
Structured Plans and Observation Reduction for Plans with Contexts

Wei Huang1, Zhonghua Wen2, Yunfei Jiang3, Hong Peng1

1. School of Computer Science & Engineering,

South China University of Technology, Guangzhou, China

2. College of Information Engineering, Xiangtan University, Xiangtan, China

3. Software Research Institute, School of Information Science and Technology,

Sun Yat-sen University, Guangzhou, China

Email: huangbodao@yahoo.com.cn

Abstract

In many real world planning domains, some obser-
vation information is optional and useless to the ex-
ecution of a plan; on the other hand, information
acquisition may require some kind of cost. The
problem of observation reduction for strong plans
has been addressed in the literature. However, ob-
servation reduction for plans with contexts (which
are more general and useful than strong plans in
robotics) is still a open problem. In this paper, we
present an attempt to solve the problem. Our first
contribution is the definition of structured plans,
which can encode sequential, conditional and itera-
tive behaviors, and is expressive enough for dealing
with incomplete observation information and inter-
nal states of the agent. A second contribution is
an observation reduction algorithm for plans with
contexts, which can transform a plan with contexts
into a structured plan that only branches on neces-
sary observation information.

1 Introduction

Planning for extended goals in nondeterministic domains [Pi-
store and Traverso, 2001; Lago et al., 2002], is a well known
and significant problem in AI. In nondeterministic and full
observable domains, actions are modelled with different out-
comes that cannot be predicted at planning time, and the state
of the world can be completely identified via some possible
observation at execution time. Therefore, it is the job of plans
to specify what to do depending on the observation informa-
tion gathered at execution time, and the context of execution,
i.e., the internal state of the agent.

The plan synthesis problem has been addressed in the lit-
erature (e.g., see [Pistore and Traverso, 2001; Lago et al.,
2002]), where plans are expressed as policies on state–context
pairs (i.e., plans with contexts). The agent executing plans
with contexts, is considered able to sense the state of the
world directly, and depending on the state of the world and
the internal state of the agent, execute different actions. In
most real world domains, however, the agent distinguishes
states of the world by acquiring some optional observation
information at some cost (battery, money, and time, etc.). On

the other hand, some observation information may be unnec-
essary to the plan execution. So it is significant to reduce
the unnecessary observation tasks for plans with contexts. A
simpler subset of this problem, i.e., observation reduction for
strong plans [Cimatti et al., 2003] has been already addressed
in [Huang et al., 2007], but to the best of our knowledge,
observation reduction for general plans with contexts is still
an open problem. In this paper, we present a first attempt to
solve the problem.

At first, we extend conditional plans [Huang et al., 2007;
Bertoli et al., 2006] to structured plans that can encode se-
quential, conditional and iterative behaviors, and are expres-
sive enough for dealing with incomplete observation informa-
tion and with internal states of the agent. Intuitively, struc-
tured plans are similar to programs with conditional state-
ments and loops, in which contexts are used to represent the
destination points of jumps occurring in execution control.
We also define what does “a structured plan is equivalent to
a plan with contexts” mean, and the expected cost of obser-
vation information acquisition required at every step of the
execution of a structured plan.

And then, we define an observation reduction algorithm
for general plans with contexts. The algorithm can transform
a plan with contexts into a structured plan that only branches
on necessary observation information. The algorithm termi-
nates, and is correct (i.e., the structured plan returned by the
algorithm is equivalent to the plan with contexts).

This paper is structured as follows. Firstly, we review some
basic notions that are relevant to our work (see [Pistore and
Traverso, 2001; Huang et al., 2007] for further details and
examples). Secondly, we introduce some definitions about
structured plans and their execution. Thirdly, we describe
an observation reduction algorithm for plans with contexts,
and show some properties of the algorithm. Finally, we draw
some conclusions and discuss future research directions.

2 Preliminaries

A planning domain Σ = 〈S,A, I,R〉 is a model of a generic
system with its own dynamics, where S is a finite set of states,
A is a finite set of actions, I ⊆ S is the set of initial states (we
require I �= ∅), and R : S × A → 2S is the state–transition
function. ACT(s) = {a ∈ A|∃s′ ∈ R(s, a)} denotes the set
of actions that are applicable in s ∈ S.

1721

A plan with contexts πC for Σ is a tuple 〈C, c0, act, ctxt〉
where: C is a set of contexts, c0 ∈ C is the initial con-
text, act : S × C → A is the action function, and ctxt :
S × C × S → C is the context function. The execution of πC

on Σ can be described in terms of transitions between state–
context pairs: 〈s, c〉−→a 〈s′, c′〉 if s′ ∈ R(s, a), a = act(s, c),
and c′ = ctxt(s, c, s′). A run of plan πC from state s0

is a possibly infinite sequence 〈s0, c0〉−→a0〈s1, c1〉−→a1 . . . where
〈si, ci〉−→ai 〈si+1, ci+1〉 are transitions. The execution structure
K = 〈SC,SC0, T R〉 is the finite presentation of the set of all
possible runs of πC on Σ, where:

• SC0 = I × {c0};

• SC is the minimal set satisfying the following rules:

– SC0 ⊆ SC,

– if 〈s, c〉 ∈ SC, and there exists a ∈ A and 〈s′, c′〉 ∈
S × C such that 〈s, c〉−→a 〈s′, c′〉, then 〈s′, c′〉 ∈ SC;

• and 〈〈s, c〉, 〈s′, c′〉〉 ∈ T R if 〈s, c〉−→a 〈s′, c′〉 for some a.

