen we described in [3].

Skipping SSSP computations works basically as follows: We pull the shortest devia-

tion path p from a precomputed reverse SSSP tree rooted in the target node t. If the path

p is simple, we can add it directly to the candidate list without calling an SSSP algorithm

that would compute exactly the same path. We call this skip by shortest deviation (SD).

If p is not simple, we can compare its length with the kth candidate in the list at that

moment. If p, the shortest possible deviation, is already longer, in terms of weight, than

the kth candidate, the shortest simple path will be so, too. So even though we have not

found a valid candidate, we can skip the SSSP computation because we already know

that its result would be a path that is too long to be considered as a candidate. We

call this skip by shortest deviation length, SDL for short. NoteWe always assume k to be

part of the input.

that skipping by shortest

deviation length requires either k to be known or a threshold for the length to be given.

Details on skipping SSSP computations can be found in Section 5.2.1.

The concept of skipping SSSP computations can be extended to the second-shortest

deviationSkip by second-shortest

deviation:

R Section 5.2.2

and in fact to any jth-shortest deviation. But we only look into skipping SSSP

computations by first and second-shortest deviation since the skips become much more

complicated while simultaneously yielding less room for improvements, as we show in

Section 5.2.3.

Note that the closest

neighbors include only

neighbors that can be

reached via edges that are

still allowed. See

Section 3.2.1 for details.

5.2.1 Skip by Shortest Deviation: Details

If the closest neighbor v, in terms of edge weight, of the deviation node u is green, the

shortest path from v to the target node t does not go through a red node and thus can

be pulled from the reverse shortest path tree as the new candidate. In case of Feng’s

54

Skipping SSSP Computations

algorithm, it is enough to check the closest neighbor and its path to be loopless, since

Feng’s algorithm uses the graph preprocessing and all edges on the shortest path from

green nodes v to t have a weight of zero. So the total weight-length of the shortest

path from u to t is the weight of the edge (u, v). If the out-edges of u are sorted by

their weight, the algorithm has to check only a single edge, which makes this the least

expensive version of skipping an SSSP computation.

If the shortest deviation path p we get from the reverse SSSP tree is not loopless, we

can still use it. Since all k-SP algorithms we consider do maintain a list of candidates

and there are most likely many more than k candidates, we can compare p to the kth

candidate c. If p is already longer than c, we can also skip the SSSP computation since

a valid deviation path would be even longer than p and thus cannot be one of the

k shortest paths.

The See Figure 5.5 for an

illustration of SSSP

skipping.

same skips are still possible if we do not have the node coloring. If the graph

preprocessing is still used, let v be the closest neighbor, in terms of weight, to the

deviation node u. We then need to pull the shortest path from v to t from the reverse

shortest path tree, and check if the path contains any loops. This can be done by sorting

the nodes on the path and checking if any node appears more than once. The time cost of

this check depends on the number of hops of the path and in turn on the graph structure.

In worst-case this check takesO(n log n). However, as we showed in Chapter 4 shortest

paths can have much less than n hops and thus checking a path to be loopless can be

done in O(log(n) · log log(n)) on G(n, p) graphs whp.
If skipping is used without the graph preprocessing, the algorithm cannot just use

the shortest out-edge, in terms of weight, but needs to find the out-edge (u, v) such

that d(u, v) + d
(︁
v ‧‧➡ t

)︁
is minimal. Since the shortest distance d

(︁
v ‧‧➡ t

)︁
is stored

in the reverse shortest path tree, computing d(u, v) + d
(︁
v ‧‧➡ t

)︁
only takes additional

constant time for each out-edge. The total time to compute all these distances is then

linear in the out-degree of the deviation node.

Note that both the node coloring and the weight function used by the graph pre-

processing do not change whether an SSSP computations can be skipped. But the

preprocessing step we use does also remove SSSP skip statistics:

R Section 5.2.3

u–t-paths that pass through s, so we ex-

pect that more SSSP computations can be skipped when the preprocessing is used.

However, in our considered settings it is a very rare event that shortest deviations

would go through s and get removed by the graph preprocessing. So we do not see

any better chance for skipping SSSP computations if graph preprocessing is used in out

experiments.

5.2.2 Skip by Second-Shortest Deviation

The concept of skipping SSSP computations by the shortest deviation can be extended to

the second-shortest Deviating from the

shortest deviation:

R Figure 5.6

deviation if the shortest deviation p is not loopless and not already

too long to be considered as a candidate. In order to compute the second-shortest

deviation, the algorithm needs to compute a deviation path from each node of the

shortest deviation p between the deviation node u and the first red node v3 which

55

Comparison of Sequential k-Shortest Path Algorithms

s u v0

t

v1v2

v3
v4

×

Figure 5.6: Illustration of what a shortest deviation pulled from the reverse shortest path tree

looks like if it is not loopless and thus cannot be used to skip an SSSP computation. Solid

arrows are edges and dotted arrows are subpaths. The node coloring, here only for clarity, is

according to Feng’s node coloring. An actual coloring is not required. The subpaths s 〜 v3
and v3 〜 u go only through red nodes, v1 〜 v2 goes only through yellow nodes. The path

v3 〜 v4 goes through red and yellow nodes while v4 is the first green node it visits. The path

p = (s, . . . , v3 . . . , u, v0, . . . , t) is the path we want to compute a loopless deviation from and

d1 = (s . . . , u, v1, . . . , v2, v3, . . . , v4, . . . , t) is the shortest deviation pulled from the reverse

SSSP tree. In order to find the second-shortest deviation, only the nodes u, v1, . . . , v2 need

to be considered since deviations from d1 at other nodes would include the node v3 and thus

again not be loopless.

introduces the loop, not including v3 itself as shown in Figure 5.6. Deviations from the

node v3 onwards will always contain the same loop as the shortest deviation and thus

will never be considered to become a candidate for the k shortest paths.

Computing the second-shortest deviation can be done just like described before

by choosing for each deviation node u′ the path p′ such that d(u′, v′) + d
(︁
v′ ‧‧➡ t

)︁
is

minimal. If the graph preprocessing is not used, all out-edges of each deviation node

need to be checked for this. Note that we do not need to check each deviation to be

loopless but only the shortest one. Again, just like for the shortest deviation, if the

second-shortest deviation is not loopless, its length can be compared to the current kth

candidate to maybe skip the SSSP computation.

Note thatFeng’s node coloring:

R Section 3.2.2.3

all nodes between v1 and v2 as shown in Figure 5.6 are yellow by their

definition, since the shortest path in the reverse SSSP tree passes through a red node.

This is important to be able to deviate from them in case Feng’s algorithm is used. If

there would be green nodes between v1 and v2, they would not necessarilyImplementation details:

R Section 5.3

be part of

the yellow graph depending on the implementation.

Algorithm 8 combines the described steps for skipping an SSSP computation by the

first and second-shortest deviation as well as their respective length. It is implemented

in a generic way and can be used with and without graph preprocessing. However, if

graph preprocessing is used and edges are sorted by length, the for-loops iterating over

out-edges can be optimized away. An SSSP computation only needs to be carried out if

Algorithm 8 returns false.

The overall complexity of Algorithm 8Iterating over each

out-edge of up to each

node at most one time

mean to iterate over at

most each edge once.

depends on the time to check for a path to

be loopless in lines 7 and 20 as well as the number of hops on the shortest deviation

we iterate over in line 14. As stated before, checking for a path to be loopless takes up

to O(n log n) by sorting the nodes on the path and looking for duplicate nodes. If the

graph preprocessing is not used and the edges are not sorted by weight, all out-edges

56

Skipping SSSP Computations

Algorithm 8: Subroutine attemptSsspSkip

Input :Path Pi = (v
(i)
1 , . . . , v

(i)
|Pi|) to deviate from, the index j where to deviate from Pi,

the temporary graphG
(i)
j , the reverse shortest path tree T , the list of candidates C

Output :true if the SSSP computation can be skipped, else false.

/* check the shortest deviation */

1 L←∞, P ← none

2 for
(︂
v
(i)
j , u

)︂
∈ G

(i)
j do // the edge

(︂
v
(i)
j , v

(i)
j+1

)︂
does not exist in G

(i)
j

3 P ′ ← Rj(Pi) ◦ T .getShortestPath(u)
4 if d(P ′) < L then
5 L← d(P ′), P ← P ′

6 if L =∞ then return true // no deviation path exists at all

7 if P is loopless then // a valid deviation was found

8 C .push((P, j,Di,j)) // Add the path to the candidate list. Di,j is defined in (3.1).

9 return true

10 else // the shortest deviation has a loop

/* If the length of P = (v1, . . . , v|P |) is longer than the current kth candidate */

/* length, we can also skip the SSSP computation. If there is no kth candidate yet, */

/* the function returns∞. */

11 if L ≥ C .getLengthOfCandidate(k) then return true

/* P is short enough so we look for the second-shortest deviation */

12 J ← the index of the node that introduces the loop to P

13 L←∞, Q←none

14 for j′ ← j, . . . , J − 1 do
15 for (vj′ , u) ∈ G

(i)
j with u ̸= vj′+1 do // G

(i)
j is the same as before

16 Q′ ← Rj′(P) ◦ T .getShortestPath(u)
17 if d(Q′) < L then
18 L← d(Q′), Q← Q′

19 if L =∞ then return true // No second deviation path exists

20 if Q is loopless then // A valid second deviation was found

21 C .push((Q, j,Di,j)) // Add the path to the candidate list. Di,j is defined in (3.1).

22 return true

23 else if L ≥ C .getLengthOfCandidate(k) then // the second-shortest deviation is

too long

24 return true // we found an invalid path, but a valid path must be even longer

25 else
/* The two shortest deviations contain loops and are shorter than the kth */

/* candidate so we need an SSSP call to find the shortest loopless deviation. */

26 return false

of the respective deviation node need to be checked if they are part of the shortest

deviation. Let σ be the maximum out-degree in the graph. In worst-case Algorithm 8 has

to iterate over up to σ neighbors of the deviation node to find the shortest deviation and

up to O(m) deviations of the shortest deviation to find the second-shortest deviation.

57

Comparison of Sequential k-Shortest Path Algorithms

Figure 5.7: The ratio

of skipped SSSP com-

putations to the total

number of computed

candidates on G(n, p)
andGrid(n, r, p) graphs

with uniform random

edge weights over [0; 1].

On all tested graph types,

94% to 100% of the SSSP

computations could be

skipped. 220 221 222 223 224 225 226 227 228

n of G(n, 4
n) graph

0.88

0.90

0.92

0.94

0.96

0.98

1.00

sk
ip

p
ed

ra
ti

o

220 221 222 223 224 225 226

n of G(n, 64
n) graph

guided

False

True

220 222 224 226

n of Grid(n, 4, 0.8) graph

Ratio of SSSP computations skipped

Overall Algorithm 8 can take up to O(m+ n log n) time in worst-case to find both,

the first and second-shortest deviation, and check them to be loopless. Recall that

only those two need to be checked to be loopless, not all O(m) deviations. This gets

better when used with graph preprocessing and edges sorted by weight. It then only

takes up to O(n+ n log n) time in worst-case, since only one out-edge needs to be

checked for the shortest deviation at each node. Finally, when used with node coloring

it takes at most O(n) time, since we can check both paths to be simple in constant time.

Keep in mind that the SSSP computation that is attempted to be skipped takes itself

up to O(m+ n log n) time. So Algorithm 8 does not affect the overall worst-case time

complexity of the k-SP algorithms.

As we showed in our average-case analysisNumber of hops on

k shortest paths:

R Lemma 4.6

in Chapter 4, the k shortest paths have

onlyO(log n) edges whp. This renders the average-case running time of Algorithm 8 to

beO(σ log(n) + log(n) log log(n)) whp. on G(n, p) graphs with random edge-weights.

As briefly mentioned before, the concept of skipping SSSP computations could be

extended further to the third- or any jth-shortest deviation. But from the third-shortest

deviation onwards this would require all the bookkeeping that is done by Yen’s and

Feng’s algorithm to ensure not to find candidates multiple times. This includes an

extra list of candidates as well as a way to manage all the edges that cannot be used

when deviating from a certain path at a certain node which is done by a temporary

graph in Yen’s algorithm. This would then also cost much more time exceeding the

worst-case complexity of the SSSP computation that it is supposed to skip. However, as

Figure 5.7 shows, most SSSP computations can already be skipped using the first- and

second-shortest deviations or their respective length.

By the law of large

numbers, G(n,m) graphs

and G(n, p) graphs with
m = pn2

behave in a

similar way if the number

of nodes is big enough.

5.2.3 Evaluation of SSSP Computation Skipping Types

In our paper [3] we reported that less than 10% of the SSSP computations can be skipped

on average using the shortest deviation on undirected G(n,m) graphs with m = 4n

and between 16% to 18% on average on undirected G(n,m) graphs withm = 128n both

with uniform random edge weights over [0; 1].

58

Skipping SSSP Computations

When we look at sparse directed G(n, p) graphs the situation is much better. Fig-

ure 5.7 shows that for sparse directed G(n, p) graphs with p = 4
n and uniform random

edge weights over [0; 1], over 97% of the SSSP computations can be skipped, indepen-

dently of the graph sizes, using one of the skips described in Sections 5.2.1 and 5.2.2.

