Abstract
To promote flexible integration of distributed energy resources into the smart grid, the notion of Virtual Power Plants (VPPs) was proposed. VPPs are formed by the integration of heterogeneous systems, organizations and entities which collaborate to ensure optimal generation, distribution, storage, and sale of energy in the energy market. The collaborative nature of VPPs gives the semblance of collaborative business ecosystem, constituted of a mix of highly interdependent relationship among stakeholders. The systematic literature review methodology is used to summarize research evidence of emerging convergence between the Collaborative Networks (CN) and VPP domains. It is observed that, various strategic and dynamic collaborative alliances are formed within a VPP which are similar to various CN organizational forms like: Virtual Breeding Environments (VBE), grasping opportunity driven-networks etc. CN principles like: virtual organization creation, operation and dissolution, negotiation, broker services, etc., are also found. Emerging collaborative forms like hybrid collaborations between known traditional CN forms were also visible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kramer, O., Satzger, B., Lässig, J.: Managing energy in a virtual power plant using learning classifier systems. In: Proceedings of the 2010 International Conference on Genetic and Evolutionary Methods, GEM, pp. 111–117 (2010)
Lyberopoulos, G., Theodoropoulou, E., Mesogiti, I., Makris, P., Varvarigos, E.: A highly-dynamic and distributed operational framework for smart energy networks. In: 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, CAMAD, pp. 120–124 (2014)
Camarinha-Matos, L.M., Afsarmanesh, H.: On reference models for collaborative networked organizations. Int. J. Prod. Res. 46(9), 2453–2469 (2008)
Kitchenham, B.: Procedures for performing systematic reviews. TR/SE-0401, NICTA Technical Report 0400011T.1 (2004). http://www.ifs.tuwien.ac.at/~weippl/systemicReviewsSoftwareEngineering.pdf. Accessed 10 Aug 2017
Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: 12th International Conference on Evaluation and Assessment in Software Engineering, EASE 2008, vol. 17, pp. 68–77 (2008)
Dethlefs, T., Preisler, T., Renz, W., Hamburg, H.A.W., Tor, B.: A DER registry system as an infrastructural component for future smart grid applications. In: Proceedings of International ETG Congress, Die Energiewende - Blueprints for the New Energy Age, pp. 93–99 (2015)
Botsis, V., Doulamis, N., Doulamis, A., Makris, P., Varvarigos, E.: Efficient clustering of DERs in a virtual association for profit optimization. In: Proceedings - 18th Euromicro Conference on Digital System Design, DSD, pp. 494–501 (2015)
Rinaldi, S., Pasetti, M., Ferrari, P., Massa, G., Della Giustina, D., Unareti, S.A.: Experimental characterization of communication infrastructure for virtual power plant monitoring. In: 2016 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), pp. 1–6 (2016)
Huang, Y., Warnier, M., Brazier, F., Miorandi, D.: Social networking for smart grid users. A preliminary modeling and simulation study. In: IEEE 12th International Conference on Networking, Sensing and Control, pp. 438–443 (2015)
Biswas, S., Bagchi, D., Narahari, Y.: Mechanism design for sustainable virtual power plant formation. In: IEEE International Conference on Automation Science and Engineering, pp. 67–72 (2014)
Siebert, N., et al.: Reflexe: managing commercial and industrial flexibilities in a market environment. In: IEEE Grenoble Conference PowerTech, POWERTECH, pp. 1–6 (2013)
Baeyens, E., Bitar, E.Y., Khargonekar, P.P., Poolla, K.: Wind energy aggregation: a coalitional game approach. In: Proceedings of 50th IEEE Conference on Decision and Control and European Control Conference, pp. 3000–3007 (2011)
El Bakari, K., Kling, W.L.: Development and operation of virtual power plant system. In: 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), pp. 1–5 (2011)