The agent executing plans with contexts, is considered able
to sense the state of the world directly, and depending on
the state of the world and the internal state of the agent (i.e.,
the context), execute different actions. In practice, however,
the agent distinguishes states of the world by acquiring some
optional observation information at some cost (e.g., time,
money, and power etc.). An observation setting can be mod-
elled by a set of observation variables V , and an observation
function X : S × V → {
,⊥}.1 The observation of a set
of states ∅ ⊂ S′ ⊆ S built on ∅ ⊂ V ′ ⊆ V and X can be
expressed as a propositional formula, and it is:

OBS(S′,V ′,X) =
∨

s∈S′

(
∧

v∈V′

CODE(s, v,X)), where

CODE(s, v,X) =

{
v iff X (s, v) =

¬v otherwise

O(S,V ,X) = {OBS(S′,V ′,X) | ∅ ⊂ S′ ⊆ S , ∅ ⊂ V ′ ⊆ V}
is the set of all possible observations built from 〈S,V ,X〉.
Furthermore, for each observation variable v ∈ V , we use an
integer COST(v) to represent the cost of each time sensing
the value of v.

In the following example2, that will be used throughout the
paper, we will illustrate the notions introduced in this section.

Example 1 The left of Figure 1 shows a simple robot navi-
gation domain Σ which contains a 3 × 3 room. The states of
Σ (i.e., S = {s0, . . . , s8}) correspond to the 9 positions in
the room. s0 and s1 are the possible initial states of Σ, i.e.,
I = {s0, s1}. The robot can move in the four directions (i.e.,
A = {→, ↓,←, ↑}). An action is applicable only if there is
no wall in the direction of motion. All the actions are deter-
ministic (e.g., R(s3, ↓) = {s4}), except for action → :

1In fact, 〈V,X〉 can be used to model partial observability (e.g.,
[Bertoli et al., 2001; 2006]). However, for the sake of executability
of plans with contexts, we assume that any two distinct states of the
world can be distinguished by one observation variable at least.

2The planning domain and the observation setting introduced in
this example are modified from those given in [Huang et al., 2007].

’ ’

’

’

’

’

’

’

Figure 1: A simple domain Σ and the execution structure cor-
responding to πC and Σ

s c act(s, c) s′ ∈ R(s, a) ctxt(s, c, s′)
s0 c′0 → s3 or s4 c′0
s1 c′0 → s3, s4, or s5 c′0
s3 c′0 ↓ s4 c′0
s4 c′0 ↓ s5 c′0
s5 c′0 → s8 c′0
s5 c′0 → s5 c′1
s5 c′1 ↑ s4 c′1
s4 c′1 ← s1 c′0

Table 1: A plan with contexts πC for Σ

• when on s0 (or s1), the robot may slip and end up ei-
ther in s3 or s4 (or in s3, s4, or s5), i.e., R(s0,→) =
{s3, s4} and R(s1,→) = {s3, s4, s5};

• when on s5, the robot may be blocked by a door and end
up either in s5 or s8, i.e., R(s5,→) = {s5, s8}.

Let πC = 〈C′, c′0, act, ctxt〉 be the plan with contexts
shown in Table 1. The execution structure K corresponding
to πC and Σ is shown on the right of Figure 1.

Suppose the robot can detect the position of the walls
neighboring its location, and perceive whether the X-
coordinate (or Y-coordinate) of its location is n(0 ≤
n ≤ 2) (i.e., the set of observation variables V =
{E,S,W,N,X0,X1,X2,Y0,Y1,Y2}). So the observation func-
tion X is such that X (s0, E) = ⊥, X (s5, X1) =
, and so
on. OBS(I, {E,S},X) = ¬E ∧ S. For the sake of simplicity,
we assume that COST(v) = 1 for each v ∈ V . The agent
executing πC , has to observe all the observation variables
before it selects an action to execute. Hence, the total cost of
observation information acquisition required at every step of
the execution of πC is

∑
v∈V COST(v) = |V| = 10.

In the rest of this paper, Σ = 〈S,A, I,R〉, V , and X repre-
sent a planning domain, a finite set of observation variables,
and an observation function over S and V , respectively.

3 Structured Plans

In this section, we present the definition of structured plans,
which can encode sequential, conditional and iterative behav-
iors, and is expressive enough for dealing with incomplete
observation information and with internal states of the agent.

1722

Intuitively, structured plans are similar to programs with
conditional statements and loops. An empty plan ε means
doing nothing except sending a signal of termination. Con-
texts work as destination points of jumps that take place in
execution control, and the initial context represents the place
where the whole execution begins. For each context, the ex-
planation function specifies the rest of the plan to be executed
from the point corresponding to the context.

Definition 1 A structured plan for 〈Σ,V ,X〉 is a tuple πS =
〈C, c0, E〉, where C is a finite set of contexts, c0 ∈ C is the
initial context, and E : C → Π is the explanation function.
Π is the set of sub–plans built on 〈Σ,V ,X , C〉, and it is the
minimal set satisfying the following rules:

• C ∪ {ε} ⊆ Π, ε is the empty plan;

• if a ∈ A and π ∈ Π, then a ◦ π ∈ Π;

• if ∅ ⊂ V ′ ⊆ V , and 〈oi, πi〉 ∈ O(S,V ′,X) × Π for all
1 ≤ i ≤ n, then switch(V ′){〈oi, πi〉|1 ≤ i ≤ n} ∈ Π.