Most SSSP skips can be done just by the shortest deviation (over 90% in median) and its

length (about 5% in median), as shown in Figure 5.8. The second-shortest deviations and

their respective lengths lead only to 0.1% to 0.3% of the SSSP skips combined on G(n, p)
graphs with p = 4

n . However, this has to be seen in the context of only about 5% of SSSP

computation not already skipped by the shortest deviations and their respective lengths.

So this is really about 2% to 6% of the SSSP computations that otherwise could not be

skipped by the shortest deviation or its length. Note that skipping via second-shortest

deviation can only happen if an SSSP computation could not be skipped already via the

shortest deviation. On denser G(n, p) graphs with p = 64
n , we see a similar distribution

of SSSP computation skips to the four skip types. On grid graphs, skipping SSSP com-

putations via shortest deviation length has a much higher impact. About 42% of SSSP

computation skips are accounted for by this type of skip in the median.

Also note that the implementation checks first if a deviation is loopless and if so

counts the skip as “skip by shortest deviation” even if the candidate list does not store

the deviation because of its length. These skips are also the SSSP computations skipped

by Feng’s algorithm as described in [24] and by OptYen described in [3]. Skips by the

second-shortest deviation are labeled in the same order.

On For G(n, p) graphs with
n ≤ 226, as we use them,

p = 64
n is in the same

order as
logn
n .

denser directed G(n, p) graph with p = 64
n , skipping SSSP computation works

even better with more than 99% and in some cases all SSSP computations skipped.

As mentioned in Section 5.2.5, the plots do not show any difference between runs

with and without graph preprocessing, even though SSSP skipping could theoretically

benefit from the graph preprocessing.

5.2.4 Skipping SSSP Computations on Directed and Undirected Graphs

As previously discussed and reported in [3], we found that much less SSSP computations

can be skipped on undirected graphs. To fill the gap between directed and undirected

graphs, we looked at q-directed G(n, p) graphs, where each edge (u, v) has a chance

of 1− q to be undirected. This means that in addition to an edge (u, v) the edge (v, u)

with d(u, v) = d(v, u) does also exist with probability 1 − q. To keep keeping the

average degree at np we change the probability for an edge (u, v) to be present from

p to p′ = p
2−q . So an 1-directed G(n, p) graph is a classic directed G(n, p′) graph with

p′ = p while a 0-directed G(n, p) graph is an undirected G(n, p′) graph with p′ = p
2 .

Figure 5.9 shows for the SSSP skips via shortest deviation (SD) and 0-directed G(n, p)
graphs a similar ratio of skipped SSSP computations as we reported in [3]. The more

unlikely it is for edges to be undirected, the better is the ratio of SSSP computations

skipped by the shortest deviation. It also shows that close to 50% of SSSP computations

can be skipped on undirected graphs using the shortest deviation length (SDL). This

rapidly shrinks for q-directed G(n, p) graphs with q ≥ 0.8. The main reason for this

59

Comparison of Sequential k-Shortest Path Algorithms

Figure 5.8: The ratio

of skipped SSSP com-

putations to the total

number of computed

candidates on G(n, p)
andGrid(n, r, p) graphs

with uniform random

edge weights over [0; 1].

This figure shows the

same data as Figure 5.7

split up into the four

separate skip types. On

G(n, p) graphs, by far

the most SSSP computa-

tions are skipped due to

SD with a ratio of over

90%. On Grid(n, r, p)

graphs less than 60%

of SSSP computations

were skipped by SD but

more than 40% were be

skipped by SDL.

0.75

0.80

0.85

0.90

0.95

sk
ip

p
ed

ra
ti

o

. . . shortest deviation (SD)

0.00

0.05

0.10

0.15

0.20

. . . shortest deviation length (SDL)

220 221 222 223 224 225 226 227 228

n of G(n, 4
n) graph

0.000

0.002

0.004

0.006

0.008

sk
ip

p
ed

ra
ti

o

. . . second shortest deviation (SSD)

220 221 222 223 224 225 226 227 228

n of G(n, 4
n) graph

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
. . . second shortest deviation length (SSDL)

guided

False

True

Ratio of SSSP computations skipped by. . .

0.85

0.90

0.95

1.00

sk
ip

p
ed

ra
ti

o

. . . shortest deviation (SD)

0.00

0.05

0.10

0.15

. . . shortest deviation length (SDL)

220 221 222 223 224 225 226

n of G(n, 64
n) graph

0.000

0.002

0.004

0.006

0.008

0.010

sk
ip

p
ed

ra
ti

o

. . . second shortest deviation (SSD)

220 221 222 223 224 225 226

n of G(n, 64
n) graph

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

. . . second shortest deviation length (SSDL)

guided

False

True

Ratio of SSSP computations skipped by. . .

0.450

0.475

0.500

0.525

0.550

0.575

sk
ip

p
ed

ra
ti

o

. . . shortest deviation (SD)

0.38

0.40

0.42

0.44

. . . shortest deviation length (SDL)

220 222 224 226

n of Grid(n, 4, 0.8) graph

0.000

0.005

0.010

0.015

0.020

sk
ip

p
ed

ra
ti

o

. . . second shortest deviation (SSD)

220 222 224 226

n of Grid(n, 4, 0.8) graph

0.000

0.005

0.010

0.015

0.020

. . . second shortest deviation length (SSDL)

guided

False

True

Ratio of SSSP computations skipped by. . .

60

Skipping SSSP Computations

0.0 0.2 0.4 0.6 0.8 1.0

q of q-directed G(n, 4
n) graphs with n = 226

0.0

0.2

0.4

0.6

0.8

1.0

ra
ti

o

Ratio of skipped SSSP computations

Skip Type

total

SD

SDL

SSD

SSDL

Figure 5.9: The ratio of

SSSP computations that

can be skipped via short-

est deviation (SD), length

of shortest deviations

(SDL), second-shortest

deviation (SSD), and

length of second-shortest

deviation (SSDL) for

q-directed G(n, p)
graphs.

is, that the paths become more likely to be loopless and thus get labeled differently.

Finally Figure 5.9 also shows that the second-shortest deviation length (SSDL) can be

used to skip some SSSP computations, although such paths can only rarely be used as a

candidate (SSD). This is even worse for directed graphs.

The reason for the shortest deviation being much less likely to be loopless on

undirected graphs than it is on directed graphs, is that on undirected graphs every edge

{u, v} can be traversed in both directions. So the lighter an edge is, the more likely it

is part of the shortest not necessarily loopless deviation. But it is also likely that the

shortest path from v to the target node t leads right back to the deviation node u since

we already know that its shortest path to t is even shorter than the deviation, otherwise

we would not deviate from it.

5.2.5 Skipping SSSP Computations with and without Graph

Preprocessing

As mentioned in Section 3.2.2.2, the graph preprocessing Sometimes, we call the

graph preprocessing

sometimes guiding for

short.

does not only change the edge

weights while preserving the relative order of s–t-paths but also removes in-edges to

the source node s.

Let v be a node such that the shortest v–t-path P goes through s. This path cannot

be loopless and thus the SSSP computation could only be skipped because of the weight-

length of P . After the graph preprocessing, the shortest path p′ from v to t cannot pass

through s anymore, since all in-edges of s have been removed. The new shortest path p′

has now a chance to be loopless and is also at least as long as P was. So if it is still not

loopless, it has a higher chance to be already too long to be used as a candidate. This

argument carries over to the second-shortest deviation and so on.

So it is theoretically more likely to skip an SSSP computation when guiding is used

compared to when it is not. However, we do not see this in our experiments since it is a

very rare event in the graphs we considered.

61

Comparison of Sequential k-Shortest Path Algorithms

5.3 Implementation Details and Minor Optimizations

Before we compare the performance of the k-shortest path algorithms, we take a brief

look into some implementation details. As for basically all algorithms, their efficient

implementations differ greatly from their theoretical description. We do not want to go

into too much detail, since the engineering of the code is not the focus of this thesis. So

these are just some of the most relevant details.

5.3.1 Graphs

Graphs∆-stepping details:

R Section 2.3.2

are stored as two arrays, one containing all edges grouped by tail node, sorted by

increasing weight and one containing the start indexes of its light and heavy out-edges

for each node according to the given ∆ used by ∆-stepping as 8 byte integers. Each

edge contains a 4 byte value for its head node and a 8 byte value for its weight.E.g. a graph with 228

nodes and 232 edges

requires about 53 GB of

memory without padding

bytes and 68 GB with

padding bytes.

So

a graph with n nodes and m edges requires a total of at least 16n + 12m bytes of

memory. However, depending on the architecture of the hardware, the C++ compiler

will most likely add padding bytes for optimal performance. Thus the graph requires

about 16(n+m) bytes in total.

One could reduce the 8 byte indexes to 4 bytes if the graph has less than 232 edges

in total. Since the biggest G(n, p) graph we consider has about 232 edges in expectation

we decided to used 8 byte indexes for all graphs in order to minimize side effects on the

runtimes. We use 8 byte values (double precision) for edges weights to avoid casting

values between datatypes because we use 8 byte floating point values for path lengths.

Using only 4 byte values (single precision) for path lengths leads to wrong path orders

due to rounding errors when paths have a lot of hops like on Grid(n, r, p) graphs.

5.3.2 Temporary and Yellow Graphs

For each deviation path computed by an SSSP algorithm a temporary or yellow graph

must be created such that only loopless deviations can be found. This requires removing

some nodes or at least all of their in-edges as well as some out-edges of the deviation

node.

However, instead of creating a full temporary graph with the described properties,

it is enough to store a bit field to mark nodes removed from the temporary graph. While

iterating over the out-edges of a node the iterator checks whether the target node is

flagged as removed and if so skips the edge. The deviation node itself is the only node in

the graph where some of the out-edges are removed while the head node is still in the

graph. In this case the iterator can just check whether the edge is in a list of forbidden

edges. This is a quite slow methodThe hop-length d(P) of P

varies between graph

classes. For G(n, p) graphs
d(P) is O(log n) whp.
while it is O(√n) on
Grid(n, r, p) graphs.

but since only a single node (the deviation node)

of the whole graph is affected, this case is the first to be handled and it does not affect

the overall performance. This way the temporary graph only uses Θ(n) additional bit

compared to Θ(n+m) memory for a complete new graph or Θ(m) memory for a bit

field that marks edges instead of nodes. It can be computed in Θ
(︁
d(P)

)︁
time, when

deviating from path P . The temporary graph can also be updated and reused for the

62

Implementation Details and Minor Optimizations

next deviation node by marking only a single node and supplying a new set of forbidden

edges for the new deviation node.

For the yellow graph it is similar. Instead of computing a new graph it is enough to

store an array that holds the color of each node. The express edges can be generated on

the fly whenever an edge to a green node is visited. If an SSSP algorithm like Dijkstra

or ∆-stepping is used, the SSSP computation can be stopped as soon as the distance

to the target node is settled Stopping SSSP

computation early:

R Section 5.1

. In this case only a fraction of all express edges needs to

be generated. Also the node coloring can easily be updated to be reused for the next

deviation node. Similar to the temporary graph, the yellow graph needs only Θ(n)

additional memory if implemented this way.

Note that even though the temporary graph and the yellow graph have the same

additional memory bound of Θ(n), the simpler temporary graph only stores Θ(n) bits

while the yellow graph needs to be able to differentiate three states. This could be stored

in two bits per node but handling pairs of bits is slower Handling pairs of bits is

about 3% to 5% slower

than using a whole byte

according to a micro

benchmark we did. In

addition an array of bits is

not thread-safe.

than handling a whole byte

which is why in our implementation bytes are used and thus yellow graphs need about

eight times more memory than temporary graphs. However, a graph with about 256

million nodes will only need about 256 MB of memory in addition compared to about

32 MB for a simple temporary graph.

5.3.3 SSSP Tree

The SSSP tree stores an array containing for each node a distance as a 8 byte double

and its predecessor to the target node as a 4 byte integer, totaling to 12n bytes. The compiler will most

likely add padding bits so

the real memory usage will

probably be 16n bytes.

So the

memory requirement is independent from the number of edges in the graph. However,

it is also independent from the number of nodes that are actually visited by ∆-stepping.

So even if∆-stepping only visits a tiny fraction of the nodes as we saw in Section 5.1,

the whole SSSP tree needs to be allocated and initialized. This is where one could benefit

from implementing the yellow graph in a way that a new graph is built with less nodes

instead of adding a coloring array on top of the original graph whenever the yellow

graph is small enough.

5.3.4 ∆-Stepping

The main reason for implementing our own version of∆-stepping ∆-stepping details:

R Section 2.3.2

is that we need to be

able to stop the computation if some conditions are met.

We implemented a simple version of ∆-stepping without adaptive bucket-splitting

in case that it gets too full. This optimization seems not to be necessary when doing

experiments on random graphs and would make the implementation more complicated.

In order to keep the number of buckets as small as possible, we only have b =
⌈︁
dmax
∆

⌉︁
+1

many buckets with dmax being the biggest edge weight in the graph. So when processing

bucket i and relaxing an edge (u, v)withweight dwe insert v into bucket i+ d
∆ < i+b−1.

Since we already cleared all buckets before the ith bucket, we can reuse them by inserting

nodes into bucket i+ d
∆ mod b which is at most i+ b− 1 mod b = i− 1.

