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In order to generate efficient code, dynamic language compilers often need information, such as dynamic types,

not readily available in the program source. Leveraging a mixture of static and dynamic information, these

compilers speculate on the missing information. Within one compilation unit, they specialize the generated

code to the previously observed behaviors, betting that past is prologue. When speculation fails, the execution

must jump back to unoptimized code. In this paper, we propose an approach to further the specialization,

by disentangling classes of behaviors into separate optimization units. With contextual dispatch, functions

are versioned and each version is compiled under different assumptions. When a function is invoked, the

implementation dispatches to a version optimized under assumptions matching the dynamic context of the

call. As a proof-of-concept, we describe a compiler for the R language which uses this approach. We evaluate

contextual dispatch on a set of benchmarks and compare it to traditional speculation with deoptimization

techniques. Our implementation is, on average, 1.7× faster than the GNU R reference implementation, and

contextual dispatch improves the performance of 18 out of 46 programs in our benchmark suite.

CCS Concepts: • Software and its engineering→ Compilers.

Additional Key Words and Phrases: virtual machine, optimizing compiler, specialization, splitting, speculation

ACM Reference Format:
Olivier Flückiger, Guido Chari, Ming-Ho Yee, Jan Ječmen, Jakob Hain, and Jan Vitek. 2020. Contextual Dispatch

for Function Specialization. Proc. ACM Program. Lang. 4, OOPSLA, Article xxx (November 2020), 23 pages.

https://doi.org/10.1145/xxx

1 INTRODUCTION
Just-in-time compilers are omnipresent in todays technology stacks and the performance of the

code they generate is central to the growing adoption of dynamic languages. That performance is

increasingly dependent on sophisticated on-line optimizations that specialize programs according

to observed behaviors, identify likely invariants, such as the types of the arguments of a given

function, and generate code that leverages those invariants.

In our experience, to achieve performance for dynamic languages, a compiler needs information

about the calling context of a function. This can be information about the type and shape of

the function’s arguments, the potential side-effects of called functions, or other predicates about

program state that hold when the function is invoked. We have observed that classical compiler
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optimizations such as speculation and inlining work well together to expose that contextual

information to the optimizer. Inlining allows to optimize the body of a function together with its

arguments and speculation is needed to enable inlining. The drawbacks of this approach are that

inlining grows the size of compilation units, and speculation may fail causing the entire compilation

unit to be discarded and execution to proceed in unoptimized code.

In this paper, we explore an approach to structure a just-in-time compiler to better leverage

information available at run time. Our starting point is a compiler for a dynamic language geared to

perform run-time specialization: it compiles functions under assumptions, guesses about potential

invariants, and deoptimizes those functions if any of their assumptions fails to hold. In addition, our

baseline also performs optimizations such as dead code elimination, loop unrolling, and function

inlining. Low-level code transformations are outsourced to a highly optimizing back-end compiler.

Our goal is to extend this baseline compiler with a new technique that provides contextual informa-

tion by specializing functions for different calling contexts. For every call, the best version given

the current state of the system is invoked.

The inspiration for our work comes from customized compilation, pioneered by Chambers and

Ungar [1989], an optimization that systematically specializes functions to the dynamic type of

their arguments. We extend this approach by specializing functions to arbitrary contexts and

dynamically selecting optimized versions of a specialized function depending on the run-time state

of the program. We refer to the proposed approach as contextual dispatch. As such, we define a
context to be a predicate on program state chosen such that there exists an efficiently computable

partial order between contexts and a distinguished maximal element. A version of a function is

an instance of that function compiled under the assumption that a given context holds at entry.

To leverage versions, for function calls the compiler emits a dispatch sequence that computes the

call site context and invokes a version of the target function that most closely matches the calling

context. The unoptimized version of the function is associated to the maximal context and is the

default version that will be called when no other applies.

max <- function(a, b=a,

warning=FALSE) {

if (warning &&

any(is.na(c(a,b))))

warn("NA Value")

if (a < b) b else a

}

max(x) + max(y,0)

Listing 1. max function

As an illustration, consider Listing 1 written in R.

The semantics of R is complex: functions can be in-

voked with optionally named arguments that can be

reordered and omitted. Furthermore, arguments are

lazy and their evaluation (when the value is needed)

can modify any value, including function definitions.

In the above example, the max function is expected to

return the largest of its first two parameters, mind-

ful of the presence of missing values (denoted NA in

R). The third, optional, parameter is used to decide

whether to print a warning in case a missing value

is observed. If max is passed a single argument, it be-

haves as the identity function. Since R is a vectorized

language, the arguments of max can be vectors of any of the base numeric types of the language.

Consequently, compiling this function for all possible calling contexts is likely to yield inefficient

code.

Contextual dispatch is motivated by the observation that, for any execution of a program, there

are only a limited, and often small, number of different calling contexts for any given function. For

example, if max(y,0) and max(x) are the only calls to max, then we may generate two versions of

that function: one optimized for a single argument and the other for two. Further specialization can

happen on the type and shape of the first argument, this may either be a scalar or a vector of one of

the numeric types. This shows that part of a context can be determined statically, e.g., the number

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article xxx. Publication date: November 2020.
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of arguments, but other elements are only known at run time, e.g., the type and shape of arguments.

Contextual dispatch thus, in general, requires run-time selection of an applicable call target.

Contributions. This paper presents contextual dispatch, a novel optimization for just-in-time

compilers. To evaluate the benefits of this optimization, we provide a proof-of-concept implemen-

tation in the Ř research virtual machine [Flückiger et al. 2019]. Ř supports speculation and inlining;

we add contextual dispatch to improve performance by enabling specialization to multiple contexts.

We quantify the benefits of our approach with two experiments. First, we establish baseline perfor-

mance of Ř with contextual dispatch by comparing it to the GNU R bytecode interpreter [Tierney

2019] and the FastR just-in-time compiler [Stadler et al. 2016]. GNU R is the reference implementa-

tion of the R language with limited optimization opportunities, while FastR is built leveraging a

high-performance optimizing compiler running on top of a JVM. This first experiment shows that Ř
has competitive performance. It is faster than GNU R (0.7–46×, average 1.7×) and slower than FastR

(0.1–6×, average 0.58×). Unlike FastR, Ř’s performance is never significantly worse than GNU R.

The second experiment focuses on understanding the impact of contextual dispatch on performance.

For this experiment we compare against Řwithout contextual dispatch, but still performing inlining

and speculative optimizations. The results of this experiment show that contextual dispatch can

deliver improvements of up to 25% with negligible regressions.

We consider R an interesting host to study compiler optimizations because of the challenges it

presents to language implementers. However, contextual dispatch is not specific to R. We believe

that the approach carries over to other dynamic languages such as JavaScript or Python. Moreover,

we emphasize that contextual dispatch is not a replacement for other optimization techniques;

instead, it is synergistic.

Availability. Our work was done as an extension to an open-source virtual machine, available at

ř-vm.net. Source code along with experimental data and containers to reproduce our results are

publicly available [Flückiger et al. 2020].

2 BACKGROUND
In dynamic languages such as JavaScript, Python, or R, the source code often lacks the information

a compiler needs to generate efficient code. This is due to language features such as polymorphism,

reflective capabilities, and late binding, among others. Just-in-time compilers have a crucial degree

of freedom: they can gather information about the program in profiling mode and generate code

specialized to the program’s actual behavior, rather than code that handles semantically possible

situations. As new behaviors are encountered, the compiler adapts the generated code to handle

them as well.

2.1 Related Work
Inlining. This powerful optimization has been used in static languages for over forty years [Schei-

fler 1977]. Replacing a call to a function with its body has several benefits: it exposes the calling

context thus allowing the compiler to optimize the inlined function, it enables optimizations in the

caller, and it removes the function call overhead. The limitations of inlining are related to code

growth: compilation time increases and cache locality may be negatively impacted. In dynamic

languages, function calls are usually expensive, so inlining is particularly beneficial.