In the following discussion, πS = 〈C, c0, E〉 represents a
structured plan for 〈Σ,V ,X〉. We say that πS is simple, if
C ∩ {E(c)|c ∈ C} = ∅. Intuitively, successive jumps are not
allowed in the execution control of a simple structured plan.
In the rest of the paper, we consider only structured plans that
are simple. If o, o′ ∈ O(S,V ,X) and o → o′ is a tautology,
then we write o ⇒ o′.

The execution of πS is defined in terms of the runs associ-
ated to it. Intuitively, a run σ is a sequence of configurations
[Sardina et al., 2006] that, describe the world state, the belief
state [Bonet and Geffner, 2000], and the rest of the plan to be
executed.

Definition 2 A configuration for 〈Σ,V ,X〉 and structured
plan πS is a tuple 〈s,B, π〉 ∈ S × 2S × Π.

Configuration 〈s, I, E(c0)〉 is initial if s ∈ I. Configura-
tion 〈s,B, π〉 may evolve into configuration 〈s′,B′, π′〉, writ-
ten 〈s,B, π〉 −→ 〈s′,B′, π′〉, if either:

• π = a ◦ π′′, if π′′ �∈ C then π′ = π′′ else π′ = E(π′′),
s′ ∈ R(s, a) and B′ = ∪s′′∈BR(s′′, a); or

• π = switch(V ′){〈o1, π1〉, . . . , 〈on, πn〉},
OBS({s},V ′,X) ⇒ oi, if πi �∈ C then
π′ = πi else π′ = E(πi), s′ = s, and
B′ = {s′′ ∈ B|OBS({s′′},V ′,X) ⇒ oi}.

The reachable configurations for 〈Σ,V ,X〉 and πS , are de-
fined by the following rules:

• if 〈s,B, π〉 is initial, then it is reachable;

• if 〈s,B, π〉 is reachable and 〈s,B, π〉 −→ 〈s′,B′, π′〉,
then 〈s′,B′, π′〉 is also reachable.

Due to the nondeterminism in a planning domain, there
may be many different runs of a structured plan. We use an
execution structure to represent the set of all possible runs.

Definition 3 The execution structure corresponding to
〈Σ,V ,X〉 and structured plan πS , is K = 〈Q,Q0, T 〉,
where: Q is the set of reachable configurations; Q0 =
{〈s, I, E(c0)〉|s ∈ I} is the set of initial configurations; and
T = {〈q, q′〉 ∈ Q ×Q|q −→ q′}.

In the following discussion, K = 〈Q,Q0, T 〉 represents
the execution structure corresponding to 〈Σ,V ,X〉 and πS .

TERC(K) = {q ∈ Q|∀q′ ∈ Q.〈q, q′〉 �∈ T } denotes the set
of terminal configurations of execution structure K . A run
of K from q0 is a possibly infinite sequence (q0, q1, . . .) such
that, for every qi, either qi ∈ TERC(K) or 〈qi, qi+1〉 ∈ T .
RUNS(q, K) denotes the set of runs of K from q.

In general, we are interested in executable structured plans,
i.e., structured plans whose execution guarantees that an ac-
tion is never attempted unless it is applicable, and that for any
possible observation information, they say what to do next
without ambiguity.

Definition 4 Let K = 〈Q,Q0, T 〉 be the execution structure
corresponding to 〈Σ,V ,X〉 and structured plan πS . πS is
executable on 〈Σ,V ,X〉 if:

• for all 〈s,B, π〉 ∈ TERC(K), π is ε; and

• for all 〈s,B, π〉 ∈ Q such that π takes the form of
switch(V ′){〈oi, πi〉|1 ≤ i ≤ n}, there exists only one
1 ≤ i ≤ n such that OBS({s},V ′,X) ⇒ oi.

Sometimes we may only be interested in the state transi-
tions induced by (the execution of) a structured plan. Let q0 =
〈s0,B0, π0〉 ∈ Q, and σ = (〈s0,B0, π0〉, 〈s1,B1, π1〉, . . .
, 〈si,Bi, πi〉, . . .) ∈ RUNS(q0, K), then we use STRS(σ) =
s′0 � a1 � s′1 � . . . (where s′i ∈ S, ai+1 ∈ A) to represent the
state transitions corresponding to σ such that:

• if π0 = ε, then STRS(σ) = s0; or else

• if π0 = a ◦ . . . such that a ∈ A, then
STRS(σ) = s0 � a � s′1 � . . . such that s′1 � . . . =
STRS((〈s1,B1, π1〉, . . . , 〈si,Bi, πi〉, . . .)); or else

• STRS(σ) = STRS((〈s1,B1, π1〉, . . . , 〈si,Bi, πi〉, . . .)).

Now we can compare the behaviors induced by (the exe-
cution of) a structured plan πS with those induced by a plan
with contexts πC .

Definition 5 Let πC = 〈C′, c′0, act, ctxt〉 be a plan with con-
texts for Σ. Then πS is equivalent to πC on 〈Σ,V ,X〉 iff:

• for each s0 ∈ I and σ ∈ RUNS(〈s0, I, E(c0)〉, K) such
that STRS(σ) = s0 � a1 � s1 � a2 � . . ., there exists a run
σ′ = 〈s0, c

′
0〉
−→a1〈s1, c

′
1〉
−→a2 . . . of πC such that c′i ∈ C′;

• and for each s0 ∈ I and run σ′ of πC from s0

(let σ′ = 〈s0, c
′
0〉
−→a1〈s1, c

′
1〉
−→a2 . . .), there exists σ ∈

RUNS(〈s0, I, E(c0)〉, K) such that STRS(σ) = s0 �a1�
s1 � a2 � . . .