Bakari, K.E., Kling, W.L.: Fitting distributed generation in future power markets through virtual power plants. In: 2012 9th International Conference on the European Energy Market, pp. 1–7 (2012)
Han, X., Bindner, H.W., Mehmedalic, J., Tackie, D.V.: Hybrid control scheme for distributed energy resource management in a market context. In: 2015 IEEE Power & Energy Society General Meeting, pp. 1–5 (2015)
Kamphuis, R., Wijbenga, J.P., Van Der Veen, J.S., Macdougall, P., Faeth, M.: DREAM: an ICT architecture framework for heterarchical coordination in power systems. In: 2015 IEEE Eindhoven PowerTech, POWERTECH, pp. 1–4 (2015)
Messinis, G., Dimeas, A., Hatziargyriou, N., Kokos, I., Lamprinos, I.: ICT tools for enabling smart grid players’ flexibility through VPP and DR services. In: 2016 13th International Conference on the European Energy Market (EEM), pp. 1–5 (2016)
Hernandez, L., et al.: A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Commu. Mag. 51(1), 106–113 (2013)
Raju, L., Appaswamy, K., Vengatraman, J., Morais, A.A.: Advanced energy management in virtual power plant using multi agent system. In: 3rd International Conference on Electrical Energy Systems (ICEES), pp. 133–138 (2016)
Oliveira, P., Pinto, T., Morais, H.: MASGriP—a multi-agent smart grid simulation platform. In: Power and Energy Society General Meeting, pp. 1–8 (2012)
Vale, Z.A., Morais, H., Khodr, H.: Intelligent multi-player smart grid management considering distributed energy resources and demand response. In: 2010 IEEE Power and Energy Society General Meeting, pp. 1–7 (2010)
Zehir, M.A., Bagriyanik, M.: Smart energy aggregation network (SEAN): an advanced management system for using distributed energy resources in virtual power plant applications. In: 3rd International Istanbul Smart Grid Congress and Fair, ICSG 2015, pp. 1–4 (2015)
Fu, H., Wu, Z., Li, J., Zhang, X.: A configurable µVPP with managed energy services: a malmo western harbour case. IEEE Power Energy Technol. Syst. J. 3(4), 166–178 (2016). https://doi.org/10.1109/JPETS.2016.2596779
Brenna, M., Falvo, M.C., Foiadelli, F., Martirano, L., Poli, D.: From virtual power plant (VPP) to sustainable energy microsystem (SEM): an opportunity for buildings energy management. In: 2015 IEEE Industry Applications Society Annual Meeting, vol. 6, pp. 1–8 (2015)
Dagdougui, H., Ouammi, A., Sacile, R.: Distributed optimal control of a network of virtual power plants with dynamic price mechanism. In: Proceedings of the 8th Annual IEEE International Systems Conference, SysCon, pp. 24–29 (2014)
Morais, H., Pinto, T., Vale, Z., Praça, I.: Multilevel negotiation in smart grids for VPP management of distributed resources. IEEE Intell. Syst. 27(6), 8–16 (2012)
Capodieci, N., Cabri, G.: Managing deregulated energy markets: an adaptive and autonomous multi-agent system application. In: Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2013, pp. 758–763 (2013)
Spínola, J., Faria, P., Vale, Z.: Remuneration of distributed generation and demand response resources considering scheduling and aggregation. In: IEEE Power and Energy Society General Meeting, pp. 1–5 (2015)
Faria, P., João, S., Vale, Z.: Aggregation and remuneration of electricity consumers and producers for the definition of demand-response programs. IEEE Trans. Ind. Inform. 12(3), 952–961 (2016)
Rahimiyan, M., Baringo, L.M.: Strategic bidding for a virtual power plant in the day-ahead and real-time markets: a price-taker robust optimization approach. IEEE Trans. Power Syst. 31(4), 2676–2687 (2016)
Ribeiro, C., Pinto, T., Vale, Z.: Remuneration and tariffs in the context of virtual power players. In: Proceedings of the 23rd International Workshop on Database and Expert Systems Applications, pp. 308–312 (2012)