Speculation. Most modern just-in-time compilers rely on speculative compilation to generate

code for a subset of the possible behaviors of a function. For instance, Java compilers speculatively

devirtualize methods that are not overridden [Paleczny et al. 2001]. Speculative compilation implies

support for deoptimization when the speculation premises fail [Hölzle et al. 1992]. The technique

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article xxx. Publication date: November 2020.
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can be applied to the level of speculating on a single execution trace [Gal et al. 2009]. The drawback

of speculation is that it does not scale well with very dynamic behavior, as the speculation applies

indiscriminately. For instance, all contextual specializations presented in our work already exist

as speculations in Ř— contextual dispatch additionally allows us to disentangle different calling

contexts, which in turn also leads to fewer behaviors and thus narrower speculations within the

different versions. Another drawback of speculation is that deoptimization is costly, as the compiler

needs to add and maintain safe-points which inhibit some optimizations.

Customization. Chambers and Ungar [1989] describe customized compilation as the compilation

of several copies of a function, each customized for one receiver type, so that the type of the receiver

is bound at compile time. Method dispatch on the receiver type ensures that the correct version

is invoked. This idea of keeping several customized versions of a function is generalized in the

Jalapeño VM, which specializes methods to the types and values of arguments, static fields, and

object fields [Whaley 1999]. Some specialization is enabled by static analysis, some by dynamic

checks. The Julia compiler specializes functions on all argument types and uses multimethod

dispatch to ensure the proper version is invoked [Bezanson et al. 2018]. As customization may lead

to code bloat, Dean et al. [1995] proposes to limit overspecialization by specializing to sets of types.

Hosking et al. [1990] argues for customized compilation of persistent programs to specialize code

based on assumptions about the residency of their arguments. ? present dynamic specialization

to parametrized types in the intermediate representation of the .NET virtual machine; similarly ?,
or using user-guidance ? for Java. ? specialize on arbitrary values for JavaScript functions with a

singular calling context and ? introduce a type-based specialization which combines dynamic and

static information. Liu et al. [2019] proposes to specialize methods under a dynamic thread-escaping

analysis to have lock-free versions of methods for thread-local receivers. Different granularities for

customization have been studied; one notable design point is the basic block versioning technique

of Chevalier-Boisvert and Feeley [2015], each basic block is specialized and a jump between basic

blocks consists of selecting a specialized target depending on the types of local variables. For ahead-

of-time compilers, ? initially proposed to clone methods, for instance to support inter-procedural

constant propagation. Many similar context-sensitive optimization approaches follow, for instance

by ?. ? use a static technique to partition instances and calling contexts, such that more specialized

methods can be compiled and then dynamically invoked. ? present dynamic specialization to

concrete arguments using dynamic binary rewriting. ? introduce a state-machine based technique

to reduce the number of clones, when applying context-sensitive optimizations in the presence

of longer call strings. Overall, keeping customized copies of the same function is a well-known

optimization technique. Contextual dispatch shows how to select a target customization for each

call at run-time. Existing approaches perform the selection by, either, piggybacking onto existing

dispatching mechanisms in the VM, by implementing an ad-hoc and fragmented approach, or by

statically splitting at each call site.

Splitting. Chambers and Ungar [1989] describe the SELF compiler as predicting types that are

statically unknown but likely, and inserting run-time type tests to verify predictions. Whereas

customization duplicates methods, splitting duplicates call-sites. Leveraging splitting and specula-

tion a compiler can increase inlining opportunities. For instance splitting on the receiver type and

tail-duplication allow SELF to statically resolve repeated calls to the same receivers. Splitting is a

common optimization in ahead-of-time compilers, for instance LLVM [?] has a pass to split call-sites
to specialize for non-null arguments. In a dynamic language splitting can be thought of as the

frozen version of a polymorphic inline cache [?]. Both, inline caches and splitting, are orthogonal

to contextual dispatch. Ř uses (external) caches for the targets of contextual dispatch and we could

use splitting to split call-sites for statically specializing to the most commonly observed contexts.
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Applicability to other languages. Contextual dispatch builds on and extends techniques used in

languages such as JavaScript, SELF, and Java. While the details of the implementation, in particular

the choice of contexts, presented in this paper are tailored to R’s calling conventions, the idea

of dispatching on information available at call sites carries over broadly. In SELF and Julia, the

existing dispatch mechanism was used to dispatch on receiver and argument types. For these

languages, one could imagine extending the dispatch machinery. For languages without a built-in

dispatching mechanism, adding contextual dispatch can be as simple as compiling a trampoline with

straightforward case analysis, and using that as a dispatcher. We expect that most context-sensitive

optimizations can be implemented using contextual dispatch.

2.2 Compiling R
The R language [R Core Team 2019] is an imperative language for statistical computing with

vectorized operations, copy-on-write of shared data, a call-by-need evaluation strategy, multiple

dispatch, first-class closures, and reflective access to the call stack. In this section, we focus on the

features that are relevant to this paper. Previous work related to speeding up R includes the GNU R

optimizing bytecode compiler [Tierney 2019], the Purdue FastR specializing interpreter [Kalibera

et al. 2014], the Oracle FastR compiler [Stadler et al. 2016] and the Riposte tracing compiler [Talbot

et al. 2012]. Of these systems, only GNU R and Oracle’s FastR are maintained as of this writing.

Obstacles. The list of challenges for optimizing R is too long to detail. We restrict the presentation

to seven headaches, which we address with contextual dispatch in the subsequent sections.

(1) Out of orderOut of orderOut of orderOut of orderOut of orderOut of orderOut of orderOut of orderOut of orderOut of orderOut of orderOut of orderOut of orderOut of orderOut of orderOut of orderOut of order: A function can be calledwith a named list of arguments, thus the call add(y=1,x=2)

is valid, even if arguments x and y are out of order. Impact: To deal with this, GNU R reorders

its linked list of arguments on every call.

(2) MissingMissingMissingMissingMissingMissingMissingMissingMissingMissingMissingMissingMissingMissingMissingMissingMissing: A function can be called with fewer arguments than it defines parameters. For

example, if function add(x, y) is called with one argument, add(1), it will have a trailing

missing argument. While the calls add(,2) and add(y=2) have an explicitly missing argument

for x. These calls are all valid. Impact: If the missing parameters have default values, those

will be inserted. Otherwise, the implementation must report an error at the point a missing

parameter is accessed.

(3) OverflowOverflowOverflowOverflowOverflowOverflowOverflowOverflowOverflowOverflowOverflowOverflowOverflowOverflowOverflowOverflowOverflow: A function can be called with more arguments than it defines parameters. Impact:
The call sequence must include a check and report an error.

(4) PromisesPromisesPromisesPromisesPromisesPromisesPromisesPromisesPromisesPromisesPromisesPromisesPromisesPromisesPromisesPromisesPromises: Any argument to a function may be a thunk (promise in R jargon) that will be

evaluated on first access. Promises may contain arbitrary side-effecting operations. Impact: A
compiler must not perform optimizations that depend on program state that may be affected

by promises.

(5) ReflectionReflectionReflectionReflectionReflectionReflectionReflectionReflectionReflectionReflectionReflectionReflectionReflectionReflectionReflectionReflectionReflection: Any expression may perform reflective operations such as accessing the local

variables of any function on the call stack. Impact: The combination of promises and reflection

requires implementations to be able to provide a first-class representation of environments.

(6) VectorsVectorsVectorsVectorsVectorsVectorsVectorsVectorsVectorsVectorsVectorsVectorsVectorsVectorsVectorsVectorsVectors: The most widely used data types in R are vectorized. Scalar values are vectors of

length one. Impact: Unless it can prove otherwise, the implementation must assume that

values are boxed and operations are vectorized.