Definition 5 only concerns the state transitions induced by
a structured plan and a plan with contexts. However, in many
real world domains, the cost of observation information ac-
quisition is an issue.

Definition 6 Let 〈s0,B0, π0〉 ∈ Q and
σ ∈ RUNS(〈s0,B0, π0〉, K) such that σ =
(〈s0,B0, π0〉, 〈s1,B1, π1〉, . . . , 〈si,Bi, πi〉, . . .). Then
the expected cost of observation information acquisition
required at every step of the execution (i.e., choosing an
action) corresponding to σ is:

AVOC(σ) =

∑
i≥0

OC(πi)

1 +
∑

i≥0
NOA(πi)

, where

OC(πi) =

{ ∑
v∈V′ COST(v) iff πi = switch(V ′){. . .}

0 otherwise

1723

B E

B E

B °

B

° °

E

°

° °

B

°

B E

B E

B °

B E

B

B

Figure 2: The execution structure corresponding to πS

NOA(πi) =

{
1 iff πi = a ◦ . . .
0 otherwise

In the following example, we illustrate the definitions given
in this section.

Example 2 Consider the situation depicted in Example 1. Let
πS = 〈C, c0, E〉 be a structured plan for 〈Σ,V ,X〉, where:

• C = {c0, c1}, E(c0) =→ ◦c1,

• E(c1) =switch({S}){〈S,→ ◦π0〉, 〈¬S, ↓ ◦π1〉},

• π0 =switch({E}){〈E, ε〉, 〈¬E, ↑ ◦ ← ◦c0〉}, and

• π1 =switch({S}){〈S,→ ◦π0〉, 〈¬S, ↓ ◦ → ◦π0〉}.

Let B0 = I, B1 = {s3, s4, s5}, B2 = {s3, s4}, B3 =
{s4, s5}, and B4 = {s5, s8}. The execution structure K =
〈Q,Q0, T 〉 corresponding to 〈Σ,V ,X〉 and πS is shown (as
a directed graph) in Figure 2. It is easy to find that πS is
simple and executable on 〈Σ,V ,X〉.

In Figure 2, we can find that σ1 =
(〈s1,B0, E(c0)〉, 〈s5,B1, E(c1)〉, 〈s5, {s5},→
◦π0〉, 〈s5,B4, π0〉, 〈s5, {s5}, ↑ ◦ ← ◦c0〉, 〈s4, {s4},←
◦c0〉, 〈s1, {s1}, E(c0)〉, 〈s5,B1, E(c1)〉, . . .) and
σ2 = (〈s1,B0, E(c0)〉, 〈s5,B1, E(c1)〉, 〈s5, {s5},→ ◦π0〉,
〈s8,B4, π0〉, 〈s8, {s8}, ε〉) are two runs of K from
〈s1,B0, E(c0)〉. According to definition 6 and
the assumption that (∀v ∈ V)COST(v) = 1,
AVOC(σ1) = limn→∞ 2n/(1 + 1 + 4n) = 0.5 and
AVOC(σ2) = 2/(1 + 2) ≈ 0.67. Furthermore, πS is
equivalent to πC on 〈Σ,V ,X〉. For each s ∈ I and
σ′ ∈ RUNS(〈s, I, E(c0)〉, K), AVOC(σ′) < 1 < |V| (i.e.,
the cost of observation information acquisition required at
every step of the execution of πC).

4 Observation Reduction for Plans with

Contexts

In this section, we will introduce an algorithm to observation
reduction for general plans with contexts. The algorithm (i.e.,
OBSREDUCE) is reported in Figure 3. Given a planning do-
main Σ = 〈S,A, I,R〉, an observation setting 〈V ,X〉 on Σ,
and a plan with contexts πC = 〈C′, c′0, act, ctxt〉 for Σ, it
transforms πC into a structured plan πS = 〈C, c0, E〉, which

1. procedure OBSREDUCE(πC)
2. SCA := SCV := loops := ∅, C = ∅;
3. dis := SIMULATE(I × {c′0}, πC);
4. Vobs := REDUCE(dis,V);
5. for all SC ∈ loops ∪ {I × {c′0}}
6. create a context cSC ;
7. C := C ∪ {cSC};
8. for all cSC ∈ C
9. E [cSC] := CONPLAN(SC, πC ,Vobs);

10. return 〈C, cI×{c′
0
}, E〉;

11. end

Figure 3: OBSREDUCE algorithm

is equivalent to πC on 〈Σ,V ,X〉 and only branches on neces-
sary observation information. We assume that 〈Σ,V ,X〉 is a
global variable.

At every step (i.e., choosing an action) of the execution
of πC , the agent only needs to distinguish the current state–
context pair 〈s, c〉 from 〈s′, c′〉 ∈ SC (SC is the set of possible
current state–context pairs) such that:

• the action specified by πC on 〈s′, c′〉 is different from
that on 〈s, c〉 (i.e., act(s′, c′) �= act(s, c)); or

• the contexts corresponding to some state s′′ will not
be identical at next step (i.e., 〈s, c〉−→a 〈s′′, c1〉 and
〈s′, c′〉−→a 〈s′′, c2〉 for some a ∈ A where c1 �= c2).3

We can use two state–context pairs (e.g., 〈〈s, c〉, 〈s′, c′〉〉) to
represent a basic distinguishing task. In the algorithm, all the
basic distinguishing tasks that may arise during the execution
of πC from I × {c′0}, are recorded in dis. On the other hand,
πC may result in iterative behaviors. Therefore, during the
execution of πC , some loops of sets of state–context pairs en-
countered may arise. In the algorithm, all the entrances of
these loops, and all the sets of state–context pairs encoun-
tered, are recorded in loops and SCV respectively. SCA

records the sets of state–context pairs encountered in some
runs of πC (i.e., SCA is the current set of state–context pairs).
loops, SCV , and SCA are all global variables.

