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ABSTRACT

Finding automatically the starting time of audio events is
a difficult process. A promising approach for onset detec-
tion lies in the combination of multiple algorithms. The
goal of this paper is to compare score-level fusion rules
that combine signal processing algorithms in a problem of
automatic detection of onsets. Previous approaches usually
combine detection functions by adding these functions in
the time domain. The combination methods explored in
this work fuse, at score-level, the peak score information
(peak time and onset probability) in order to obtain a bet-
ter estimate of the probability of having an onset given the
probability estimates of multiple experts. Three state-of-
the-art spectral-based onset detection functions are used:
a spectral flux detection function, a weighted phase devi-
ation function, and a complex domain detection function.
Both untrained and trained fusion rules will be compared
using a standard data set of music excerpts.

1. INTRODUCTION

The automatic detection of onsets is essential in many ap-
plications, including a number of important music infor-
mation retrieval (MIR) tasks. Onset detection is useful in
the analysis of the temporal structure of music as, for ex-
ample, beat tracking and tempo induction, but it is also
important in other relevant tasks such as melody, bass-line
and chord extraction.

Finding automatically the starting time of audio events
is a difficult process and many onset detection methods ex-
ist [1–3]. However, the performance of current detection
methods is highly dependent on the nature of the signal
as shown in [1]. The reason is that onset detection tech-
niques assume an implicit nature or probability model for
the signal to be analyzed. Actually, several well known
algorithms can be described in terms of an implicit proba-
bility model of the signal [4].

For this reason, it is not expected that a single method
will perform accurately for strongly nonstationary signals
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and audio signals are intrinsically variable in nature. In-
stead of designing a very complex algorithm, a promis-
ing development lies in the combination of multiple meth-
ods [5]. In fact, this is most likely the way human percep-
tion seems to work [6], using different processing princi-
ples for the same purpose so when one of them fails per-
haps another succeeds.

Methods that combine time-domain onset detection func-
tions to provide with a more accurate detection have been
proposed. However, most of the existing combination
schemes use ad-hoc approaches that, for example, choose
a particular detection function between two different func-
tions based on the type of onset [7] or a quality measure [8].

Recently, onset detection systems based on machine
learning algorithms have been developed. In [9] two Gaus-
sian Mixture Models are used to merge multiple audio fea-
tures, but the combination of the individual detection func-
tions is still done by a linear weighted sum of the time
domain functions. Other approaches merge the detection
functions using a time-delay neural network [10, 11].

The integration of tools and information is one of the
significant challenges for the field of MIR as discussed
in [12] and fusion methods can potentially be used for this
purpose. Fusion is an important research area that stud-
ies the combination of multiple sources of knowledge to
obtain more reliable information [13, 14].

This paper emphasizes the use of information fusion
methods to gather the efforts of MIR community which de-
velops multiple signal processing algorithms for the same
purpose. In particular, we compare the use of untrained and
trained fusion rules to combine, at score-level, the peak
information obtained from three spectral-based onset de-
tection functions. Scores represent the estimated time in-
stant and the probability of having an onset at that instant.
Hence, our multiple-expert approach aims to calculate a
better estimate of that probability given the probability es-
timates (scores) of multiple experts, which is radically dif-
ferent to adding time-detection functions as previous ap-
proaches do. This study is the first work, to our knowl-
edge, that focuses just on the combination of techniques by
introducing score-level fusion for onset detection, opening
a novel direction to address the problem of combining de-
tection algorithms.

Section 2 introduces the fusion approach to onset de-
tection, describing the structure of the system and the de-
tection functions extracted. Section 3 describes the dataset
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Figure 1. The Multiple-expert paradigm. The system fuses
the peak information extracted from three detection func-
tions: the spectral flux measure (SF), the weighted phase
deviation (WPD) and the complex domain method (CD).

and the evaluation measures used in the present work. Re-
sults are presented in Section 4. And finally, Section 5
contains the conclusions and some ideas for future work.

2. FUSION FOR ONSET DETECTION

Fusion is an important and widely studied area that focuses
on the issue of how to combine information to achieve an
improved performance. This multiple expert paradigm is
based on the combination of various diagnosis to exploit
the expertise of the different experts. Score-level fusion
combines the different opinions (probability estimates) of
the experts to obtain a better estimate of the appropriate a
posteriori probability.

Figure 1 shows the multiple expert fusion system that
combines the peak information obtained from three state-
of-the-art onset detection algorithms. First, the spectrum of
the audio signal is calculated using the Short Time Fourier
Transform (STFT). Then, three experts derive the detection
functions using features extracted from the STFT. Finally,
the system combines the peak information obtained from
the detection functions using a fusion rule.