(7) ObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjectsObjects: Any value, even an integer constant, can have attributes. Attributes tag values with

key-value pairs which are used, among other things, to implement object dispatch. Impact:
The implementation must check if values have a class attribute, and, if so, dispatch operations

to the methods defined to handle them.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article xxx. Publication date: November 2020.
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It is noteworthy that none of the above obstacles can be definitely ruled out at compile time. Even

with the help of static program analysis, these properties depend on the program state at the point

a function is called. To illustrate this, consider the number of arguments passed to a function. The

following code calls add() twice, once with a statically known number of arguments and the second

time with the result of expanding the varargs parameter:

g <- function (...) add(1,3) + add (...)

The triple dots expand at run time to the list of arguments passed into g. Thus, to know the number

of arguments of add requires knowing the number of arguments of g. The following are all legal

invocations:

g(); g(1); g(,1); g(1,2,3); g(b=1, a=2); g(..., a=1);

We conclude with a reassuring code snippet:

good <- function(arg) { ugly <- 1; arg; ugly }

bad <- function(x) rm(li=x, envir=sys.frame(-1))

good(bad("ugly"))

The good defines a local variable named ugly and, between that variable’s definition and access,

evaluates arg which leads to a bad call. The bad reflectively deletes the ugly. Thus, the good’s final

act will be to look for the ugly, first in its local scope, then at the top-level. This example showcases

R’s expressive power, and hints at implementation challenges.

Ř. Ř is a just-in-time compiler that plugs into the GNU R environment and is fully compliant

with the language’s semantics. It passes all GNU R regression tests as well as those of recommended

packages with only minor modifications.
1 Ř follows R’s native API which exposes a large part of

the language run-time to user-defined code. It is also binary compatible in terms of data structure

layout, even though this is costly as GNU R’s implementation of environments is not efficient. The

hooks required to load Ř are small enough to be easily ported to newer releases. Compliance is

checked automatically at each commit.

Ř adopts a multi-tier execution strategy. Source code is translated to an intermediate repre-

sentation named RIR which can be interpreted. RIR is translated to a static single assignment

intermediate representation called PIR [Flückiger et al. 2019]. Optimizations such as global value

numbering, dead store and load removal, hoisting, escape analysis, and inlining are all performed

on PIR code. Finally, native code is generated by a LLVM-backend. It is noteworthy that many

of the Ř optimizations are also provided by LLVM. However, in PIR they can be be applied at a

higher level. For instance, function inlining is involved due to first-class environments. There are

also R specific optimizations, such as scope resolution, which lowers local variables in first-class

environments to PIR registers; promise inlining; or optimizations for eager functions.

Ř relies on speculative optimizations. Profiling information from previous runs is used to speculate

on types, on shapes (scalars vs. vectors), on the absence of attributes, and so on. Ř also performs

speculative dead code elimination, speculative escape analysis to avoid materializing environments,

and speculative inlining of closures and builtins. Speculation is orthogonal to contextual dispatch;

every version of a function can have its own additional speculative optimizations. The design of

speculative optimizations is based on work by Flückiger et al. [2018]. A novel feature is that PIR

allows scheduling of arbitrary instructions, such as allocations, only on deoptimization. When

speculation fails, a deoptimization mechanism transfers execution back to the RIR interpreter.

1
Two error messages were changed, and a 1 second increase to a timeout was needed to account for higher compile times.
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3 CONTEXTUAL DISPATCH

max(x)

+

max(y, 0)

function(a, b=a, warning=FALSE)

# assume(warning == FALSE)

if (a < b) b else a

# assume max unchanged

x + (if (y < 0) 0 else y)

max(x)

+

max(y, 0)

Eager,Missing,Missing

function(a) a

Integer[1],Real[1],Missing

function(a, b)

if (a[[1]] < b[[1]]) b else a

call-site callee

sp
ec
ul
at
io
n

in
lin

in
g

co
nt
ex
t
di
sp
at
ch

Fig. 1. Speculation, Inlining and Contextual dispatch

With contextual dispatch we provide

the means to keep several differently spe-

cialized function versions and then dy-

namically select a good candidate, given

the dynamic context at the call-site. To

gain some intuition, let us revisit the ex-

ample of Listing 1 and contrast specu-

lation, inlining and contextual dispatch.

Figure 1 shows idealized compilation of

that code. On the left we observe the two

call-sites to the max function. In the first

case, since both callers omit the warning

parameter, a compiler could speculatively

optimize it away, by leaving an assume to

catch calls that pass the third argument.

However any unrelated call-site in the

program could invalidate this assumption

and undo the speculative optimization for

all callers simultaneously. Second, inlining allows us to specialize the max function for each call

site independently. In R, inlining is generally unsound as functions can be redefined by reflection.

Therefore the assumption of a static target for the inlined call-site is a speculative optimization.

Inlining increases code size, and, is often disallowed if the called method is large. As a further draw-

back the compiler must specialize the function for each call-site anew and is limited to specialize

on statically known information. For instance in max(deserialize(readline()), 1), the argument

type is dynamic and inlining does not allow us to specialize for it.

In contrast, as depicted in the last example in Figure 1, contextual dispatch allows the compiler to

create two additional versions of the target function, one for each calling context. At run-time the

dispatch mechanism compares the information available at the call-site with the required contexts

of each available version and dynamically dispatches to one of them. Unlike inlining, there is no

limit to the target function size, the specialization is bounded by the number of different contexts.

Here we assume that type of x and y and the fact that they are scalar values, can not be inferred

from the source code, but can be checked at run-time. Contextual dispatch is then realized by first

approximating a current context. For instance if x is a scalar integer, then at the call-site max(x)

a current context of Integer[1] could be inferred. Given this current context, a target version

with a compatible context is invoked. In our example the context Eager,Missing,Missing is chosen.

If no compatible specialized version is available, then we dispatch to the original version of the

function, therefor contextual dispatch always succeeds. Compatibility is expressed in therms of

ordering: contexts form a partial order, such that any smaller context logically entails the bigger

one. In other words, a function version can be invoked if its context is bigger than the current one.

In our implementation a context is an actual datastructure with an efficient representation and

comparison. For each call-site the compiler infers a static approximation for the upper bound of

the current context. Additional dynamic check further concretize and populate the approximation.

This dynamically inferred current context has two uses. First, it serves as the lower bound when

searching for a target version of a particular function. The target might not be unique as we will

discuss later. Secondly, if no good approximation is found, then it serves as the assumption context

to compile a fresh version to be added to the function.
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max(x) +

if (length(y)==1)

max2s(y, 0)

else

max2(y, 0)

function(a, b)

if (a[[1]] < b[[1]]) b else a

function(a, b)

if (a < b) b else a

Fig. 2. Splitting

Contextual dispatch shares some sim-

ilarities with splitting, as depicted in ??.
Similarly specialized copies of functions

are created, for instance here max2 is a

copy of max which takes two arguments.

Additionally, if there are multiple static

candidates, then those are disambiguated

at runtime by rewriting the call-site into

a fixed sequence of branches. In this example we test for the length and in case of 1 call the

copy max2s, specialized to receiving two scalar arguments. However, the specialization happens

at compile-time and cannot be extended without recompilation. All those four techniques can

be easily combined. For instance the performance of inlining can be improved by inlining an

already optimized version using a static approximation of contextual dispatch. Or statically known

candidates of likely contexts can be used statically by splitting on contexts.

The following section provides a precise definition of contexts and contextual dispatch. Then, we

present a more detailed account on the performance trade-offs of contextual dispatch. The actual

instance of contextual dispatch as implemented in Ř is detailed in the later section 4.

3.1 Definitions
We envision a number of possible implementations of contextual dispatch. The following provides

a general framework for the approach and defines key concepts.