Initially, the recursive procedure SIMULATE(I×{c′0}, πC)
is called to calculate dis (line 3). And then, REDUCE(dis,V)
is called to calculate Vobs ⊆ V such that (∀〈〈s, c〉, 〈s′, c′〉〉 ∈
dis)(∃v ∈ Vobs)X (s, v) �= X (s′, v) (line 4). So at every
step of the execution of πC from I × {c′0}, the agent does
not need to consider the values of the observation variables
in V − Vobs. At last, for each SC ∈ loops ∪ {I × {c′0}},
the algorithm creates a distinct context cSC to represent the
place where E [cSC] (i.e., the rest of the plan πS to be ex-
ecuted form SC) begins (lines 5–7), and calls the recursive
procedure CONPLAN(SC, πC ,Vobs) to construct E [cSC] that
only branches on some subset of Vobs (lines 8–9). The initial

3For example, consider the situation and plan πC depicted in Ex-
ample 1. Initially, it makes no sense to observe the value of any
v ∈ V because (∀s ∈ I)(act(s, c′0) =→) ∧ (∀s

′ ∈ R(s,→
))ctxt(s, c′0, s

′) = c
′

0. If we modify πC such that ctxt(s0, c
′

0, s4) =
c
′

1, then s0 should be distinguished from s1 because different actions
(i.e., ↓ and ←) will be executed on s4 at next step.

1724

context that represents the place where the whole execution
begins, is set as cI×{c′

0
} (line 10).

SIMULATE, REDUCE, and CONPLAN subroutines are
shown in Figure 4 and Figure 5. Now let us introduce them.

SIMULATE(SC, πC) calculates the set of basic distinguish-
ing tasks dis ⊆ (S × C′)2 that may arise during the execution
of πC from SC. Its basic idea is to simulate the behaviors in-
duced by πC from SC. During the simulation, the entrances
of loops (i.e., loops of sets of state–context pairs encountered)
are recorded in loops (lines 13–14); and according to the ac-
tions specified by πC and the successive state–context pairs,
the possible current state–context pairs are dealt with sepa-
rately (lines 18–24, and lines 28–384).

Given dis ⊆ (S × C′)2 and ∅ ⊂ V ′ ⊆ V as in-
put, the procedure REDUCE returns Vobs ⊆ V ′ such that
(∀〈〈s, c〉, 〈s′, c′〉〉 ∈ dis)(∃v ∈ Vobs)X (s, v) �= X (s′, v).
It starts with Vobs = ∅ and iteratively adds some v ∈ V ′

(whose observation cost per basic distinguishing task is min-
imal, see line 71) into Vobs until d = dis, where d =
{〈〈s, c〉, 〈s′, c′〉〉 ∈ dis |(∃v ∈ Vobs)X (s, v) �= X (s′, v)}.

For the execution of πC started from SC ⊆ S × C′,
CONPLAN(SC, πC ,Vobs) constructs the corresponding part
of πS , which only branches on some subset of Vobs. VPLAN

is similar to CONPLAN except that it checks whether SC is
an entrance of a loop (line 61). In this case, the context corre-
sponding to SC (i.e., cSC) is returned by VPLAN. The basic
idea of CONPLAN is similar to that of SIMULATE, i.e., it is to
simulate the behaviors induced by πC from SC. If two possi-
ble current state–context pairs in SC should be distinguished
from each other, then the executions of πC started from them,
will be simulated separately (line 41, and lines 44–58).

We now show some properties of the algorithm
OBSREDUCE(πC). To do so, we first introduce the notion
of SCS(I×{c′0}, πC). SCS(I×{c′0}, πC) is the minimal set
satisfying the following rules:

• I × {c′0} ∈ SCS(I × {c′0}, πC);

• if SC ∈ SCS(I × {c′0}, πC), and
DIVIDE(SC, πC) = {〈a,SC〉} for some a ∈ A,
then EXECUTE(SC, a, πC) ∈ SCS(I × {c′0}, πC);

• if SC ∈ SCS(I × {c′0}, πC), then (∀〈a,SC′〉 ∈
DIVIDE(SC, πC))SC′ ∈ SCS(I × {c′0}, πC).

In the execution of OBSREDUCE(πC), SCS(I ×{c′0}, πC) is
recorded as SCV , which is updated by the calls of SIMULATE

(line 17, Figure 4).

Theorem 1 Let K = 〈SC,SC0, T R〉 be the execution struc-
ture of a plan with contexts πC on Σ. OBSREDUCE(πC)
is guaranteed to terminate, and it is polynomial in |V|,
|SCS(I × {c′0}, πC)|, and |SC|.

Proof: See appendix. �

Theorem 2 When OBSREDUCE(πC) returns a structured
plan πS = 〈C, c0, E〉 (let K be the execution struc-

4Formally, let 〈a,SC′〉 ∈ DIVIDE(SC, πC) and 〈s, c〉 ∈ SC′

then (∀〈s′, c′〉 ∈ SC)(〈s′, c′〉 ∈ SC′) ↔ (act(s′, c′) = a) ∧
(∀s

′′ ∈ R(s, a) ∩ R(s′, a))(ctxt(s, c, s′′) = ctxt(s′, c′, s′′)).
VAILD(SC, πC) = {〈s, c〉 ∈ SC|act(s, c) is defined in πC}. And
EXECUTE(SC, a, πC) = {〈s, c〉|(∃〈s′, c′〉 ∈ SC)〈s′, c′〉−→a 〈s, c〉}.