63

Comparison of Sequential k-Shortest Path Algorithms

In all our experiments we used ∆ = 0.01 which we empirically found to be a good

choice. Since this thesis is not about optimizing ∆, we do not claim that this is the

optimal choice. But against the recommendation of choosing∆ = 1
max{deg(v) : v∈V } [49]

we found that a smaller value works better in our case, especially in context of stopping

SSSP computations early.

5.3.5 Code

We implemented all algorithms mentioned in Table 5.1 and data structures used by

these algorithms in C++20 with OpenMP 4.5 for parallelizationParallelization of k-SP

algorithms:

R Chapter 6

using the GNU Compiler

Collection
1
in version 10.3. The code is published at

https://doi.org/10.5281/zenodo.7713239

under GNU General Public License v3.0. The code is written in a modular way in

order make the SSSP algorithm and some data structures easily exchangeable in future

research projects.

5.4 Experimental Performance Comparison

In this section we present the results of some runtime experiments comparing the

variants of Yen’s and Feng’s algorithm.

5.4.1 Experimental Setup

We ran all previously described algorithmsList of algorithms:

R Table 5.1

on two types of graphs of varying sizes.

For one we use two sets of random G(n, p) graphs. One set with an average degree

of np = 4, corresponding to a small constant, and the number of nodes ranging from

n = 220 to n = 228. For the other set of G(n, p) graph we used an average degree

of np = 64, between two and four times the logarithmic number of nodes, while the

number of nodes range from n = 220 to n = 226. This is to ensure that our empirical

analysis and our theoretical average-case analysisAverage-Case Results:

R Theorems 4.5, 4.7,

and 4.9

in Chapter 4 are both done in similar

setup. The other graph type we use is grid graphs with the number of nodes ranging

from n = 218 to n = 226. The key difference between G(n, p) graphs and grid graphs is
their expected diameter in terms of number of hops, since this is most relevant for the

running time of Yen’s and Feng’s algorithm as well as variants of these algorithms.

To run the experiments, we generated one graph of each type and size. We then

executed several runs drawing each time an independent pair of nodes as source and

target nodes. For each pair of nodes we compute the k = 50 shortest paths.

We chose k = 50 as it lies in a range that many applications [15, 26, 65, 8, 38, 69, 44,

48, 72] seem to use. There are also applications requiring bigger values for k. However,

this introduces the problem of storing and handling more shortest paths as well as

equally many candidate paths. Optimizing the handling of candidate paths is a research

subject on its own [63, 25, 74] which we want to avoid at this point. An approximately

1

https://gcc.gnu.org/

64

https://doi.org/10.5281/zenodo.7713239
https://gcc.gnu.org/

Experimental Performance Comparison

220 221 222 223 224 225 226 227 228

n of G(n, 4
n) graph

100

101

102

103

ru
n
ti

m
e

(s
ec

on
d

s)

Yen

Yen-g

Yen-s

Yen-s2

Yen-s-l

Yen-s2-l

Yen-gs

Yen-gs2

Yen-gs-l

Yen-gs2-l

Feng-gs

Feng-gs2

Feng-gs-l

Feng-gs2-l

220 221 222 223 224 225 226 227 228

n of G(n, 4
n) graph

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

ru
n
ti

m
e

/
n

lo
g
n

2
1
5

(s
ec

on
d

s)

Sequential Performance Comparison on G(n, 4
n) Graphs Figure 5.10: Sequential

runtimes of all algorithm

variants showing vari-

ants of Feng’s algorithm

as solid lines, variants

of Yen’s algorithm with

guiding as dashed lines

and without guiding as

dotted lines, respectively.

If skipping by deviation

length is used the line is

colored green and blue if

it is not. All algorithms

use early stopping.

logarithmic k, as we chose it, also allows to experiment on bigger graphs since the

runtime highly depends on k.

Our experiments ran on machines of the Goethe-HLR
2
compute cluster. The ma-

chines contained 196 GB of internal memory and two Intel Xeon Skylake Gold 6148

each having 20 physical cores and 20 Hyper-Threading cores. For the experiments on

the sequential algorithms, we locked the executable to one of the physical cores to avoid

runtime artifacts from core switching. We ran our experiments on multiple machines all

having an identical hard- and software setup in order to keep the total time manageable.

5.4.2 Comparing Sequential Performance

For the sequential performance comparison we looked into the running times of all

algorithms listed in Table 5.1. Figure 5.10 shows the running times on sparse G(n, p)
graphs with p = 4

n . We see that Yen is by far the slowest, which is why we did not run

it on the full data set. The other algorithms form essentially four groups:

1. Variants of Feng’s algorithm (solid lines). They are all about equal in speed while

being about five times faster than Yen. However, maintaining the yellow graph

costs time which makes this group the second slowest.

2. Variants of Yen’s algorithm without guiding but with SSSP skipping (dotted lines).

This group is the second fastest. The right side of Figure 5.10 shows that the

variants with skipping SSSP computations by the second deviation is faster than

only skipping them by the shortest deviation and it gets even faster when SSSP

skipping by the deviation length is also turned on, making them about three times

faster than the variants of Feng’s algorithm and about an order of magnitude

faster than Yen.

3. Variants of Yen’s algorithm with guiding and SSSP skipping (dashed lines). This

group is the fastest one being about 20% to 40% faster than the respective variant

2

https://csc.uni-frankfurt.de/wiki/doku.php?id=public:service:goethe-hlr

65

https://csc.uni-frankfurt.de/wiki/doku.php?id=public:service:goethe-hlr

Comparison of Sequential k-Shortest Path Algorithms

without guiding. Within this group, variants skipping SSSP computations by

deviation length are faster than versions only skipping SSSP computations if the

deviation is loopless.

4. Yen-g forms a group on its own (violet line). Even though it is much faster than

all variants of Feng’s algorithm, it is also in most cases much slower than variants

of Yen’s algorithm using any sort of SSSP skipping. This behavior is expected

since still every SSSP computation needs to be carried out including resource

allocations even if only a fraction of the graph is explored.

Comparing variants of Yen’s algorithm skipping SSSP computations both with

and without guiding, we notice that without guiding, Yen-s-l is slower than Yen-s2

while with guiding it is the other way around meaning Yen-gs-l is faster than Yen-gs2.

That Yen-gs-l is faster than Yen-gs2 is supported by our data on the number of SSSP

computations that can be skipped discussed in Section 5.2. However, it is possible that

many of the SSSP computations skipped by SDL can also be skipped by SSD which is

probably why we see such a difference between Yen-gs and Yen-gs2 in some cases.

This would also be true if guiding is used in addition but with guiding a non-skipped

SSSP computation costs much more time which could be a reason why we see this effect

without guiding but not when guiding is used.

We also point out that Yen-s, in [3] called OptYen, is the slowest of both of the

fastest groups, with about a factor of 1.5 to 1.9 slower than the new algorithm variants

Yen-gs-l and Yen-gs2-l.

The running times on G(n, p) graph with logarithmic average degree shown in

Figure 5.11 (top), are ordered similar compared to the running times on G(n, p) graphs
with a constant average degree. However, the relative runtime differences are smaller.

Since the overall running time is much slower for p = 64
n and the graph files are quite

big, we only tested graphs with up to 226 nodes having close to a billion edges. For

G(n, p) graphs with p = 4
n we tested up to n = 228 nodes which then also have about a

billion edges.

On grid graphs the situation is a little bit different than on G(n, p) graphs. We use

Grid(n, r, p) graphs with n = nw · nh nodes where nw is the width of the grid and nh

the height such that nw = r · nh holds. Each node has out-edges to the nodes above,

below, left, and right to it each with probability p. Specifically, we used r = 4 and

p = 0.8. In order not to draw any advantages from the indexing, in terms of cache

efficiency, node indexes are randomized after the graph is generated. Each generated

edge gets a uniform random edge weight from [0; 1].

Shortest paths in grid graphs have Θ(
√
n) hops in expectation. This means that

the k-shortest path algorithms have to compute a lot more deviations than on graphs

with a smaller diameter like G(n, p) graphs. For comparison, as Figure 5.11 shows for

n = 226 nodes running times of up to 28 hours to compute the 50
th
-shortest path on

grid graphs, while it takes less than 7 minutes on sparse G(n, p) graphs with roughly

the same number of nodes and edges.

Figure 5.11 (bottom) shows that Yen-g is already more than an order of magnitude

66

Experimental Performance Comparison

220 221 222 223 224 225 226

n of G(n, 64
n) graph

101

102

103

ru
n
ti

m
e

(s
ec

on
d

s)

Yen

Yen-g

Yen-s

Yen-s2

Yen-s-l

Yen-s2-l

Yen-gs

Yen-gs2

Yen-gs-l

Yen-gs2-l

Feng-gs

Feng-gs2

Feng-gs-l

Feng-gs2-l

220 221 222 223 224 225 226

n of G(n, 64
n) graph

19

20

21

22

23

ru
n
ti

m
e

/
n

lo
g
n

2
1
5

(s
ec

on
d

s)

Sequential Performance Comparison on G(n, 64
n) Graphs

218 219 220 221 222 223 224 225 226

n of Grid(n, 4, 0.8) graph

100

101

102

103

104

105

ru
n
ti

m
e

(s
ec

on
d

s)

Yen

Yen-g

Yen-s

Yen-s2

Yen-s-l

Yen-s2-l

Yen-gs

Yen-gs2

Yen-gs-l

Yen-gs2-l

Feng-gs

Feng-gs2

Feng-gs-l

Feng-gs2-l

218 219 220 221 222 223 224 225 226

n of Grid(n, 4, 0.8) graph

2

4

6

8

10

12

ru
n
ti

m
e

/
n

lo
g
n

2
1
5

(s
ec

on
d

s)

Sequential Performance Comparison on Grid(n, 4, 0.8) Graphs

Figure 5.11: Sequential

runtimes of all algorithm

variants on denser

G(n, p) graphs with

p = 64
n (top) and

Grid(n, r, p) graphs

(bottom) showing vari-

ants of Feng’s algorithm

as solid lines, variants

of Yen’s algorithm with

guiding as dashed lines

and without guiding as

dotted lines, respectively.

If skipping by deviation

length is used the line is

colored green and blue if

it is not. All algorithms

use early stopping.

faster than Yen. Skipping SSSP computations by shortest and second-shortest deviation,

Yen-s and Yen-s2 respectively, without the graph preprocessing is slower than Yen-g by

a factor of at least 4.8 and 2.8, respectively. A major speedup comes from skipping SSSP

computations by the length of the shortest and second-shortest deviation. On the two

biggest Grid(n, r, p) graphs, algorithm variants using SSSP skipping by length are at

least a factor of 4.5 to 140 faster than the respective variant without using SSSP skipping

by length. Particularly noteworthy is Yen-s2-l which is more than 250 times faster

than Yen-s2 on average on Grid(n, r, p) graphs with n = 226 nodes. When both SSSP

skipping by length and graph preprocessing is used the speedup by using the second-

shortest deviation is almost negligible, similar to the results on G(n, p) graphs. As for
the G(n, p) graphs, Yen-gs-l and Yen-gs2-l are the two fastest algorithms, both up to

a factor of three faster than Feng’s algorithm using the same respective optimizations

and about a factor of 10 to 50 faster than Feng’s algorithm Feng-gs without further

optimizations on bigger graphs.

67

Comparison of Sequential k-Shortest Path Algorithms

5.4.3 Comparing Sequential Performance on Undirected Graphs

In Section 3.2.4 we described the KIM algorithm. It is especially designed for undirected

graphs and utilizes the properties of undirected graphs in order to achieve a worst-

case complexity of O(k · spc(n,m)), where spc(n,m) is the worst-case complexity of

computing an SSSP tree on a graph with n nodes and m edges. On the ith-shortest

path, the KIM algorithm computes at most six SSSP trees in order to compute additional

deviation candidates for the next shortest path. But in contrast to Yen’s algorithm,

the SSSP computations in KIM compute a full SSSP tree each while in Yen’s algorithm

the SSSP computations can be stopped as soon as the distance to the target node is

settled. We showed in Section 5.1 that only a few nodes need to be explored by the SSSP

algorithm. We further showed in Section 5.2.3 that almost all SSSP computations can be

skipped on directed graphs and about 70% on undirected G(n, p) graphs when skipping

SSSP computations by deviation length. This motivates a direct comparison of the KIM

algorithm with some of the variants of Yen’s and Feng’s algorithm.

We only compare variants of Yen’s and Feng’s algorithm that are using the SSSP

skip by deviation length since Figure 5.9 shows that this type of skip has the biggest

impact on undirected graphs. We also add Yen-s and Feng-gs to the comparison since

we had both algorithms in a similar comparison in [3].

Figure 5.12 shows that Yen-gs2-l prunes enough work to be about a factor 55 faster

than the KIM algorithm on G(n, p) graphs with p = 4
n . On Grid(n, r, p) graphs it is

even better, running about 70 to 127 times faster than the KIM algorithm.

The worst-case complexity would suggest a factor of O(n) between the algorithms.