Context. Contexts 𝐶 are predicates over program states with an efficiently computable partial

order𝐶1 < 𝐶2 iff𝐶1 ⇒ 𝐶2, i.e.,𝐶1 entails𝐶2. Let ⊤ be the context that is always true; it follows that

𝐶 < ⊤ for all contexts 𝐶 .

Current Context. A context is called current with respect to a state 𝑆 if 𝐶 (𝑆) holds.

Version. ⟨𝐶,𝑉 ⟩ is called a version, where 𝑉 is code optimized under the assumption that 𝐶 holds

at entry. A function is a set of versions including ⟨⊤,𝑉𝑢⟩, where𝑉𝑢 is compiled without assumptions.

Dispatch. To invoke a function 𝐹 in state 𝑆 , the implementation chooses any current context 𝐶 ′

(with respect to S) and a version ⟨𝐶,𝑉 ⟩ ∈ 𝐹 such that 𝐶 ′ < 𝐶 and transfers control to 𝑉 .

The above definitions imply a notion of correctness for an implementation.

Theorem. Dispatching to version ⟨𝐶,𝑉 ⟩ ∈ 𝐹 from a state 𝑆 and a current context 𝐶 ′ implies 𝐶 (𝑆).

This follows immediately from the definition of the order relation. It means that dispatch transfers

control to a version of the function compiled with assumptions that hold at entry.

We might want to require contexts be closed under conjunction. While not necessary, the benefits

are that a unique smallest current context exists and the intersection of two current contexts is a

more precise current context.

The above definitions may not necessarily lead to performance improvements; indeed, an imple-

mentation may choose to systematically dispatch to ⟨⊤,𝑉𝑢⟩. This is a correct choice as the version
is larger than any current context but it also provides no benefits.

Heuristics. It is reasonable for an implementation to compute a smallest current context as

that context captures the most information about the program state at the call site. On the other

hand, increased precision might be costly, and thus an approximation may be warranted. An

implementationmay also compute the current context by combining static and dynamic information.

For instance, one may be able to determine statically that 𝐶 ≡ type(arg0)==int holds, perhaps
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because that argument appears as a constant, whereas𝐶 ′ ≡ type(arg1)==stringmust be established

by a run-time check. Given 𝐶 ∧𝐶 ′
exists, it is a more precise current context.

⟨𝐶𝐼?,𝑉𝐼?⟩

⟨𝐶?𝐼 ,𝑉?𝐼 ⟩

⟨𝐶𝑆𝑆 ,𝑉𝑆𝑆 ⟩
𝑆

⟨⊤,𝑉𝑢⟩

Fig. 3. Versions and current program state

Similarly, dispatch can select any version that is

larger than the current context, but typically, one

would prefer the smallest version larger than the

current context, as it is optimized with the most

information. But this choice can be ambiguous, as

illustrated in Figure 2. There are four versions of

the binary function 𝐹 : 𝑉𝑢 can always be invoked,

𝑉𝑆𝑆 assumes two strings as arguments,𝑉𝐼? assumes

the first argument is an integer, and 𝑉?𝐼 assumes

the second is an integer. Given 𝐹 is invoked with

two integers, i.e., in state 𝑆 , the current context

𝐶𝐼? ∧ 𝐶?𝐼 = 𝐶𝐼 𝐼 is not available as a version to

invoke. The implementation can dispatch to either

𝐶𝐼? or𝐶?𝐼 ; however, neither is smaller than the other. Alternatively, the implementation can compile

a fresh version ⟨𝐶𝐼 𝐼 ,𝑉𝐼 𝐼 ⟩ to invoke.

The efficiency of dispatch depends on the cost of computing the current context and its order.

Contexts can be arbitrarily complex, e.g., “the first argument does not diverge” is a valid context.

Given a call site f(while(a){}), we can establish this context using the conjunction of “if a==FALSE

then while(a){} does not diverge” and “a==FALSE.” The former is static, but the later is dynamic.

An implementation must decide when to add (or remove) versions. Each dispatch where the

current context is strictly smaller than the context of the version dispatched to is potentially

sub-optimal. The implementation can rely on heuristics for when to compile a new version that

more closely matches the current context.

The compiler may replace contextual dispatch with a direct call to a version under a static

current context. This has the benefit of removing the dispatch overhead and enabling inlining.

The drawback is that the static context might be larger than the dynamic one and it forces the

implementation to commit to a version early.

To make matters concrete, we give two examples of contextual dispatch:

(1) Customized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized CompilationCustomized Compilation: This technique introduced in SELF specializes methods to concrete

receiver types, by duplicating them down the delegation tree. The technique can be understood

as an instance of contextual dispatch. The contexts are type tests of the method receiver

𝐶𝐴 ≡ typeof (self ) == 𝐴. The order of contexts is defined as 𝐶𝐴 < 𝐶𝐵 iff 𝐴 <: 𝐵. It follows

that if the receiver is of class 𝐴, and 𝐴 is a subtype of 𝐵, dispatch can invoke a version

compiled for 𝐵. In the Julia language, this strategy is extended to the types of all arguments.

(2) Global AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal AssumptionsGlobal Assumptions: Contexts can capture predicates about the values of global variables,

e.g., 𝐶 ≡ debug == true or 𝐶 ′ ≡ display == headless. If we allow such contexts to be

combined, we get a natural order from𝐶 ∧𝐶 ′ < 𝐶 , i.e., a smaller context is one that tests more

variables. The smallest current context is the conjunction of all current singleton contexts.

An interesting application is shown by Liu et al. [2019], where a dynamic analysis detects

thread-local objects. The property is then used to dispatch to versions of their methods that

elide locks.

3.2 Detailed Example
To illustrate the trade-offs when specializing functions, consider the map-reduce kernel written

in R of Figure 3. The reduce function takes a vector or list x and iteratively applies map. The map
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function has two optional arguments, op which defaults to "m", and b, which defaults to 1 when op

is "m". map is called twice from reduce: the first call passes a single argument and the second call

passes two arguments. The type of the result depends on the type of vector x and the argument y.

As a driver, we invoke reduce ten times with a vector of a million integers, once with a list of tuples,

and again ten times with an integer vector. This example exposes the impact of polymorphism on

the performance. Figure 3 (right) illustrates the execution time of each of the twenty measurements

in seconds (smaller is better).

map <- function(a,

b = if(op=="m") 1,

op= "m") {

if (op=="m") a * b

else if (op=="a") a + b

else error("unsupported")

}

reduce <- function(x, y=3, res=0) {

for (i in x)

res <- res + map(i) + map(i, y)

res

}

for (i in 1:10)

system.time(reduce (1L:1000000L))

reduce(list(c(1L,1L), c(2L,2L)))

for (i in 1:10)

system.time(reduce (1L:1000000L))
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Fig. 4. Optimization strategies

The red line describes the results with inlining and speculation enabled. In this case, map is inlined

twice. The point marked with (1) shows optimal performance after the compiler has finished

generating code. However, the call to reduce with a list of tuples leads to deoptimization and

recompilation (2). Performance stabilizes again (3), but it does not return to the optimal, as the code

remains compiled with support for both integers and tuples. The green line shows the results with

inlining of the map function manually disabled. After performance stabilizes (4), the performance

gain is small. This can be attributed to the high cost of function calls in R. Again, we observe

deoptimization (5) and re-optimization (6). The curve mirrors inlining, but with smaller speedups.

Finally, the blue line exposes the results when we enable contextual dispatch (without inlining).

The first iteration (7) is fast because reduce can benefit from the compiled version of map earlier,

thanks to contextual dispatch of calls. Performance improves further when the reduce function

is optimized (8). We see a compilation event at (9). Finally, we return to the previous level of

performance (10), in contrast to the two previous experiments, where the deoptimization impacted

peak performance. The reason is that the version of map used to process integer arguments is not

polluted by information about the tuples, since they are handled by a different version.

