Abstract
This paper presents a framework for semi-automatic transcription of large-scale historical handwritten documents and proposes a simple user-friendly text extractor tool, \(\textit{TexT}\) for transcription. The proposed approach provides a quick and easy transcription of text using computer assisted interactive technique. The algorithm finds multiple occurrences of the marked text on-the-fly using a word spotting system. \(\textit{TexT}\) is also capable of performing on-the-fly annotation of handwritten text with automatic generation of ground truth labels, and dynamic adjustment and correction of user generated bounding box annotations with the word being perfectly encapsulated. The user can view the document and the found words in the original form or with background noise removed for easier visualization of transcription results. The effectiveness of \(\textit{TexT}\) is demonstrated on an archival manuscript collection from well-known publicly available dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mori, S., Nishida, H., Yamada, H.: Optical Character Recognition. Wiley, New York (1999)
Govindan, V.K., Shivaprasad, A.P.: Character recognition - a review. Pattern Recogn. 23(7), 671–683 (1990)
Blanke, T., Bryant, M., Hedges, M.: Open source optical character recognition for historical research. J. Doc. 68(5), 659–683 (2012)
Plamondon, R., Srihari, S.N.: Online and off-line handwriting recognition: a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)
Marti, U.V., Bunke, H.: Hidden Markov Models, pp. 65–90. World Scientific Publishing Co., Inc., River Edge (2002)
Toselli, A.H., Vidal, E.: Handwritten text recognition results on the Bentham collection with improved classical N-gram-HMM methods. In: Proceedings of the 3rd International Workshop on Historical Document Imaging and Processing, HIP 2015, pp. 15–22. ACM, New York (2015)
Espana-Boquera, S., Castro-Bleda, M.J., Gorbe-Moya, J., Zamora-Martinez, F.: Improving offline handwritten text recognition with hybrid HMM/ANN models. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 767–779 (2011)
Parvez, M.T., Mahmoud, S.A.: Offline Arabic handwritten text recognition: a survey. ACM Comput. Sur. 45(2), 23:1–23:35 (2013)
http://urn.kb.se/resolve?urn=urn:nbn:se:alvin:portal:record-12537/ (2017)
Howe, J.: The rise of crowdsourcing. Wired Mag. 14(6), 1–4 (2006)
Moyle, M., Tonra, J., Wallace, V.: Manuscript transcription by crowdsourcing: transcribe bentham. Liber Q. 20(3–4), 347–356 (2011)
http://blogs.ucl.ac.uk/transcribe-bentham/2017/08/21/transcription-update-22-july-to-18-august-2017/ (2017)
Borne, K., Team, Z.: The zooniverse: a framework for knowledge discovery from citizen science data. In: AGU Fall Meeting Abstracts (2011)
http://velehanden.nl/ (2017)
http://transcription.si.edu/ (2017)
http://siarchives.si.edu/blog/smithsonian-crowdsourcing-1849/ (2017)
http://www.alvin-portal.org/ (2017)
http://urn.kb.se/resolve?urn=urn:nbn:se:alvin:portal:record-101351/ (2017)
Hast, A., Fornés, A.: A segmentation-free handwritten word spotting approach by relaxed feature matching. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 150–155. IEEE (2016)
Héroux, P., Barbu, E., Adam, S., Trupin, É.: Automatic ground-truth generation for document image analysis and understanding. In: Ninth International Conference on Document Analysis and Recognition, ICDAR 2007, pp. 476–480. IEEE (2007)
Pletschacher, S., Antonacopoulos, A.: The page (page analysis and ground-truth elements) format framework. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 257–260. IEEE (2010)
Yanikoglu, B.A., Vincent, L.: Pink panther: a complete environment for ground-truthing and benchmarking document page segmentation. Pattern Recogn. 31(9), 1191–1204 (1998)
Kanungo, T., Lee, C.H., Czorapinski, J., Bella, I.: TRUEVIZ: a groundtruth/metadata editing and visualizing toolkit for OCR. In: Document Recognition and Retrieval VIII, vol. 4307, pp. 1–13. International Society for Optics and Photonics (2000)
Yacoub, S., Saxena, V., Sami, S.N.: PerfectDoc: a ground truthing environment for complex documents. In: Proceedings of the Eighth International Conference on Document Analysis and Recognition, pp. 452–456. IEEE (2005)
Saund, E., Lin, J., Sarkar, P.: PixLabeler: user interface for pixel-level labeling of elements in document images. In: 10th International Conference on Document Analysis and Recognition, ICDAR 2009, pp. 646–650. IEEE (2009)
Doermann, D., Zotkina, E., Li, H.: GEDI - a groundtruthing environment for document images. In: Ninth IAPR International Workshop on Document Analysis Systems (DAS) (2010)