The average-case analysis still suggests a factor of O(log n) between Yen’s algorithm

and the KIM algorithm. However, we can see in Figure 5.12 that the variants of Yen’s

and Feng’s algorithm on one side and the KIM algorithm on the other side seem to differ

only by a constant factor. On the grid graphs, we see that there is in fact a non-constant

factor between these algorithms when we look at the runtimes of Yen-s and Feng-gs.

But for the other algorithm variants the non-constant factor does not show up in the

plot.

We point out that we did not reimplement the KIM algorithm and used a C++

implementation from [3] which is why the code of KIM is not in the code repository of

this thesis.

5.4.4 Experiments on Real World Graphs

We want to close the chapter on sequential runtime comparisons of k-shortest path

algorithm by showing experiments on real world graphs. For this, we chose the Orkut

social network [52] as a graph with a small diameter and the European road network as

a graph with a larger diameter. The instance of the European road network was made

available by PTV group
3
. It is not publicly available but can be obtained on request for

research purposes from KIT
4
.

3

https://ptvgroup.com

4

https://i11www.iti.kit.edu/resources/roadgraphs.php

68

https://ptvgroup.com
https://i11www.iti.kit.edu/resources/roadgraphs.php

Experimental Performance Comparison

220 221 222 223 224 225 226

n of G(n, 4
n) graph

100

101

102

103

ru
n
ti

m
e

(s
ec

on
d

s)

Yen-s

Yen-s-l

Yen-s2-l

Yen-gs-l

Yen-gs2-l

Feng-gs

Feng-gs-l

Feng-gs2-l

KIM

218 219 220 221 222 223 224

n of Grid(n, 4, 0.8) graph

100

101

102

103

104

ru
n
ti

m
e

(s
ec

on
d

s)

Sequential Performance Comparison on Undirected Graphs Figure 5.12: Sequential

runtimes of some vari-

ants of Yen’s and Feng’s

algorithm as well as the

KIM algorithm on undi-

rected G(n, p) and grid

graphs. We see that the

variants using SSSP skip-

ping by deviation length

outperform the KIM al-

gorithm by one to two or-

ders of magnitude.

The Orkut network contains about 3 million nodes denoting users and about 117

million edges denoting links between users. The graph is originally unweighted, so in

addition to the unweighted graph, we also used five other types of edge-weights:

• Uniform random edge-weights over [0; 1], which we also used in most other

experiments.

• The sum of the out-degree of the nodes connected by an edge as well as the

inverse of the sum.

• The product of the out-degree of the nodes connected by an edge as well as the

inverse of the product.

We normalized all weights to be between zero and one by dividing all edge-weights by

the heaviest weight in the graph.

With sum and product of node-degrees, edges between high degree nodes become

heavy. This reduces the chance that such edges are part of shortest paths and in turn

shortest paths are likely to have more edges. With the inverse of sum and product of

node-degrees, edges between high degree nodes are lighter than edges between low

degree nodes which should make it more likely for shortest paths to also have only a

few edges.

The European road network has about 18 million nodes and about 42.5 million edges.

The graph comes with two different sets of edge-weights:

• The physical distance in meters.

• The travel time in seconds assuming a certain average speed depending on the

road type varying between 130 km/h on fast motorways down to 10 km/h on

gravel roads.

Again, we normalized all edge-weights to fit in the [0; 1] interval by dividing all weight

by the biggest edge-weight.

69

Comparison of Sequential k-Shortest Path Algorithms

Figure 5.13: Runtimes of

various k-shortest path

algorithms on the Orkut

social network with six

different types of weight

assigned to the edges.

40

50

60

70

ru
n
ti

m
e

(s
ec

on
d

s)

unweighted

26

27

28

uniform random weights over [0, 1]

27

29

211

ru
n
ti

m
e

(s
ec

o
n

d
s)

degree sum

29

211

213

215

degree product

Y
en

-g

Y
en

-s

Y
en

-s
2

Y
en

-s
-l

Y
en

-s
2-

l

Y
en

-g
s

Y
en

-g
s2

Y
en

-g
s-
l

Y
en

-g
s2

-l

F
en

g-
gs

F
en

g-
gs

2

F
en

g-
gs

-l

F
en

g-
gs

2-
l

0

1000

2000

3000

4000

ru
n
ti

m
e

(s
ec

on
d

s)

inverse degree sum

Y
en

-g

Y
en

-s

Y
en

-s
2

Y
en

-s
-l

Y
en

-s
2-

l

Y
en

-g
s

Y
en

-g
s2

Y
en

-g
s-
l

Y
en

-g
s2

-l

F
en

g-
gs

F
en

g-
gs

2

F
en

g-
gs

-l

F
en

g-
gs

2-
l

2000

4000

6000

inverse degree product

Orkut network

Figure 5.14: Runtimes of

various k-shortest path

algorithms on the Euro-

pean road network with

distances and travel time

as edge weights, respec-

tively.

Y
en

-g

Y
en

-s

Y
en

-s
2

Y
en

-s
-l

Y
en

-s
2-

l

Y
en

-g
s

Y
en

-g
s2

Y
en

-g
s-
l

Y
en

-g
s2

-l

F
en

g-
gs

F
en

g-
gs

2

F
en

g-
gs

-l

F
en

g-
gs

2-
l

25

27

29

211

213

215

217

ru
n
ti

m
e

(s
ec

on
d

s)

distance

Y
en

-g

Y
en

-s

Y
en

-s
2

Y
en

-s
-l

Y
en

-s
2-

l

Y
en

-g
s

Y
en

-g
s2

Y
en

-g
s-
l

Y
en

-g
s2

-l

F
en

g-
gs

F
en

g-
gs

2

F
en

g-
gs

-l

F
en

g-
gs

2-
l

travel time

European road network

70

Experimental Performance Comparison

In Figure 5.13, we see heavily varying runtimes of the several algorithm depending

on the edge weights. On the unweighted graph and the graph with random edge weights,

algorithms without the graph preprocessing are by far the slowest while variants of

Feng’s algorithm are the second fastest and variants of Yen’s algorithm using the graph

preprocessing are the fastest. On graphs with sum and product of node-degrees as

edge-weights, Sum and product of

node-degrees as

edge-weights cause

shortest paths to have

more edges.

variants of Feng’s algorithm are the fastest. On graphs with the inverse

of the sum and the product of node-degrees as edge-weights, we see no clear difference

between variants of Yen’s and Feng’s algorithm. On all graphs but the unweighted

graph, algorithms skipping SSSP computations by deviation length (green) are always

faster compared to the respective algorithms version not using that feature (blue). Keep

in mind that we did not adjust the bucket size of∆-stepping for the non-random egde-

weights and instead used ∆ = 0.01 as for all other experiments. This could result

in higher overall running times of all k-SP algorithms but does not affect the relative

performance between them.

On the European road network, we see that algorithms skipping SSSP computations

by deviation length have a clear advantage over their counterparts that do not use this

optimization. Figure 5.14 shows speedups of factors 23 to 84 between these variants on

distance edge-weights. On travel time edge-weights, we see similar results although

the runtimes are overall slower. Here the algorithms Feng-gs-l and Feng-gs2-l stand

out, being about 280 and 700 times faster than Yen-s2, respectively. To stress this result

a little bit more, Feng-gs2-l took under five minutes to compute the k = 50 shortest

paths using the travel time edge-weights while Feng’s algorithm Feng’s algorithm is

denoted by Feng-gs in the

plots.

took well over two

hours and Yen-g, Yen-s, and Yen-s2 took over one and a half day. We want to point

out, that the latter three algorithms did not finish all runs due to runtimes of over 48

hours of some runs, at which point we canceled the runs.

The results on the European road network are consistent with the results on grid

graphs in the sense that the algorithms skipping SSSP computations by the length of the

shortest deviations outperform all other algorithms. But on the road network variants

of Feng’s algorithm, Feng-gs-l and Feng-gs2-l, are the fastest while they are up to a

factor of three slower than Yen-gs-l and Yen-gs2-l on grid graphs. The experiment on

the European road network with distances as edge-weight also show that the algorithm

Yen-s2-l is faster than Yen-gs2-l where the only difference is that Yen-s2-l does not

use the graph preprocessing.

5.4.5 Conclusion

All our experiments show that both Yen’s and Feng’s algorithm benefit from our im-

proved heuristics to skip SSSP Heuristics:

R Sections 5.2.1

and 5.2.2

computations. Particularly skipping SSSP computation

by the length of non-simple deviations, SDL and SSDL, speeds up the running times

both on synthetic graphs as well as on real world graphs, especially on graphs with a

larger diameter like grid graphs or road networks.

We also demonstrated that computing the node coloring of Feng’s algorithm can be

slower than just relying on the graph preprocessing combined with stopping the SSSP

71

Comparison of Sequential k-Shortest Path Algorithms

computation as soon as the target node is found. We see this behavior on G(n, p) graphs,
where the k shortest paths have only O(log n) hops whp. The node coloring does not
only limit the nodesResults on G(n, p) and

Grid(n, r, p) graphs:

R Figures 5.10 and 5.11

explored by the SSSP algorithm but also allows to skip an SSSP

computation in constant time. Without the node coloring skipping SSSP computations

takes linear time in the number of hops of the current shortest path. This is why we see

that on G(n, p) graphs all versions of Feng’s algorithm are slower than the corresponding

versions of Yen’s algorithm. On grid graphs where the k shortest paths have Θ(
√
n)

hops whp., we see the advantage of the node coloring. On the Orkut network the

algorithms skipping SSSP computations by deviation length are always faster than the

corresponding ones not using this feature except on the unweighted graph. We also

see that the node coloring is only beneficial on the graphs with sum and product of

out-degrees as edge-weights. Using these edge-weight functions, shortest paths have

more edges. This fits well in the picture with the European road network. Here the

algorithms using the node coloring are always faster than the corresponding algorithm

without the node coloring.

In summary our experiments demonstrated that our new heuristics, namely SSD,

SDL, and SSDL, can speed up Yen’s and Feng’s algorithms significantly. They show that

on graphs with small diameter it is even faster not to compute Feng’s node coloring and

use Yen-gs2-l instead. On graphs with larger diameters, our new heuristics without

the node coloring can still outperform Feng’s algorithm. However,Results on the real world

graphs:

R Figures 5.13 and 5.14

combining our new

heuristics with the node coloring can be even faster as the experiment on the Orkut

network and the European road network shows.

If nothing is know about the input graph, Yen-gs2-l would be a good choice since

it is the fastest algorithm on all the synthetic graphs. However, Feng-gs2-l would be

also worth a try, since it is the fastest algorithm on the European road network, where

it is about 17 times faster than Yen-gs2-l with travel times as edge weights. On the

synthetic graphs, Yen-gs2-l is faster than Feng-gs2-l by up to a factor of seven. All

other algorithms mentioned are probably not relevant in practice and only show the

influence of the individual optimizations on the performance.

72

6
Empirical Comparison of k-Shortest Path

Algorithms on Multicores

In Chapter 4 we showed that the average-case time complexity of Yen’s algorithm and

Feng’s algorithm are much better than their worst-case complexity we briefly described

in Chapter 3. We then presented in Chapter 5 multiple Algorithm variants:

R Table 5.1

variants of both algorithms using

additional heuristics to speed up the sequential performance. It turned out that we can

skip most SSSP computations completely and on the few remaining SSSP computations

only a tiny fraction of the nodes needs to be explored by the SSSP algorithm.

In addition to these optimizations on sequential performance we also parallelized

the presented algorithms. In this chapter, we discuss the parallelization variants, imple-

mentation details, and present results of the performance experiments.

6.1 Parallelization Strategies

We consider three strategies to parallelize the k-shortest path algorithms.

• Parallel Shortest Paths: The easiest way to parallelize any k-SP algorithm is to

use a parallel SSSP algorithm. We use the parallel Details on∆-stepping:

R Sections 2.3.2

and 6.2.2

∆-stepping algorithm. There

are other options, e.g., Radius-Stepping [11], but ∆-stepping does not require a

preprocessing of the graph, aside from partitioning the edges by weight into light

and heavy edges.

• Parallel Deviations: While all deviations of the ith-shortest path need to be

computed before the deviations of the (i + 1)th-shortest path, the order of the

deviations of the ith-shortest path is arbitrary and the deviations are independent

of each other. This allows to compute them in parallel using a sequential SSSP

algorithm.

• Mixed Strategy: Instead of using only one of the strategies above, we can use both
at the same time. Nested parallelism has no benefit over non-nested parallelism

but if none of the two other strategies can utilize all available threads by itself,

the mixed strategy could be a good option.

Which parallelization strategy works best On G(n, p) graphs with
n = 224, the paths have

about 20 hops each. So

most of the time, we do not

have more than a single

SSSP computation.

depends on the expected number of SSSP

computations and the number of nodes explored during an SSSP computation. As we

observed in Section 5.1 for G(n, p) and Grid(n, r, p) graphs, only a tiny fraction of the

nodes is explored by the SSSP algorithm. So the overhead from using a parallel SSSP

algorithm might be bigger than the speedup due to the parallel execution.

Empirical Comparison of k-Shortest Path Algorithms on Multicores

For parallel deviations we have a similar situation on G(n, p) graphs. We saw in

Section 5.2 that most of the SSSP computations can be skipped completely on G(n, p)
(> 96%) and Grid(n, r, p) (92% – 96%) graphs.On Grid(n, r, p) graphs

with n = 224 nodes, the

paths have about 212 hops

each. So still about 250

(6% of 212) SSSP

computations need to be

carried out.