Like inlining, contextual dispatch allows to specialize a function to its calling context. Unlike

inlining, the specialized function can be shared across multiple call sites. While speculation needs

deoptimization to undo wrong assumptions, contextual dispatch does not. Contextual dispatch

applies at call boundaries, while speculation can happen anywhere in a function. Finally, let us
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repeat that these mechanisms are not mutually exclusive: the implementation of Ř supports all of

them and we look forward to studying potential synergies in future work.

4 CONTEXTUAL DISPATCH IN Ř
Below we detail the implementation of contextual dispatch for the R. Given the complexity of

function calls in R, our design focuses on properties that can optimize the function call sequence

and allow the compiler to generate better code within the function.

4.1 Contexts
The goal of contextual dispatch is to drive optimizations. Accordingly, we design contexts in Ř
mainly driven by the seven headaches for optimizing R introduced in section 2.2. Contexts are

represented by the Context structure presented in Listing 2, which consists of two bit vectors

(argFlags and flags) and a byte (missing). The whole structure fits within 64 bits, with two bytes

(unused) reserved for future use. The EnumSet class is a set whose values are chosen from an

enumeration.

enum class ArgAssumption {

Arg0Eager , ..., Arg7Eager , Arg0NotObj , ..., Arg7NotObj ,

Arg0SimpleInt , ..., Arg7SimpleInt , Arg0SimpleReal , ..., Arg7SimpleReal ,

};

enum class Assumption {

NoExplicitlyMissingArgs , CorrectArgOrder , NotTooManyArgs , NoReflectiveArg ,

};

struct Context {

EnumSet <ArgAssumption , uint32_t > argFlags;

EnumSet <Assumption , uint8_t > flags;

uint8_t missing = 0;

int16_t unused = 0;

};

Listing 2. Context data structure

More specifically, argFlags is the conjunction of argument predicates (ArgAssumption) for the

first eight arguments of a function. For each argument position N < 8, we store if the argument has

already been evaluated (ArgNEager), if the argument is not an object, i.e., it does not have a class

attribute (ArgNNotObj), if the value is a scalar integer with no attributes (ArgNSimpleInt), and if the

value is a scalar double with no attributes (ArgNSimpleReal). Any subsequent arguments will not

be specialized for. The limit is informed by data obtained by Morandat et al. [2012], suggesting

that the majority of frequently called functions have no more than three arguments and that most

arguments are passed by position.

The flags field is a set of Assumption values that summarize information about the whole

invocation. The majority of the predicates are related to argument matching. In R, the process

of determining which actual argument matches with formal parameters is surprisingly complex.

The GNU R interpreter does this by performing three traversals of a linked list for each function

call. The Ř compiler tries to do this at compile time, but some of the gnarly corners of R get in the

way. For this reason, contexts encode information about the order of arguments at the call site.

Thus flags has a predicate, NoExplicitlyMissingArgs, to assert whether any of the arguments is

explicitly missing. This matches in three cases: when an argument is explicitly omitted (add(,2)),

when an argument is skipped by matching (add(y=2)), and when a call site has more missing

arguments than expected in the compiled code. CorrectArgOrder holds if the arguments are passed
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bool Context :: smaller(const Context& other) const {

// argdiff positive = "more than expected", negative = "less than"

int argdiff = (int)other.missing - (int)missing;

if (argdiff > 0 && other.flags.contains(Assumption :: NotTooManyArgs))

return false;

if (argdiff < 0 && other.flags.contains(Assumption :: NoExplicitlyMissingArgs))

return false;

return flags.includes(other.flags) &&

typeFlags.includes(other.typeFlags);

}

Listing 3. Implementation of Context ordering

in the order expected by the callee. NotTooManyArgs holds if the number of arguments passed is less

than or equal to the number of parameters of the called function. NoReflectiveArg holds if none of

the arguments invoke reflective functions. Finally, missing arguments that occur at the end of an

argument list are treated specially; missing records the number of trailing missing arguments (up

to 255).

4.2 Ordering
Recall that contexts have a computable partial order, which is used to determine if a function

version can be invoked at a particular program state. For example, let 𝐶 ′
be the current context of

program state 𝑆 , 𝐹 be a function invoked at 𝑆 , and ⟨𝐶,𝑉 ⟩ be a version in 𝐹 . Then the implementation

can dispatch to ⟨𝐶,𝑉 ⟩ if 𝐶 ′ < 𝐶 .

In Ř, the order between contexts, 𝐶 ′ < 𝐶 , is defined mainly by set inclusion of both assumption

sets. For trailing missing arguments, there are two cases that need to be considered. First, if 𝐶

assumes NotTooManyArgs, then 𝐶 ′
must have at least as many trailing missing arguments as 𝐶 .

Otherwise, this implies 𝐶 ′
has more arguments than 𝐶 expects, contradicting NotTooManyArgs.

Second, if context 𝐶 allows any argument to be missing, then it entails a context 𝐶 ′
with fewer

trailing missing arguments (i.e., more arguments). The reason is that missing arguments can be

passed as explicitly missing arguments, reified by an explicit marker value for missing arguments.

If we invert that property, it means that a context with NoExplicitlyMissingArgs does not accept

more trailing missing arguments.

Some example contexts with their order relation (increasing from left to right) are shown in

Figure 4. Contexts with more flags are smaller, contexts with a greater missing value are smaller,

and contexts with NoExplicitlyMissingArgs require the same number of missing arguments to

⊤ = ∅Arg0Eager

Arg0Eager,Arg1Eager

Arg0Eager, missing=1

Arg0Eager, missing=1, NoExplicitlyMissingArgs

Arg0Eager, missing=2

Fig. 5. An example for the order of some Contexts
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be comparable. The comparison is implemented by the code of Listing 3. Excluding mov and nop

instructions, the smaller comparison is compiled to fewer than 20 x86 instructions by GCC 8.4.

4.3 Evaluating Contexts
For every call the current context is needed, which is partially computed statically and completed

dynamically. The Ř optimizer enables static approximation of many of the assumptions. For example,

laziness and whether values might be objects are both represented in the type system of its IR.

Therefore, those assumptions can sometimes be precomputed. Call sites with varargs passed

typically resist static analysis. On the other hand, NoExplicitlyMissingArgs, CorrectArgOrder, and

NotTooManyArgs are static assumptions for call sites without named arguments, or if the call target

is known and the argument matching can be done statically. Similarly, the number of missing

trailing arguments are only statically known if the call target is static.

Themost interesting assumption in terms of its computation is NoReflectiveArg. Since the context

has to be computed for every dispatch, the time budget is very tight. Therefore, this assumption is

only set dynamically if all arguments are eager, which is a very conservative over-approximation.

However, we perform a static analysis on the promises to detect benign ones, which do not perform

reflection. This shows that even computationally heavy assumptions can be approximated by a

combination of static and dynamic checks.

The static context is computed at compile time and added to every call instruction. At call time,

a primitive function implemented in C++ supplements all assumptions which are not statically

provided. This seems like a gross inefficiency—given the static context, the compiler could for each

call site generate a specific and minimal check sequence. We plan to add this optimization in the

future. So far we have observed the overhead of computing the context to be small compared with

the rest of the call overhead.

4.4 Dispatch Operation
All the versions of the same function are kept in a dispatch table structure, a list of versions sorted
by increasing contexts. Versions with smaller contexts (i.e., with more assumptions) are found in

the front. To that end we extend the partial order of contexts to a total order: if two contexts are

not comparable then the order is defined by their bit patterns.

Listing 4 shows a pseudocode implementation of the dispatching mechanism. Dispatching is

performed by a linear search for the first matching context (see Listing 3). The result of a dispatching

operation can be cached, since given the same dispatch table and context, the result is deterministic.

If the context of the dispatched version is strictly larger than the current context, it means that

there is still an opportunity to further specialize. We rely on a counter based heuristic to trigger

the optimizer. At the time of writing, dispatch tables are limited to 15 elements; to insert an entry

into a full table, a random entry (except the first) is evicted.