12. procedure SIMULATE(SC, πC)
13. if SC ∈ SCA then
14. loops := loops ∪ {SC}, return ∅;
15. if SC ∈ SCV or VAILD(SC, πC) = ∅
16. then return ∅;
17. SCA := SCA ∪ {SC}, SCV := SCV ∪ {SC};
18. divitions := DIVIDE(SC, πC);
19. if divitions = {〈a,SC〉} for some a ∈ A then
20. return SIMULATE(EXECUTE(SC, a, πC), πC);
21. dis = ∅,SC′ := SC;
22. for all 〈a′,SC′′〉 ∈ divitions
23. SC′ := SC′ − SC′′;
24. dis := dis ∪ (SC′′ × SC′) ∪ SIMULATE(SC′′, πC)
25. SCA := SCA − {SC};
26. return dis;
27. end

28. procedure DIVIDE(SC, πC)
29. divisions := ∅, SC′ := VALID(SC, πC);
30. while SC′ �= ∅ do
31. select a pair 〈s, c〉 from SC′ randomly;
32. divition := {〈s, c〉},SC′ := SC′ − {〈s, c〉};
33. for all 〈s′, c′〉 ∈ SC′ such that act(s′, c′) = act(s, c)

and ∀s′′ ∈ R(s, act(s, c)) ∩R(s′, act(s′, c′)).
ctxt(s, c, s′′) = ctxt(s′, c′, s′′)

34. division := division ∪ {〈s′, c′〉};
35. SC′ := SC′ − {〈s′, c′〉};
36. divisions := divisions ∪ {〈act(s, c), divition〉};
37. return divisions;
38. end

39. procedure CONPLAN(SC, πC ,Vobs)
40. if VALID(SC, πC) = ∅ then return ε;
41. divitions := DIVIDE(SC, πC);
42. if divitions = {〈a,SC〉} for some a ∈ A then
43. return a◦VPLAN(EXECUTE(SC, a, πC), πC ,Vobs);
44. dis = ∅,SC′ := SC;
45. for all 〈a′,SC′′〉 ∈ divitions
46. SC′ := SC′ − SC′′, dis := dis ∪ (SC′′ × SC′);
47. Vnow := REDUCE(dis,Vobs);
48. for 1 ≤ i ≤ |divitions|
49. select a pair 〈a′,SC′′〉 from divisions randomly;
50. divisions := divisions − {〈a′,SC′′〉};
51. oi := OBS({s|∃c.〈s, c〉 ∈ SC′′},Vnow,X);
52. πi :=VPLAN(SC′′, πC ,Vobs);
53. n := |divisions|,SC′′ := SC − VALID(SC, πC);
54. if SC′′ �= ∅ then
55. n := n + 1;
56. on := OBS({s|∃c.〈s, c〉 ∈ SC′′},Vnow,X);
57. πn := ε;
58. return switch(Vnow){〈oi, πi〉|1 ≤ i ≤ n};
59. end

60. procedure VPLAN(SC, πC ,Vobs)
61. if SC ∈ loops then return cSC ;
62. return CONPLAN(SC, πC ,Vobs);
63. end

Figure 4: Subroutines: SIMULATE,DIVIDE and CONPLAN

1725

64. procedure REDUCE(dis,V ′)
65. for all v ∈ V ′ do di[v] := ∅;
66. for all 〈〈s, c〉, 〈s′, c′〉〉 ∈ dis, and v ∈ V ′

67. if X (s, v) �= X (s′, v) then
68. di[v] := di[v] ∪ {〈〈s, c〉, 〈s′, c′〉〉};
69. Vobs := ∅;
70. while dis �= ∅
71. find v ∈ V ′ such that COST(v)/|di[v]| =

MIN({COST(v′)/|di[v′]| | v′ ∈ V ′});
72. Vobs := Vobs ∪ {v};
73. for all v′ ∈ V
74. di[v′] := di[v′] − di[v];
75. dis := dis − di[v];
76. return Vobs;
77. end

Figure 5: REDUCE subroutine

ture corresponding to 〈Σ,V ,X〉 and πS), πS is equiv-
alent to πC on 〈Σ,V ,X〉, and (∀s ∈ I)(∀σ ∈
RUNS(〈s, I, E(c0)〉, K))AVOC(σ) ≤

∑
v∈V COST(v).

Proof: See appendix. �

Theorem 2 says that the behaviors induced by πS are simi-
lar to those induced by πC , and the observation cost required
at every step of the execution of πS , is not more than that
of πC (i.e.,

∑
v∈V COST(v)). In the following example, we

illustrate the algorithms described in this section.

Example 3 Consider the situation 〈Σ,V ,X〉 and the
plan with contexts πC depicted in Example 1. We ap-
ply the algorithm OBSREDUCE to πC . Firstly, dis
is computed by SIMULATE(I × {c′0}, πC), and it is
{〈〈s3, c

′
0〉, 〈s5, c

′
0〉〉, 〈〈s4, c

′
0〉, 〈s5, c

′
0〉〉, 〈〈s5, c

′
1〉, 〈s8, c

′
0〉〉}

(at the same time, loops = {{〈s3, c
′
0〉, 〈s4, c

′
0〉, 〈s5, c

′
0〉}});

and then, Vobs is computed by REDUCE(dis,V), and it is
{E,S}; lastly, the structured plan πS shown in Example
2 is constructed and returned, where c0 = cI×c′

0
and

c1 = c{〈s3,c′
0
〉,〈s4,c′

0
〉,〈s5,c′

0
〉}.