On G(n, p) graphs this leaves only
limited potential to compute deviations in parallel, since the number of deviations

computed on each shortest path is only logarithmic whp. On Grid(n, r, p) graphs we

also only have about 6% of the SSSP computations to be actually carried out, but since

the paths have Θ(
√
n) hops whp., there are still enough SSSP computations left to

execute. So in Section 6.4 we will use grid graphs to ensure that we can see effects of

the parallelization.

6.2 Implementation Details on Parallelization

In order to get an efficient parallelization of our algorithm, we need to avoid frequent

use of slow locking mechanisms, which can be utilized to prevent multiple threads

writing simultaneously to the same memory address. Instead, we use additional data

structures to separate the data used by the individual threads described in more detail

in the following two sections.

6.2.1 Implementation

In additionNotes on the code:

R Section 5.3.5

to the sequential versions of the algorithms in Table 5.1 we implemented

parallel versions using OpenMP 4.5 that part of the GNU Compiler Collection 10.3
1
.

We reused as much code as possible but added separate parallel implementations of

all functions that would introduce unnecessary overhead when used with just a single

thread.

6.2.2 Implementation Details on ∆-Stepping Parallelization

We use∆-stepping as the SSSP algorithm as described in Section 2.3.2. Here we want to

point out some implementation details concerning the parallelization and the overhead

they come with.

∆-stepping uses a bucket list to organize nodes according to their tentative distances.

Each bucket has a so called bucket width of ∆, i.e., the ith bucket contains nodes with a

tentative distance between i ·∆ and (i+ 1) ·∆. Within the buckets the nodes are not

sorted in any way. The out-edges of the nodes in the current bucket are relaxed in two

phases:

1. Light edges e with an edge weight of d(e) < ∆. These edges might introduce

new nodes to the current bucket or even reintroduce nodes to the bucket.

2. Heavy edges e with an edge weight of d(e) ≥ ∆. These edges cannot introduce

nodes to the current bucket. Thus they only have to be relaxed once for every

node that was in the bucket even if it was reinserted multiple times into the bucket

as long as heavy edges are relaxed after all light edges have been relaxed.

1

https://gcc.gnu.org/

74

https://gcc.gnu.org/

Implementation Details on Parallelization

Within each phase, the order of the relaxations is arbitrary and can be carried out in

parallel. In order to prevent multiple threads updating the same nodes distance at the

same time, we split up the buckets and use a mapping to assign nodes to threads. Let τ

be the number of threads. A bucketBi is then split up into τ subbucketsBi,0, . . . , Bi,τ−1

where each node v is assigned to bucket Bi,h(v) by a hash function h. Since h(v) = v mod τ will

probably not assign the

nodes evenly on

non-random node indexes.

For non-random node

indexes another hash

function should be used.

Computing mod τ is

also rather slow in practice

if τ is not a power of 2.

Alternatively one could

randomize the node

indexes, but this could

result in more cache

misses.

we already

look at random graphs, we used h(v) = v mod τ as a hash function. With this

each thread can maintain its own part of the bucket independently and we expect all

subbuckets to be about evenly filled since we run it on random graphs with random node

IDs. Relaxing all out-edges of nodes in the current bucket right away would possibly

lead to multiple threads updating the same nodes distance, so instead each node stores

a relaxation request in a request list R. The request list R consists of τ2 sublists Ri,j .

This way the ith thread can store for each edge e = (u, v) the relaxation request in the

sublist Ri,h(v) without interfering with other threads. After all threads have placed all

their requests, the ith thread executes all requests in the sublists R0,i, . . . , Rτ−1,i. This

way each thread relaxes only edges that target nodes the thread is assigned to.

Relaxing heavy edges works the same way. The algorithm remembers the nodes

that were once scanned in the current bucket by storing them in a node cache. This

cache consists of an array containing flags indicating if a node is already in the cache

as well as a subcache for each thread, to store the actual The array of flags stores

actually 8 bit integers

instead of booleans since

arrays of booleans are not

thread-safe in C++. In

order to minimize the

memory of Boolean

vectors, C++ stores them as

bigger integers and maps

the index in the array to a

bit in one of these integers.

So concurrent write

operations on different

indexes close enough to be

in the same underlying

integer could overwrite

each other.

nodes. The vector of flags is

needed to be able to quickly look up if a node is in the cache, while the subcaches are

needed to quickly iterate over the stored nodes only without iterating over all other

nodes too.

With this implementation we have a lock free parallelization only using barriers

between phases of the algorithm. However, compared to the sequential implementation

we also have some overhead depending on the number of threads.

1. Memory overhead due to the thread-safe node cache, which increases the memory

footprint by a factor of 8.

2. Computational overhead due to the node-to-thread assignment using the hash

function. This could also be solved by generating a random mapping once and

storing it in an array. But it would still take time to look up values in an array at

random positions with potential cache misses as well as additional Θ(n) memory.

3. Initializing andmaintainingΘ
(︁
τ2
)︁
arrays. Spreading requests over many different

arrays can lead to a higher memory consumption and additional cache misses.

This gets more expensive with the number of threads.

If there is enough work to do, the speedup due to parallelization is bigger than the time

loss due to the overheads.

On G(n, p) and Grid(n, r, p) graphs only a tiny fraction of the nodes is explored

during an SSSP computation, as we showed in Section 5.1, i.e., we cannot expect a parallel

∆-stepping to scale well on these graphs and we see in fact the expected behavior in

Figure 6.1. But there might be graphs, graph classes, or edge-weight distributions where

a lot more nodes need to be explored.

75

Empirical Comparison of k-Shortest Path Algorithms on Multicores

6.2.3 Implementation Details on k-Shortest Path Parallelization

All deviations of the ith-shortest path can be computed independently of each other. But

for each deviation a slightly different temporary graph G
(i)
j in case of Yen’s algorithm

or yellow graph Y
(i)
j in case of Feng’s algorithm is needed. For this reason each thread

needs to maintain its own temporary graph G
(i)
j or yellow graph Y

(i)
j , respectively. As

described in Section 5.3, we implemented temporary and yellow graphs by additional

arrays on top of the original graph to mark nodes as removed from the graph or storing

a nodes color, respectively. Even though the additional array comprises only n bits, or

n bytes for the yellow graph, respectively, it scales linearly with the number of treads.

This can be expensive in terms of memory if a lot of threads are used.

During the execution the deviations are assigned dynamically to the threads. We

saw in Section 5.2 that for most of the deviations the respective SSSP computation can

be skipped. Since we do not know up front for which deviation the SSSP computation

can be skipped, we use the slower method of assigning jobs dynamically to a thread

whenever it has finished its last one. This way we get a better load balancing. The

alternative would be assigning the threads to the deviations at the beginning, risking

that a single thread needs to execute multiple SSSP computations while other threads

skip all SSSP computations and in turn wait most of the time.

6.3 Experimental Setup

In Chapter 5 we presented a sequential comparison of 14 algorithmHyper-Threading cores

have their own cache but

share the ALU with a

physical core. So either a

physical core or its

Hyper-Threading core can

compute at the same time.

variants in total. For

our parallel comparison we exclude Yen, Yen-g, Yen-s, Yen-s2, Yen-s-l, and Yen-s2-l

as the other algorithms ran consistently faster.

Section 5.2 showed that on G(n, p) instances graph preprocessing and SSSP skipping

both prune almost all of the computational work that could be parallelized which is

why we ran the parallelization experiments on Grid(n, r, p) graphs only.

We consider a shared memory setting where all processing units have access to the

full memory.Non-Uniform Memory

Access, NUMA for short, is

used in multi processor

setups. It basically means

that different CPUs in the

machine have direct access

to only certain chunks of

the memory thus access to

other chunks is slower.

Multiple processing units can read simultaneously from the same memory

address. But only one processing unit can write to a memory address at a time.

Our experiments ran on machines of the Goethe-HLR
2
compute cluster. The ma-

chines contain 196 GB of internal memory and two Intel Xeon Skylake Gold 6148 each

having 20 physical cores and 20 Hyper-Threading cores. Although each machine had

two processors, we locked the experiments to use only one CPU in order to avoid NUMA

effects in the results which also halves the available RAM. We ran our experiments on

multiple machines all having an identical hard- and software setup in order to keep the

total time manageable. Note that we did not tune the implementations to any specific

technical details on the described machines.

2

https://csc.uni-frankfurt.de/wiki/doku.php?id=public:service:goethe-hlr

76

https://csc.uni-frankfurt.de/wiki/doku.php?id=public:service:goethe-hlr

Experimental Results

20 21 22 23 24 25

Number of parallel deviation threads

26

27

28

29

210

211

212

213

214

ru
n
ti

m
e

(s
ec

on
d

s)

Yen-gs

Yen-gs2

Yen-gs-l

Yen-gs2-l

Feng-gs

Feng-gs2

Feng-gs-l

Feng-gs2-l

20 21 22 23 24

Number of ∆-stepping threads

Parallel Performance on Grid(226, 4, 0.8) Graphs Figure 6.1: Runtimes

of several algorithm

variants using multiple

threads for deviations

(left) and ∆-stepping

(right). The vertical

dotted line indicates the

number of physical cores

of the processor. As ex-

pected, we see a speedup

for parallel deviations

but not for parallel SSSP

computations.

6.4 Experimental Results

Figure 6.1 shows that parallel deviations work better for algorithm variants that skip less

SSSP computations like Yen-gs, Yen-gs2, Feng-gs, and Feng-gs2. For these algorithm

variants the running time almost halves when doubling the number of threads. For

variants skipping SSSP computations by deviation length, much less SSSP computations

are required and thus the parallel deviations scale not quite as well for algorithm variants

Yen-gs-l and Yen-gs2-l. But still the runtime can be sped up from about 3.2 minutes

using a single thread to just under a minute using 16 threads. For the variants Feng-gs-l

and Feng-gs2-l we cannot see any speedup at all. This is due to the little potential for

speedup by parallel deviations while simultaneously maintaining the yellow graphs

takes longer than maintaining only a temporary graph like in the variants of Yen’s

algorithm. Keep in mind that the machines we used only have 20 physical cores which

is why we see a slightly weaker speedup for 32 cores, where 12 Hyper-Threading cores

are used.

As expected we observe no speedup when using parallel∆-stepping, since we expect

to only explore a few hundred nodes of the graph. So there is not enough work left

to be parallelized. On the contrary we even see for Yen-gs-l and Yen-gs2-l that they

become slightly slower when parallel ∆-stepping is used with 16 threads due to the

reasons discussed in Section 6.2.2.

Since we do not see a speedup when using parallel∆-stepping, we did not include

experiments with the mixed strategy mentioned before.

77

7Conclusion

7.1 Summary

7.1.1 Theoretical Results

In Chapter 4, the theoretical part of this thesis, we prove in Theorem 4.5 that the spc(n,m) is the

average-case complexity of

the SSSP algorithm in use.

average-

case complexity of Yen’s algorithm is O(k log(n) · spc(n,m)) on G(n, p) graphs with
at least logarithmic average-degree and a variety of edge-weight distributions following

some assumptions. Assumptions on

edge-weight distributions

can be found on page 31.

We get a slightly weaker average-case complexity in Theorem 4.7 of

O
(︂
k · log2 nnp · spc(n,m)

)︂
for Yen’s algorithm on sparse graphs with a constant average-

degree but only for uniform random edge-weights over [0; 1]. At the core of both proofs,

we confirm that enough short s–t-paths exist in terms of weight and from this we can

show that enough short s–t-paths exist in terms of hops.

Both results also hold for Feng’s algorithm since it is basically a heuristic on top

of Yen’s algorithm. However, we prove in Theorem 4.9 an even better average-case

complexity of O(k · spc(n,m)) for Feng’s algorithm on unweighted G(n, p) graphs
with a logarithmic average-degree and constant values of k. For the proof, we analyze

the size of subtrees of the reverse BFS tree rooted in the target node t. We show that

the sizes of the subtrees hanging from nodes within the same BFS level differ only by a

logarithmic factor whp.

We close Chapter 4 by providing empirical evidence that Theorem 4.9 should also

hold on weighted G(n, p) graphs with uniform random edge-weights over [0; 1] and

logarithmic as well as constant average-degree.

7.1.2 Empirical Results and Practical Improvements

In Chapter 5, the practical part of the thesis, we suggest several new heuristics to

improve the sequential runtime of Yen’s and Feng’s algorithms.

First, we observe in Section 5.1 that an SSSP algorithm like∆-stepping only explores

a tiny fraction of the graph in order to find a shortest deviation path when the graph

preprocessing described by Feng is used. This allows to stop the SSSP computations

early in case it needs to be executed at all. In Section 5.2.3 we demonstrate that most

SSSP computations can be skipped completely by pulling a shortest deviation path from

a precomputed reverse shortest path tree. We also describe how to extend this approach

in order to also pull the second-shortest path from the reverse shortest-path tree trying

to skip even more SSSP computations. In total, our experiments show that about 94% of

Future Work and Open Questions

SSSP computations can be skipped on Grid graphs, about 98% on sparse G(n, p) graphs
with a constantAll weighted graphs in our

experiments had uniform

random edge-weights over

[0; 1].

average-degree, and over 99% on G(n, p) graphs with a logarithmic

average-degree.