4.5 Optimization Under Assumptions
Optimizations in Ř are performed on an intermediate representation called PIR. The version of

PIR shown here is a simplification of the actual representation in the compiler. For an in-depth

discussion of PIR, we refer to Flückiger et al. [2019]. Our work extends the model with explicit type

annotations, a feature that is extensively used in the real system. The grammar of PIR is shown in ??.
Below, we briefly illustrate some optimizations relying on the contextual assumptions introduced

in the previous sections. For the following examples, it is important to know that values in PIR

(as in R) can be lazy. When a value is used in an eager operation, it needs to be evaluated first, by

the Force instruction. PIR uses numbered registers to refer to the result of instructions. Those are
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Version* dispatch(Context staticCtx , Cache* ic, DispatchTable* dt) {

Context cc = computeCurrentContext(staticCtx);

if (ic ->dt == dt && ic->context == cc)

return ic ->target; // Cache hit

Version* res = dt->find ([&]( Version* v){ return cc.smaller(v->context); });

if (res ->context != cc && jitThresholdReached(res))

res = optimize(dt, res , cc); // Compile a better version

updateCache(ic , dt, res , cc);

return res;

}

Listing 4. Dispatching to function versions under the current context

not to be confused with source-level R variables, which must be stored in first-class environments.

Environments are also first-class entities in PIR, represented by the MkEnv instruction.

cls %1 = LdFun (f, G)
int$∼ %2 = LdConst [1]
any %3 = Call %0 (%1) G

As a simple example, consider the R expres-

sion f(1) that calls the function f with the con-

stant 1. This translates to the PIR instructions

on the right. The first instruction loads a func-

tion called f from the global environment. The second instruction loads the constant argument,

which is a unitary vector [1]. This instruction has type integer and additionally the value is known

to be scalar ($) and eager (∼). The third instruction is the actual call. The static context for this call

contains the Arg0SimpleInt and Arg0Eager flags. Assuming the call target is unknown, the result

can be lazy and of any type.

any %0 = LdArg (0)
envir %1 = MkEnv (x = %0 : G)
any∼ %2 = Force (%0) %1

Return (%2)

R variables are stored in first-class environ-

ments. As an example, consider the body of the

identity function, function(x) x, shown in PIR

on the right. The first instruction LdArg loads
the first argument. In general, the arguments

can be passed in different orders, and the presence of varargs might further complicate matters.

However, all functions optimized using PIR are compiled under the CorrectArgOrder assumption.

This allows us to refer to arguments by their position, since it is now the caller’s responsibility to

reorder arguments as expected. The MkEnv instruction creates a first-class R environment to store

variables. The name x is bound to the first argument and the global environment is the parent. The

later means that this closure was defined at the top level. Finally, the argument, which is a promise,

is evaluated to a value (indicated by the ∼ annotation) by the Force instruction and then returned.

any %0 = LdArg (0)
any∼ %2 = Force (%0)

Return (%2)

It is worth noting that the Force instruction

has a dependency on the environment. This

is required since forcing promises can cause

arbitrary effects, including reflective access to

the local environment of the function. Under

the NoReflectiveArg assumption, this dependency can be removed, because the assumption ensures

that no argument can invoke a reflective function. Since this dependency was the only use of the

local environment, it can be completely removed.

any∼ %0 = LdArg (0)
Return (%0)

The Force instruction is still effectful. How-

ever, if we can show that the input is eager, then

the Force does nothing. Under the Arg0Eager

assumption, we know the first argument is evaluated and therefore the Force instruction can

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article xxx. Publication date: November 2020.



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Contextual Dispatch for Function Specialization xxx:15

be removed. In summary, three assumptions CorrectArgOrder, NoReflectiveArg, Arg0Eager were

necessary to conclude that the function implements the identity function.

BB0 : any %0 = LdArg (0)
any %1 = LdArg (1)

envir %2 = MkEnv (a0 = %0, a1 = %1 : G)
lgl$∼ %3 = Eq (%1, missing)

Branch (%3, BB1, BB2)
BB1 : any∼ %4 = Force (%0) %1

Return (%4)
BB2 : any∼ %5 = Force (%1) %1

Return (%5)

Another problem we target with

contextual dispatch is argument

matching. Consider the following

function(a1, a2=a1) {a2}, which

has a default expression for its sec-

ond argument. This function trans-

lates to the PIR on the right. As can

be seen, the second argument must

be explicitly checked against the

missing marker value. The default

argument implies that we must dynamically check the presence of the second argument and then

evaluate either a1 or a2 at the correct location. Default arguments are, like normal arguments,

evaluated by need.

BB0 : any %0 = LdArg (0)
any %1 = LdArg (1)

envir %2 = MkEnv (a0 = %0, a1 = %1 : G)
any∼ %4 = Force (%0) %1

Return (%4)

Optimized under a contextwhere

the last trailing argument is miss-

ing, this test can be statically re-

moved. With this optimization, ba-

sic block 2 is unreachable. Note that

as in the simpler example before,

under the additional Arg0Eager as-

sumption, the Force instruction

and the local environment can be statically elided and the closure does not need an R environment.

BB0 : any %0 = LdArg (0)
any %1 = LdArg (1)
cp %4 = Checkpoint BB1

lgl$∼ %5 = Eq (%1, missing)
lgl$∼ %6 = Is⟨any∼⟩(%0)

Assume (%5,%6) %4
Return (%0)

BB1 : envir %2 = MkEnv (a0 = %0, a1 = %1 : G)
Deopt (baseline, %0,%1, %2)

Almost all of these specializa-

tions can also be applied using spec-

ulative optimizations. For instance,

the previous example could be spec-

ulatively optimized as follows: in-

stead of contextual assumptions,

the speculative assumptions that

a1 is missing and that a0 is eager

are explicitly tested. The Assume in-
struction guards assumptions and

triggers deoptimization through the last checkpoint. Creation of the local environment is delayed

and only happens in case of a deoptimization. As can be seen here, the need to materialize a local

environment on deoptimization is a burden on the optimizer and additionally, this method does

not allow us to specialize for different calling contexts separately. However, there are of course

many instances where speculative optimizations are required, since the property of interest cannot

be checked at dispatch time. For instance, the value of a global binding might change between

function entry and the position where speculation is required.

Other optimizations. In addition to contextual dispatch, Ř supports inlining, speculative optimiza-

tions, optimizations specific to R such as scope resolution, and traditional optimizations including

global value numbering, hoisting, and escape analysis. These techniques are not mutually exclusive,

and in fact, they are complementary. In the next section, we conduct a baseline performance

comparison, and then evaluate the performance contribution of contextual dispatch.
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5 EMPIRICAL EVALUATION
In this section, we empirically validate the impact of contextual dispatch. Our approach is to first

establish a baseline performance by comparing our system to two existing implementations, and

then to drill down in the results and show the contributions of different assumptions of a context

to performance.

5.1 Methodology
Non-determinism in processors, e.g., due to frequency scaling or powermanagement, combinedwith

the adaptive nature of just-in-time compilation, make reporting experimental results challenging.

We identify outliers by running the same performance experiment automatically on every commit

and comparing histories. To deal with warmup phases of the virtual machine, i.e., iterations of
a benchmark during which compilation events dominate performance, we run each benchmark

fifteen times in the same process and discard the first five iterations. To further mitigate the danger

of incorrectly categorizing the warmup phase [Barrett et al. 2017], we plot individual measurements

in the order of execution. The graphs in ?? visualize the warmup behavior.