5 Conclusions and Future Work

In this paper we present a first attempt to solve the prob-
lem of observation reduction for general plans with contexts.
At first, we define structured plans that can encode sequen-
tial, conditional and iterative behaviors, and are expressive
enough for dealing with incomplete observation information
and with internal states of the agent. Intuitively, structured
plans are similar to programs with conditional statements and
loops, in which contexts are used to represent the destina-
tion points of jumps occurring in execution control. We also
define what does “a structured plan is equivalent to a plan
with contexts” mean, and the expected cost of observation
information acquisition required at every step of the execu-
tion of a structured plan. And then, we give an algorithm
(i.e., OBSREDUCE) to the problem. Given a planning domain
Σ = 〈S,A, I,R〉, an observation setting 〈V ,X〉 on Σ, and a
plan with contexts πC = 〈C′, c′0, act, ctxt〉 for Σ, then:

1. OBSREDUCE(πC) terminates, and is polynomial in |V|,

|SCS(I × {c′0}, πC)| (i.e., the number of sets of state–
context pairs possibly encountered), and |SC| (i.e., the
number of state–context pairs possibly encountered);

2. when OBSREDUCE(πC) returns a structured plan πS ,
πS is equivalent to πC on 〈Σ,V ,X〉, and the expected
cost of observation information acquisition required at
every step of the execution of πS is not more than∑

v∈V COST(v) (i.e., the cost of observation informa-
tion acquisition required at every step of the execution
of πC).

In this paper, we assume a setting of strict uncertainty
in which the space of possible effects of actions is known,
but the probabilities of these potential alternatives can not
be quantified. An extension of our work to the settings
where a probability distribution over the set of possible ef-
fects of actions is available (e.g., see [Kaelbling et al., 1998;
Bonet and Geffner, 2000]), is one of the main objectives of
our future research.

The definition of structured plans, can work as a basis of a
new framework (for planning with extended goals under par-
tial observability) with respect to the one proposed in [Bertoli
et al., 2003; Bertoli and Pistore, 2004], because 〈V ,X〉 can
be used to model partial observability. So we plan to define a
procedure (which adapts to the idea of observation and con-
text reduction) for planning with extended goals and partial
observability in the new framework.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China under grant No.60773201, Guangdong
Natural Science Foundation under grant No.07006474, and
Guangdong Scientific and Technological Project Foundation
under grant No.2007B01020044.

References

[Bertoli and Pistore, 2004] Piergiorgio Bertoli and Marco Pi-
store. Planning with extended goals and partial observabil-
ity. In Proceedings of the 14th International Conference
on Automated Planning and Scheduling, pages 270–278,
2004.

[Bertoli et al., 2001] Piergiorgio Bertoli, Alessandro
Cimatti, Marco Roveri, and Paolo Traverso. Planning in
nondeterministic domains under partial observability via
symbolic model checking. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence,
pages 473–478, 2001.

[Bertoli et al., 2003] Piergiorgio Bertoli, Alessandro
Cimatti, Marco Pistore, and Paolo Traverso. A framework
for planning with extended goals under partial observabil-
ity. In Proceedings of the 13th International Conference
on Automated Planning and Scheduling, pages 215–225,
2003.

[Bertoli et al., 2006] Piergiorgio Bertoli, Alessandro
Cimatti, Marco Roveri, and Paolo Traverso. Strong plan-
ning under partial observability. Artificial Intelligence,
170:337–384, 2006.

1726

[Bonet and Geffner, 2000] Blai Bonet and Hector Geffner.
Planning with incomplete information as heuristic search
in belief space. In Proceedings of the 5th International
Conference on AI Planning Systems, pages 52–61, 2000.

[Cimatti et al., 2003] Alessandro Cimatti, Marco Pistore,
Marco Roveri, and Paolo Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. Arti-
ficial Intelligence, 147:35–84, 2003.

[Huang et al., 2007] Wei Huang, Zhonghua Wen, Yunfei
Jiang, and Lihua Wu. Observation reduction for strong
plans. In Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, pages 1930–1935, 2007.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L.
Littman, and Anthony R. Cassandra. Planning and act-
ing in partially observable stochastic domains. Artificial
Intelligence Research, 101(1–2):99–134, 1998.

[Lago et al., 2002] Ugo Dal Lago, Marco Pistore, and Paolo
Traverso. Planning with a language for extended goals. In
Proceedings of the 18th National Conference on Artificial
Intelligence, pages 447–454, 2002.

[Pistore and Traverso, 2001] Marco Pistore and Paolo
Traverso. Planning as model checking for extended goals
in non-deterministic domains. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence,
pages 479–484, 2001.

[Sardina et al., 2006] Sebastian Sardina, Giuseppe De Gia-
como, Yves Lesperance, and Hector J. Levesque. On the
limits of planning over belief states under strict uncer-
tainty. In Proceedings of the 10th International Confer-
ence on Principles of Knowledge Representation and Rea-
soning, pages 463–471, 2006.

A Proofs

Theorem 1 Let K = 〈SC,SC0, T R〉 be the execution struc-
ture of a plan with contexts πC on Σ. OBSREDUCE(πC)
is guaranteed to terminate, and it is polynomial in |V|,
|SCS(I × {c′0}, πC)|, and |SC|.