We implemented
1
all algorithms and heuristics presented in Chapter 5 and evaluated

them in Section 5.4 on G(n, p) and Grid graphs as well as some real world graphs.

Our experiments show that our new heuristics significantly speedup Yen’s and Feng’s

algorithms. On Grid graphs we see a speedup by a factor of up to 40 compared to Feng’s

algorithm.

The practical part closes with Chapter 6 about parallelizing the described k-shortest

path algorithms. We consider two strategies for parallelization: Computing deviation

paths in parallel and using a parallel SSSP algorithm. For the parallel deviations we

demonstrate speedups of a factor two up to eight on a CPU with 16 cores on Grid

graphs. However, all the optimizations described in the sequential part lead to the SSSP

algorithm exploring only a few hundred nodes if it is not skipped entirely. So we do not

see a speedup when using a parallel SSSP algorithm.

7.2 Future Work and OpenQuestions

We want to point out some open questions in the k-shortest path domain.

7.2.1 Extended Average-Case Complexity Analysis

Regarding our average-case analysis,Average-case analysis:

R Chapter 4

we believe that Theorem 4.7, on the average-case

complexity of Yen’s algorithm on sparse graphs, holds not only for uniform random

edge-weights over [0; 1] but also for more general edge-weight distributions as used in

Theorem 4.5. To close this gap many proofs from [51] need to be extended for more

general edge-weight distributions. In Theorem 4.9, we show the improved average-case

complexity of Feng’s algorithm for a constant k on unweighted graphs. Furthermore,

we provide empirical evidence that the same result should hold for weighted graphs

as well. However, proving that seems to require deeper insights into the structure of

shortest-path trees.

Alongside the average-case analysis, we also suggest some algorithm variantsAlgorithm variants:

R Chapter 6

and Table 5.1

using

heuristics to prune off most of the k-shortest path subroutine computations. Using these

heuristics, it could be possible to prove an even better average-case complexity.

7.2.2 Smoothed Complexity Analysis

We observe in our experimentsPerformance experiments:

R Section 5.4

that all considered algorithms behave differently depend-

ing on the number of edges on the k shortest paths. Therefore, it seems worth taking a

look at the smoothed complexity of the k-shortest path problem. Smoothed analysis is

a field introduced by Spielman and Teng [67] in order to bring theoretical complexity

analysis and performance closer together in practice. The smoothed analysis identifies

1

The implementation is publicly available at https://doi.org/10.5281/zenodo.7713239.

80

https://doi.org/10.5281/zenodo.7713239

Future Work and OpenQuestions

relevant parameters of input data the overall complexity depends on. The analysis is

done with respect to these parameters.

7.2.3 Extensive Practical Comparison

A field we could not fully cover is a complete comparison between all the current state

of the art k-shortest path algorithms. This is a huge task since there are at least four

algorithms, namely Feng’s algorithm [24], the algorithm by Kurz and Mutzel [41], the

algorithm by Chen et al. [12], and at least one of the new algorithms we presented

in Chapter 5. Some of our algorithms run faster on certain undirected graphs Comparison on undirected

graphs:

R Section 5.4.3

than

the KIM algorithm beside its worst-case complexity being nearly a factor of n better

than Yen’s and Feng’s algorithm. Therefore, even though these algorithms are made

for directed graphs, they should be compared to the KIM algorithm [40] on undirected

graphs as well. In order to make a fair comparison, all these algorithms need to be

implemented with a similar level of code quality and optimization. We support this

by making our implementations publicly available under an open source license. The

comparison then needs to be done on multiple graph classes with various sizes since we

already saw in our comparison that no one single algorithm performs best on all graph

classes. In addition, the underlying data structures to represent the resulting paths

partially depend on the value of k used and have different advantages and disadvantages

in terms of memory consumption and runtimes. While we use smaller k values in the

order of log n, some other authors use k values in the range of

√
n in their experiments.

Discussion of our choice

for the size of k:

R Section 5.4.1

Even though both are valid choices, differences in the size of k make it even harder to

compare algorithms across multiple papers. All algorithms should also use a common

SSSP algorithm whenever appropriate. For some of the k-shortest path algorithms the

SSSP algorithm needs to support some features that could reduce performance in k-

shortest path algorithms not requiring these features. Such functions could be stopping

the SSSP computation when the shortest path to the target node is found or when it

is certain that the target node is too far away to be relevant. In our case, the choice

of ∆-stepping as default SSSP routine introduces an additional parameter that could

make comparisons even harder. Finally, such a comparison should also take parallelism

into account. The variants of Yen’s algorithm we show in Chapter 5 can be parallelized

rather easily. However, we did not check if the same technique can be used for the other

state of the art algorithms or if these algorithms would profit more from a parallel SSSP

algorithm or a completely different technique. All these factors make a meaningful

comparison a long and extensive task on its own which is why we decided to leave this

for future work.

81

AAppendix

A.1 List of Notations

If not stated otherwise the following notations are used.

A.1.1 General Notation

d(e), d(u, v) p. 7 The weight of an edge e = (u, v).

d(P) p. 7 The weight-length of a path P .

d(P) p. 7 The hop-length of a path P .

|P | p. 7 The number of nodes on a path. d(P) = |P | − 1 holds.

u→ v p. 7 An edge from node u to node v as an alternative to (u, v).

u ‧‧➡ v p. 7 A shortest path from node u to node v in terms of weight.

u ↠ v p. 7 A shortest path from node u to node v in terms of hops.

P ◦Q p. 8 Join to paths P andQ. We use this notation loosely, so if the head

node of P is not the same as the tail node of Q the two paths are

joined by the respective edge.

A.1.2 k-Shortest Path Related Notation

Pi p. 13 The ith-shortest path.

v
(i)
j p. 13 The jth node of the ith-shortest path.

Ri(j) p. 13 Prefix of the ith-shortest path up to and including the jth node.

Ri(j) =
(︂
v
(i)
1 , . . . , v

(i)
j

)︂
Si(j) p. 13 Suffix of the ith-shortest path from the jth node on.

Si(j) =
(︂
v
(i)
j , . . . , v

(i)
|Pi|

)︂
par(Pi) p. 13 Parent path of the ith-shortest path Pi. That is the path Pi devi-

ated from.So ifPl = par(Pi) holds thenRi(di(Pi)) = Rl(di(Pi))

and Ri(di(Pi) + 1) ̸= Rl(di(Pi) + 1) holds, too.

dev(Pi) p. 13 The node at which Pi deviated from its parent path.

di(Pi) p. 13 The index of the node at which Pi deviated from it parent path.

So v
(i)
di(Pi)

= dev(Pi) holds.

Appendix

A.2 Experiments

This section contains some additional details about the experiments presented through-

out the thesis.

A.2.1 Graph Classes

We mostly use G(n, p) and Grid(n, r, p) graphs for our experiments. This section

contains some details about these graph types. The code we used to generate the graphs

for our experiments is also part of the code repository.

A.2.1.1 G(n, p) and G(n,m) Graphs

The G(n, p) model introduced by Gilbert [30] describes a random graph with exactly

n nodes where each of the n · (n − 1) possible edges has a probability of p to exist.

This model is closely related to the G(n,m) model introduced by Erdős and Rényi [22]

where exactly m of the n · (n− 1) possible edges are chosen. For n→∞ both models

are identical. Both models also work for undirected graphs.

In our experiments we only use G(n, p) graphs both directed and undirected de-

pending on the respective setting. We also introduce q-directed graphs for 0 ≤ q ≤ 1,

where each (u, v) has a chance of 1− q to be undirected, meaning that the edge (v, u)

also exists in the graph and, if the graph is weighted, both edges share the same edge

weight. So 0-directed graphs are the same as undirected graphs and 1-directed graphs

are directed graphs complying to the respective model. Note that q-directed graphs for

0 < q < 1 are also directed graphs but do not fully comply with the respective model.

However, they form sort of a bridge between directed and undirected graphs in terms

of the properties of shortest paths.

In our experiments we use graphs from n = 220 nodes to n = 228 nodes. For such

sizes G(n, p) graphs look statistically all the same which is why we did not generate

new random graphs for each experiment. Instead we generated one G(n, p) graph of

each size and only chose random source and target nodes.

G(n, p) graphs are widely used for average-case analysis and probabilistic existence

proofs. However, they also have some properties like a logarithmic diameter as Priebe

[58] showed, so even though there is a positive probability for any graph with a certain

number of nodes and edges to be drawn, we will see graphs with logarithmic diameters

whp.

A.2.1.2 Grid(n, r, p) Graphs

An other important graph type is grids, which we use to simulate e.g., road networks

or other real world graphs with a large diameter. The Grid(n, r, p) graphs we use are

two dimensional grids consisting of n nodes layed out in nr rows and nc columns such

that both
nr
nc

= r and nr · nc = n holds. Each node has potential out-edges to the four

neighboring nodes directly to the left, right, top, and below each with probability p. The

84

Experiments

top row is not connected to the bottom row and the same holds for the left most and

right most column.

A.2.2 Hardware and Software

All performance experiments were done on a subset of servers of the Goethe-HLR

compute cluster at Goethe – University Frankfurt. All servers used were identical in

terms of hardware and software. Each server had two Intel Xeon Gold 6148 (Skylake)

CPUs having 20 physical cores and 20 additional hyper threading cores and 196 GB of

RAM. All servers run Scientific Linux 7.6.

We implemented all code in C++20 with OpenMP 4.5 for parallelization using the

GNU Compiler Collection
1
in version 10.3 to compile our code. Even though we only

used CPUs by Intel, the code is not specialized to work best with these exact CPUs

whatsoever.

The code is publicly available at

https://doi.org/10.5281/zenodo.7713239

under GLPv3 open source license. Besides the k-shortest path algorithms the repository

contains code to generate G(n, p) and Grid(n, r, p) graphs as well as the raw data of

our experiments and the code to create the plots.

A.2.3 Metadata of the Experiments

All experiments we did followed a similar pattern. We created for each graph class

and size a single random graph and reduced it to the largest connected component.

This removes only a very small amount of nodes from the graph and in turn saves

us a lot of error handling for the case that the target node is not reachable. We then

generated for each graph class and size twenty random source and target nodes to run

all the algorithms on to address The machines were

exclusively used for the

experiment but still runs

the operation system and

management processes.

for varying results due to the random choices of source

and target node as well as smaller variations due to the machines and other software

running on them. The only exception are the runtimes we show on the European road

network in Section 5.4.4, where we attempted twenty runs but some of the slowest did

not finish due to extremely high running times. Since all algorithms ran on the same

set of source-target pairs, the results show sometimes similar bumps in the plots for

different algorithms.

Even though we not always explicitly mentioned it, we always calculated k = 50

paths as discussed in Section 5.4.1.

A.2.4 Plot Types

All plots we showed were created using seaborn [73] and Jupyter
2
. We use mostly two

types of plots to present the results of our experiments, namely line plots and box plots.

1

https://gcc.gnu.org/

2

https://jupyter.org/

85

https://doi.org/10.5281/zenodo.7713239
https://gcc.gnu.org/
https://jupyter.org/

Appendix

220 221 222 223 224 225

100

101

102

103

104

220 221 222 223 224 225 226 227 228

0.94

0.95

0.96

0.97

0.98

0.99

confidence interval

whiskers

median

outlier

box

Figure A.1: Example line plot (left) and box plot (right).

A.2.4.1 Line Plots

Our line plots always show the mean of the respective data set. In some line plots, in

addition to the line itself, an area around each line in the same color is shown. These

areas show the 95% confidence interval for the shown line computed from the data. See

Figure A.1 for an example. We omit this area in most plots since it makes the plot hard

to read when there are too many lines.

A.2.4.2 Box Plots

The box plots convey much more information than the line plots. The lower and upper

end of the box denot the 25% and 75% quantile of the underlying data, the line in the box

denotes the median. The whiskers extend to 1.5 times the inter quantile range above and

beyond the upper and lower end of the box, respectively. All data points further away

are considered outliers represented as diamond shapes. See Figure A.1 for an example.

86

Bibliography

[1] U. Agarwal and V. Ramachandran. Finding k Simple Shortest Paths and Cycles. In S.-

H. Hong, editor, 27th International Symposium on Algorithms and Computation (ISAAC

2016), volume 64 of Leibniz International Proceedings in Informatics (LIPIcs), pages 8:1–

8:12, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

doi:10.4230/LIPIcs.ISAAC.2016.8.

[2] U. Agarwal and V. Ramachandran. Fine-grained complexity for sparse graphs. In Pro-

ceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC

2018, pages 239–252, New York, NY, USA, 2018. Association for Computing Machinery.

doi:10.1145/3188745.3188888.

[3] D. Ajwani, E. Duriakova, N. Hurley, U. Meyer, and A. Schickedanz. An empirical comparison

of k-shortest simple path algorithms on multicores. In Proceedings of the 47th International

Conference on Parallel Processing, ICPP 2018, Eugene, OR, USA, August 13-16, 2018, pages

78:1–78:12. ACM, 2018. doi:10.1145/3225058.3225075.