An important question when comparing implementations is their compliance; partial implemen-

tations can get speedups by ignoring features that are difficult to optimize. The GNU R interpreter

is the reference implementation, so it is compliant by definition. As of this writing, Ř is compliant

with version 3.6.2 of GNU R, verified by running the full GNU R test suite and the tests of its

recommended packages. FastR is not fully compliant with GNU R, but we believe it adheres to the

R semantics in the benchmarks included in this paper.
2

The selection of benchmarks is important. The suite used in this paper consists of 59 programs

that range from micro-benchmarks, solutions to small algorithmic problems, and real-world code.

Some programs are variants; they use different implementations to solve the same problem. We

categorize the programs by their origin:

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 Code fragments known by the R community to be slow. While too small to draw conclusions

from, their performance is easier to analyze than the larger benchmarks.

awfawfawfawfawfawfawfawfawfawfawfawfawfawfawfawfawf We translated three benchmarks to R from Marr et al. [2016]: Bounce, a bouncing balls physics

simulation; Mandelbrot, to compute the Mandelbrot set; and Storage, a program that creates

trees.

shtshtshtshtshtshtshtshtshtshtshtshtshtshtshtshtsht The Computer Language Benchmarks Game [Gouy 2020], ported to R by Kalibera et al.

[2014]. The suite contains multiple versions of classic algorithms, written to explore different

implementation styles. Most of the original programs had explicit loops, so the suite provides

more idiomatic R versions that rely on vectorized operations.

rerererererererererererererererere Flexclust is a clustering algorithm from the flexclust package [Leisch 2006]. It exercises

many features that are hard to optimize, such as generic methods, reflection, and lapply.

Convolution consists of two nested loops updating a numerical matrix; it is an example of

code that is typically rewritten in C for performance.

We ran experiments on a dedicated eight-core i7-6700K CPU, clocked at 4 GHz, stepping 3, 𝜇code

version 0xd6, with 32 GB of RAM and Ubuntu Bionic on Linux kernel version 4.15.0-88. GitLab

runner version 12.9.0 executed each benchmark with a harness compatible with the ReBench [Marr

2018] framework in Docker version 19.04.8. For the baseline performance experiment, we used

GNU R version 3.6.2, released in December 2019; FastR 3.6.1, part of GraalVM 19.3.1, released in

January 2020; and Ř commit bc1933dd.

2
In our experiments, we were unable to make FastR pass 5 out of 15 of the recommended packages in GNU R’s test suite

and we discovered a bug that could lead to integer overflow warnings being suppressed.
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5.2 Baseline Performance Comparison
Studying the performance of GNUR, FastR, and Ř allows us to compare a lightly optimizing bytecode

interpreter and two optimizing just-in-time compilers, where one also implements contextual

dispatch. The systems feature different implementation strategies and trade-offs. This comparison

is therefore mainly to show that Ř is competitive with a state of the art optimizing compiler, to

highlight the significance of the results of the evaluation of contextual dispatch in the next section.

1

3

10

30

[sht] spectralnorm

Fig. 6. Performance of Ř (left) and
FastR (right), normalized to GNU R
(dashed line)

We start by explaining the format of our results. Figure 5

shows the spectralnorm benchmark as an example. The y-

axis measures the speedup compared to the execution time of

the GNU R interpreter (higher is better, scale is logarithmic).

For each of Ř (left) and FastR (right), a box plot shows the

results of the ten runs. Here, the box plot collapses to a single

line as performance is stable in both systems. The individual

observations are overlaid on top of the box plots as a time

series. Warmup iterations are excluded from the box plot, but

displayed on the graph as black crosses.

In this benchmark, Ř and FastR have comparable perfor-

mance profiles. The first three warmup iterations are slow,

about the speed of the GNU R interpreter, then performance is

over 30× faster with no large outliers. Ř has a slower warmup,

due to very simple heuristics for when a function is optimized.

Figure 6 shows results for 16 of the 59 benchmarks. This se-

lection excludes the [𝜇] benchmarks and includes one variant

for each program, other than nbody where we selected two variants. To avoid cluttering the graphs,

warmup is not pictured. Table 1 summarizes the range of speedups per benchmark family. The [𝜇]

benchmark results are best ignored as they include benchmarks that are mostly optimized away

(e.g., the maximum speedup for Ř relative to GNU R is 483949×). The full set of results and the

warmup times are given in ??.
Ř can achieve a similar performance to FastR, but can also be significantly slower when the

benchmark relies on features that are not optimized in Ř. It is noteworthy that Ř is slower than

GNU R on flexclust: this is because the benchmark uses features that currently cause Ř to give

up compiling some methods. Ř is also slightly slower on knucleotide, nbody, and pidigits. Ř’s
performance relative to GNU R ranges from a 0.7× slowdown to a 46× speedup, with the overall

speedup being 1.7×.
While FastR can indeed be fast, it is worth noting that there is a large variance for peak per-

formance in both directions, when compared to the GNU R interpreter. For instance Storage and

spectralnorm_math are much slower than GNU R and pidigits and binarytrees have very large

amounts of variability. Finally, we had to exclude flexcust and regexdna from our measurements

since they ran orders of magnitude slower in FastR per iteration. Excluding those, Ř is between

0.1× slower and 6× faster than FastR, with an overall slowdown of 0.58×. We observe that it is

difficult to meaningfully compare FastR to Ř, due to the large variability in the performance relative

to GNU R. For instance two small programs from the [𝜇] family, listWhile and listFor, time out

in FastR due to incremental growth of a vector, leading to a large garbage collection overhead.

Benchmarks are run in the default configuration, however we verified that manually specifying

JVM heap limits between 1G and 12G does not lead to fundamental differences in results. In GNU

R and Ř it is not possible to configure a global heap limit.
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Fig. 7. Performance of Ř (left) and FastR (right), normalized to GNU R (dashed line)

Suite min. max. geom. mean

[awf] 1.03 23.7 2.49

[re] 0.682 26.2 1.71

[sht] 0.756 46 1.58

overall 0.682 46 1.68

[𝜇] 0.791 483949 52.3

(a) Ř versus GNU R

Suite min. max. geom. mean

[awf] 0.25 5.59 0.85

[re] 1.08 1.32 1.23

[sht] 0.108 4.2 0.52

overall 0.108 5.59 0.584

[𝜇] 0.0126 6286 4.58

(b) Ř versus FastR

Table 1. Speedups of Ř (excluding missing measurements and “overall” excluding [𝜇])
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5.3 Performance of Contextual Dispatch
The previous section examined the performance of Řwith all of its optimizations enabled. Howmuch

of that performance is due to contextual dispatch? To answer that question, we disable individual

assumptions that make up a context and study their impact on performance. Importantly, each and

every assumption has an equivalent substitute speculative optimization in Ř’s optimizer as described

in section 4.5. Performance improvements in this section are therefore not due to additional

speculative capabilities, but solely due to splitting into multiple versions and the specialization to

multiple contexts, or due to reduced overhead from having less deoptimization points.

Unfortunately, it is not possible to turn off contextual dispatch altogether as it is an integral

part of the Ř compiler. Each function starts with a dispatch table of size one, populated with the

unoptimized version of the function. To achieve a modicum of performance, it is crucial to add

at least one optimized version to the dispatch table. The unoptimized version cannot be removed

as it is needed as a deoptimization target. What we can do is to disable some of the assumptions

contained within a context. Thus, to evaluate the impact of contextual dispatch, we define seven,

cumulative, optimization levels:

L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0 NotTooManyArgs and CorrectOrder are fundamental assumptions required by Ř;
L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1 ArgNEager for arguments that are evaluated promises;

L2L2L2L2L2L2L2L2L2L2L2L2L2L2L2L2L2 NoReflectiveArg specifies that promises do not use reflection;

L3L3L3L3L3L3L3L3L3L3L3L3L3L3L3L3L3 ArgNNotObj for arguments that do not have the class attribute;
L4L4L4L4L4L4L4L4L4L4L4L4L4L4L4L4L4 ArgNSimpleInt or ArgNSimpleReal for arguments that are scalars of integers or doubles;

L5L5L5L5L5L5L5L5L5L5L5L5L5L5L5L5L5 missing for a lower bound on missing arguments (from the end of argument list); and

L6L6L6L6L6L6L6L6L6L6L6L6L6L6L6L6L6 NoExplicitlyMissingArgs to ensure that missing is the exact number of missing arguments.