Ribeiro, C., Pinto, T., Morais, H., Vale, Z., Santos, G.: Intelligent remuneration and tariffs for virtual power players. In: 2013 IEEE Grenoble Conference PowerTech Towards Carbon Free Society Through Smarter Grids, POWERTECH, pp. 308–312 (2013)
Santos, G., Pinto, T., Vale, Z., Morais, H., Praca, I.: Balancing market integration in MASCEM electricity market simulator. In: Power and Energy Society General Meeting, pp. 1–8 (2012)
Enose, N.: Implementing an integrated security management framework to ensure a secure smart grid. In: Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics, ICACCI, pp. 778–784 (2014)
Farag, M.M., Azab, M., Mokhtar, B.: Cross-layer security framework for smart grid: physical security layer. In: IEEE PES Innovative Smart Grid Technologies, Europe, pp. 1–7 (2014)
Hittini, H., Abdrabou, A., Zhang, L.: SADSA: security aware distribution system architecture for smart grid applications. In: Proceedings of the 2016 12th International Conference on Innovations in Information Technology, IIT, pp. 1–6 (2016)
Sedjelmaci, H., Senouci, S.M.: Smart grid security: a new approach to detect intruders in a smart grid neighborhood area network. In: 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 6–11 (2016)
Liu, Y., Xin, H., Qu, Z., Gan, D.: An attack-resilient cooperative control strategy of multiple distributed generators in distribution networks. IEEE Trans. Smart Grid 7(6), 2923–2932 (2016)
Qi, J., Hahn, A., Lu, X., Wang, J., Liu, C.: Cybersecurity for distributed energy resources and smart inverters. IET Cyber-Physical Syst. Theory Appl. 1(1), 28–39 (2016)
Aydeger, A., Akkaya, K., Cintuglu, M.H., Uluagac, A.S., Mohammed, O.: Software defined networking for resilient communications in smart grid active distribution networks. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6 (2016)
Egbue, O., Naidu, D., Peterson, P.: The role of microgrids in enhancing macrogrid resilience. In: 2016 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), pp. 125–129 (2016)
Line, M.B., Tøndel, I.A., Jaatun, M.G.: Cyber security challenges in smart grids. In: 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), pp. 5–7 (2011)
Cowan, K.R., Daim, T.U.: Integrated technology roadmap development process: creating smart grid roadmaps to meet regional technology planning needs in oregon and the pacific northwest. In: Proceedings of PICMET 2012: Technology Management for Emerging Technologies, pp. 2871–2885 (2012)
Hahn, A., Govindarasu, M.: Cyber vulnerability disclosure policies for the smart grid. In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–5 (2012)
Danekas, C.: Deriving business requirements from technology roadmaps to support ICT-architecture management. In: 2012 International Conference on Smart Grid Technology (SG-TEP), Economics and Policies, no. Section II, pp. 1–4 (2012)
Kilbourne, B., Bender, K.: Spectrum for smart grid: Policy recommendations enabling current and future applications. In: 2010 First IEEE International Conference on Smart Grid Communications, pp. 578–582 (2010)
Kim, J., Park, H.-I.: Policy directions for the smart grid in Korea. IEEE Power Energy Mag. 9(1), 40–49 (2011). https://doi.org/10.1109/MPE.2010.939166
Acknowledgement
This work was funded in part by the Center of Technology and Systems of Uninova and the Portuguese FCT-PEST program UID/EEA/00066/2013.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 IFIP International Federation for Information Processing
About this paper
Cite this paper
Adu-Kankam, K.O., Camarinha-Matos, L.M. (2018). Towards Collaborative Virtual Power Plants. In: Camarinha-Matos, L., Adu-Kankam, K., Julashokri, M. (eds) Technological Innovation for Resilient Systems. DoCEIS 2018. IFIP Advances in Information and Communication Technology, vol 521. Springer, Cham. https://doi.org/10.1007/978-3-319-78574-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-78574-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78573-8
Online ISBN: 978-3-319-78574-5
eBook Packages: Computer ScienceComputer Science (R0)