[4] T. Akiba, T. Hayashi, N. Nori, Y. Iwata, and Y. Yoshida. Efficient top-k shortest-path distance

queries on large networks by pruned landmark labeling. Proceedings of the AAAI Conference

on Artificial Intelligence, 29(1), Feb. 2015. doi:10.1609/aaai.v29i1.9154.

[5] H. Aljazzar and S. Leue. K∗
: A heuristic search algorithm for finding the k shortest paths.

Artificial Intelligence, 175(18):2129–2154, 2011. doi:10.1016/j.artint.2011.07.003.

[6] Z. ALzaid, S. Bhowmik, and X. Yuan. Multi-path routing in the jellyfish network. In 2021

IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),

pages 832–841, 2021. doi:10.1109/IPDPSW52791.2021.00124.

[7] H. Aprahamian, D. R. Bish, and E. K. Bish. Optimal risk-based group testing. Management

Science, 65(9):4365–4384, 2019. doi:10.1287/mnsc.2018.3138.

[8] S. Banerjee, P. Mitra, and K. Sugiyama. Multi-document abstractive summarization using

ilp based multi-sentence compression. In Proceedings of the 24th International Conference

on Artificial Intelligence, IJCAI’15, pages 1208–1214. AAAI Press, 2015.

[9] A. Bernstein. A Nearly Optimal Algorithm for Approximating Replacement Paths and k

Shortest Simple Paths in General Graphs, pages 742–755. doi:10.1137/1.9781611973075.61.

[10] A. Bernstein and D. Karger. A nearly optimal oracle for avoiding failed vertices and edges.

In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC

’09, pages 101–110, New York, NY, USA, 2009. Association for Computing Machinery.

doi:10.1145/1536414.1536431.

[11] G. E. Blelloch, Y. Gu, Y. Sun, and K. Tangwongsan. Parallel shortest paths using radius

stepping. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Ar-

chitectures, SPAA ’16, pages 443–454, New York, NY, USA, 2016. Association for Computing

Machinery. doi:10.1145/2935764.2935765.

[12] B. Y. Chen, X.-W. Chen, H.-P. Chen, and W. H. Lam. Efficient algorithm for finding k

shortest paths based on re-optimization technique. Transportation Research Part E: Logistics

and Transportation Review, 133:101819, 2020. doi:10.1016/j.tre.2019.11.013.

[13] H. Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on

the Sum of Observations. The Annals of Mathematical Statistics, 23(4):493 – 507, 1952.

doi:10.1214/aoms/1177729330.

87

https://doi.org/10.4230/LIPIcs.ISAAC.2016.8
https://doi.org/10.1145/3188745.3188888
https://doi.org/10.1145/3225058.3225075
https://doi.org/10.1609/aaai.v29i1.9154
https://doi.org/10.1016/j.artint.2011.07.003
https://doi.org/10.1109/IPDPSW52791.2021.00124
https://doi.org/10.1287/mnsc.2018.3138
https://doi.org/10.1137/1.9781611973075.61
https://doi.org/10.1145/1536414.1536431
https://doi.org/10.1145/2935764.2935765
https://doi.org/10.1016/j.tre.2019.11.013
https://doi.org/10.1214/aoms/1177729330

Bibliography

[14] T. Chondrogiannis, P. Bouros, J. Gamper, and U. Leser. Alternative routing: k-shortest

paths with limited overlap. In Proceedings of the 23rd SIGSPATIAL International Conference

on Advances in Geographic Information Systems, SIGSPATIAL ’15, New York, NY, USA, 2015.

Association for Computing Machinery. doi:10.1145/2820783.2820858.

[15] J. S. Chuang and D. Roth. Gene recognition based on dag shortest paths. Bioinformatics,

17:S56–S64, 06 2001. doi:10.1093/bioinformatics/17.suppl_1.S56.

[16] F. Chung and L. Lu. The diameter of sparse random graphs. Advances in Applied Mathe-

matics, 26(4):257 – 279, 2001. doi:10.1006/aama.2001.0720.

[17] S. Clarke, A. Krikorian, and J. Rausen. Computing the n best loopless paths in a net-

work. Journal of the Society for Industrial and Applied Mathematics, 11(4):1096–1102, 1963.

doi:10.1137/0111081.

[18] C. Demetrescu, M. Thorup, R. A. Chowdhury, and V. Ramachandran. Oracles for dis-

tances avoiding a failed node or link. SIAM Journal on Computing, 37(5):1299–1318, 2008.

doi:10.1137/S0097539705429847.

[19] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,

1(1):269–271, Dec 1959. doi:10.1007/BF01386390.

[20] N. Edmonds, A. Breuer, D. Gregor, and A. Lumsdaine. Single-source shortest paths with the

parallel boost graph library, pages 219–248. 07 2009. doi:10.1090/dimacs/074/09.

[21] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2):652–673, 1998.

doi:10.1137/S0097539795290477.

[22] P. Erdős and A. Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 6:290 –

297, 1959.

[23] R. Fagerberg, C. Flamm, R. Kianian, D. Merkle, and P. F. Stadler. Finding the k best synthesis

plans. Journal of Cheminformatics, 10(1):19, Apr 2018. doi:10.1186/s13321-018-0273-z.

[24] G. Feng. Finding k shortest simple paths in directed graphs: A node classification algorithm.

Networks, 64(1):6–17, 2014. doi:10.1002/net.21552.

[25] G. Feng. Improving space efficiencywith path length prediction for finding k shortest simple

paths. IEEE Transactions on Computers, 63(10):2459–2472, 2014. doi:10.1109/TC.2013.136.

[26] K. Filippova. Multi-sentence compression: Finding shortest paths in word graphs. In

Proceedings of the 23rd International Conference on Computational Linguistics, COLING ’10,

pages 322–330, USA, 2010. Association for Computational Linguistics.

[27] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

[28] A. Frieder and L. Roditty. An experimental study on approximating k shortest simple paths.

ACM J. Exp. Algorithmics, 19, apr 2015. doi:10.1145/2630068.

[29] A. Frieze and G. Grimmett. The shortest-path problem for graphs with random arc-lengths.

Discrete Applied Mathematics, 10(1):57–77, 1985. doi:10.1016/0166-218X(85)90059-9.

[30] E. N. Gilbert. Random Graphs. The Annals of Mathematical Statistics, 30(4):1141 – 1144,

1959. doi:10.1214/aoms/1177706098.

[31] Z. Gotthilf and M. Lewenstein. Improved algorithms for the k simple shortest paths and

the replacement paths problems. Information Processing Letters, 109(7):352–355, 2009.

doi:10.1016/j.ipl.2008.12.015.

88

https://doi.org/10.1145/2820783.2820858
https://doi.org/10.1093/bioinformatics/17.suppl_1.S56
https://doi.org/10.1006/aama.2001.0720
https://doi.org/10.1137/0111081
https://doi.org/10.1137/S0097539705429847
https://doi.org/10.1007/BF01386390
https://doi.org/10.1090/dimacs/074/09
https://doi.org/10.1137/S0097539795290477
https://doi.org/10.1186/s13321-018-0273-z
https://doi.org/10.1002/net.21552
https://doi.org/10.1109/TC.2013.136
https://doi.org/10.1145/2630068
https://doi.org/10.1016/0166-218X(85)90059-9
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1016/j.ipl.2008.12.015

[32] D. Gregor and A. Lumsdaine. The parallel bgl: A generic library for distributed graph

computations. Parallel Object-Oriented Scientific Computing (POOSC), 01 2005.

[33] E. Hadjiconstantinou and N. Christofides. An efficient implementation of an algorithm

for finding k shortest simple paths. Networks, 34(2):88–101, 1999. doi:10.1002/(SICI)1097-

0037(199909)34:2<88::AID-NET2>3.0.CO;2-1.

[34] Y. He, Z. Liu, J. Shi, Y. Wang, J. Zhang, and J. Liu. k-shortest-path-based evacuation routing

with police resource allocation in city transportation networks. PLOS ONE, 10(7):1–23, 07

2015. doi:10.1371/journal.pone.0131962.

[35] J. Hershberger, M. Maxel, and S. Suri. Finding the k shortest simple paths: A new

algorithm and its implementation. ACM Trans. Algorithms, 3(4):45–es, nov 2007.

doi:10.1145/1290672.1290682.

[36] S. Hoceini, A. Mellouk, and Y. Amirat. K-shortest paths q-routing: A new qos routing algo-

rithm in telecommunication networks. In P. Lorenz and P. Dini, editors, Networking - ICN

2005, pages 164–172, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. doi:10.1007/978-

3-540-31957-3_21.

[37] M. Ibrahim, C. Salama, M. W. El-Kharashi, and A. Wahba. Pin-Count and Wire Length Opti-

mization for Electrowetting-on-Dielectric Chips: A Metaheuristics-Based Routing Algorithm,

pages 271–294. Springer International Publishing, Cham, 2015. doi:10.1007/978-3-319-

20071-2_10.

[38] D. J. Ives, P. Bayvel, and S. J. Savory. Routing, modulation, spectrum and launch power as-

signment to maximize the traffic throughput of a nonlinear optical mesh network. Photonic

Network Communications, 29(3):244–256, Jun 2015. doi:10.1007/s11107-015-0488-0.

[39] R. M. Karp. The transitive closure of a random digraph. Random Structures & Algorithms,

1(1):73–93, 1990. doi:10.1002/rsa.3240010106.

[40] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for k shortest simple paths.

Networks, 12(4):411–427, 1982. doi:10.1002/net.3230120406.

[41] D. Kurz and P. Mutzel. A Sidetrack-Based Algorithm for Finding the k Shortest Simple Paths

in a Directed Graph. In S.-H. Hong, editor, 27th International Symposium on Algorithms and

Computation (ISAAC 2016), volume 64 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 49:1–49:13, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik. doi:10.4230/LIPIcs.ISAAC.2016.49.

[42] E. L. Lawler. A procedure for computing the k best solutions to discrete optimization

problems and its application to the shortest path problem. Management Science, 18(7):401–

405, 1972. doi:10.1287/mnsc.18.7.401.

[43] A. Lebedev, J. Lee, V. Rivera, and M. Mazzara. Link prediction using top-k shortest distances.

In A. Calì, P. Wood, N. Martin, and A. Poulovassilis, editors, Data Analytics, pages 101–105,

Cham, 2017. Springer International Publishing.

[44] Q. Liang, W. Wu, Y. Yang, R. Zhang, Y. Peng, and M. Xu. Multi-player tracking for multi-

view sports videos with improved k-shortest path algorithm. Applied Sciences, 10(3), 2020.

doi:10.3390/app10030864.

[45] K. Madduri, D. A. Bader, J. W. Berry, and J. R. Crobak. An Experimental Study of a Par-

allel Shortest Path Algorithm for Solving Large-Scale Graph Instances, pages 23–35. 2007.

doi:10.1137/1.9781611972870.3.

89

https://doi.org/10.1002/(SICI)1097-0037(199909)34:2<88::AID-NET2>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-0037(199909)34:2<88::AID-NET2>3.0.CO;2-1
https://doi.org/10.1371/journal.pone.0131962
https://doi.org/10.1145/1290672.1290682
https://doi.org/10.1007/978-3-540-31957-3_21
https://doi.org/10.1007/978-3-540-31957-3_21
https://doi.org/10.1007/978-3-319-20071-2_10
https://doi.org/10.1007/978-3-319-20071-2_10
https://doi.org/10.1007/s11107-015-0488-0
https://doi.org/10.1002/rsa.3240010106
https://doi.org/10.1002/net.3230120406
https://doi.org/10.4230/LIPIcs.ISAAC.2016.49
https://doi.org/10.1287/mnsc.18.7.401
https://doi.org/10.3390/app10030864
https://doi.org/10.1137/1.9781611972870.3

Bibliography

[46] E. Martins andM. Pascoal. A new implementation of yen’s ranking loopless paths algorithm.

Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1:121–133,

06 2003. doi:10.1007/s10288-002-0010-2.

[47] E. Martins, M. Pascoal, and J. Santos. Deviation algorithms for ranking shortest paths. Int.

J. Found. Comput. Sci., 10:247–262, 09 1999. doi:10.1142/S0129054199000186.

[48] M. J. McDermott, S. S. Dwaraknath, and K. A. Persson. A graph-based network for predicting

chemical reaction pathways in solid-state materials synthesis. Nature Communications,

12(1):3097, May 2021. doi:10.1038/s41467-021-23339-x.

[49] U. Meyer and P. Sanders. ∆-stepping: a parallelizable shortest path algorithm. Journal of Al-

gorithms, 49(1):114–152, 2003. 1998 European Symposium onAlgorithms. doi:10.1016/S0196-

6774(03)00076-2.

[50] U. Meyer. Single-source shortest-paths on arbitrary directed graphs in linear average-case

time. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’01, pages 797–806, USA, 2001. Society for Industrial and Applied Mathematics.

[51] U. Meyer. Design and analysis of sequential and parallel single-source shortest-paths

algorithms. PhD thesis, Saarland University, Saarbrücken, Germany, 2002. URL:

http://scidok.sulb.uni-saarland.de/volltexte/2004/207/index.html.

[52] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement

and Analysis of Online Social Networks. In Proceedings of the 5th ACM/Usenix Internet

Measurement Conference (IMC’07), San Diego, CA, October 2007.