2.1 Onset Detection Functions

The detection functions used for fusion in this work are the
following spectral-based reduction methods: the spectral
flux measure (SF), the weighted phase deviation (WPD)
and the complex domain method (CD) described in [2].

All these methods are based on a STFT scheme that
applies a Hamming window h(n). Given an audio signal
x(n) sampled at fs = 44.1 kHz, the kth frequency bin of
the nth spectrum frame X(n, k) is given by:

X(n, k) =
m= N

2 −1∑

m=−N
2

x(nh + m)h(m) exp−
j2πkm

N (1)

In our experiments, the window size in samples is N =
2048 (46 ms) and the hop size h = 441 (10 ms).

The spectral flux (SF) measures the distance between
successive short-time Fourier spectra:

SF (n) =
m= N

2 −1∑

m=−N
2

H(|X(n, k)|−| X(n− 1, k)|) (2)

where H(x) = x+|x|
2 is a half-wave rectifier. This function

is used to emphasize onsets rather than offsets since the
sum is restricted to those frequencies where the spectral
difference is positive and an increase of energy exists.

In order to add phase information in this system of mul-
tiple experts, the weighted phase deviation reduction
method has also been considered. The rate of change of
phase is an estimation of the instantaneous frequency and
abrupt changes in the instantaneous frequency may suggest
a potential onset. The weighted phase deviation (WPD) re-
duction method takes the mean of the absolute value of the
instantaneous frequency difference weighted by the mag-
nitude of the spectra:

WPD(n) =
1
N

m= N
2 −1∑

m=−N
2

|X(n, k)||ϕ
′′
(n, k)| (3)

where ϕ′′(n, k) is the second derivative of the 2π-
unwrapped phase of the Fourier spectra X(n, k).

Finally, the complex domain detection function consid-
ers jointly both magnitude and phase to search for tran-
sients on the signal. The spectral component X(n, k) can
be predicted from the previous frame spectra magnitude
and phase change:

X̂(n, k) = |X(n− 1, k)|eϕ(n−1,k)+ϕ′(n−1,k) (4)

The complex domain (CD) detection function is defined
as the sum of the absolute deviations from the predicted
spectral values X̂(n, k),

CD(n) =
m= N

2 −1∑

m=−N
2

|X(n, k)− X̂(n, k)| (5)

Normalization is a key step in fusion, therefore each of
the detection functions is normalized to have a mean 0 and
standard deviation of 1.

2.2 The Multiple-expert Architecture

In this approach, where multiple algorithms are combined
to accomplish the same goal and can potentially interact to
adapt its behavior, the architecture is very important. In
this sense, blackboard modeling, an approach taken from
artificial intelligent systems, has been successfully applied
to other relevant applications such as computational audi-
tory scene analysis [15] and polyphonic music transcrip-
tion [16]. In a blackboard model, experts communicate
using a common database what allows to pursue multiple
lines of analysis at the same time and to adapt the strategies
to a particular problem context.
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The multiple-expert approach described in this paper
has been developed within a blackboard-agent framework.
Although the number of experts used in this paper is small,
the blackboard-agent framework will probably be useful
when combining many more experts, by implementing top-
down processing where results coming from fusion are fed
back into experts to improve individual results.

2.3 Peak Selection

Peaks are selected from the onset detection functions by
peak-picking the local maxima. We apply the peak-picking
algorithm used in [2] to obtain the peak-score information
used for fusion: the peak time and the estimated probabil-
ity of having an onset at that time.

A peak at time t = nh
fs

(where n is the current sample,
h the hop length and fs the sampling frequency) is chosen
as a relevant peak if the peak is a local maximum and the
detection function is larger than a threshold above the local
mean of the detection function f(n), this is:

f(n) ≥ f(m) for m such that n− w ≤ m ≤ n + w (6)

f(n)−
∑n+w

m=n−lw f(m)
lw + w + 1

≥ δ (7)

where w is the size of the window used to find local max-
ima, l is a weighting factor to calculate the mean over a
larger range before the peak (emphasizing onsets rather
than offsets) and δ is the threshold.

Peak scores are normalized by subtracting the calcu-
lated local mean to the peak value of the detection function
as given in equation (7).

The values of the peak-picking parameters have a large
impact on the results. Hence, we follow the approach cho-
sen in [1] and [2] selecting the parameters that maximize
the F-measure, a performance measure defined in Section 3.

2.4 Fusion

Onsets in the original signal are related to peaks in the
detection functions, therefore the normalized peak scores
and times pairs are selected by using the mean-filter peak-
picking algorithm described above. Peak scores and time
stamps from the three experts are grouped in time frames
of 50 ms and 50% overlap. If a given expert proposes
several peaks within the merging frame, the peak with the
highest score is selected.