Proof: Firstly, we want to prove that the numbers of the calls
of SIMULATE, CONPLAN, and VPLAN occurring in the ex-
ecution of OBSREDUCE(πC), are finite and polynomial in
|SCS(I × {c′0}, πC)|:

• |SCS(I × {c′0}, πC)| is finite because it is a subset of
2S×C .

• According to Figure 4, only the sets of state–context
pairs in SCS(I × {c′0}, πC) are passed to SIMULATE,
CONPLAN, and VPLAN. On the other hand, for each
SC′ ∈ SCS(I × {c′0}, πC), there are at most |SCS(I ×
{c′0}, πC)| sets of state–context pairs that can reach
to it directly. Therefore, there are at most |SCS(I ×
{c′0}, πC)| calls of SIMULATE, CONPLAN, and VPLAN

that are on SC′ (see lines 13–17, line 25, and line 61).

Secondly, we will prove that, in every call of SIMULATE,
DIVIDE, CONPLAN, VPLAN, and REDUCE, all the compu-
tation processes (besides the new calls of these procedures)
terminate, and are polynomial in |V|, |SCS(I × {c′0}, πC)|
and |SC|:

1. According to Figure 4 (line 18, and 41), only the sets of
state–context pairs in SCS(I × {c′0}, πC) are possibly
passed to DIVIDE. It is easy to find that each call of
DIVIDE terminates and is polynomial in |SC|.

2. (∀SC′ ∈ SCS(I × {c′0}, πC))(∀〈s, c〉, 〈s′, c′〉 ∈
SC′)(s = s′) → (c = c′) (see Figure 4, line 33), be-
cause (∀〈s, c〉, 〈s′, c′〉 ∈ I × {c′0})(s = s′) → (c = c′).

3. For each 〈dis,V ′〉 passed to some call of REDUCE,
we have (∀〈〈s, c〉, 〈s′, c′〉〉 ∈ dis)(∃SC′ ∈ SCS(I ×
{c′0}, πC)){〈s, c〉, 〈s′, c′〉} ⊆ SC′ (see line 4, and line
47). So (∀〈〈s, c〉, 〈s′, c′〉〉 ∈ dis)s �= s′ (according to
item 2 shown above). Consequently, under the assump-
tion that any two distinct states can be distinguished by
one observation variable at least, each call of REDUCE

terminates and is polynomial in |V| and |SC|.

4. It is easy to find that, in every call of SIMULATE,
CONPLAN, and VPLAN, all the computation processes
(besides the recursive calls of themselves) terminate, and
are polynomial in |V|, |SCS(I × {c′0}, πC)| and |SC|.

Lastly, there are |loops ∪ {I × {c′0}}| ≤ |SCS(I ×
{c′0}, πC)| iterations of the loops shown in lines 5–9, Figure
3. Therefore OBSREDUCE(πC) is guaranteed to terminate,
and is polynomial in |V|, |SCS(I × {c′0}, πC)|, and |SC|. �

Theorem 2 When OBSREDUCE(πC) returns a structured
plan πS = 〈C, c0, E〉 (let K be the execution struc-
ture corresponding to 〈Σ,V ,X〉 and πS), πS is equiv-
alent to πC on 〈Σ,V ,X〉, and (∀s ∈ I)(∀σ ∈
RUNS(〈s, I, E(c0)〉, K))AVOC(σ) ≤

∑
v∈V COST(v).

Proof: πS is constructed by simulating the behaviors induced
by πC from I × {c′0} (see figure 3, figure 4, and figure 5). At
each step of the simulation process, only one of the four cases
shown below is possible (suppose 〈s, c〉 is the current state–
context pair, SC′ (〈s, c〉 ∈ SC′) is the set of possible current
state–context pairs):

1. VALID(SC′, πC) = ∅, no observation is made, and the
execution terminates (line 40, figure 4);

2. (∃a ∈ A)(∀〈s′, c′〉 ∈ SC′)act(s′, c′) = a, no observa-
tion is made, and a is selected to execute (lines 42–43,
figure 4);

3. 〈s, c〉 �∈ VALID(SC′, πC) �= ∅, the values of the ob-
servation variables in V ′ ⊆ V are observed where
(∀s′ ∈ {s′′|(∃c′′)〈s′′, c′′〉 ∈ VALID(SC′, πC)})(∃v ∈
V ′)X (s, v) �= X (s′, v), and the execution terminates
(lines 47, 53–57, figure 4);

4. 〈s, c〉 ∈ VALID(SC′, πC), SC′ − {〈s′, c′〉 ∈
SC′|act(s′, c′) = act(s, c)} �= ∅, the values of the
observation variables in V ′ ⊆ V are observed where
(∀s′ ∈ {s′′|(∃c′′)(〈s′′, c′′〉 ∈ SC′) ∧ ¬(act(s′′, c′′) =
act(s, c))})(∃v ∈ V ′)X (s, v) �= X (s′, v), and act(s, c)
is selected to execute (lines 47–52, figure 4).

It is easy to find that πS is equivalent to πC on 〈Σ,V ,X〉.
According to the four cases shown before, we can also find

that for each v ∈ V and each step of the execution of πS , v can
not be evaluated more than once (see procedure DIVIDE in
figure 4). So for all s ∈ I and σ ∈ RUNS(〈s, I, E(c0)〉, K),
AVOC(σ) ≤

∑
v∈V COST(v). �

1727