[53] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph analytics.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP

’13, pages 456–471, New York, NY, USA, 2013. Association for Computing Machinery.

doi:10.1145/2517349.2522739.

[54] L. R. Nielsen, K. A. Andersen, andD. Pretolani. Finding the k shortest hyperpaths. Computers

& Operations Research, 32(6):1477–1497, 2005. doi:10.1016/j.cor.2003.11.014.

[55] L. Oettershagen and P. Mutzel. Computing top-k temporal closeness in temporal networks.

Knowledge and Information Systems, 64(2):507–535, Feb 2022. doi:10.1007/s10115-021-01639-

4.

[56] T. Panitanarak and K. Madduri. Performance analysis of single-source shortest path

algorithms on distributed-memory systems. In SIAM Workshop on Combinatorial Scientific

Computing (CSC), page 60, 2014.

[57] A. Perko. Implementation of algorithms for k shortest loopless paths. Networks, 16(2):149–

160, 1986. doi:10.1002/net.3230160204.

[58] V. Priebe. Average-case complexity of shortest-paths problems. PhD thesis, Saarland Univer-

sity, Saarbrücken, Germany, 2001. doi:10.22028/D291-25863.

[59] L. Roditty and U. Zwick. Replacement paths and k simple shortest paths in unweighted

directed graphs. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung,

editors, Automata, Languages and Programming, pages 249–260, Berlin, Heidelberg, 2005.

Springer Berlin Heidelberg.

[60] E. Ruppert. Finding the k shortest paths in parallel. Algorithmica, 28(2):242–254, Oct 2000.

doi:10.1007/s004530010038.

90

https://doi.org/10.1007/s10288-002-0010-2
https://doi.org/10.1142/S0129054199000186
https://doi.org/10.1038/s41467-021-23339-x
https://doi.org/10.1016/S0196-6774(03)00076-2
https://doi.org/10.1016/S0196-6774(03)00076-2
http://scidok.sulb.uni-saarland.de/volltexte/2004/207/index.html
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1016/j.cor.2003.11.014
https://doi.org/10.1007/s10115-021-01639-4
https://doi.org/10.1007/s10115-021-01639-4
https://doi.org/10.1002/net.3230160204
https://doi.org/10.22028/D291-25863
https://doi.org/10.1007/s004530010038

[61] A. Samara. Stochastic routing optimized for autonomous driving. PhD thesis, Mannheim,

2021. URL: https://madoc.bib.uni-mannheim.de/60206/.

[62] A. Schickedanz, D. Ajwani, U. Meyer, and P. Gawrychowski. Average-case behavior of

k-shortest path algorithms. In L. M. Aiello, C. Cherifi, H. Cherifi, R. Lambiotte, P. Lió, and

L. M. Rocha, editors, Complex Networks and Their Applications VII - Volume 1 Proceedings The

7th International Conference on Complex Networks and Their Applications COMPLEX NET-

WORKS 2018, Cambridge, UK, December 11-13, 2018, volume 812 of Studies in Computational

Intelligence, pages 28–40. Springer, 2018. doi:10.1007/978-3-030-05411-3_3.

[63] A. Sedeño-Noda. An efficient time and space k point-to-point shortest simple

paths algorithm. Applied Mathematics and Computation, 218(20):10244–10257, 2012.

doi:10.1016/j.amc.2012.04.002.

[64] S. Shi and C. Qian. Concurrent entanglement routing for quantum networks: Model and

designs. In Proceedings of the Annual Conference of the ACM Special Interest Group on Data

Communication on the Applications, Technologies, Architectures, and Protocols for Computer

Communication, SIGCOMM ’20, page 62–75, New York, NY, USA, 2020. Association for

Computing Machinery. doi:10.1145/3387514.3405853.

[65] Y.-K. Shih and S. Parthasarathy. A single source k-shortest paths algorithm to in-

fer regulatory pathways in a gene network. Bioinformatics, 28(12):i49–i58, 06 2012.

doi:10.1093/bioinformatics/bts212.

[66] A. P. Singh and D. P. Singh. Implementation of k-shortest path algorithm in gpu using

cuda. Procedia Computer Science, 48:5–13, 2015. International Conference on Computer,

Communication and Convergence (ICCC 2015). doi:10.1016/j.procs.2015.04.103.

[67] D. Spielman and S.-H. Teng. Smoothed Analysis of Algorithms: Why the Simplex Algorithm

Usually Takes Polynomial Time. In Proceedings of the Thirty-Third Annual ACM Symposium

on Theory of Computing, STOC ’01, pages 296–305, New York, NY, USA, 2001. Association

for Computing Machinery. doi:10.1145/380752.380813.

[68] N. Tziavelis, D. Ajwani, W. Gatterbauer, M. Riedewald, and X. Yang. Optimal algorithms

for ranked enumeration of answers to full conjunctive queries. Proceedings of the VLDB

Endowment. International Conference on Very Large Data Bases, 13(9):1582–1597, May 2020.

[69] Y. Urayama and T. Tachibana. Virtual network construction with k-shortest path algo-

rithm and optimization problems for robust physical networks. International Journal of

Communication Systems, 30(1):e2958, 2015. e2958 dac.2958. doi:10.1002/dac.2958.

[70] S. Vanhove and V. Fack. An effective heuristic for computingmany shortest path alternatives

in road networks. International Journal of Geographical Information Science, 26(6):1031–1050,

2012. doi:10.1080/13658816.2011.620572.

[71] B. Viale, M. Fer, L. Courau, P. Galy, B. Jacquier, J. Lescot, and B. Allard. An au-

tomated tool for chip-scale esd network exploration and verification. In 2016 38th

Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), pages 1–10, 2016.

doi:10.1109/EOSESD.2016.7592551.

[72] Y. Wang, Q. Liu, H. Ren, X. Ma, L. Liu, W. Wang, and J. Zhang. Optimizing multi-criteria

k-shortest paths in graph by a natural routing genotype-based genetic algorithm. In 2018

13th IEEE Conference on Industrial Electronics and Applications (ICIEA), pages 341–345, 2018.

doi:10.1109/ICIEA.2018.8397739.

91

https://madoc.bib.uni-mannheim.de/60206/
https://doi.org/10.1007/978-3-030-05411-3_3
https://doi.org/10.1016/j.amc.2012.04.002
https://doi.org/10.1145/3387514.3405853
https://doi.org/10.1093/bioinformatics/bts212
https://doi.org/10.1016/j.procs.2015.04.103
https://doi.org/10.1145/380752.380813
https://doi.org/10.1002/dac.2958
https://doi.org/10.1080/13658816.2011.620572
https://doi.org/10.1109/EOSESD.2016.7592551
https://doi.org/10.1109/ICIEA.2018.8397739

Bibliography

[73] M. L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software,

6(60):3021, 2021. doi:10.21105/joss.03021.

[74] Q. Wen, R. Chen, L. Nai, L. Zhou, and Y. Xia. Finding top k shortest simple paths with

improved space efficiency. In Proceedings of the Fifth International Workshop on Graph Data-

Management Experiences & Systems, GRADES’17, New York, NY, USA, 2017. Association

for Computing Machinery. doi:10.1145/3078447.3078460.

[75] V. V. Williams and R. R. Williams. Subcubic equivalences between path, matrix, and triangle

problems. J. ACM, 65(5), aug 2018. doi:10.1145/3186893.

[76] J. Y. Yen. Finding the k shortest loopless paths in a network.Management Science, 17(11):712–

716, 1971. doi:10.1287/mnsc.17.11.712.

[77] Z. Yu, X. Yu, N. Koudas, Y. Liu, Y. Li, Y. Chen, and D. Yang. Distributed processing of k

shortest path queries over dynamic road networks. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’20, pages 665–679, New York,

NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3318464.3389735.

[78] X. Yuan, S. Mahapatra, W. Nienaber, S. Pakin, and M. Lang. A new routing scheme for

jellyfish and its performance with hpc workloads. SC ’13, New York, NY, USA, 2013.

Association for Computing Machinery. doi:10.1145/2503210.2503229.

92

https://doi.org/10.21105/joss.03021
https://doi.org/10.1145/3078447.3078460
https://doi.org/10.1145/3186893
https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/10.1145/3318464.3389735
https://doi.org/10.1145/2503210.2503229

	Introduction
	Applications
	Related Work
	Outline

	Preliminaries
	Graphs
	Breadth First Search and Depth First Search
	Single-Source Shortest-Path Algorithms
	Dijkstra's algorithm
	DeltanobreakStepping

	Probabilistic Preliminaries
	Chernoff Bounds
	Stochastic Dominance

	The k-Shortest Path Problem
	General Notation
	Deviation Based k-Shortest Path Algorithms for Directed Graphs
	Yen's k-Shortest Path Algorithm
	Feng's k-Shortest Path Algorithm
	Variants Between Yen's and Feng's Algorithm
	The KIM Algorithm

	Average-Case Analysis of k-Shortest Path Algorithms
	Graph Model and Assumptions
	Edge Weight Distributions Fulfilling the Assumptions

	Recap of Results on Short Path Properties
	Average-Case Analysis of Yen's Algorithm
	Average-Case Analysis of Feng's Algorithm
	Theoretical Analysis on Unweighted Graphs
	Empirical Evidence on Weighted Graphs

	Comparison of Sequential k-Shortest Path Algorithms
	Stop SSSP Computations as Early as Possible
	Skipping SSSP Computations
	Skip by Shortest Deviation: Details
	Skip by Second-Shortest Deviation
	Evaluation of SSSP Computation Skipping Types
	Skipping SSSP Computations on Directed and Undirected Graphs
	Skipping SSSP Computations with and without Graph Preprocessing

	Implementation Details and Minor Optimizations
	Graphs
	Temporary and Yellow Graphs
	SSSP Tree
	DeltanobreakStepping
	Code

	Experimental Performance Comparison
	Experimental Setup
	Comparing Sequential Performance
	Comparing Sequential Performance on Undirected Graphs
	Experiments on Real World Graphs
	Conclusion

	Empirical Comparisonof k-Shortest Path Algorithms on Multicores
	Parallelization Strategies
	Implementation Details on Parallelization
	Implementation
	Implementation Details on DeltanobreakStepping Parallelization
	Implementation Details on k-Shortest Path Parallelization

	Experimental Setup
	Experimental Results

	Conclusion
	Summary
	Theoretical Results
	Empirical Results and Practical Improvements

	Future Work and Open Questions
	Extended Average-Case Complexity Analysis
	Smoothed Complexity Analysis
	Extensive Practical Comparison

	Appendix
	List of Notations
	General Notation
	k-Shortest Path Related Notation

	Experiments
	Graph Classes
	Hardware and Software
	Metadata of the Experiments
	Plot Types

	Bibliography
	Introduction
	Applications
	Related Work
	Outline

	Preliminaries
	Graphs
	Breadth First Search and Depth First Search
	Single-Source Shortest-Path Algorithms
	Dijkstra's algorithm
	DeltanobreakStepping

	Probabilistic Preliminaries
	Chernoff Bounds
	Stochastic Dominance

	The k-Shortest Path Problem
	General Notation
	Deviation Based k-Shortest Path Algorithms for Directed Graphs
	Yen's k-Shortest Path Algorithm
	Feng's k-Shortest Path Algorithm
	Variants Between Yen's and Feng's Algorithm
	The KIM Algorithm

	Average-Case Analysis of k-Shortest Path Algorithms
	Graph Model and Assumptions
	Edge Weight Distributions Fulfilling the Assumptions

	Recap of Results on Short Path Properties
	Average-Case Analysis of Yen's Algorithm
	Average-Case Analysis of Feng's Algorithm
	Theoretical Analysis on Unweighted Graphs
	Empirical Evidence on Weighted Graphs

	Comparison of Sequential k-Shortest Path Algorithms
	Stop SSSP Computations as Early as Possible
	Skipping SSSP Computations
	Skip by Shortest Deviation: Details
	Skip by Second-Shortest Deviation
	Evaluation of SSSP Computation Skipping Types
	Skipping SSSP Computations on Directed and Undirected Graphs
	Skipping SSSP Computations with and without Graph Preprocessing

	Implementation Details and Minor Optimizations
	Graphs
	Temporary and Yellow Graphs
	SSSP Tree
	DeltanobreakStepping
	Code

	Experimental Performance Comparison
	Experimental Setup
	Comparing Sequential Performance
	Comparing Sequential Performance on Undirected Graphs
	Experiments on Real World Graphs
	Conclusion

	Empirical Comparisonof k-Shortest Path Algorithms on Multicores
	Parallelization Strategies
	Implementation Details on Parallelization
	Implementation
	Implementation Details on DeltanobreakStepping Parallelization
	Implementation Details on k-Shortest Path Parallelization

	Experimental Setup
	Experimental Results

	Conclusion
	Summary
	Theoretical Results
	Empirical Results and Practical Improvements

	Future Work and Open Questions
	Extended Average-Case Complexity Analysis
	Smoothed Complexity Analysis
	Extensive Practical Comparison

	Appendix
	List of Notations
	General Notation
	k-Shortest Path Related Notation

	Experiments
	Graph Classes
	Hardware and Software
	Metadata of the Experiments
	Plot Types

	Bibliography