Let F (l) = {fsffpdfcd} and T (l) = {tsf tpdtcd} be,
respectively, the peak scores and time stamps for each ex-
pert in the grouping time frame l. The proposed system
fuses this peak information using the rules described be-
low and classifies the frame as an onset or non-onset frame.
The parameters of the fusion algorithms are chosen so as
to maximize the performance of the fusion system.

Voting is perhaps one of the oldest strategies for deci-
sion making. The voting mechanism counts the number
of expert scores that are higher than a given threshold and
a consensus pattern is applied. A grouping frame can be

classified as an onset-frame if any, the majority or all (una-
nimity) the experts exceed the threshold.

The sum rule simply adds the normalized expert scores
in the grouping frame to obtain a better estimate of the a
posteriori onset probability. A frame is labeled as an onset-
frame if the resulting sum score exceeds a threshold.

Trained fusion strategies are also explored in this pa-
per. In particular, we evaluate the performance of a K-
Nearest Neighbor (K-NN) rule and a Support Vector Ma-
chine (SVM) with RBF kernel using cross-validation. The
parameters of the RBF kernel are selected using a grid-
search technique.

Grouping peak information in overlapping time frames
generates doubled detections, therefore the output of the
fusion rule is post processed to remove doubled onsets.

3. DATASET AND EVALUATION
METHODOLOGY

The evaluation of the proposed fusion approaches is per-
formed using the annotated dataset used in [1]. The dataset
is composed of excerpts of different musical styles classi-
fied into the following categories: pitched non-percussive
(PN), pitched percussive (PP), non-pitched percussive (NP)
and complex mixtures (CM). This allows to test the algo-
rithms on different classes of audio signals. There is a total
of 1060 onsets.

The majority of the literature reporting results on onset
detection shows a lack of proper statistical evaluation. Few
works report standard deviations to give an idea of the vari-
ability of the results and most of them rely on mean per-
formances only. Fortunately, a proper statistical hypothesis
testing methodology has been adopted in MIREX 2008.

Hence, we decided to segment the original signals into
homogeneous folds to evaluate the accuracy of our system
using K-fold cross-validation. Cross-validation allows the
statistical evaluation of the performance measures, enabling
the estimation of confidence intervals [17]. We used differ-
ent cross-validation files for each category, with no overlap
between folds. The number of folds were 14 (CM), 12
(NP), 12 (PN) and 14 (PP).

For the evaluation and comparison of onset detection al-
gorithms three measures are usually considered: precision
(P), recall (R) and F-measure (F). These evaluation mea-
sures are defined as:

P =
ncd

ncd + nfp
(8)

R =
ncd

ncd + nfn
(9)

F =
2PR

P + R
(10)

where ncd is the number of correctly detected onsets, nfp

is the number of false positives (detection of an onset when
no ground truth onset exists) and nfn is the number of
false negatives (missed detections). Due to the reliabil-
ity of hand-labeled annotations, a time tolerance of 50 ms
is usually assumed. This means that an onset is consid-
ered to be correctly matched if the detected onset is within
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50 ms of the ground truth onset time. In addition, we do
not penalized merged onsets since we do not try to identify
individual notes.

As discussed in Section 2.3, peak-picking and fusion
rule parameters are chosen so as to maximize the F-
measure, which assigns the same significance to false pos-
itives and false negatives.

4. RESULTS AND DISCUSSION

Table 1 compares the results of the best individual experts
and the proposed fusion rules on the different datasets. We
choose the best expert for comparison because fusion al-
ways performed better than the worst expert in our experi-
ments. In addition, we want to show that fusion can obtain
even better results than the best expert and that fusion per-
formance is not limited by the worst expert.

Total performance do not show enough information to
compare different approaches and a proper statistical anal-
ysis is essential to fully understand how the different meth-
ods perform. Hence, Table 1 shows mean values and the
95% confidence interval for the F-measure using cross-
validation.

As it can be seen in this table, fusion rules are able to
achieve better performance than the best of the experts. For
the PN and PP datasets, the relative increase in F-measure
is important considering that the performance of the best
of the experts is already high. Hence, the accuracy of the
fusion algorithms is not limited by the worst of the experts
and fusion achieves an improvement in performance by ex-
ploiting consensus diagnosis of the three experts.

For the NP and CM cases, the increase in performance
given by the fusion rules is not significant. In fact, the
performance is limited by the number of false negatives
because there is a number of onsets that are not detected
for any of the the experts. To exploit the benefits of fusion,
experts should be as diverse as possible meaning that on-
set detection functions should be accurate and should not
make coincident errors.