Clausner, C., Pletschacher, S., Antonacopoulos, A.: Aletheia - an advanced document layout and text ground-truthing system for production environments. In: 2011 International Conference on Document Analysis and Recognition (ICDAR), pp. 48–52. IEEE (2011)
Biller, O., Asi, A., Kedem, K., El-Sana, J., Dinstein, I.: WebGT: an interactive web-based system for historical document ground truth generation. In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 305–308. IEEE (2013)
Valsecchi, F., Abrate, M., Bacciu, C., Piccini, S., Marchetti, A.: Text encoder and annotator: an all-in-one editor for transcribing and annotating manuscripts with RDF. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 399–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47602-5_52
Antonacopoulos, A., Karatzas, D., Bridson, D.: Ground truth for layout analysis performance evaluation. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 302–311. Springer, Heidelberg (2006). https://doi.org/10.1007/11669487_27
Vats, E., Hast, A.: On-the-fly historical handwritten text annotation. In: Proceedings of the 2017 Workshop on Human-Document Interaction (2017, in press)
Wei, H., Seuret, M., Liwicki, M., Ingold, R.: The use of Gabor features for semi-automatically generated polyon-based ground truth of historical document images. Digit. Scholarsh. Humanit. 32(1), i134–i149 (2017)
Romero, V., Bosch, V., Hernández, C., Vidal, E., Sánchez, J.A.: A historical document handwriting transcription end-to-end system. In: Alexandre, L.A., Salvador Sánchez, J., Rodrigues, J.M.F. (eds.) IbPRIA 2017. LNCS, vol. 10255, pp. 149–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58838-4_17
Terrades, O.R., Toselli, A.H., Serrano, N., Romero, V., Vidal, E., Juan, A.: Interactive layout analysis and transcription systems for historic handwritten documents. In: 10th ACM Symposium on Document Engineering, pp. 219–222 (2010)
Serrano, N., Pérez, D., Sanchis, A., Juan, A.: Adaptation from partially supervised handwritten text transcriptions. In: Proceedings of the 2009 International Conference on Multimodal Interfaces, ICMI-MLMI 2009, pp. 289–292. ACM, New York (2009)
Serrano, N., Giménez, A., Sanchis, A., Juan, A.: Active learning strategies for handwritten text transcription. In: International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, ICMI-MLMI 2010, pp. 48:1–48:4. ACM, New York (2010)
Romero, V., Toselli, A.H., Vidal, E.: Multimodal Interactive Handwritten Text Transcription, vol. 80. World Scientific, Singapore (2012)
Bosch, V., Toselli, A.H., Vidal, E.: Semiautomatic text baseline detection in large historical handwritten documents. In: 2014 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 690–695. IEEE (2014)
Giotis, A.P., Sfikas, G., Gatos, B., Nikou, C.: A survey of document image word spotting techniques. Pattern Recogn. 68, 310–332 (2017)
Vats, E., Hast, A., Singh, P.: Automatic document image binarization using Bayesian optimization. In: Proceedings of the 2017 Workshop on Historical Document Imaging and Processing. ACM (2017, in press)
Kittur, A., Nickerson, J.V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman, J., Lease, M., Horton, J.: The future of crowd work. In: Proceedings of the 2013 conference on Computer Supported Cooperative Work, pp. 1301–1318. ACM (2013)
Romero, V., Fornés, A., Serrano, N., Sánchez, J.A., Toselli, A.H., Frinken, V., Vidal, E., Lladós, J.: The ESPOSALLES database: an ancient marriage license corpus for off-line handwriting recognition. Pattern Recogn. 46(6), 1658–1669 (2013)
Fernández-Mota, D., Almazán, J., Cirera, N., Fornés, A., Lladós, J.: BH2M: the Barcelona historical, handwritten marriages database. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 256–261. IEEE (2014)
Acknowledgment
This work was supported by the Riksbankens Jubileumsfond (Dnr NHS14-2068:1) and the Swedish strategic research programme eSSENCE.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Hast, A., Cullhed, P., Vats, E. (2018). \(\textit{TexT}\) - Text Extractor Tool for Handwritten Document Transcription and Annotation. In: Serra, G., Tasso, C. (eds) Digital Libraries and Multimedia Archives. IRCDL 2018. Communications in Computer and Information Science, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-73165-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-73165-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73164-3
Online ISBN: 978-3-319-73165-0
eBook Packages: Computer ScienceComputer Science (R0)