0.975

1.000

1.025

1.050

1.075

1.100

[sht] spectralnorm

Fig. 8. Impact of optimization levels 0 to 6
(from left to right)

For this experiment we, pick L0 as the baseline, as it is

the optimization level with the fewest assumptions in

the context. For each benchmark, we report results for

each of L0 to L6, normalized to the median execution

time of L0 (higher is better).

Figure 7 shows the results of the experiment for

spectralnorm. Each level has its own box plot. The

first box plot from the left is for L0 (and its median

is set to one) and the last corresponds to L6. Dots show

individual measurements. The blue line is the lower

bound of the 95% confidence interval of a linear model.

In other words, spectralnorm is predicted to improve

at least 4.6% due to contextual dispatch. The largest

changes in the emitted code can be seen in L2. The

NoReflectiveArg assumption enables the optimizer to

better reason about several functions. These optimiza-

tions are preconditions for the jump in L6, but yield

fewer gains themselves. The improvement in L6 can

be pinpointed to the builtin double function, with the

signature function(length=0L). The NoExplicitlyMissingArgs assumption allows us to exclude the

default argument. The function is very small and is inlined early. However, statically approximated

contextual dispatch allows the compiler to inline a version of the double function, which is already

more optimized. This gives the optimizer a head start and leaves more optimization budget for the

surrounding code.
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Fig. 9. Impact of optimization levels 0 to 6 (left to right)

Results. Figure 8 shows the performance impact of contextual dispatch on 16 of the 59 benchmarks.

This is the same selection as in Figure 6, where we exclude the [𝜇] benchmarks and most variants.

The complete results appear in ??.
In general, we see a trend for higher levels to execute faster. The effects are sometimes fairly small;

note that the each graph has a different scale. The outliers in binarytrees are caused by garbage

collection. Some benchmarks have a large response on L1 or L2. The reason is that benchmarks are

invoked with a workload constant as an argument, and the assumptions from those levels help

with deducing that this argument is benign.

The aim of our experiment is to test if contextual dispatch significantly contributes to the overall

performance of Ř. Often, optimizations do not benefit all programs uniformly, and can even degrade

performance in some cases. We are therefore interested in the number of benchmarks which are

significantly improved (or not worsened) over a certain threshold. We formulate the null hypothesis:
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speedup [awf][sht][re] [𝜇]

-5% 44 11

0% 18 10

2% 11 8

5% 6 8

10% 4 7

20% 1 7

Table 2. Number of benchmarks significantly improved (¬H0 with 𝑝 = .05) out of 46, and 13 ([𝜇])

H0H0H0H0H0H0H0H0H0H0H0H0H0H0H0H0H0 Contextual dispatch does not speed up the execution of a benchmark by more than N%.

We test H0 for various improvement thresholds, by fitting a linear model and testing its prediction

for the lower bound of the 95% confidence interval at L6 (see the blue line in Figure 7). As can

be seen in the summarized results from Table 2, we can conclude that contextual dispatch might

slow down the execution of two benchmarks by more than 5%, improve 39% of benchmarks, and

improves four benchmarks by more than 10%. Additionally, more than half of the benchmarks in

[𝜇] see a speedup greater than 20%.

Discussion. The effects reported in this section can sometimes be subtle. The reasons are that Ř is

already a fairly good optimizer without contextual dispatch. It employs a number of optimizations

and speculative optimizations, which speculate on the same properties. We investigated the number

of versions per function in pidigits and found them to range between 1 and 6. Many functions that

belong to the benchmark harness or are inlined stay at 1 or 2 versions with few invocations. The

functions with many versions concentrate on a few. A big hurdle for contextual dispatch in R is that

it is not possible the check the types of lazy arguments at the time of the call. For instance, there is a

user-provided add function that has 12 call sites with several different argument type combinations.

However, Ř is not able to separate the types with contextual dispatch, because all call sites pass

both arguments lazily. As predicted in section 3, this results in several deoptimizations and re-

compilations, leading to a fairly generic version in the end. We see this as an exciting opportunity

for future work, as it seems that contextual dispatch should be extended from properties that

definitely hold at function entry to properties that are likely to hold at function entry. This would

allow for multiple versions, each with different speculative optimizations, to be dispatched to

depending on how likely a certain property is.

We investigated if garbage collection interferes with measurements. To that end, we triggered a

manual garbage collection before each iteration of the experiment. Indeed, we observed slightly

more significant results for the numbers reported in Table 2. To keep the methodology consistent

with the previous section, where manually triggering a garbage collection would distort the results,

we decided to keep the unaltered numbers.

We find the results presented in this section very encouraging. Additionally, and this is difficult

to quantify, we believe that contextual dispatch has helped improve Ř in two important ways. First,

there is a one-stop solution for specialization. This makes it easy to add new optimizations based

around customizing functions, but we also use it extensively in the compiler itself. The compiler

uses static contexts to keep different versions of functions in the same compilation run, to drive

splitting and for more precise inter-procedural analysis. The second benefit is that contextual

dispatch has helped to avoid having to implement each and every one of the painstakingly many

corner cases of the R language. For instance, we can assume that arguments are passed to functions

in stack order, and if for one caller our system does not manage to comply with this obligation,
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contextual dispatch automatically ensures that the baseline version without this assumption is

invoked.

6 CONCLUSION
Just-in-time compilers optimize programs by specializing the code they generate to past program

behavior. The combination of inlining and speculation is widely used in dynamic languages, as

inlining enlarges the scope of a compilation unit and thus provides information about the context

in which a function is called, and speculation enables inlining and allows to avoid uncommon

branches.

This paper proposes a complementary technique, contextual dispatch, which allows the compiler

to manage multiple specialized versions of a function, and to select the most appropriate version

dynamically based on information available at the call site. The difference with inlining and

speculation is that contextual dispatch allows a different version of a function to be chosen at

each and every invocation of that function with modest dispatching overhead. Whereas inlining

requires the compiler to commit to one particular version, and speculation requires the compiler to

deoptimize the function each time a different version is needed.

The key design choice for an implementation of this approach is to pick contexts that have an

efficiently computable partial ordering. We envision compilers for different languages defining

their own specific contexts. The choice of context is also driven by the cost of deriving them from

current program state, and the feasibility of approximation strategies.

Our implementation of contextual dispatch in Ř was evaluated on a benchmark suite composed

of a number small algorithmic problems and a few real-world programs. Relative to the GNU R

reference implementation, Ř with contextual dispatch achieves an average speedup of 1.7×, with
the worst being a 0.7× slowdown and the best being a 46× speedup. Evaluating the contribution of

contextual dispatch, we observed that it improves performance in 18 out of 46 programs in our

benchmark suite, and in 10 out of 13 micro-benchmarks.

In future work we are considering extending the set of predicates that make up a context. To

add richer properties and increase flexibility, we may have to change the dispatching technique.

One idea would be to develop a library of simple building blocks, such as predicates, decision

trees and numerical ordering; such that their combination still results in a context with efficient

implementation and representation. The key challenge will be to control the cost of deriving

contexts at run-time. For this we are considering improving our compiler’s ability to evaluate

contexts statically. Another direction comes from the observation that different contexts can lead

to code that is almost identical, we will investigate how to prevent generating versions that do not

substantially improve performance.

As for broader applicability, we believe contextual dispatch can be used even in typed languages

to capture properties that are not included in the type system of the language. For instance, in Java

one could imagine dispatching on the erased type of a generic data structure, on the length of an

array, or on the fact that a reference is unique. Whether this will lead to benefits is an interesting

research question.
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