It is noteworthy that fusion has reduced the F-measure
deviation in the PN and PP datasets but is still large for
the NP and CM datasets. A large deviation means that
fusion obtains good results for some of the folds but the
performance is very low for other folds. In this sense, the
performance could potentially be increased if we were able
to identify the quality of the detection functions and apply
different fusion strategies based on this quality measure.

We turn now to discuss the different approaches for fu-
sion. Simple fusion rules obtain better results than trained
fusion rules. The size of the test sets is small and both
the K-NN and SVM approaches suffer from overfitting. In
addition, the SVM achieves better performance than the
K-NN except for the CM case. Finally, the SVM achieves
very good results for the PP case, probably because the
number of samples required to learn the task of identifying
PP onsets is low.

We followed the statistical evaluation methodology pro-
posed in [17] and we assumed a t-distribution for the sam-
ple mean estimator of the F-measure (the number of folds

for cross-validation was less than 30). However, perfor-
mance depends on various factors such as the set size, com-
position and the choice of the samples. Another interest-
ing accuracy measure would be the Weighted Error Rate
(WER), widely used in biometrics. In this case, a specific
method for the calculation of confidence intervals for the
total WER, not the mean, is already defined in [18]. This
method reduces the performance dependency of these fac-
tors. The WER, a error measure widely used in biometrics,
is defined as:

WER(R) =
fn + Rfp

1 + R
(11)

where fn and fp are the false negatives and positives rates.
The parameter R allows to balance the significance of the
false positives and false negatives in the error measure
which could be of interest in some applications and useful
to compare algorithms at different operating points. There-
fore, the WER can be an appropriate measure for the statis-
tical evaluation of music information retrieval experiments.

5. CONCLUSIONS AND FUTURE WORK

The originality of this contribution is the introduction of
score-level fusion strategies for onset detection, looking at
the problem of combining onset information as a multiple-
expert fusion problem. Our approach aims to calculate
a better estimate of that probability given the probability
estimates of multiple experts, which is radically different
to adding time-detection functions as previous approaches
do. This study is the first work, to our knowledge, that
focuses just on the combination of techniques by introduc-
ing score-level fusion for onset detection, opening a novel
direction to address the problem of combining detection
algorithms.

This paper compares untrained and trained fusion rules
on four sets of different music styles. Results show how
information fusion rules can lead to a higher performance
when combining multiple signal processing algorithms de-
signed for onset detection. However, the increase in perfor-
mance seems to be not important if experts are not diverse.
Simple fusion rules show better performance than trained
rules due to, probably, the small number of samples avail-
able for training.

In addition, a performance measure widely used in bio-
metrics has been proposed. The Weighted Error Rate al-
lows to balance the significance of the false positives and
false negatives in the error measure and a specific method
for the calculation of the confidence intervals of the total
error rate is already defined.

In future work, we will include more experts to exploit
diversity in the information fusion process. In addition, the
cross-validation analysis showed a high deviation of the F-
measure for complex signals. This means that the perfor-
mance of the experts is highly dependent on the conditions
of the signal. To face this problem, we will explore quality-
based information fusion which basically weights scores
according to the quality of the expert’s detection functions.
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PN data PP data NP data CM data
P R F P R F P R F P R F

B.E. 93.8 98.1 95.7± 5.1 97.4 98.5 97.8± 1.7 99.5 94.5 96.7± 5.5 89.4 89.6 88.8± 6.7
Vot. 99.1 95.6 97.3± 2.4 98.4 98.8 98.6± 1.0 96.9 96.7 96.7± 5.7 91.0 88.5 89.2± 7.5
Sum 99.1 95.6 97.3± 2.4 99.8 98.6 99.2± 0.9 98.0 94.6 96.2± 5.5 93.9 85.4 88.9± 7.0
KNN 91.4 96.4 93.5± 4.3 95.7 98.0 96.7± 1.5 94.2 92.6 93.2± 8.0 88.2 82.9 84.3± 10.4
SVM 92.2 98.1 94.7± 5.6 99.5 98.5 99.0± 1.0 96.8 95.6 96.2± 6.3 84.0 84.8 83.5± 8.9

Table 1. Performance comparison of the score-fusion rules and the best individual expert (B.E.), showing precision (P),
recall (R) and F-measure (F), for the different data sets. The table shows the mean and 95% confidence interval for the
F-measure using K-fold cross-validation.

We will also intend to use a larger dataset to avoid over-
fiting in trained fusion rules. Finally, we will consider in-
formation fusion in other relevant problems such as beat
tracking and tempo induction.
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